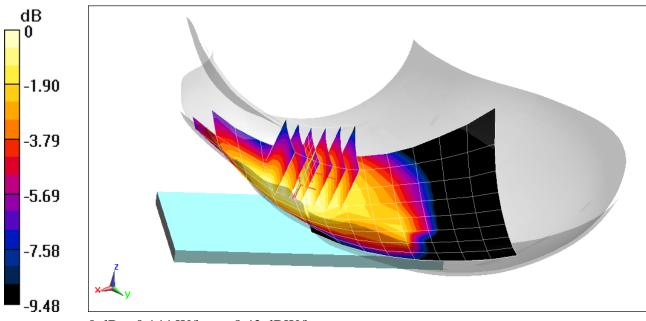
APPENDIX A: SAR TEST DATA

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04304


 $\begin{array}{l} \mbox{Communication System: UID 0, Cellular CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ f = 836.52 \mbox{ MHz; } \sigma = 0.921 \mbox{ S/m; } \epsilon_r = 41.938; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 09/22/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.8°C

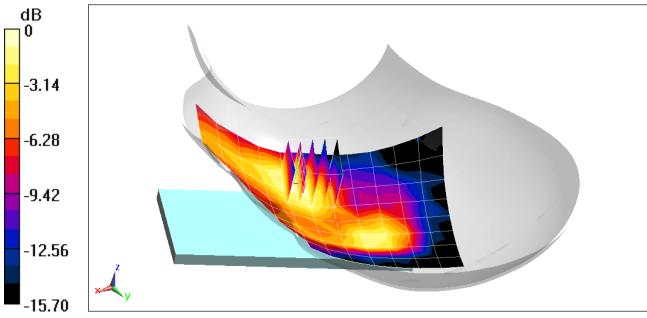
Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 836.52 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Cell. CDMA, BC 0, Left Head, Cheek, Swivel Mode, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.69 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.157 W/kg SAR(1 g) = 0.119 W/kg

0 dB = 0.144 W/kg = -8.42 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04312


Communication System: UID 0, PCS CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.994$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 09/14/2020; Ambient Temp: 24.1°C; Tissue Temp: 21.7°C

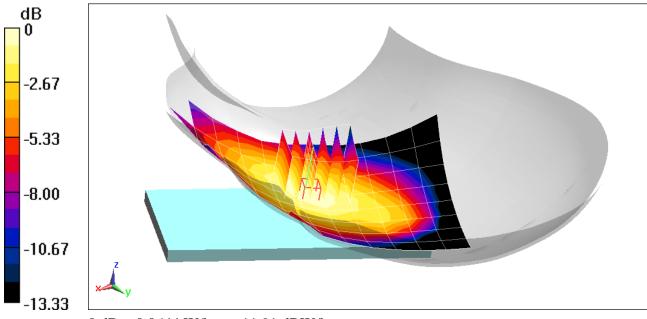
Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1880 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: PCS EVDO Rev A, Left Head, Cheek, Mid.ch

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.211 V/m; Power Drift = -0.16 Peak SAR (extrapolated) = 0.121 W/kg SAR(1 g) = 0.076 W/kg

0 dB = 0.102 W/kg = -9.91 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04312


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ f = 836.6 \mbox{ MHz; } \sigma = 0.935 \mbox{ S/m; } \epsilon_r = 42.484; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 09/16/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.2°C

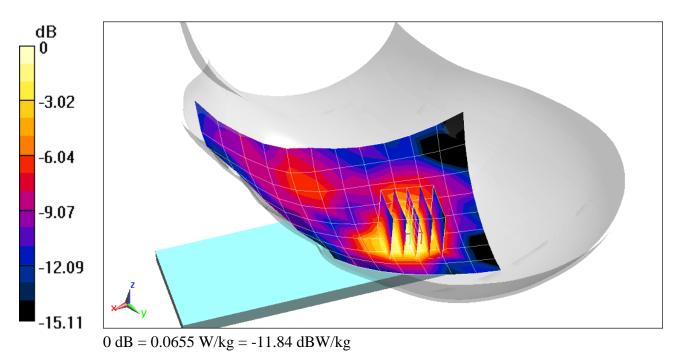
Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 836.6 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 850, Left Head, Cheek, Mid.ch, 2 Tx slots

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.510 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.0720 W/kg SAR(1 g) = 0.052 W/kg

0 dB = 0.0644 W/kg = -11.91 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04312


Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.994$; $\rho = 1000$ kg/m³ Phantom section: Left Section

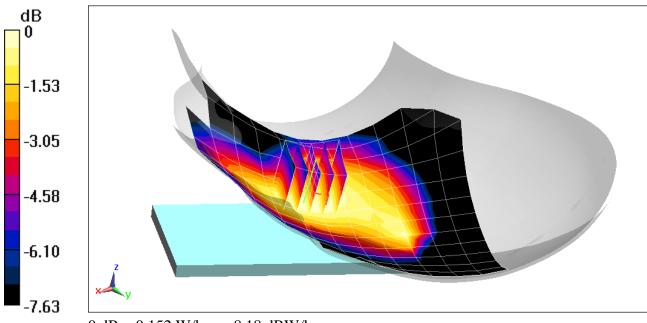
Test Date: 09/14/2020; Ambient Temp: 24.1°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1880 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Left Head, Tilt, Mid.ch, 2 Tx slots

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.161 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.0790 W/kg SAR(1 g) = 0.052 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ f = 836.6 \mbox{ MHz; } \sigma = 0.921 \mbox{ S/m; } \epsilon_r = 41.938; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 09/22/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.8°C

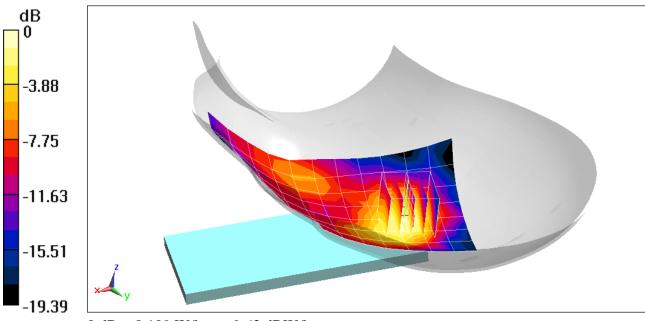
Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 836.6 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Left Head, Cheek, Swivel Mode, Mid.ch

Area Scan (13x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.31 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.164 W/kg SAR(1 g) = 0.131 W/kg

0 dB = 0.152 W/kg = -8.18 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04312


Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.378$ S/m; $\epsilon_r = 40.24$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 09/08/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.2°C

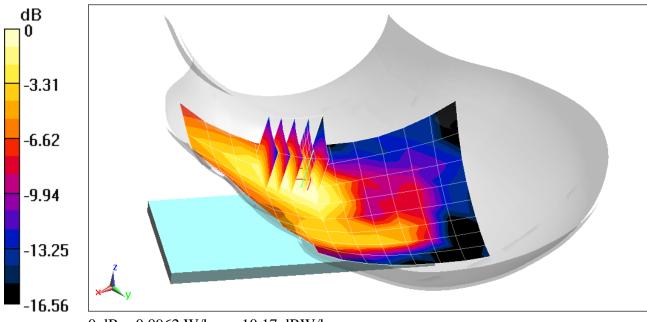
Probe: EX3DV4 - SN7406; ConvF(8.32, 8.32, 8.32) @ 1732.4 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Left Head, Tilt, Mid.ch

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.789 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.128 W/kg SAR(1 g) = 0.079 W/kg

0 dB = 0.109 W/kg = -9.63 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head Medium parameters used:} \\ f = 1880 \mbox{MHz; } \sigma = 1.413 \mbox{ S/m; } \epsilon_r = 39.994; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 09/14/2020; Ambient Temp: 24.1°C; Tissue Temp: 21.7°C

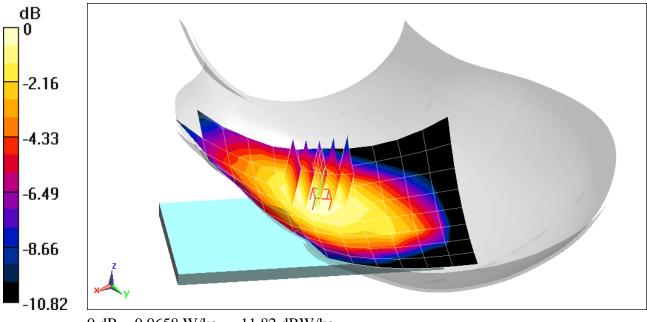
Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1880 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.394 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.115 W/kg SAR(1 g) = 0.073 W/kg

0 dB = 0.0962 W/kg = -10.17 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.886$ S/m; $\varepsilon_r = 42.851$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp:21.9°C

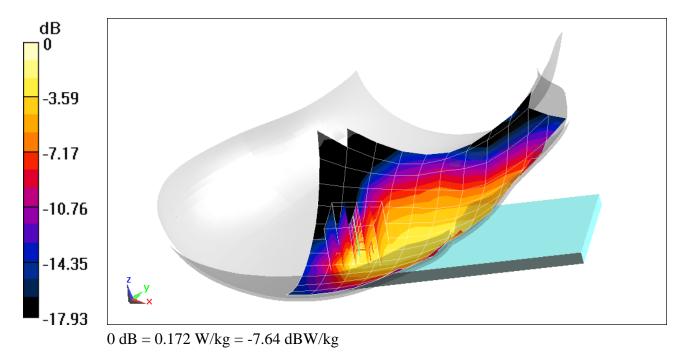
Probe: EX3DV4 - SN3589; ConvF(8.7, 8.7, 8.7) @ 707.5 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 0 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.283 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.0720 W/kg SAR(1 g) = 0.055 W/kg

0 dB = 0.0658 W/kg = -11.82 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 750 Head Medium parameters used (interpolated):} \\ \mbox{f = 782 MHz; } \sigma = 0.914 \ \mbox{S/m; } \epsilon_r = 42.643; \ \mbox{\rho} = 1000 \ \mbox{kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp:21.9°C

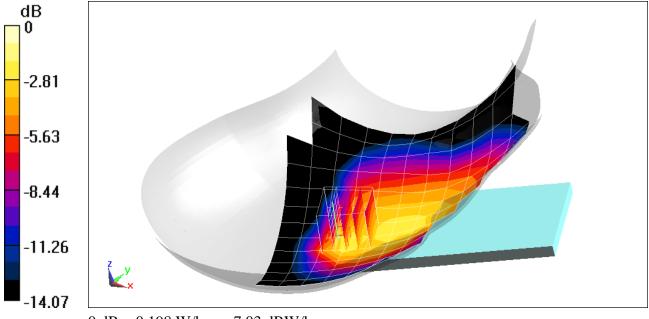
Probe: EX3DV4 - SN3589; ConvF(8.7, 8.7, 8.7) @ 782 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Right Head, Cheek, Swivel Mode, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (13x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.18 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.223 W/kg SAR(1 g) = 0.096 W/kg

A9

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 793 MHz; $\sigma = 0.918$ S/m; $\varepsilon_r = 42.611$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp:21.9°C

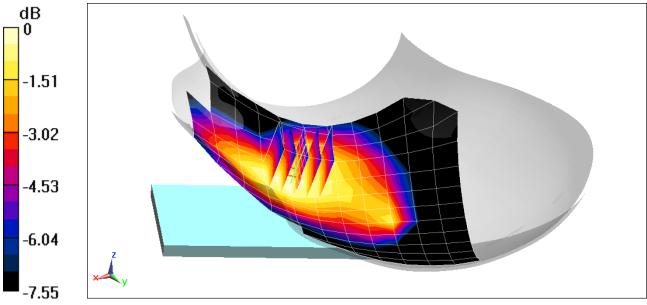
Probe: EX3DV4 - SN3589; ConvF(8.7, 8.7, 8.7) @ 793 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 14, Right Head, Cheek, Swivel Mode, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (13x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.78 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.256 W/kg SAR(1 g) = 0.111 W/kg

0 dB = 0.198 W/kg = -7.03 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ f = 836.5 \mbox{ MHz; } \sigma = 0.936 \mbox{ S/m; } \epsilon_r = 40.926; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 09/28/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.0°C

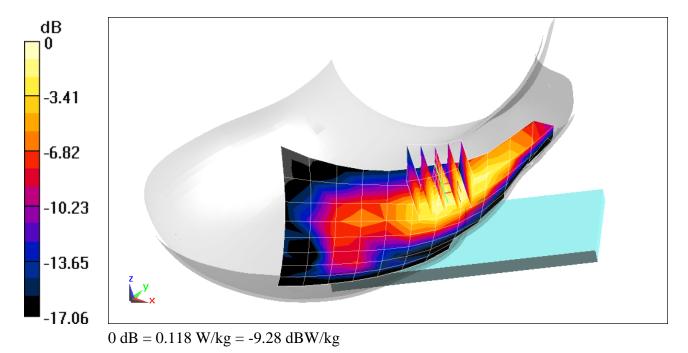
Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 836.5 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 5 (Cell.), Left Head, Cheek, Swivel Mode, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (13x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.77 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.181 W/kg SAR(1 g) = 0.139 W/kg

0 dB = 0.165 W/kg = -7.83 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1720 MHz; $\sigma = 1.365$ S/m; $\epsilon_r = 40.298$; $\rho = 1000$ kg/m³ Phantom section: Right Section

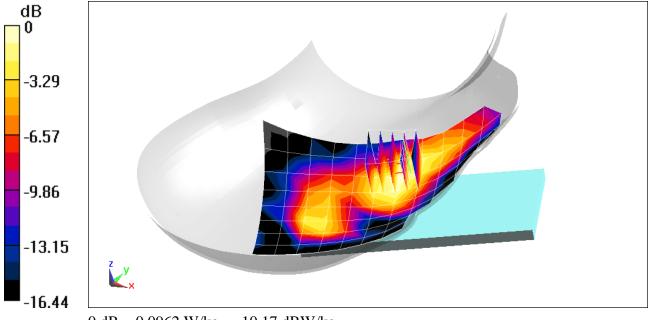
Test Date: 09/08/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7406; ConvF(8.32, 8.32, 8.32) @ 1720 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Antenna 3, Right Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.871 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.142 W/kg SAR(1 g) = 0.088 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1900 MHz; $\sigma = 1.433 \text{ S/m}$; $\epsilon_r = 39.92$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 09/14/2020; Ambient Temp: 24.1°C; Tissue Temp: 21.7°C

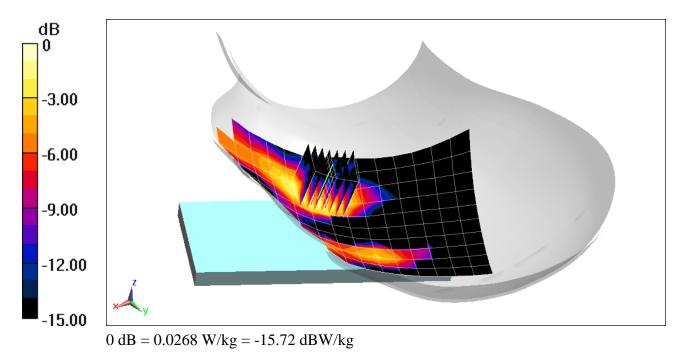
Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 2 (PCS), Antenna 3, Right Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.592 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.117 W/kg SAR(1 g) = 0.069 W/kg

0 dB = 0.0962 W/kg = -10.17 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04304


Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2310 MHz; $\sigma = 1.681$ S/m; $\epsilon_r = 40.386$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 09/16/2020; Ambient Temp: 23.7°C; Tissue Temp: 23.3°C

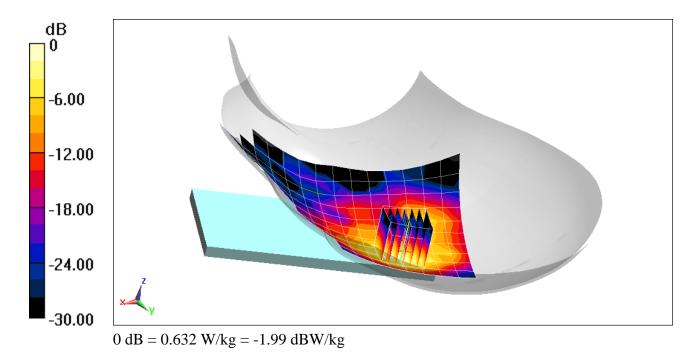
Probe: EX3DV4 - SN7308; ConvF(7.7, 7.7, 7.7) @ 2310 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 30, Antenna 2, Left Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.819 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.0490 W/kg SAR(1 g) = 0.017 W/kg

A14

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, LTE Band 48; Frequency: 3690 MHz; Duty Cycle: 1:1.58 Medium: 3600 Head Medium parameters used: f = 3690 MHz; $\sigma = 2.976$ S/m; $\epsilon_r = 38.003$; $\rho = 1000$ kg/m³ Phantom section: Left Section

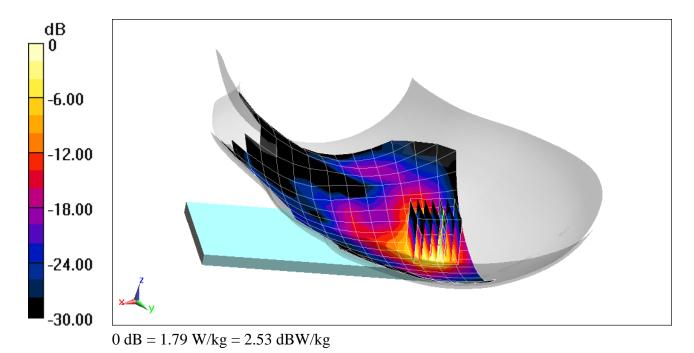
Test Date: 09/21/2020; Ambient Temp: 22.6°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7488; ConvF(7.2, 7.2, 7.2) @ 3690 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 48, Left Head, Cheek, High.ch, QPSK, 20 MHz Bandwidth, 50 RB, 25 RB Offset

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 12.22 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.980 W/kg SAR(1 g) = 0.323 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, LTE Band 48; Frequency: 3690 MHz; Duty Cycle: 1:1.58 Medium: 3600 Head Medium parameters used: f = 3690 MHz; $\sigma = 2.976$ S/m; $\epsilon_r = 38.003$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 09/21/2020; Ambient Temp: 22.6°C; Tissue Temp: 22.1°C

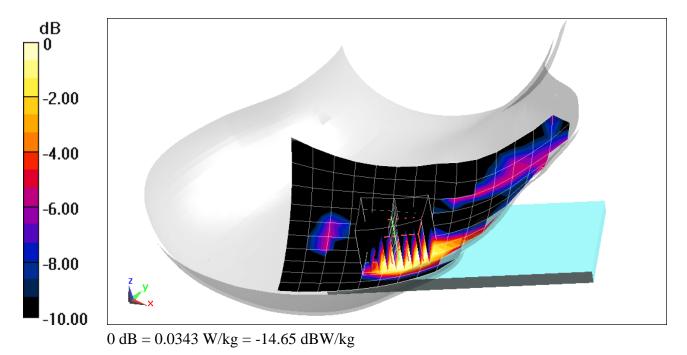
Probe: EX3DV4 - SN7488; ConvF(7.2, 7.2, 7.2) @ 3690 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 48, Left Head, Cheek, Swivel Mode, High.ch, QPSK, 20 MHz Bandwidth, 50 RB, 25 RB Offset

Area Scan (18x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 17.91 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 2.68 W/kg SAR(1 g) = 0.831 W/kg

A16

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04304


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 41 (Class 3); Frequency: 2593 MHz; Duty Cycle: 1:1.58 \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ f = 2593 \mbox{MHz; } \sigma = 2.009 \mbox{ S/m; } \epsilon_r = 39.28; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Right Section} \end{array}$

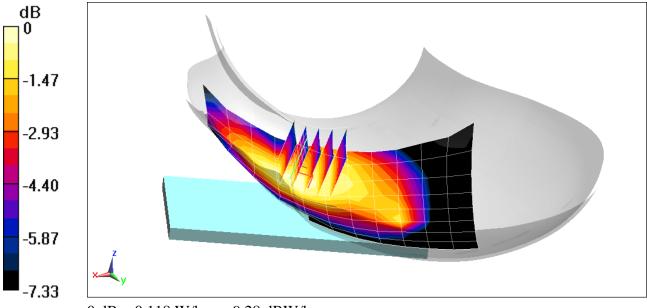
Test Date: 09/16/2020; Ambient Temp: 23.7°C; Tissue Temp: 23.3°C

Probe: EX3DV4 - SN7308; ConvF(7.19, 7.19, 7.19) @ 2593 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41, Right Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.804 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.0710 W/kg SAR(1 g) = 0.022 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04304


 $\begin{array}{l} \mbox{Communication System: UID 0, NR Band n5; Frequency: 836.5 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ \mbox{f} = 836.5 \mbox{ MHz; } \sigma = 0.936 \mbox{ S/m; } \epsilon_r = 40.926; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 09/28/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.0°C

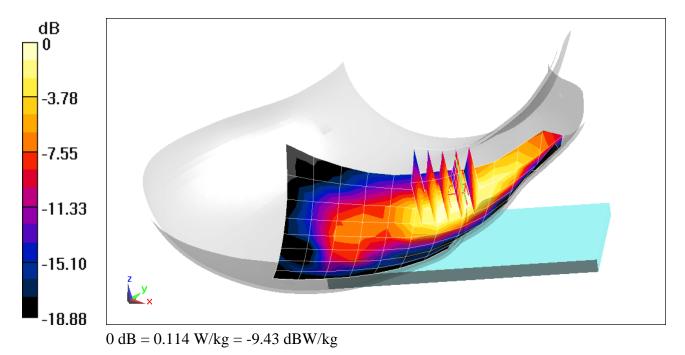
Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 836.5 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n5, Left Head, Cheek, Swivel Mode, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 167300, 50 RB, 28 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.91 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.130 W/kg SAR(1 g) = 0.099 W/kg

0 dB = 0.118 W/kg = -9.28 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, NR Band n66; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1720 MHz; $\sigma = 1.365$ S/m; $\varepsilon_r = 40.298$; $\rho = 1000$ kg/m³ Phantom section: Right Section

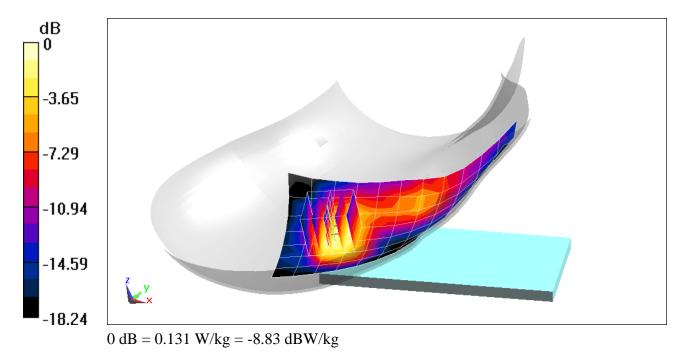
Test Date: 09/08/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7406; ConvF(8.32, 8.32, 8.32) @ 1720 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n66, Right Head, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 344000, 1 RB, 104 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.113 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.132 W/kg SAR(1 g) = 0.083 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, NR Band n2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1860 MHz; $\sigma = 1.393$ S/m; $\varepsilon_r = 40.07$; $\rho = 1000$ kg/m³ Phantom section: Right Section

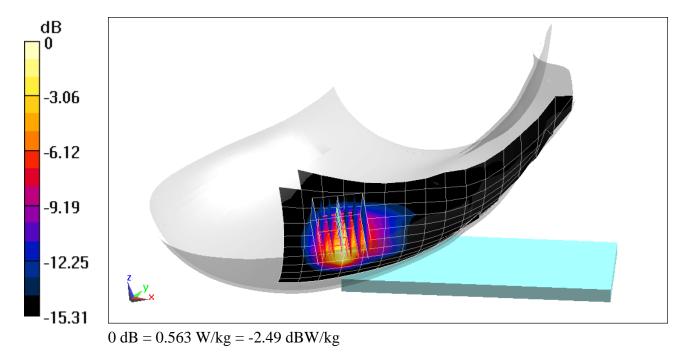
Test Date: 09/14/2020; Ambient Temp: 24.1°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1860 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n2, Right Tilt, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 372000, 1 RB, 53 RB Offset

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.991 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.159 W/kg SAR(1 g) = 0.091 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04320


Communication System: UID 0, 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.812$ S/m; $\epsilon_r = 38.546$; $\rho = 1000$ kg/m³ Phantom section: Right Section

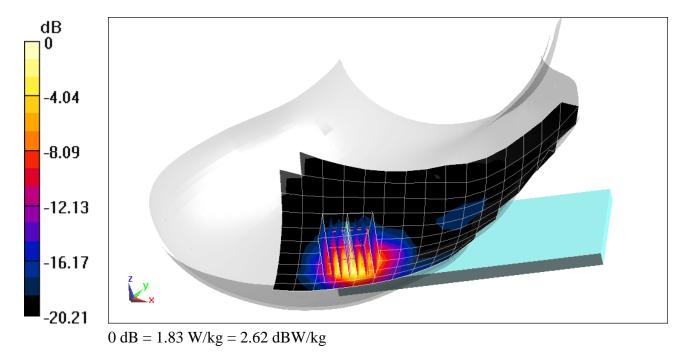
Test Date: 09/01/2020; Ambient Temp: 20.8°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7402; ConvF(7.86, 7.86, 7.86) @ 2412 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1868 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Antenna 2, Right Head, Tilt, Ch 1, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.15 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.792 W/kg SAR(1 g) = 0.320 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04320


 $\begin{array}{l} \mbox{Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ \mbox{$f = 2462 MHz; $\sigma = 1.899 S/m; $\epsilon_r = 40.139; $\rho = 1000 kg/m^3$ } \\ \mbox{Phantom section: Right Section} \end{array}$

Test Date: 09/21/2020; Ambient Temp: 22.5°C; Tissue Temp: 23.0°C

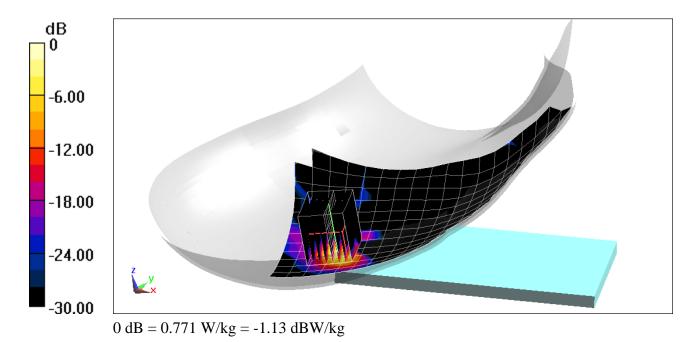
Probe: EX3DV4 - SN7402; ConvF(7.86, 7.86, 7.86) @ 2462 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1868 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Antenna 1, Right Head, Cheek, Swivel Mode, Ch 11, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.25 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.53 W/kg SAR(1 g) = 0.970 W/kg

A22

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04395


 $\begin{array}{l} \mbox{Communication System: UID 0, IEEE 802.11a; Frequency: 5280 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 5200-5800 Head Medium parameters used:} \\ f = 5280 \mbox{ MHz; } \sigma = 4.516 \mbox{ S/m; } \epsilon_r = 34.817; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

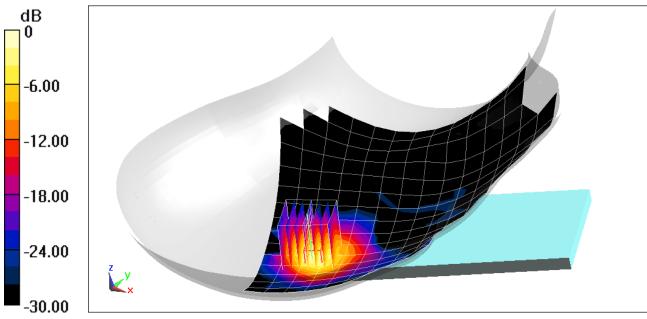
Test Date: 08/26/2020; Ambient Temp: 24.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7357; ConvF(5.5, 5.5, 5.5) @ 5280 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Left 20; Type: QD 000 P40 CD; Serial: 1715 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11a, U-NII-2A, 20 MHz Bandwidth, Antenna 2, Swivel Mode, Right Head, Tilt, Swivel Mode, Ch 56, 6 Mbps

Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 0 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 1.34 W/kg SAR(1 g) = 0.263 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04395


Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.284 Medium: 2450 Head Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.853$ S/m; $\varepsilon_r = 40.473$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 09/10/2020; Ambient Temp: 24.1°C; Tissue Temp: 23.0°C

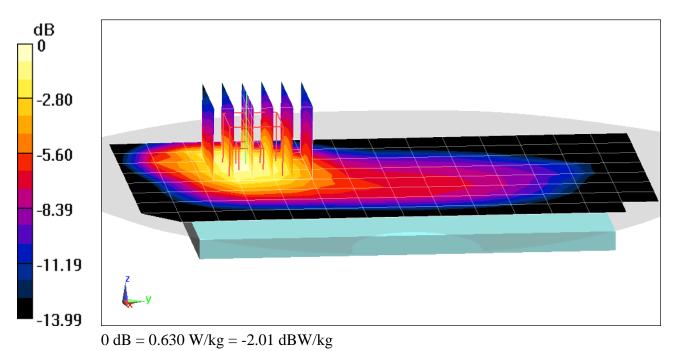
Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2441 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Right Head, Cheek, Swivel Mode, Ch 39, 1 Mbps

Area Scan (16x18x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10.50 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.429 W/kg SAR(1 g) = 0.170 W/kg

0 dB = 0.318 W/kg = -4.98 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


 $\begin{array}{l} \mbox{Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.52 \mbox{ MHz; } \sigma = 0.957 \mbox{ S/m; } \epsilon_r = 53.027; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

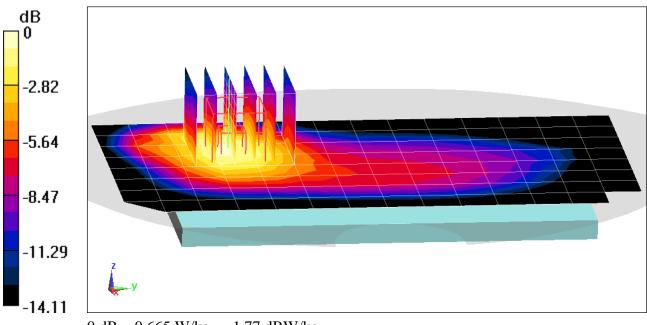
Test Date: 09/22/2020; Ambient Temp: 23.7°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 836.52 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Cell. CDMA, BC 0, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.43 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.738 W/kg SAR(1 g) = 0.450 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


 $\begin{array}{l} \mbox{Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.52 \mbox{ MHz; } \sigma = 0.957 \mbox{ S/m; } \epsilon_r = 53.027; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/22/2020; Ambient Temp: 23.7°C; Tissue Temp: 21.2°C

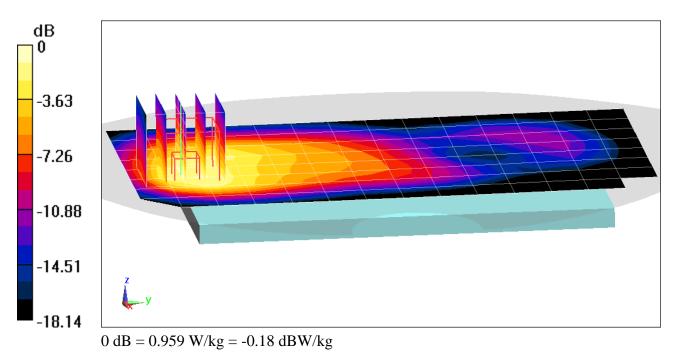
Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 836.52 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Cell. EVDO, BC 0, Rev 0, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.88 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.777 W/kg SAR(1 g) = 0.473 W/kg

0 dB = 0.665 W/kg = -1.77 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1851.25 MHz; $\sigma = 1.522$ S/m; $\epsilon_r = 51.326$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

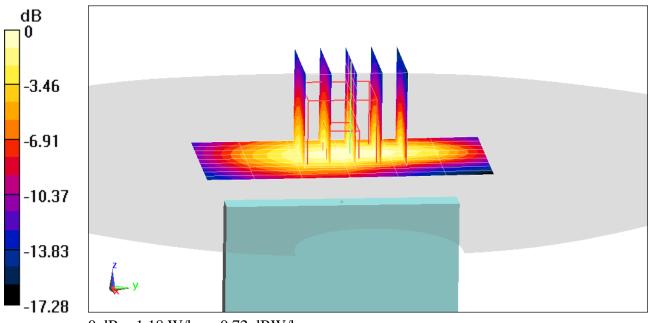
Test Date: 09/14/2020; Ambient Temp: 23.3°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1851.25 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: PCS CDMA, Body SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.98 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.657 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1851.25 MHz; $\sigma = 1.522$ S/m; $\epsilon_r = 51.386$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/31/2020; Ambient Temp: 24.4°C; Tissue Temp: 22.4°C

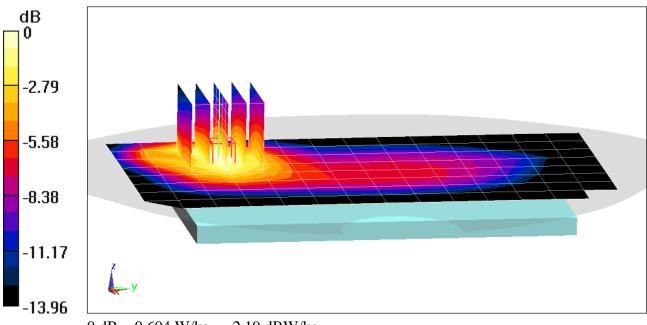
Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1851.25 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: PCS EVDO, Rev.0, Body SAR, Bottom Edge, Low.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.59 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.37 W/kg SAR(1 g) = 0.833 W/kg

 $0 \ dB = 1.18 \ W/kg = 0.72 \ dBW/kg$

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.6 \mbox{ MHz; } \sigma = 0.957 \mbox{ S/m; } \epsilon_r = 53.576; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

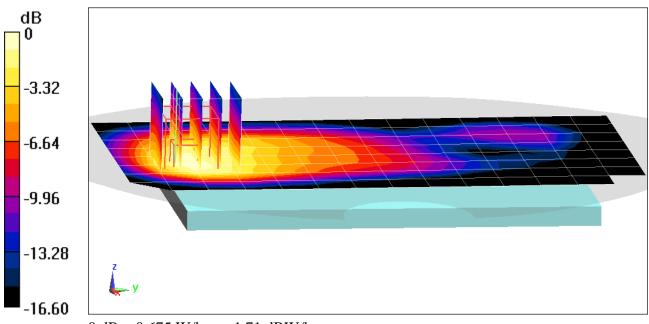
Test Date: 08/31/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.6 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.70 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.705 W/kg SAR(1 g) = 0.433 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.554$ S/m; $\epsilon_r = 51.274$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/31/2020; Ambient Temp: 24.4°C; Tissue Temp: 22.4°C

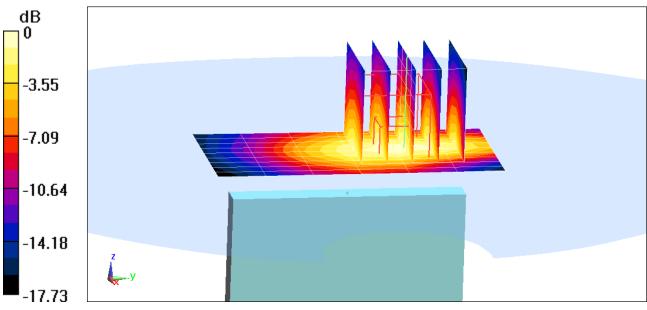
Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.74 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.827 W/kg SAR(1 g) = 0.486 W/kg

0 dB = 0.675 W/kg = -1.71 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1850.2 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.518$ S/m; $\varepsilon_r = 51.781$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/27/2020; Ambient Temp: 23.3°C; Tissue Temp: 24.1°C

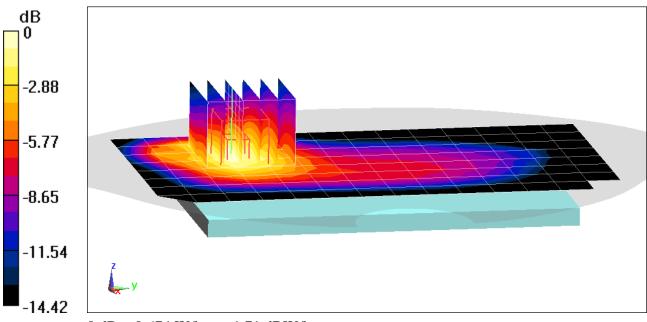
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1850.2 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Body SAR, Bottom Edge, Low.ch, 2 Tx Slots

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.22 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.687 W/kg

0 dB = 0.994 W/kg = -0.03 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \sigma = 0.957 \text{ S/m}; \epsilon_r = 53.026; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/22/2020; Ambient Temp: 23.7°C; Tissue Temp: 21.2°C

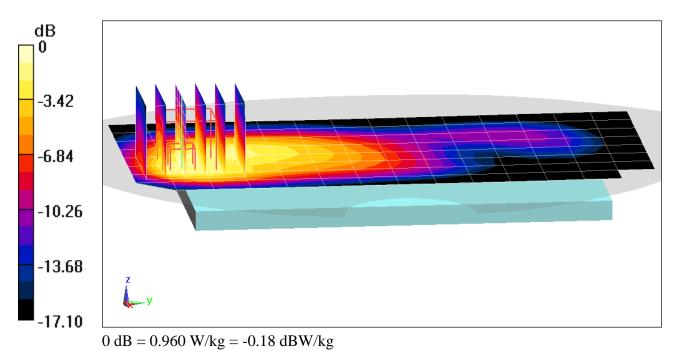
Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 836.6 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.03 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.792 W/kg SAR(1 g) = 0.478 W/kg

0 dB = 0.674 W/kg = -1.71 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1732.4 \mbox{ MHz; } \sigma = 1.486 \mbox{ S/m; } \epsilon_r = 52.112; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

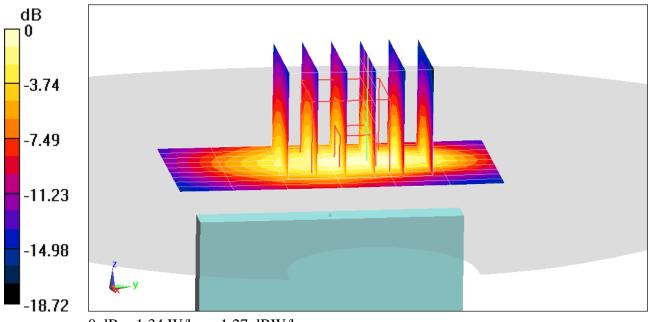
Test Date: 09/10/2020; Ambient Temp: 21.6°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1732.4 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.17 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.667 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1752.6 \mbox{ MHz; } \sigma = 1.509 \mbox{ S/m; } \epsilon_r = 52.044; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/10/2020; Ambient Temp: 21.6°C; Tissue Temp: 22.1°C

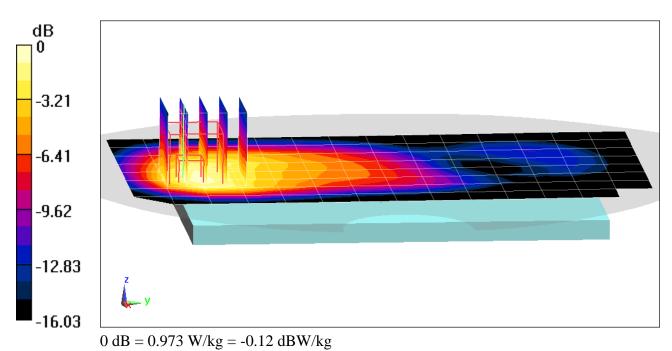
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1752.6 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Body SAR, Bottom Edge, High.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.68 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.57 W/kg SAR(1 g) = 0.905 W/kg

 $0 \ dB = 1.34 \ W/kg = 1.27 \ dBW/kg$

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1852.4 \mbox{ MHz; } \sigma = 1.523 \mbox{ S/m; } \epsilon_r = 51.321; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

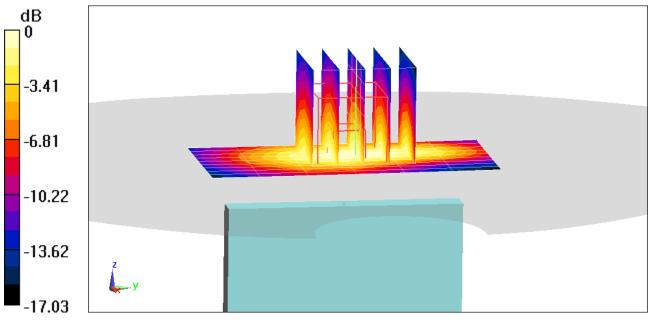
Test Date: 09/14/2020; Ambient Temp: 23.3°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1852.4 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Body SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.72 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.684 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1852.4 \mbox{ MHz; } \sigma = 1.529 \mbox{ S/m; } \epsilon_r = 51.367; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/02/2020; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

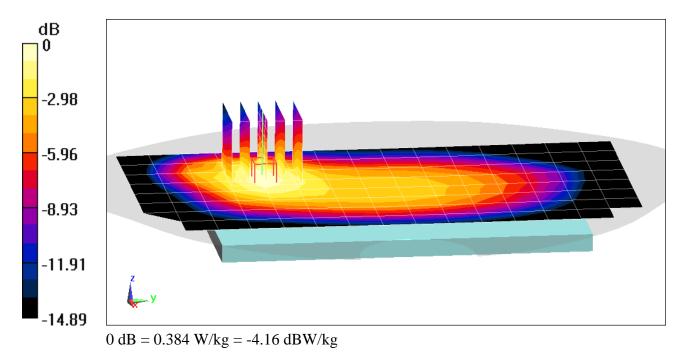
Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1852.4 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Body SAR, Bottom Edge, Low.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.14 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.881 W/kg

0 dB = 1.26 W/kg = 1.00 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04312


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 750 Body Medium parameters used (interpolated):} \\ f = 707.5 \mbox{ MHz; } \sigma = 0.938 \mbox{ S/m; } \epsilon_r = 55.112; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

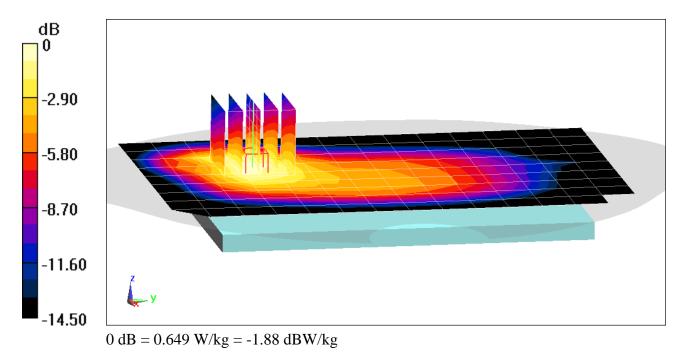
Test Date: 09/21/2020; Ambient Temp: 22.6°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7547; ConvF(9.98, 9.98, 9.98) @ 707.5 MHz; Calibrated: 8/19/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/12/2020 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x16x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.78 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.442 W/kg SAR(1 g) = 0.288 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04312


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Body Medium parameters used (interpolated):} \\ f = 782 \mbox{ MHz; } \sigma = 0.966 \mbox{ S/m; } \epsilon_r = 54.931; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

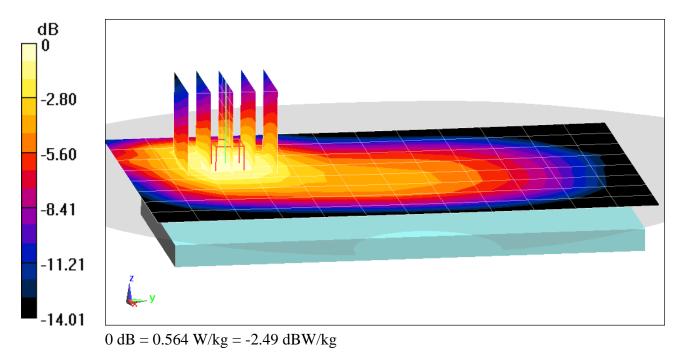
Test Date: 09/21/2020; Ambient Temp: 22.6°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7547; ConvF(9.98, 9.98, 9.98) @ 782 MHz; Calibrated: 8/19/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/12/2020 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.19 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.744 W/kg SAR(1 g) = 0.492 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04312


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Body Medium parameters used (interpolated):} \\ f = 793 \mbox{MHz; } \sigma = 0.971 \mbox{ S/m; } \epsilon_r = 54.918; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

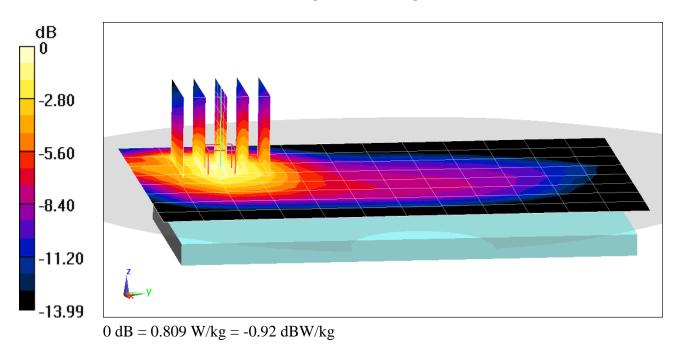
Test Date: 09/21/2020; Ambient Temp: 22.6°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7547; ConvF(9.98, 9.98, 9.98) @ 793 MHz; Calibrated: 8/19/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/12/2020 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 14, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.91 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.642 W/kg SAR(1 g) = 0.425 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.954$ S/m; $\varepsilon_r = 52.646$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

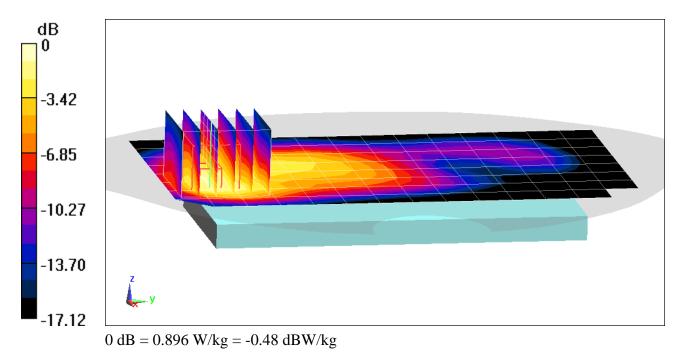
Test Date: 09/24/2020; Ambient Temp: 23.7°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 836.5 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 5 (Cell.), ULCA, Body SAR, Back side, Mid.ch, PCC: 10 MHz Bandwidth, QPSK, Ch. 20525, 1 RB, 0 RB Offset SCC: 5 MHz Bandwidth, QPSK, Ch. 20453, 1 RB, 24 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.97 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.976 W/kg SAR(1 g) = 0.605 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1745 MHz; $\sigma = 1.529$ S/m; $\epsilon_r = 52.386$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

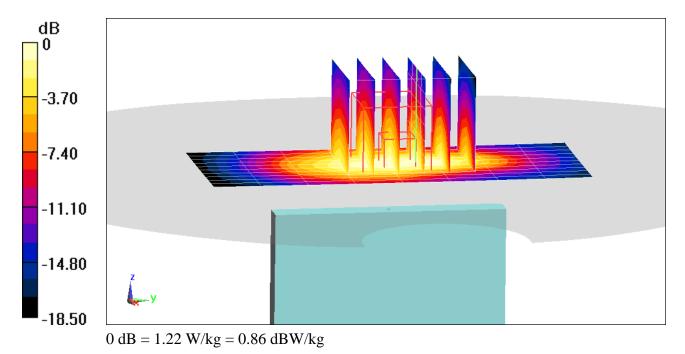
Test Date: 09/15/2020; Ambient Temp: 20.7°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1745 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Antenna 2, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.11 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.622 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1770 MHz; $\sigma = 1.533$ S/m; $\epsilon_r = 52.913$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

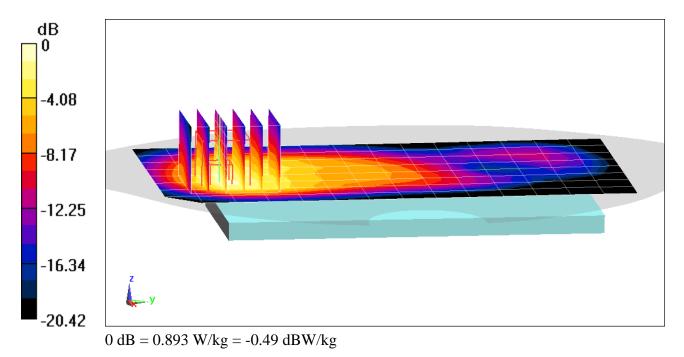
Test Date: 09/14/2020; Ambient Temp: 22.1°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7538; ConvF(8.38, 8.38, 8.38) @ 1770 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Antenna 2, Body SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.52 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 0.834 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.558$ S/m; $\epsilon_r = 51.27$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

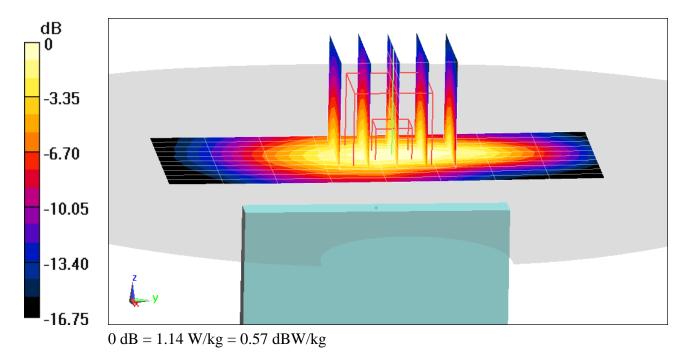
Test Date: 09/02/2020; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 2 (PCS), Antenna 2, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.37 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.603 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.558$ S/m; $\epsilon_r = 51.27$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

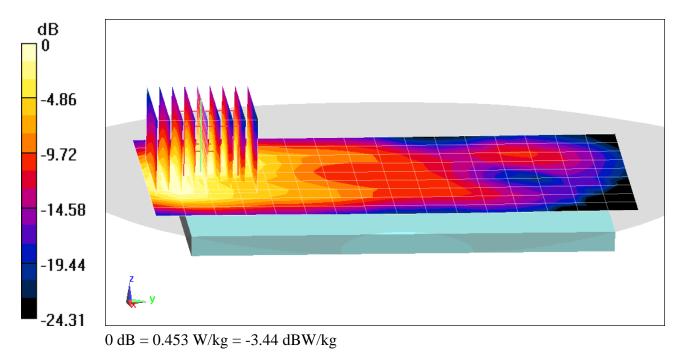
Test Date: 09/02/2020; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 2 (PCS), Antenna 2, Body SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.68 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.790 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04304


Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2310 MHz; $\sigma = 1.88$ S/m; $\varepsilon_r = 51.815$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

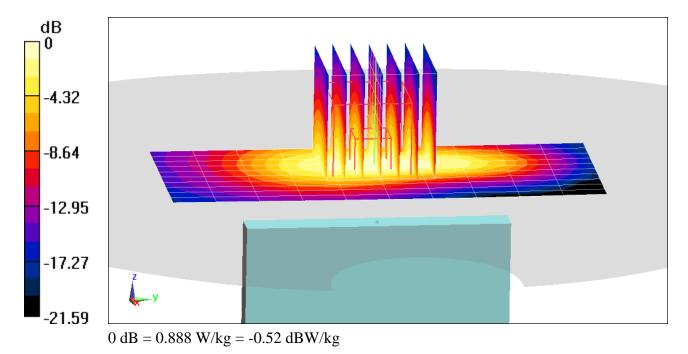
Test Date: 09/13/2020; Ambient Temp: 23.0°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7409; ConvF(7.5, 7.5, 7.5) @ 2310 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 30, Antenna 2, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (11x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 12.91 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.548 W/kg SAR(1 g) = 0.307 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04304


Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2310 MHz; $\sigma = 1.88$ S/m; $\varepsilon_r = 51.815$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

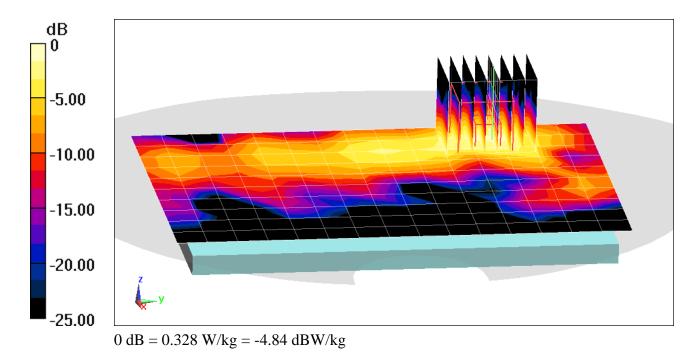
Test Date: 09/13/2020; Ambient Temp: 23.0°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7409; ConvF(7.5, 7.5, 7.5) @ 2310 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 30, Antenna 2, Body SAR, Bottom Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x11x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.32 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.563 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 48; Frequency: 3690 MHz; Duty Cycle: 1:1.58} \\ \mbox{Medium: 3600 Body Medium parameters used:} \\ f = 3690 \mbox{MHz; } \sigma = 3.602 \mbox{ S/m; } \epsilon_r = 49.839; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

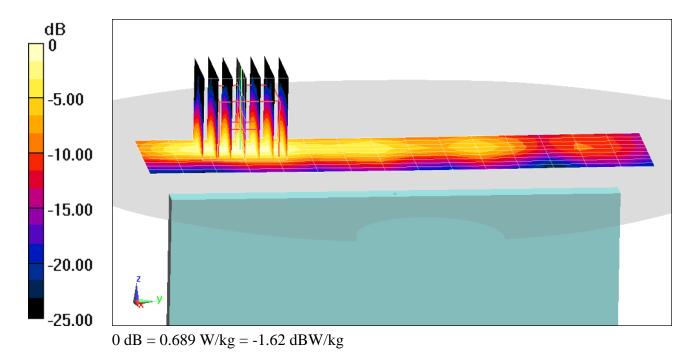
Test Date: 09/14/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3690 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (20); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 48, Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset

Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x8x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 7.430 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.449 W/kg SAR(1 g) = 0.177 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 48; Frequency: 3690 MHz; Duty Cycle: 1:1.58} \\ \mbox{Medium: 3600 Body Medium parameters used:} \\ f = 3690 \mbox{MHz; } \sigma = 3.602 \mbox{ S/m; } \epsilon_r = 49.839; \mbox{$\rho = 1000 \mbox{$kg/m^3$}} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/14/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.6°C

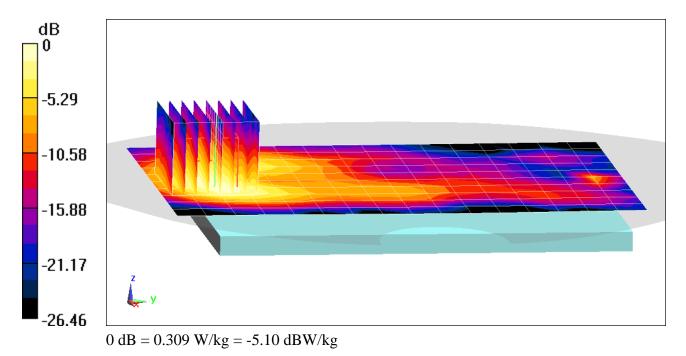
Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3690 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (20); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 48, Body SAR, Right Edge, High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset

Area Scan (10x16x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 10.68 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.935 W/kg SAR(1 g) = 0.361 W/kg

A48

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 41 (Class 3); Frequency: 2593 MHz; Duty Cycle: 1:1.58 \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ f = 2593 \mbox{ MHz; } \sigma = 2.212 \mbox{ S/m; } \epsilon_r = 50.53; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

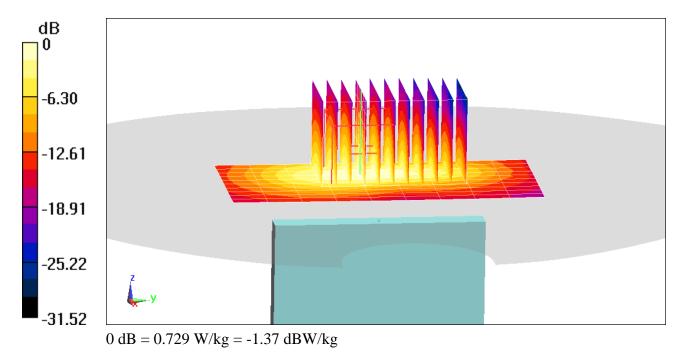
Test Date: 09/16/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7409; ConvF(7.12, 7.12, 7.12) @ 2593 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.557 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.392 W/kg SAR(1 g) = 0.192 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 41 (Class 3); Frequency: 2593 MHz; Duty Cycle: 1:1.58 \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ f = 2593 \mbox{ MHz; } \sigma = 2.212 \mbox{ S/m; } \epsilon_r = 50.53; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/16/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7409; ConvF(7.12, 7.12, 7.12) @ 2593 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41, Body SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x10x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x11x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.60 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.924 W/kg SAR(1 g) = 0.438 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, NR Band n5; Frequency: 836.5 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.5 \mbox{ MHz; } \sigma = 0.971 \mbox{ S/m; } \epsilon_r = 53.135; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

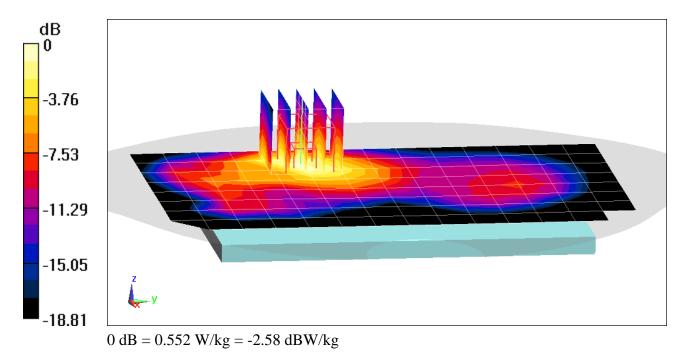
Test Date: 09/20/2020; Ambient Temp: 21.0°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 836.5 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n5, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 167300, 50 RB, 28 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.43 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.813 W/kg SAR(1 g) = 0.499 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, NR Band n66; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1720 MHz; $\sigma = 1.479$ S/m; $\epsilon_r = 53.069$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/14/2020; Ambient Temp: 22.1°C; Tissue Temp: 20.9°C

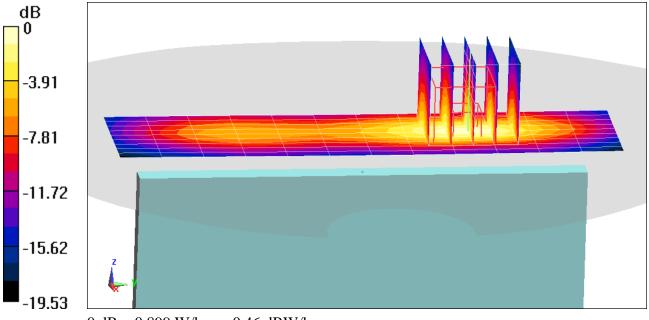
Probe: EX3DV4 - SN7538; ConvF(8.38, 8.38, 8.38) @ 1720 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n66, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 344000, 1 RB, 104 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.39 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.666 W/kg SAR(1 g) = 0.361 W/kg

A52

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, NR Band n66; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1720 MHz; $\sigma = 1.479$ S/m; $\epsilon_r = 53.069$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

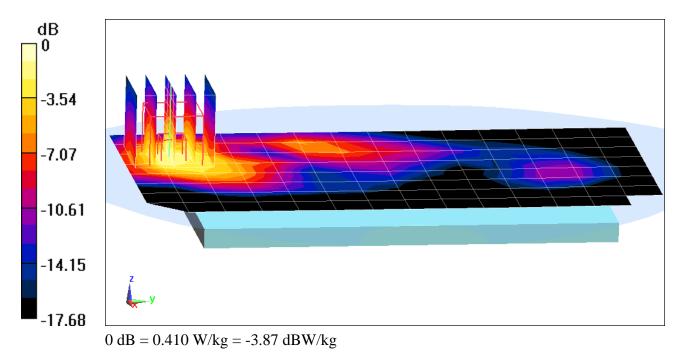
Test Date: 09/14/2020; Ambient Temp: 22.1°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7538; ConvF(8.38, 8.38, 8.38) @ 1720 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n66, Body SAR, Right Edge, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 344000, 1 RB, 104 RB Offset

Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.51 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.07 W/kg SAR(1 g) = 0.552 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04304


Communication System: UID 0, NR Band n2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1860 MHz; $\sigma = 1.526$ S/m; $\varepsilon_r = 53.142$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

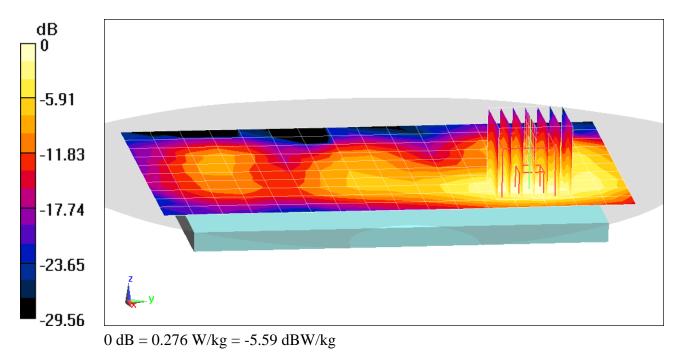
Test Date: 09/09/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1860 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n2, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 372000, 50 RB, 28 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.42 V/m; Power Drift = -0.05 Peak SAR (extrapolated) = 0.479 W/kg SAR(1 g) = 0.283 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04320


 $\begin{array}{l} \mbox{Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ \mbox{f} = 2462 \mbox{ MHz; } \sigma = 2.058 \mbox{ S/m; } \epsilon_r = 52.077; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

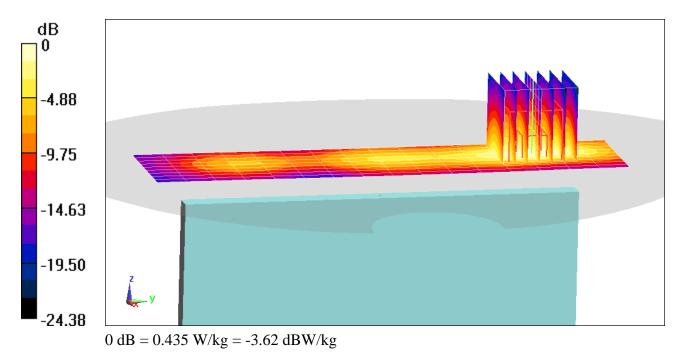
Test Date: 08/31/2020; Ambient Temp: 21.5°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7402; ConvF(7.73, 7.73, 7.73) @ 2462 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1868 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Antenna 1, Body SAR, Ch 11, 1 Mbps, Back Side

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.696 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.339 W/kg SAR(1 g) = 0.173 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04320


 $\begin{array}{l} \mbox{Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ \mbox{f} = 2462 \mbox{ MHz; } \sigma = 2.058 \mbox{ S/m; } \epsilon_r = 52.077; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

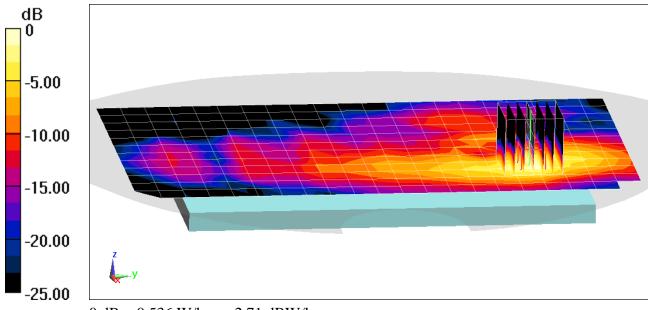
Test Date: 08/31/2020; Ambient Temp: 21.5°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7402; ConvF(7.73, 7.73, 7.73) @ 2462 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1868 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Antenna 1, Body SAR, Ch 11, 1 Mbps, Left Side

Area Scan (10x17x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.97 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.538 W/kg SAR(1 g) = 0.259 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04312


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5280 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5200-5800 Body Medium parameters used:} \\ f = 5280 \mbox{ MHz; } \sigma = 5.453 \mbox{ S/m; } \epsilon_r = 48.541; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/22/2020; Ambient Temp: 23.5°C; Tissue Temp: 24.1°C

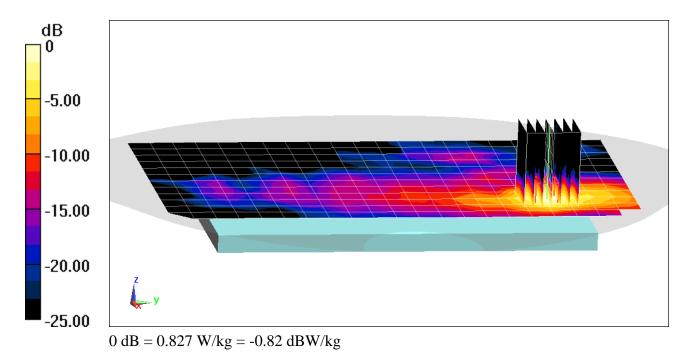
Probe: EX3DV4 - SN7538; ConvF(4.6, 4.6, 4.6) @ 5280 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11a, UNII-2A, 20 MHz Bandwidth, MIMO, Body SAR, Ch 56, 6 Mbps, Back Side

Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 6.700 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.917 W/kg SAR(1 g) = 0.221 W/kg

0 dB = 0.536 W/kg = -2.71 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04312


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5220 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5200-5800 Body Medium parameters used:} \\ f = 5220 \mbox{ MHz; } \sigma = 5.386 \mbox{ S/m; } \epsilon_r = 48.636; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

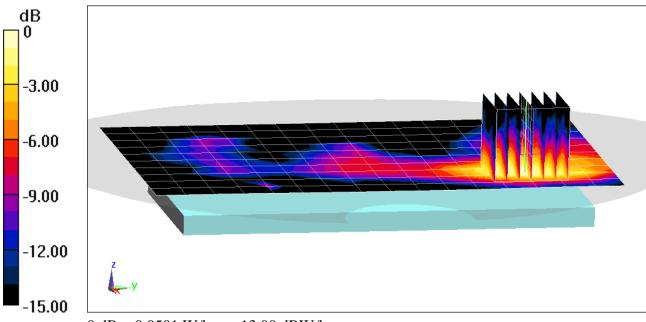
Test Date: 09/22/2020; Ambient Temp: 23.5°C; Tissue Temp: 24.1°C

Probe: EX3DV4 - SN7538; ConvF(4.6, 4.6, 4.6) @ 5220 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11a, UNII-1, 20 MHz Bandwidth, Antenna 1, Body SAR, Ch 44, 6 Mbps, Back Side

Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 1.309 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.806 W/kg SAR(1 g) = 0.200 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04395


Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.284 Medium: 2450 Body Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 2.032$ S/m; $\varepsilon_r = 50.955$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/16/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.3°C

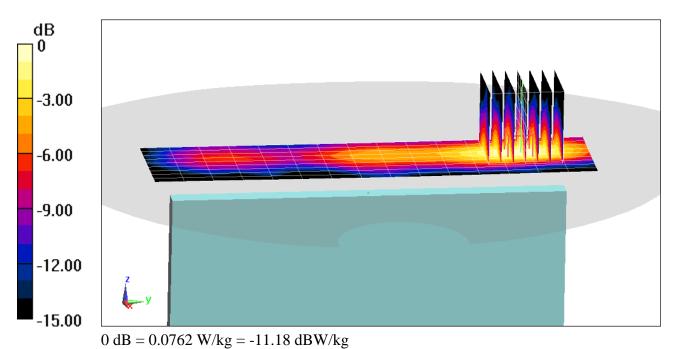
Probe: EX3DV4 - SN7409; ConvF(7.24, 7.24, 7.24) @ 2441 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Back Side

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 4.096 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.0650 W/kg SAR(1 g) = 0.031 W/kg

0 dB = 0.0501 W/kg = -13.00 dBW/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04395


 $\begin{array}{l} \mbox{Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.284 } \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ f = 2441 \mbox{ MHz; } \sigma = 2.032 \mbox{ S/m; } \epsilon_r = 50.955; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

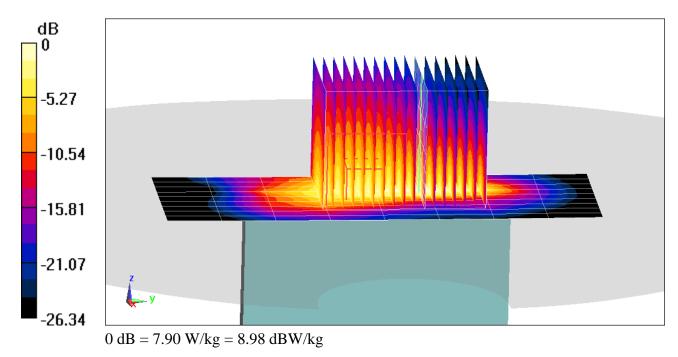
Test Date: 09/16/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7409; ConvF(7.24, 7.24, 7.24) @ 2441 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Left Edge

Area Scan (10x16x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.097 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.0970 W/kg SAR(1 g) = 0.046 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1851.25 MHz; $\sigma = 1.522$ S/m; $\epsilon_r = 51.326$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 09/14/2020; Ambient Temp: 23.3°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1851.25 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: PCS EVDO, Rev 0, Phablet SAR, Swivel Mode, Bottom Edge, Low.ch

Area Scan (10x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (14x17x8)/Cube 0: Measurement grid: dx=2.8mm, dy=2.8mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 45.28 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 14.4 W/kg SAR(10 g) = 1.97 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1732.4 \mbox{ MHz; } \sigma = 1.493 \mbox{ S/m; } \epsilon_r = 53.036; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.0 cm} \end{array}$

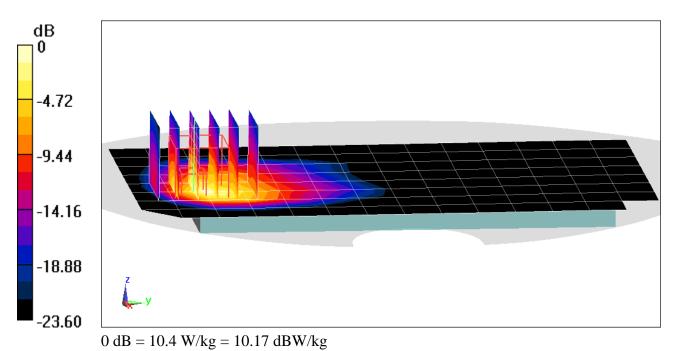
Test Date: 09/14/2020; Ambient Temp: 22.1°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7538; ConvF(8.38, 8.38, 8.38) @ 1732.4 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Phablet SAR, Bottom Edge, Mid.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (10x12x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 51.76 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 15.5 W/kg SAR(10 g) = 1.79 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04346


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used:} \\ f = 1880 \mbox{MHz; } \sigma = 1.553 \mbox{ S/m; } \epsilon_r = 51.245; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.0 cm} \end{array}$

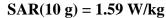
Test Date: 09/14/2020; Ambient Temp: 23.3°C; Tissue Temp: 22.4°C

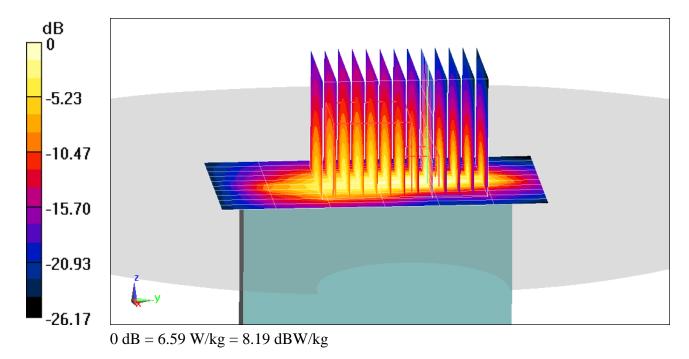
Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Phablet SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.21 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 12.7 W/kg SAR(10 g) = 2.42 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04338


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1745 MHz; $\sigma = 1.529$ S/m; $\varepsilon_r = 52.386$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm

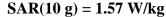

Test Date: 09/15/2020; Ambient Temp: 20.7°C; Tissue Temp: 20.9°C

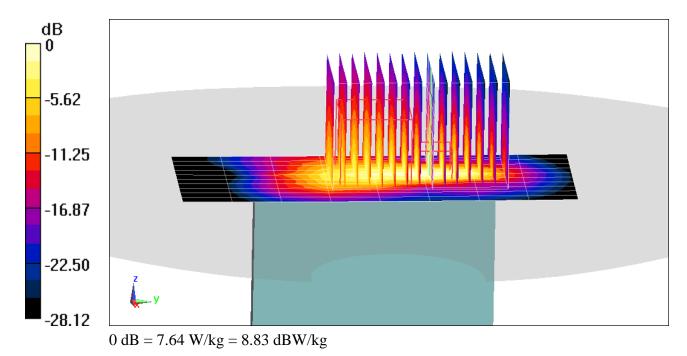
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1745 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Antenna 2, Phablet SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset

Area Scan (11x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (10x13x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 49.88 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.4 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04304


Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.579$ S/m; $\epsilon_r = 51.311$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm

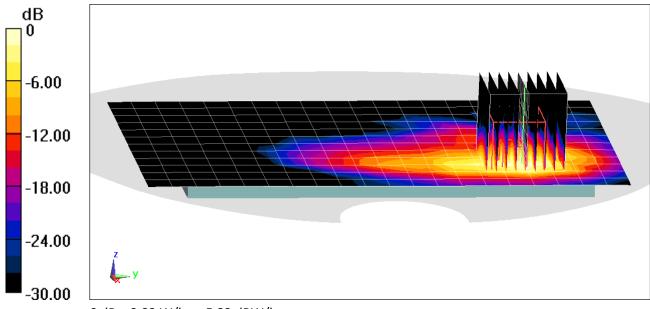

Test Date: 09/11/2020; Ambient Temp: 23.5°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1905 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 2 (PCS), Phablet SAR, Antenna 2, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (10x15x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 39.90 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 13.5 W/kg

DUT: ZNFF100VM; Type: Portable Handset; Serial: 04320


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5280 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5200-5800 Body Medium parameters used:} \\ f = 5280 \mbox{ MHz; } \sigma = 5.453 \mbox{ S/m; } \epsilon_r = 48.541; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.0 cm} \end{array}$

Test Date: 09/22/2020; Ambient Temp: 23.5°C; Tissue Temp: 24.1°C

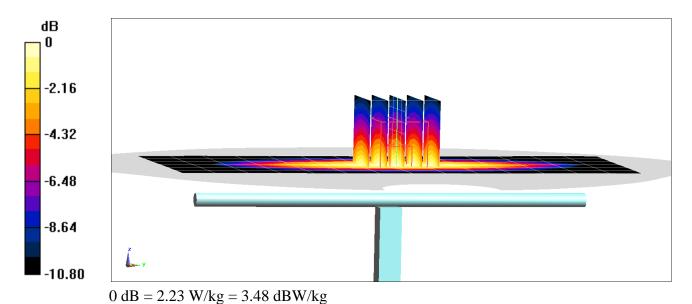
Probe: EX3DV4 - SN7538; ConvF(4.6, 4.6, 4.6) @ 5280 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11a, U-NII-2A, 20 MHz Bandwidth, Antenna 2, Phablet SAR, Ch 56, 6 Mbps, Back Side

Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 3.699 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(10 g) = 0.460 W/kg

0 dB = 3.83 W/kg = 5.83 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Head Medium parameters used:} \\ f = 750 \mbox{ MHz; } \sigma = 0.902 \mbox{ S/m; } \epsilon_r = 42.74; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

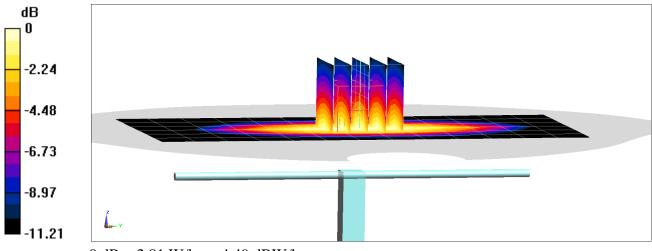
Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp:21.9°C

Probe: EX3DV4 - SN3589; ConvF(8.7, 8.7, 8.7) @ 750 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.56 W/kg SAR(1 g) = 1.63 W/kg Deviation(1 g) = 1.49 %

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.934$ S/m; $\epsilon_r = 42.489$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 09/16/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.2°C

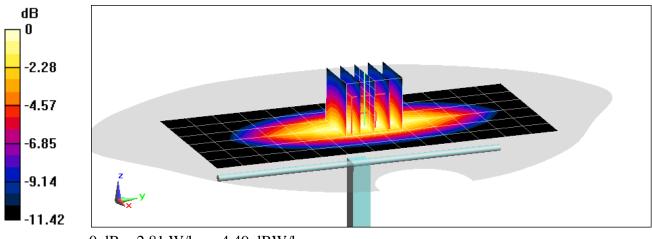
Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 835 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.28 W/kg SAR(1 g) = 2.03 W/kg Deviation(1 g) = 7.75%

0 dB = 2.81 W/kg = 4.49 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head Medium parameters used:} \\ f = 835 MHz; \mbox{σ} = 0.92 \mbox{ S/m}; \mbox{ϵ}_r = 41.94; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 09/22/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.8°C

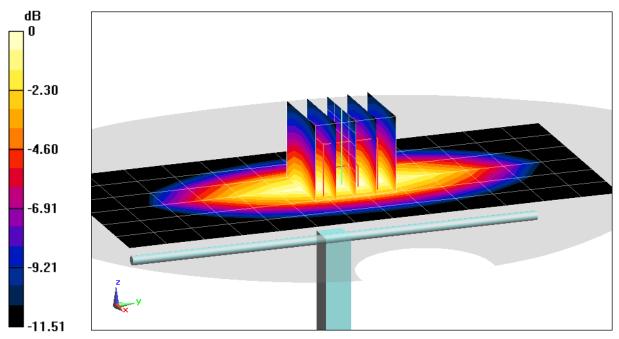
Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 835 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.28 W/kg SAR(1 g) = 2.01 W/kg Deviation(1 g) = 6.69%

0 dB = 2.81 W/kg = 4.49 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head Medium parameters used:} \\ \mbox{f} = 835 \mbox{MHz; } \sigma = 0.935 \mbox{ S/m; } \epsilon_r = 40.931; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5cm} \end{array}$

Test Date: 09/28/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.0°C

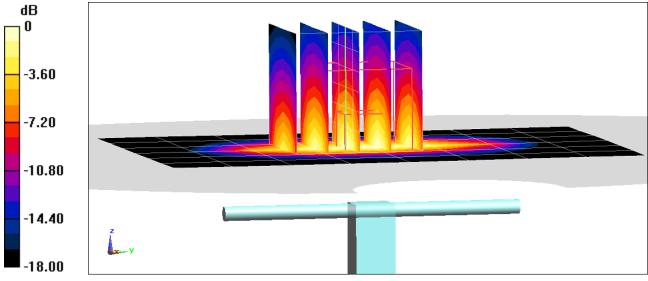
Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 835 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2 W/kg Deviation(1 g) = 6.04%

0 dB = 2.76 W/kg = 4.41 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.397$ S/m; $\epsilon_r = 40.157$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/08/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.2°C

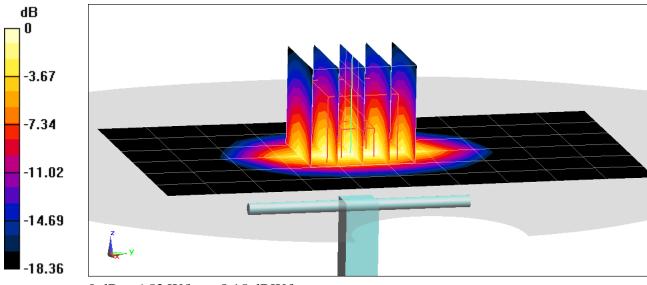
Probe: EX3DV4 - SN7406; ConvF(8.32, 8.32, 8.32) @ 1750 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.98 W/kg SAR(1 g) = 3.76 W/kg Deviation(1 g) =4.74%

0 dB = 5.73 W/kg = 7.58 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1900 MHz; $\sigma = 1.433$ S/m; $\epsilon_r = 39.92$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/14/2020; Ambient Temp: 24.1°C; Tissue Temp: 21.7°C

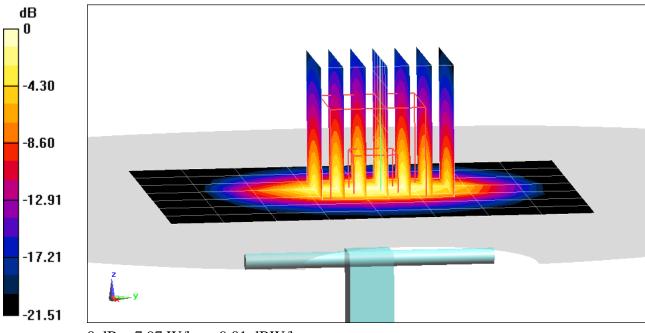
Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.84 W/kg SAR(1 g) = 4.17 W/kg Deviation(1 g) = 6.11%

0 dB = 6.53 W/kg = 8.15 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073


Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: f = 2300 MHz; $\sigma = 1.67$ S/m; $\epsilon_r = 40.425$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/16/2020; Ambient Temp: 23.7°C; Tissue Temp: 23.3°C

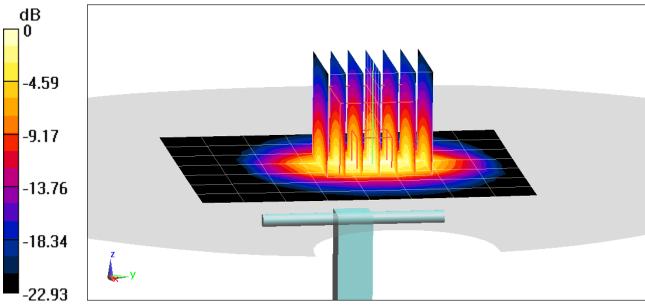
Probe: EX3DV4 - SN7308; ConvF(7.7, 7.7, 7.7) @ 2300 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.0 W/kg SAR(1 g) = 4.77 W/kg Deviation(1 g) = -3.05%;

0 dB = 7.97 W/kg = 9.01 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.853$ S/m; $\epsilon_r = 38.424$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/01/2020; Ambient Temp: 20.8°C; Tissue Temp: 21.8°C

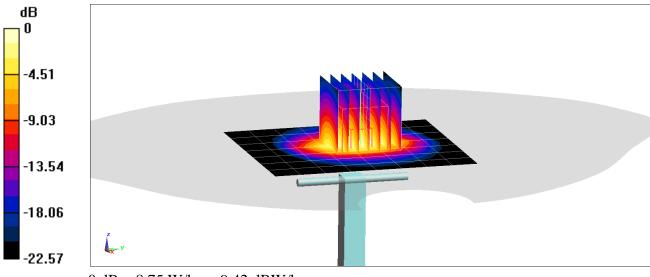
Probe: EX3DV4 - SN7402; ConvF(7.86, 7.86, 7.86) @ 2450 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1868 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.4 W/kg SAR(1 g) = 5.38 W/kg Deviation(1 g) = 1.70%

0 dB = 9.13 W/kg = 9.60 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 2450 Head Medium parameters used:} \\ f = 2450 \mbox{ MHz; } \sigma = 1.86 \mbox{ S/m; } \epsilon_r = 40.46; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/10/2020; Ambient Temp: 24.1°C; Tissue Temp: 23.0°C

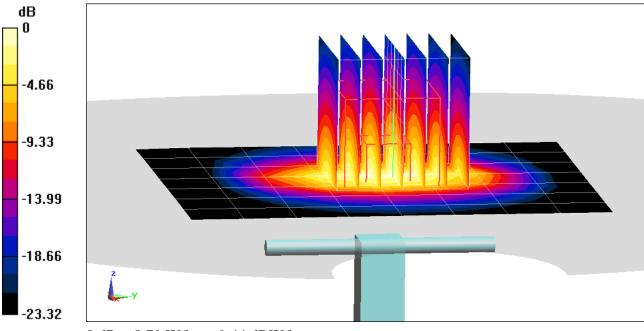
Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2450 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.9 W/kg SAR(1 g) = 5.17 W/kg Deviation(1 g) = -1.15%

0 dB = 8.75 W/kg = 9.42 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 39.823$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/16/2020; Ambient Temp: 23.7°C; Tissue Temp: 23.3°C

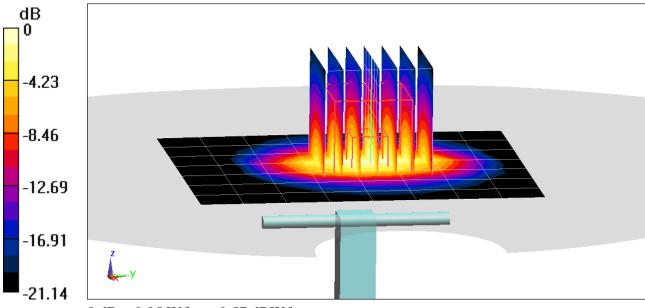
Probe: EX3DV4 - SN7308; ConvF(7.33, 7.33, 7.33) @ 2450 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.15 W/kg Deviation(1 g) = -1.53%

0 dB = 8.79 W/kg = 9.44 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.885$ S/m; $\epsilon_r = 40.182$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/21/2020; Ambient Temp: 22.5°C; Tissue Temp: 23.0°C

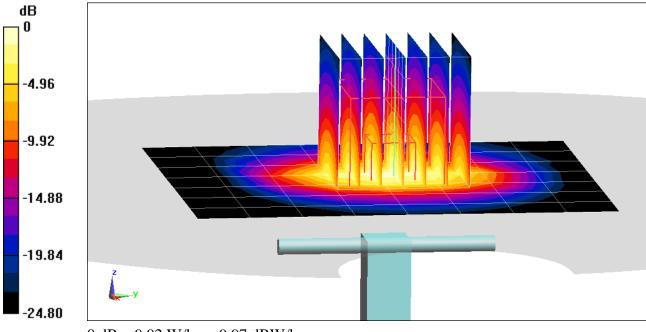
Probe: EX3DV4 - SN7402; ConvF(7.86, 7.86, 7.86) @ 2450 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1868 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.3 W/kg SAR(1 g) = 5.35 W/kg Deviation(1 g) = 1.13%

0 dB = 9.05 W/kg = 9.57 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2600 \text{ MHz}; \sigma = 2.017 \text{ S/m}; \epsilon_r = 39.252; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/16/2020; Ambient Temp: 23.7°C; Tissue Temp: 23.3°C

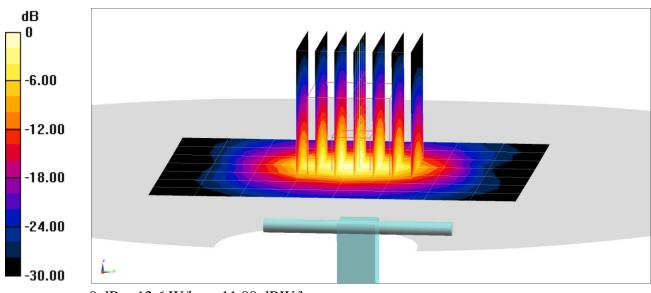
Probe: EX3DV4 - SN7308; ConvF(7.19, 7.19, 7.19) @ 2600 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.7 W/kg SAR(1 g) = 5.62 W/kg Deviation(1 g) = -3.27%

0 dB = 9.92 W/kg = 9.97 dBW/kg

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059


Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Head Medium parameters used: f = 3500 MHz; $\sigma = 2.817$ S/m; $\epsilon_r = 38.257$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/21/2020; Ambient Temp: 22.6°C; Tissue Temp: 22.1°C

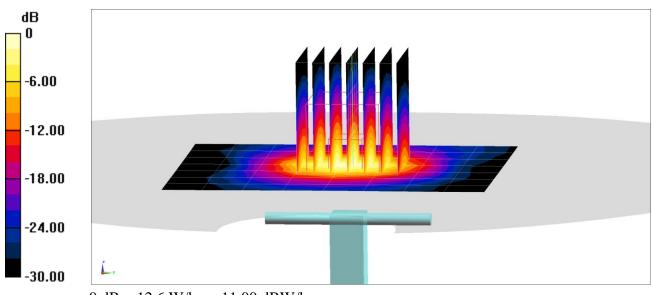
Probe: EX3DV4 - SN7488; ConvF(7.3, 7.3, 7.3) @ 3500 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3500 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 6.4 W/kg Deviation(1 g) = -0.93%

0 dB = 12.6 W/kg = 11.00 dBW/kg

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 3600 Head Medium parameters used:} \\ \mbox{f} = 3700 \mbox{ MHz; } \sigma = 2.985 \mbox{ S/m; } \epsilon_r = 37.997; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/21/2020; Ambient Temp: 22.6°C; Tissue Temp: 22.1°C

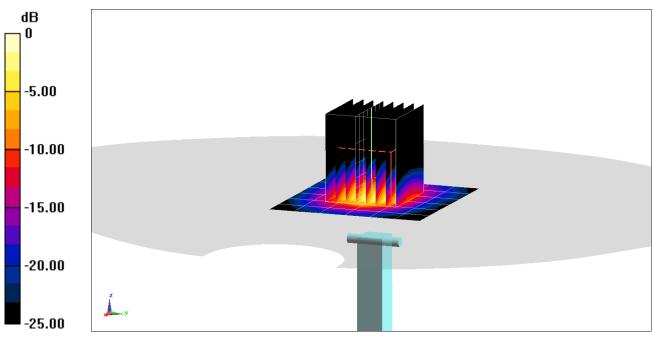
Probe: EX3DV4 - SN7488; ConvF(7.2, 7.2, 7.2) @ 3700 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3700 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 6.3 W/kg Deviation(1 g) = -4.26%

0 dB = 12.6 W/kg = 11.00 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5250 MHz; $\sigma = 4.481$ S/m; $\epsilon_r = 34.876$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/26/2020; Ambient Temp: 24.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7357; ConvF(5.5, 5.5, 5.5) @ 5250 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Left 20; Type: QD 000 P40 CD; Serial: 1715 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

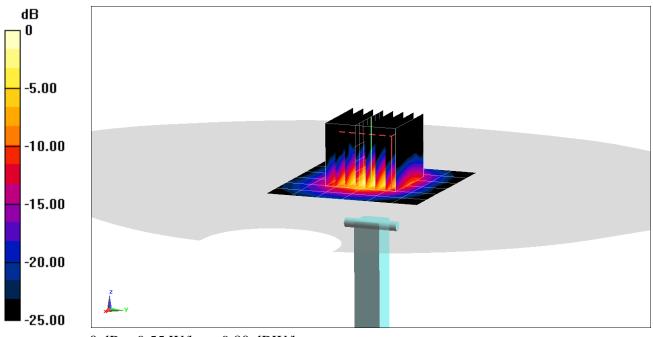
5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 14.6 W/kg SAR(1 g) = 3.69 W/kg Deviation(1 g) = -9.23%

0 dB = 8.54 W/kg = 9.31 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used f = 5600 MHz; $\sigma = 4.867$ S/m; $\varepsilon_r = 34.275$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 08/26/2020; Ambient Temp: 24.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7357; ConvF(4.93, 4.93, 4.93) @ 5600 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Left 20; Type: QD 000 P40 CD; Serial: 1715 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

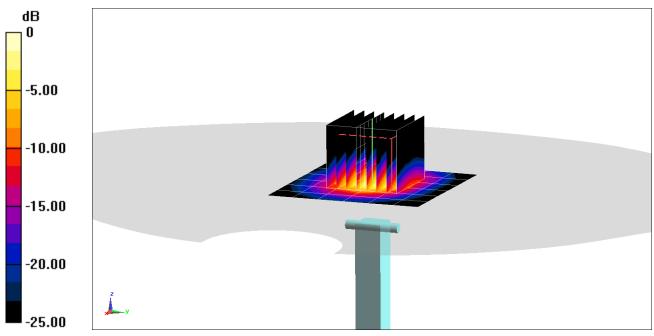
5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 4 W/kg

Deviation(1 g) = -6.65%

0 dB = 9.55 W/kg = 9.80 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5750 MHz; $\sigma = 5.035$ S/m; $\varepsilon_r = 34.043$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/26/2020; Ambient Temp: 24.5°C; Tissue Temp: 22.4°C

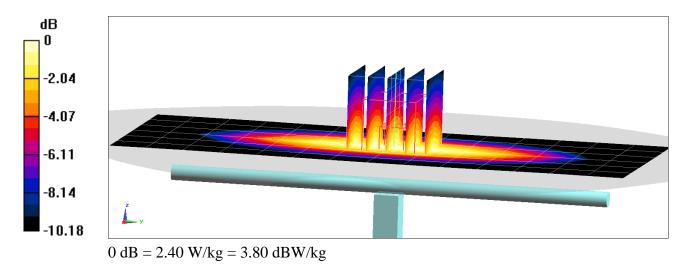
Probe: EX3DV4 - SN7357; ConvF(5.05, 5.05, 5.05) @ 5750 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Left 20; Type: QD 000 P40 CD; Serial: 1715 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 3.71 W/kg Deviation(1 g) = -7.94%

0 dB = 8.95 W/kg = 9.52 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Body Medium parameters used:} \\ \mbox{f} = 750 \mbox{ MHz; } \sigma = 0.955 \mbox{ S/m; } \epsilon_r = 55.001; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

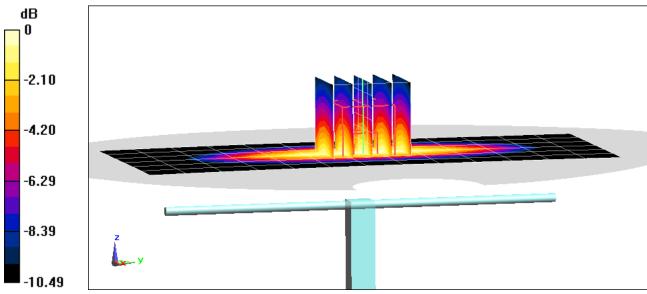
Test Date: 09/21/2020; Ambient Temp: 22.6°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7547; ConvF(9.98, 9.98, 9.98) @ 750 MHz; Calibrated: 8/19/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/12/2020 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.69 W/kg SAR(1 g) = 1.81 W/kg Deviation(1 g) = 7.35%;

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body; Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.955 \mbox{ S/m; } \epsilon_r = 53.593; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 08/31/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.6°C

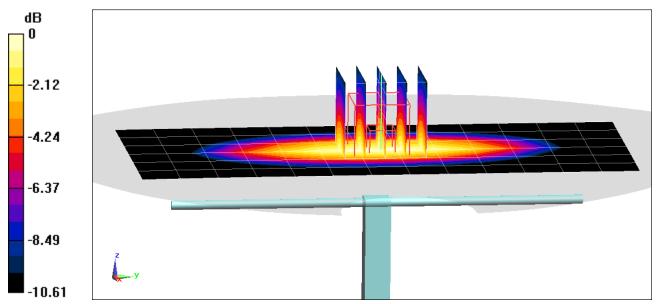
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.14 W/kg SAR(1 g) = 2.07 W/kg Deviation(1 g) = 3.92%

0 dB = 2.77 W/kg = 4.42 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body; Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.969 \mbox{ S/m; } \epsilon_r = 53.152; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 09/20/2020; Ambient Temp: 21.0°C; Tissue Temp: 21.3°C

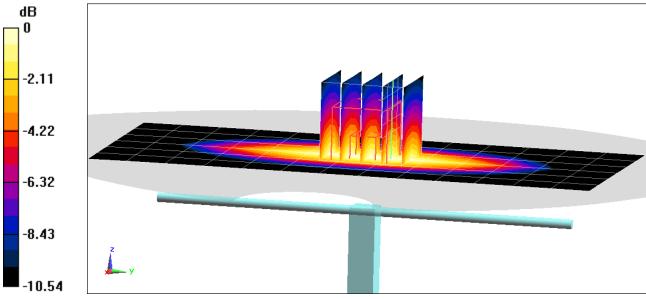
Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 2.02 W/kg Deviation(1 g) = 1.41%

0 dB = 2.75 W/kg = 4.39 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body; Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.955 \mbox{ S/m; } \epsilon_r = 53.042; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 09/22/2020; Ambient Temp: 23.7°C; Tissue Temp: 21.2°C

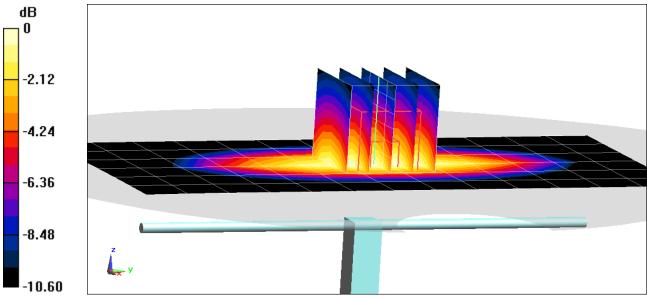
Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.97 W/kg SAR(1 g) = 1.87 W/kg Deviation(1 g) = -6.12%

0 dB = 2.55 W/kg = 4.07 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body; Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.952 \mbox{ S/m; } \epsilon_r = 52.663; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 09/24/2020; Ambient Temp: 23.7°C; Tissue Temp: 22.0°C

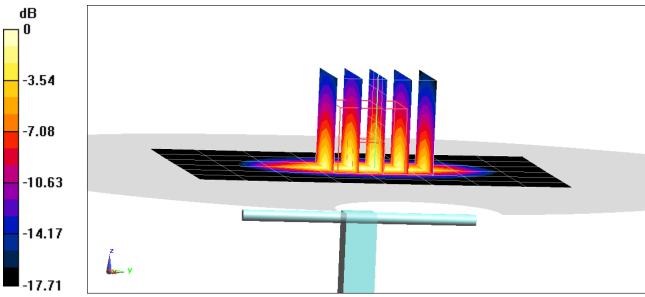
Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.96 W/kg SAR(1 g) = 1.9 W/kg Deviation(1 g) = -4.62%

0 dB = 2.58 W/kg = 4.12 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.506$ S/m; $\epsilon_r = 52.055$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/10/2020; Ambient Temp: 21.6°C; Tissue Temp: 22.1°C

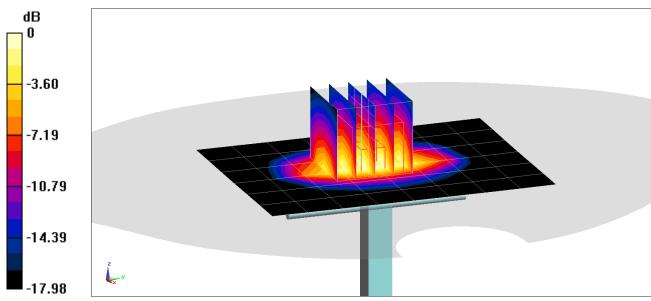
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.15 W/kg SAR(1 g) = 3.92 W/kg Deviation(1 g) = 4.81%

0 dB = 5.97 W/kg = 7.76 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.513$ S/m; $\epsilon_r = 52.973$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/14/2020; Ambient Temp: 22.1°C; Tissue Temp: 20.9°C

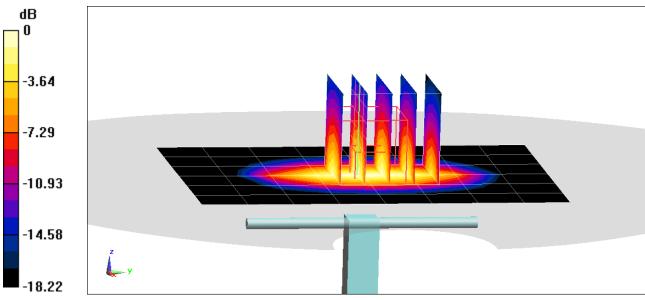
Probe: EX3DV4 - SN7538; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.18 W/kg SAR(1 g) = 3.94 W/kg; SAR(10 g) = 2.05 W/kg Deviation(1 g) = 5.35%; Deviation(10 g) = 3.02%

0 dB = 5.99 W/kg = 7.77 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.534$ S/m; $\epsilon_r = 52.367$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/15/2020; Ambient Temp: 20.7°C; Tissue Temp: 20.9°C

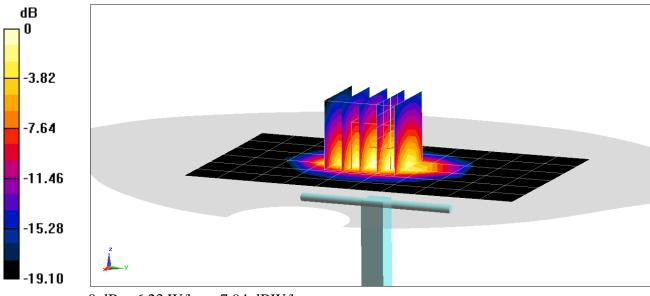
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.03 W/kg SAR(1 g) = 3.88 W/kg; SAR(10 g) = 2.04 W/kg Deviation(1 g) = 6.01%; Deviation(10 g) = 5.15%

0 dB = 5.90 W/kg = 7.71 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ S/m; $\epsilon_r = 51.207$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/31/2020; Ambient Temp: 24.4°C; Tissue Temp: 22.4°C

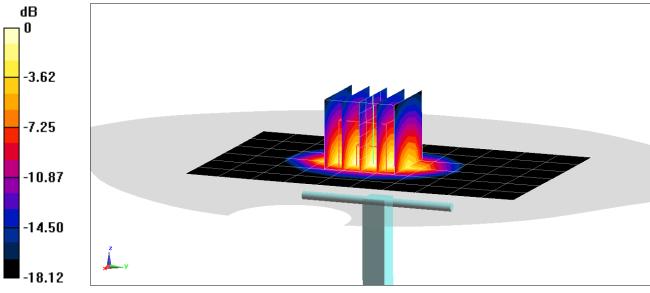
Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.44 W/kg SAR(1 g) = 4.1 W/kg Deviation(1 g) = 4.59%

0 dB = 6.23 W/kg = 7.94 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.582$ S/m; $\epsilon_r = 51.209$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/02/2020; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

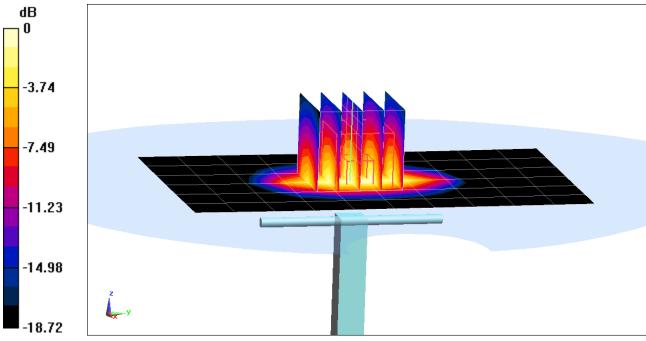
Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.65 W/kg SAR(1 g) = 4.26 W/kg Deviation(1 g) = 8.12%

0 dB = 6.53 W/kg = 8.15 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.569$ S/m; $\epsilon_r = 52.99$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/09/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.8°C

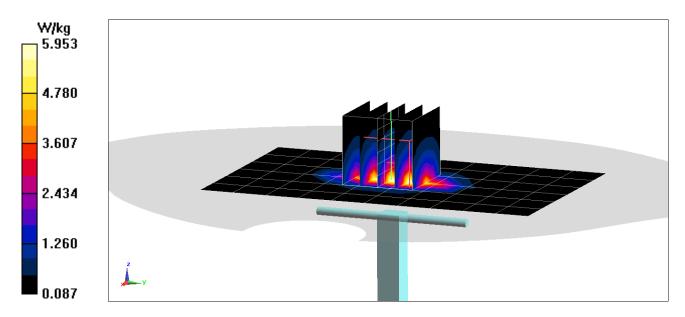
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.80 W/kg SAR(1 g) = 4.21 W/kg Deviation(1 g) = 7.40%

0 dB = 6.49 W/kg = 8.12 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.579$ S/m; $\epsilon_r = 51.311$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

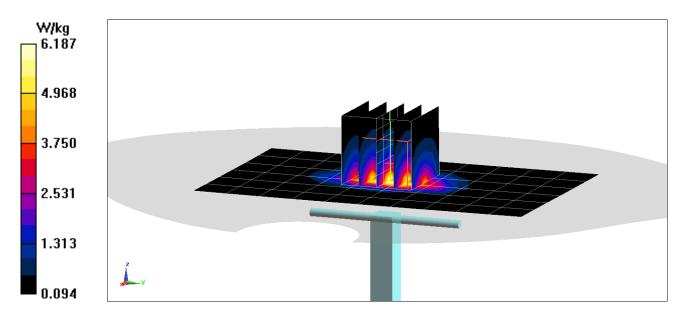
Test Date: 09/11/2020; Ambient Temp: 23.5.°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.07 W/kg SAR(10 g) = 1.99 W/kg Deviation(10 g) = -3.40%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used:} \\ f = 1900 \mbox{ MHz; } \sigma = 1.574 \mbox{ S/m; } \epsilon_r = 51.17; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

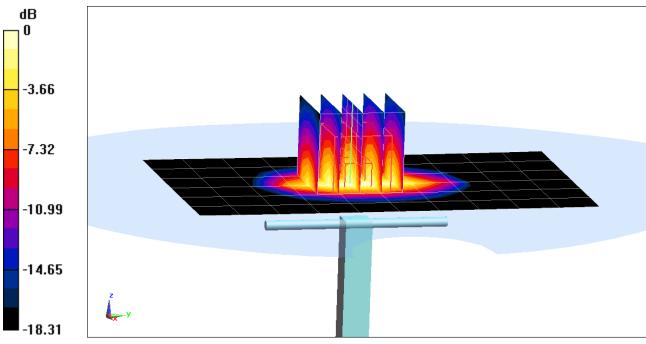
Test Date: 09/14/2020; Ambient Temp: 23.3°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.29 W/kg SAR(1 g) = 4 W/kg; SAR(10 g) = 2.06 W/kg Deviation(1 g) = 2.04%; Deviation(10 g) = 0.00%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.572$ S/m; $\epsilon_r = 51.63$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/27/2020; Ambient Temp: 23.3°C; Tissue Temp: 24.1°C

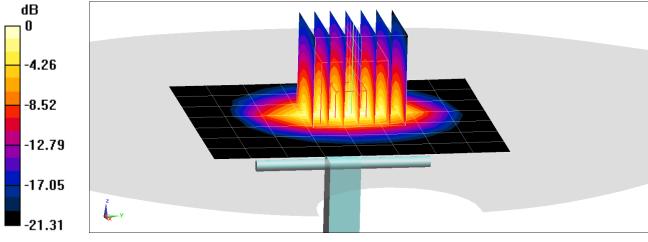
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.65 W/kg SAR(1 g) = 4.16 W/kg Deviation(1 g) = 5.58%

0 dB = 6.45 W/kg = 8.10 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073


Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2300 MHz; $\sigma = 1.868$ S/m; $\epsilon_r = 51.841$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/13/2020; Ambient Temp: 23.0°C; Tissue Temp: 22.7°C

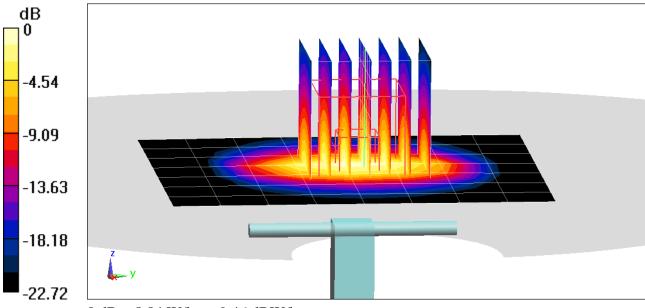
Probe: EX3DV4 - SN7409; ConvF(7.5, 7.5, 7.5) @ 2300 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.0 W/kg SAR(1 g) = 4.93 W/kg Deviation(1 g) = 3.35%

0 dB = 8.11 W/kg = 9.09 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.044$ S/m; $\epsilon_r = 52.115$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/31/2020; Ambient Temp: 21.5°C; Tissue Temp: 21.9°C

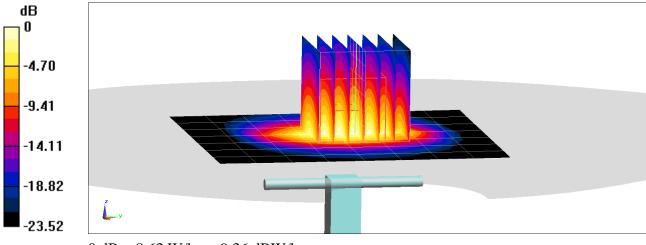
Probe: EX3DV4 - SN7402; ConvF(7.73, 7.73, 7.73) @ 2450 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1868 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.33 W/kg Deviation(1 g) = 3.50%

0 dB = 8.84 W/kg = 9.46 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.043$ S/m; $\epsilon_r = 50.932$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/16/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.3°C

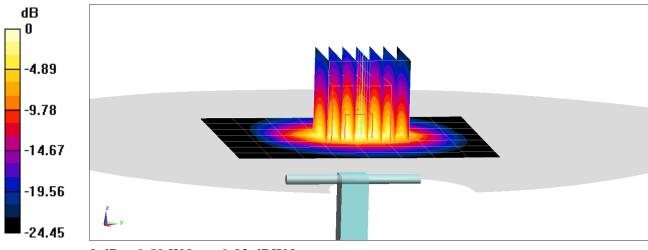
Probe: EX3DV4 - SN7409; ConvF(7.24, 7.24, 7.24) @ 2450 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.0 W/kg SAR(1 g) = 5.13 W/kg Deviation(1 g) = 0.79%

0 dB = 8.63 W/kg = 9.36 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 50.51$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/16/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.3°C

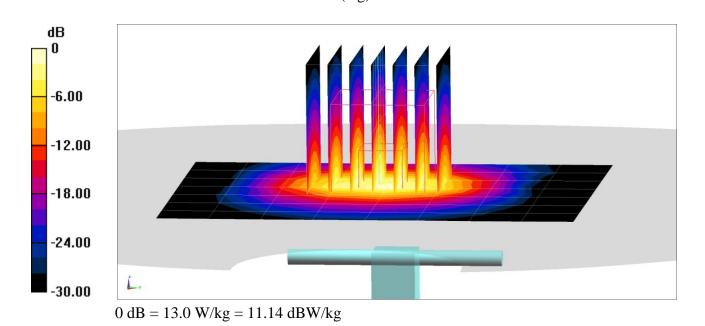
Probe: EX3DV4 - SN7409; ConvF(7.12, 7.12, 7.12) @ 2600 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.3 W/kg SAR(1 g) = 5.48 W/kg Deviation(1 g) = -1.44%

0 dB = 9.59 W/kg = 9.82 dBW/kg

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059


Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Body Medium parameters used: f = 3500 MHz; $\sigma = 3.392$ S/m; $\epsilon_r = 50.136$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

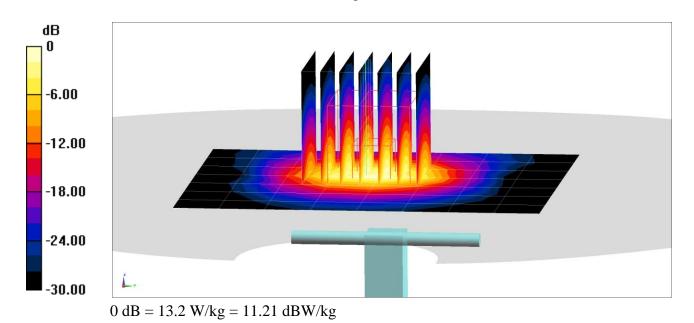
Test Date: 09/14/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7488; ConvF(7, 7, 7) @ 3500 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (20); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3500 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 6.7 W/kg Deviation(1 g) = 2.92%

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018


Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium: 3600 Body Medium parameters used: f = 3700 MHz; $\sigma = 3.613$ S/m; $\epsilon_r = 49.839$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

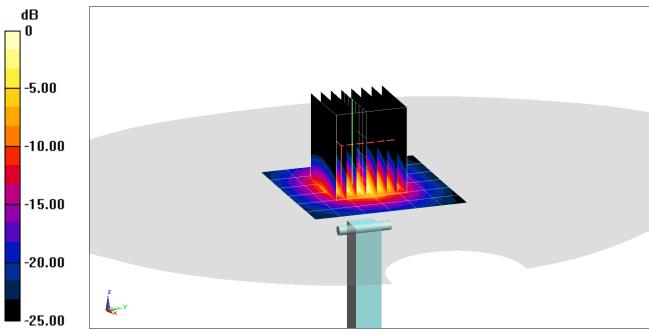
Test Date: 09/14/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3700 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (20); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3700 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 6.68 W/kg Deviation(1 g) = 3.89%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5250 MHz; $\sigma = 5.418$ S/m; $\epsilon_r = 48.595$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/22/2020; Ambient Temp: 23.5°C; Tissue Temp: 24.1°C

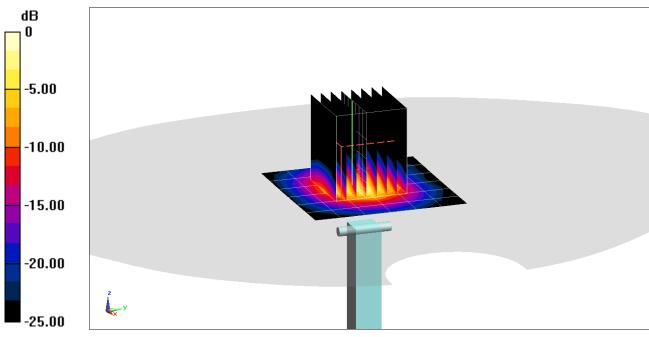
Probe: EX3DV4 - SN7538; ConvF(4.6, 4.6, 4.6) @ 5250 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 14.6 W/kg SAR(1 g) = 3.6 W/kg; SAR(10 g) = 1.01 W/kg Deviation(1 g) = -4.76%; Deviation(10 g) = -4.72%

0 dB = 8.22 W/kg = 9.15 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5600 MHz; $\sigma = 5.889$ S/m; $\epsilon_r = 48.045$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/22/2020; Ambient Temp: 23.5°C; Tissue Temp: 24.1°C

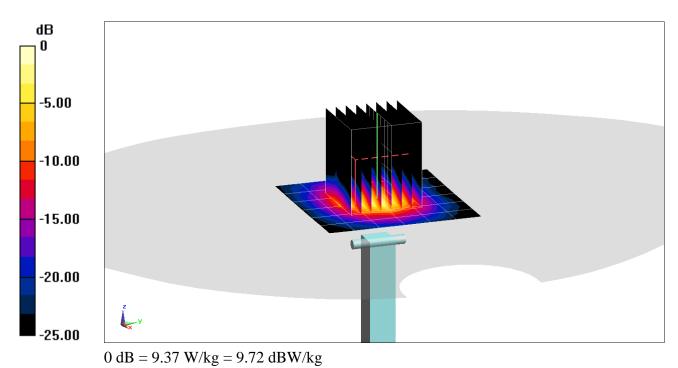
Probe: EX3DV4 - SN7538; ConvF(4.09, 4.09, 4.09) @ 5600 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 3.89 W/kg; SAR(10 g) = 1.09 W/kg Deviation(1 g) = -0.89%; Deviation(10 g) = -0.91%

0 dB = 9.27 W/kg = 9.67 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5750 MHz; $\sigma = 6.09$ S/m; $\varepsilon_r = 47.829$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/22/2020; Ambient Temp: 23.5°C; Tissue Temp: 24.1°C

Probe: EX3DV4 - SN7538; ConvF(4.17, 4.17, 4.17) @ 5750 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 3.73 W/kg; SAR(10 g) = 1.03 W/kg Deviation(1 g) = -1.71%; Deviation(10 g) = -2.83%

B40

APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{0}^{a} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}^{'}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures Description: Aqueous solution with Declarable, or hazardous compon		
CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	-1.0-4.070
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4. H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000	-	
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Additional information:		

For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is

withheld as a trade secret.

C

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

	FCC ID: ZNFF100VM	Proud to be part of (e) element	SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	08/26/20 - 09/28/20	Portable Handset			Page 1 of 3
202	20 PCTEST				REV 21.4 M 09/11/2019

Schmid & Partner Engineering AG

S peag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)	
Product No.	SL AAM U16 BC (Batch: 181029-1)	
Manufacturer	SPEAG	

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the KDB 865664 compliance standard.

Ambient Condition	22°C ; 30% humidity	
TSL Temperature	22°C	
Test Date	30-Oct-18	
Operator	CL	
Additional Inform	ation	
TSL Density		
TSL Heat-capacity		

	Measu	ured		Targe	t	Diff.to Targ	ret [%]								
f (MHz)	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	15.0	1000	10 10 M	35 510	Steel 2	124	16 24	
800	55.1	21.3	0.95	55.3	0.97	-0.4	-2.1	10.0	_	19 1 2	and the		Constant Par		_
825	55.1	20.8	0.96	55.2	0.98	-0.3	-2.0								
835	55.1	20.6	0.96	55.1	0.99	0.0	-2.5	≈ 5.0							
850	55.1	20.4	0.96	55.2	0.99	-0.1	-3.0	0.0 0.0	-	-		1.53			
900	55.0	19.7	0.98	55.0	1.05	0.0	-6.7	i ma						-	-
1400	54.2	15.6	1.22	54.1	1.28	0.2	-4.7	a ⁴ -5.0 ≥							
1450	54.1	15.4	1.24	54.0	1.30	0.2	-4.6	a □10.0	_		1	1992			
1500	54.1	15.3	1.27	53.9	1.33	0.3	-4.5								
1550	54.0	15.1	1.30	53.9	1.36	0.2	-4.4	-15.0	500	1500	2500	3500	4500	550	0
1600	53.9	15.0	1.33	53.8	1.39	0.2	-4.3					ncy MHz			
1625	53.9	14.9	1.35	53.8	1.41	0.3	-4.3								
1640	53.9	14.9	1.36	53.7	1.42	0.3	-4.2	15.0							
1650	53.8	14.9	1.36	53.7	1.43	0.2	-4.9	10.0	12.0						
1700	53.8	14.8	1.40	53.6	1.46	0.4	-4.1	10.0		100		States -			-
1750	53.7	14.7	1.43	53.4	1.49	0.5	-4.0	* 5.0	1.354	1					
1800	53.7	14.6	1.46	53.3	1.52	0.8	-3.9	ivity	1800		2				1
1810	53.7	14.6	1.47	53.3	1.52	0.8	-3.3	% Conductivity %	1		1			/	
1825	53.7	14.6	1.48	53.3	1.52	0.8	-2.6	05.0	Λ	~	1		/		
1850	53.6	14.5	1.50	53.3	1.52	0.6	-1.3	Dev.	14	-		-	/		
1900	53.5	14.5	1.53	53.3	1.52	0.4	0.7	-10.0	-	1.1.1.1	100			-	
1950	53.5	14.5	1.57	53.3	1.52	0.4	3.3	-15.0	-	19150	-	22			
2000	53.4	14.4	1.60	53.3	1.52	0.2	5.3		00	1500	2500	3500	4500	5500)
2050	53.4	14.4	1.64	53.2	1.57	0.3	4.5				Frequen	cy MHz			_
2100	53.3	14.4	1.68	53.2	1.62	0.2	3.7								
2150	53.3	14.4	1.72	53.1	1.66	0.4	3.6				-				_
2200	53.2	14.4	1.76	53.0	1.71	0.3	2.9	3500	51.1	15.5	3.02	51.3	3.31	-0.4	-8
2250	53.1	14.4	1.81	53.0	1.76	0.2	2.8	3700	50.8	15.7	3.24	51.1	3.55	-0.5	-8
2300	53.1	14.4	1.85	52.9	1.81	0.4	2.2	5200	48.1	18.2	5.27	49.0	5.30	-1.8	-0
2350	53.0	14.5	1.89	52.8	1.85	0.3	2.2	5250	48.0	18.3	5.34	49.0	5.36	-1.9	-0
2400	52.9	14.5	1.94	52.8	1.90	0.2	2.1	5300	47.9	18.4	5.41	48.9	5.42	-2.0	-0
	52.9	14.5	1.98	52.7	1.95	0.4	1.5	5500	47.5	18.6	5.70	48.6	5.65	-2.2	0
2450		14.6	2.03	52.6	2.02	0.3	0.5	5600	47.3	18.8	5.84	48.5	5.77	-2.3	1
2450 2500	52.8	1.110													
2450	52.8 52.7	14.6	2.07	52.6	2.09	0.2	-1.0	5700	47.1	18.9	5.99	48.3	5.88	-2.5	1

TSL Dielectric Parameters

Figure C-2 600 – 5800 MHz Body Tissue Equivalent Matter

	FCC ID: ZNFF100VM	Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	08/26/20 - 09/28/20	Portable Handset			Page 2 of 3
© 202	0 PCTEST				REV 21.4 M 09/11/2019

Schmid & Partner Engineering AG	S	p	е	а	q	
Zeughausstrasse 43, 8004 Zurich, Switzerland						

Zeughausstrasse 43, 8004 Zurich, Switzeriand Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL600-10000V6)
Product No.	SL AAH U16 BC (Batch: 181031-2)
Manufacturer	SPEAG

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Ambient Condit	tion 22°C ; 30% humidity	
TSL Temperatu		
Test Date	31-Oct-18	
Operator	CL	
Additional Info	ormation	
TSL Density		
TSL Heat-capa	city	

Results

	Meas	ured	1. 1. 1.	Targe	et	Diff.to Targ	get [%]	15.0	0						
f [MHz]	е'	e"	sigma	eps	sigma	∆-eps	∆-sigma	15.0				13-21-3		1818	
800	43.8	20.5	0.91	41.7	0.90	5.1	1.4	10.0	0		The last				
825	43.8	20.1	0.92	41.6	0.91	5.3	1.5	2° 5.0		-					
835	43.8	19.9	0.93	41.5	0.91	5.4	2.0	in the				-			
850	43.7	19.7	0.93	41.5	0.92	5.3	1.5	5.0 5.0 5.0							
900	43.5	18.9	0.95	41.5	0.97	4.8	-2.1	₫ -5.0	,				1011	-	-
1400	42.5	15.0	1.17	40.6	1.18	4.7	-0.8	Å 0-10.0							
1450	42.5	14.8	1.19	40.5	1.20	4.9	-0.8	-15.0		124		12-11-2		100	
1600	42.2	14.3	1.27	40.3	1.28	4.7	-1.1		500 15	00 2500		500 5500 ancy MHz	6500 7500	0 8500 9	9500
1625	42.2	14.2	1.29	40.3	1.30	4.8	-0.7	40.0				.,			-
1640	42.2	14.2	1.30	40.3	1.31	4.8	-0.5	15.0		S.S. Aris	1396	0.52124		2015.F3	
1650	42.1	14.2	1.30	40.2	1.31	4.6	-1.0	10.0				1			
1700	42.1	14.0	1.33	40.2	1.34	4.8	-0.9	6 Atj	-	Λ					
1750	42.0	13.9	1.36	40.1	1.37	4.8	-0.8	0.0 Inctiv		11		-		-	_
1800	41.9	13.9	1.39	40.0	1.40	4.7	-0.7	0.0 0.0-5.0	p	- 1		/			
1810	41.9	13.8	1.40	40.0	1.40	4.7	0.0								
1010															
1825	41.9	13.8	1.41	40.0	1.40	4.7	0.7	a10.0				1000			
		13.8 13.8	1.000	40.0 40.0	1.40 1.40		10 X 10	-15.0							1
1825	41.9	100-00-0	1.41			4.7	0.7	-15.0	500 150	00 2500	3500 45 Freque	00 5500 (ency MHz	6500 7500	8500 9	500
1825 1850	41.9 41.8	13.8	1.41 1.42	40.0	1.40	4.7 4.5	0.7 1.4	-15.0	500 150	00 2500	3500 45 Freque	600 5500 e ency MHz 36.0	6500 7500 4.66	8500 9	
1825 1850 1900	41.9 41.8 41.8	13.8 13.7	1.41 1.42 1.45	40.0 40.0	1.40 1.40	4.7 4.5 4.5	0.7 1.4 3.6	-15.0			Freque	ency MHz		-	-
1825 1850 1900 1950	41.9 41.8 41.8 41.7	13.8 13.7 13.7	1.41 1.42 1.45 1.48	40.0 40.0 40.0	1.40 1.40 1.40	4.7 4.5 4.5 4.3	0.7 1.4 3.6 5.7	-15.0 5200	36.3	15.8	4:57	36.0	4.66	0.9	-
1825 1850 1900 1950 2000	41.9 41.8 41.8 41.7 41.6	13.8 13.7 13.7 13.6	1.41 1.42 1.45 1.48 1.51	40.0 40.0 40.0 40.0	1.40 1.40 1.40 1.40	4.7 4.5 4.3 4.0	0.7 1.4 3.6 5.7 7.9	-15.0 5200 5250	36.3 36.2	15.8 15.9	4.57 4.63	36.0 35.9	4.66 4.71	0.9 0.8	1 1 1
1825 1850 1900 1950 2000 2050	41.9 41.8 41.8 41.7 41.6 41.6	13.8 13.7 13.7 13.6 13.6	1.41 1.42 1.45 1.48 1.51 1.55	40.0 40.0 40.0 39.9	1.40 1.40 1.40 1.40 1.44	4.7 4.5 4.3 4.0 4.2	0.7 1.4 3.6 5.7 7.9 7.3	-15.0 5200 5250 5300	36.3 36.2 36.1	15.8 15.9 15.9	4.57 4.63 4.69	36.0 35.9 35.9	4.66 4.71 4.76	0.9 0.8 0.7	
1825 1850 1900 1950 2000 2050 2100	41.9 41.8 41.7 41.6 41.6 41.6 41.5	13.8 13.7 13.7 13.6 13.6 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58	40.0 40.0 40.0 39.9 39.8	1.40 1.40 1.40 1.40 1.44 1.49	4.7 4.5 4.3 4.0 4.2 4.2	0.7 1.4 3.6 5.7 7.9 7.3 6.1	-15.0 5200 5250 5300 5500	36.3 36.2 36.1 35.8	15.8 15.9 15.9 16.1	4.57 4.63 4.69 4.92	36.0 35.9 35.9 35.6	4.66 4.71 4.76 4.96	0.9 0.8 0.7 0.3	500 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1825 1850 1900 1950 2000 2050 2100 2150	41.9 41.8 41.8 41.7 41.6 41.6 41.5 41.4	13.8 13.7 13.7 13.6 13.6 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62	40.0 40.0 40.0 39.9 39.8 39.7	1.40 1.40 1.40 1.44 1.49 1.53	4.7 4.5 4.5 4.3 4.0 4.2 4.2 4.2	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7	-15.0 5200 5250 5300 5500 5600	36.3 36.2 36.1 35.8 35.6	15.8 15.9 15.9 16.1 16.2	4.57 4.63 4.69 4.92 5.04	36.0 35.9 35.9 35.6 35.5	4.66 4.71 4.76 4.96 5.07	0.9 0.8 0.7 0.3 0.1	
1825 1850 1900 2000 2050 2100 2150 2200 2250 2250	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69	40.0 40.0 40.0 39.9 39.8 39.7 39.6	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58	4.7 4.5 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6	-15.0 5200 5250 5300 5500 5600 5700	36.3 36.2 36.1 35.8 35.6 35.4	15.8 15.9 15.9 16.1 16.2 16.2	Freque 4.57 4.63 4.69 4.92 5.04 5.15	36.0 35.9 35.9 35.6 35.5 35.4	4.66 4.71 4.76 4.96 5.07 5.17	0.9 0.8 0.7 0.3 0.1 0.0	
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2	-15.0 5200 5250 5300 5500 5600 5700 5800	36.3 36.2 36.1 35.8 35.6 35.4 35.2	15.8 15.9 15.9 16.1 16.2 16.2 16.3	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27	36.0 35.9 35.9 35.6 35.5 35.4 35.3	4.66 4.71 4.76 4.96 5.07 5.17 5.27	0.9 0.8 0.7 0.3 0.1 0.0 -0.2	
1825 1850 1950 2000 2050 2100 2150 2200 2250 2300 2350 2350 2400	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5	1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2	-15.0 5200 5250 5300 5500 5500 5600 5700 5800 6000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50	36.0 35.9 35.6 35.6 35.5 35.4 35.3 35.1	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.28	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6	
1825 1850 1950 2000 2050 2100 2150 2200 2250 2300 2350 2350 2400	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4	1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9	-15.0 5200 5250 5300 5500 5600 5700 5800 6000 6500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12	ancy MHz 36.0 35.9 35.6 35.5 35.4 35.3 35.1 34.5	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4	
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.84	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3	1.40 1.40 1.40 1.40 1.41 1.42 1.43 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.6	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5	-15.0 5200 5250 5300 5500 5600 5700 6000 6500 7000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 33.1	15.8 15.9 16.1 16.2 16.3 16.5 16.9	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74	ancy MHz 36.0 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3	
1825 1850 1900 2000 2050 2100 2100 2200 2200 2250 2300 2350 2350 2400	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1 41.1	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.65 1.69 1.72 1.76 1.80 1.88	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2	1.40 1.40 1.40 1.40 1.41 1.49 1.53 1.58 1.62 1.67 1.71 1.76	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2	-15.0 5200 5250 5300 5500 5500 5500 5700 5800 6000 6500 7000 7500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2	15.8 15.9 16.1 16.2 16.3 16.5 16.9 17.3 17.6	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36	ancy MHz 36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2	
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500	41.9 41.8 41.7 41.6 41.5 41.5 41.4 41.4 41.3 41.2 41.1 41.1 41.0 40.9	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.84 1.84 1.88 1.92	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2 39.2	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2 2.2 1.4	-15.0 5200 5250 5300 5500 5500 5500 5700 5800 6000 6500 7000 7500 8000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6 17.9	Freque 4.57 4.63 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97	acy MHz 36.0 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.3 32.7	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2 -4.1	
1825 1850 1900 1950 2000 2050 2100 2150 2350 24500 2550	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1 41.0 40.9 40.8	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.58 1.55 1.58 1.62 1.69 1.72 1.76 1.80 1.84 1.92 1.94	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2 39.2 39.2	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85 1.91	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.9 2.5 2.2 1.4 0.6	-15.0 5200 5300 5500 5500 5500 5500 6000 6500 7000 7500 8000 8500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4 30.5	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6 17.9 18.2	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97 8.59	36.0 35.9 35.9 35.6 35.5 35.4 35.1 34.5 33.9 33.3 32.7 32.1	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84 8.45	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2 -4.1 -5.0	

TSL Dielectric Parameters

Figure C-3 600 – 5800 MHz Head Tissue Equivalent Matter

	FCC ID: ZNFF100VM	Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	08/26/20 - 09/28/20	Portable Handset			Page 3 of 3
© 202	20 PCTEST				REV 21.4 M 09/11/2019

APPENDIX D: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR	Freq.		Probe		Cond.	Perm.	C	W VALIDATIC	DN .	MOD.	VALIDATI	ON	
System	(MHz)	Date	SN	Probe C	Cal Point	(σ)	renn. (εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
E	750	2/20/2020	3589	750	Head	0.889	43.647	PASS	PASS	PASS	N/A	N/A	N/A
E	835	2/20/2020	3589	835	Head	0.922	43.402	PASS	PASS	PASS	GMSK	PASS	N/A
L	1750	7/11/2020	7406	1750	Head	1.321	41.025	PASS	PASS	PASS	N/A	N/A	N/A
L	1900	7/7/2020	7406	1900	Head	1.403	40.885	PASS	PASS	PASS	GMSK	PASS	N/A
Р	2300	9/9/2020	7308	2300	Head	1.750	41.210	PASS	PASS	PASS	N/A	N/A	N/A
K2	2450	7/20/2020	7402	2450	Head	1.860	38.490	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
E	2450	2/5/2020	3589	2450	Head	1.823	38.835	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
Р	2450	9/9/2020	7308	2450	Head	1.865	40.970	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
Р	2600	9/9/2020	7308	2600	Head	1.992	40.740	PASS	PASS	PASS	TDD	PASS	N/A
D	3500	2/4/2020	7488	3500	Head	2.882	36.886	PASS	PASS	PASS	TDD	PASS	N/A
D	3700	2/4/2020	7488	3700	Head	3.037	36.597	PASS	PASS	PASS	TDD	PASS	N/A
Н	5250	5/7/2020	7357	5250	Head	4.644	35.120	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5600	5/7/2020	7357	5600	Head	5.030	34.510	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5750	5/7/2020	7357	5750	Head	5.207	34.260	PASS	PASS	PASS	OFDM	N/A	PASS
0	750	9/9/2020	7547	750	Body	0.948	54.670	PASS	PASS	PASS	N/A	N/A	N/A
Р	835	9/26/2019	7551	835	Body	0.991	54.104	PASS	PASS	PASS	GMSK	PASS	N/A
Р	835	9/8/2020	7308	835	Body	0.977	54.530	PASS	PASS	PASS	GMSK	PASS	N/A
I	1750	6/17/2020	7570	1750	Body	1.518	52.030	PASS	PASS	PASS	N/A	N/A	N/A
G	1750	8/5/2020	7538	1750	Body	1.503	52.226	PASS	PASS	PASS	N/A	N/A	N/A
Н	1900	6/1/2020	7357	1900	Body	1.555	51.210	PASS	PASS	PASS	GMSK	PASS	N/A
J	1900	1/1/2020	7571	1900	Body	1.579	51.919	PASS	PASS	PASS	GMSK	PASS	N/A
K	2300	7/7/2020	7409	2300	Body	1.850	51.590	PASS	PASS	PASS	N/A	N/A	N/A
K2	2450	7/21/2020	7402	2450	Body	1.996	51.910	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2450	7/7/2020	7409	2450	Body	2.018	51.180	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2600	7/8/2020	7409	2600	Body	2.194	50.730	PASS	PASS	PASS	TDD	PASS	N/A
D	3500	2/12/2020	7488	3500	Body	3.373	50.003	PASS	PASS	PASS	TDD	PASS	N/A
D	3700	2/12/2020	7488	3700	Body	3.585	49.719	PASS	PASS	PASS	TDD	PASS	N/A
G	5250	8/16/2020	7538	5250	Body	5.476	47.185	PASS	PASS	PASS	OFDM	N/A	PASS
G	5600	8/16/2020	7538	5600	Body	5.937	46.607	PASS	PASS	PASS	OFDM	N/A	PASS
G	5750	8/16/2020	7538	5750	Body	6.140	46.354	PASS	PASS	PASS	OFDM	N/A	PASS

 Table D-1

 SAR System Validation Summary – 1g

	FCC ID: ZNFF100VM	Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	08/26/20 - 09/28/20	Portable Handset			Page 1 of 2
© 202	0 PCTEST				REV 21.4 M 09/11/2019

From		Probo				Cond Borm		W VALIDATIC	N	MOD	VALIDATI	ON
(MHz)	Date	SN	Probe C	al Point	(σ)	renn. (εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
1750	8/5/2020	7538	1750	Body	1.503	52.226	PASS	PASS	PASS	N/A	N/A	N/A
1750	6/17/2020	7570	1750	Body	1.518	52.03	PASS	PASS	PASS	N/A	N/A	N/A
1900	6/1/2020	7357	1900	Body	1.555	51.21	PASS	PASS	PASS	GMSK	PASS	N/A
5250	8/16/2020	7538	5250	Body	5.476	47.185	PASS	PASS	PASS	OFDM	N/A	PASS
5600	8/16/2020	7538	5600	Body	5.937	46.607	PASS	PASS	PASS	OFDM	N/A	PASS
5750	8/16/2020	7538	5750	Body	6.14	46.354	PASS	PASS	PASS	OFDM	N/A	PASS
	1750 1750 1900 5250 5600	(MHz) Date 1750 8/5/2020 1750 6/17/2020 1900 6/1/2020 5250 8/16/2020 5600 8/16/2020	(MHz) Date SN 1750 8/5/2020 7538 1750 6/17/2020 7570 1900 6/1/2020 7357 5250 8/16/2020 7538 5600 8/16/2020 7538	Freq. (MHz) Date Probe SN Probe C 1750 8/5/2020 7538 1750 1750 6/17/2020 7570 1750 1900 6/1/2020 7357 1900 5250 8/16/2020 7538 5250 5600 8/16/2020 7538 5600	Freq. (MHz) Date Probe SN Probe Cal Point 1750 8/5/2020 7538 1750 Body 1750 6/17/2020 7570 1750 Body 1900 6/1/2020 7357 1900 Body 5250 8/16/2020 7538 5250 Body 5600 8/16/2020 7538 5600 Body	Freq. (MHz) Date Probe SN Probe Cal Point Cond. (σ) 1750 8/5/2020 7538 1750 Body 1.503 1750 6/17/2020 7570 1750 Body 1.518 1900 6/1/2020 7357 1900 Body 1.555 5250 8/16/2020 7538 5250 Body 5.476 5600 8/16/2020 7538 5600 Body 5.937	Freq. (MHz) Date Probe SN Probe Cal Point Cond. (σ) Perm. (εr) 1750 8/5/2020 7538 1750 Body 1.503 52.226 1750 6/17/2020 7570 1750 Body 1.518 52.03 1900 6/1/2020 7357 1900 Body 1.555 51.21 5250 8/16/2020 7538 5250 Body 5.476 47.185 5600 8/16/2020 7538 5600 Body 5.937 46.607	Freq. (MHz) Date Probe SN Probe Cal Point Cond. (σ) Perm. (εr) CC SENSITIVITY 1750 8/5/2020 7538 1750 Body 1.503 52.226 PASS 1750 6/17/2020 7570 1750 Body 1.518 52.03 PASS 1900 6/1/2020 7357 1900 Body 1.555 51.21 PASS 5250 8/16/2020 7538 5250 Body 5.937 46.607 PASS	Freq. (MHz) Date Probe SN Probe Cal Point Cond. (σ) Perm. (εr) CW VALIDATIC SENSITIVITY PROBE LINEARITY 1750 8/5/2020 7538 1750 Body 1.503 52.226 PASS PASS 1750 6/17/2020 7570 1750 Body 1.518 52.03 PASS PASS 1900 6/1/2020 7578 1900 Body 1.555 51.21 PASS PASS 5250 8/16/2020 7538 5250 Body 5.937 46.607 PASS PASS	Freq. (MHz) Date Probe N Probe Cal Point Cond. (σ) Perm. (εr) CW VALIDATION 1750 8/5/2020 7538 1750 Body 1.503 52.226 PASS PASS PASS 1750 6/17/2020 7570 1750 Body 1.518 52.03 PASS PASS PASS 1900 6/1/2020 7538 5250 Body 1.555 51.21 PASS PASS PASS 5250 8/16/2020 7538 5600 Body 5.937 46.607 PASS PASS PASS	Freq. (MHz) Date Probe N Probe Cal Point Cond. (σ) Perm. (εr) CW VALIDATION MOD. SENSITIVITY 1750 8/5/2020 7538 1750 Body 1.503 52.226 PASS PASS PASS N/A 1750 6/17/2020 7570 1750 Body 1.518 52.03 PASS PASS PASS N/A 1900 6/1/2020 7538 5250 Body 1.555 51.21 PASS PASS PASS MSK 5250 8/16/2020 7538 5600 Body 5.937 46.607 PASS PASS PASS OFDM	Freq. (MHz) Date Probe N Probe Cal Point Cond. (σ) Perm. (εr) CW VALIDATION MOD. VALIDATION 1750 8/5/2020 7538 1750 Body 1.503 52.226 PASS PASS PASS N/A N/A 1750 6/17/2020 7570 1750 Body 1.518 52.03 PASS PASS PASS N/A N/A 1900 6/1/2020 7538 1900 Body 1.555 51.21 PASS PASS PASS GMSK PASS 5250 8/16/2020 7538 5250 Body 5.476 47.185 PASS PASS OFDM N/A 5600 8/16/2020 7538 5600 Body 5.937 46.607 PASS PASS OFDM N/A

Table D-2SAR System Validation Summary – 10g

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

	FCC ID: ZNFF100VM	Proud to be part of element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	08/26/20 - 09/28/20	Portable Handset			Page 2 of 2
© 202	0 PCTEST				REV 21.4 M 09/11/2019

APPENDIX F: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA 2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components . carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO and 4x4 Downlink MIMO operations were measured independently. per May 2017 TCBC Workshop notes.

Table 1 – Example of Exclusion Table for SISO Configurations

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

This device supports LAA with downlink carrier aggregation only. It uses carrier aggregation in the downlink to combine LTE in the unlicensed spectrum (i.e. LTE Band 46) with LTE in the licensed band (served as PCC). All uplink communications and acknowledgements on the PCC remain identical to specifications when downlink carrier aggregation is inactive.

FCC ID: ZNFF100VM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
08/26/20 - 09/28/20	Portable Handset			Page 1 of 2
2020 PCTEST				REV 21.3 M
				02/15/2019

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

LTE Downlink Carrier Aggregation was fully addressed in the original filing. Per FCC Guidance, only combinations that were impacted with respect to this permissive change were additionally evaluated. Refer RF Exposure Technical Report S/N 1M2006150096-01-R2.ZNF for the excluded combinations which have been addressed per KDB 941225 D05A and April 2018 TCBC Workshop guidance.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Base Station	↓	Wireless Device
Simulator		

Figure 1 DL CA Power Measurement Setup

1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 LTE Band 66 as PCC

	Table 1																						
Maximum Output Powers																							
Combination PCC Band PCC BW PCC (UL) Ch. PCC (UL) PCC (UL) BR PCC (UL) BR PCC (UL) BR PCC (UL) Channel				PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL)	SCC (DL) Freq. [MHz]		SCC BW [MHz]	SCC (DL)	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]		SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA						
CA 46C-66A-66A	LTE B66	20	132072	1720	16QAM	1	50	66536	2120	LTE B66	20	67236	2190	1 TE B46	20	50665	5537.5	1 TE B46	20	50467	5517.7	23.49	23.50

	FCC ID: ZNFF100VM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX F:
	08/26/20 - 09/28/20	Portable Handset			Page 2 of 2
© 202	0 PCTEST				REV 21.3 M
					02/15/2019

APPENDIX G: PROBE AND DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S С S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.; SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

. .

. .

PC Test Client

Certificate No: D5GHzV2-1237_Aug18

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:12	37	
Calibration procedure(s)	QA CAL-22.v3 Calibration proceed	lure for dipole validation kits bet	tween 3-6 GHz BN 19-06-2018
Calibration date:	August 10, 2018		tween 3-6 GHz BN 09-06-2018 BN 08 09 2016 08 09 2016
This calibration certificate documer The measurements and the uncerta	ts the traceability to natic ainties with confidence pr	nal standards, which realize the physical un obability are given on the following pages a	nits of measurements (SI).
Ail calibrations have been conducte	ed in the closed laboratory	y facility: environment temperature (22 \pm 3) ⁶	°C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	in house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	in house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	Aut
Approved by:	Katja Pokovic	Technical Manager	Alla
			Issued: August 17, 2018
This calibration certificate shall no	t be reproduced except in	n full without written approval of the laborate	ory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	4.61 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ±6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.16 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	47.5 Ω - 3.5 jΩ
Return Loss	- 27.0 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	50.1 Ω + 4.7 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.7 Ω + 0.8 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	46.5 Ω - 1.3 jΩ
Return Loss	- 28.2 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	53.1 Ω + 6.2 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.6 Ω + 2.1 jΩ
Return Loss	- 27.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufac	tured by	SPEAG
Manufac	tured on	May 04, 2015

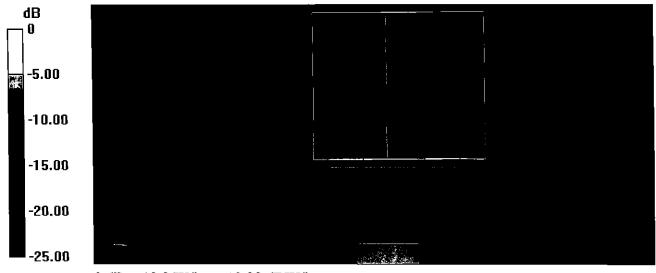
DASY5 Validation Report for Head TSL

Date: 10.08.2018

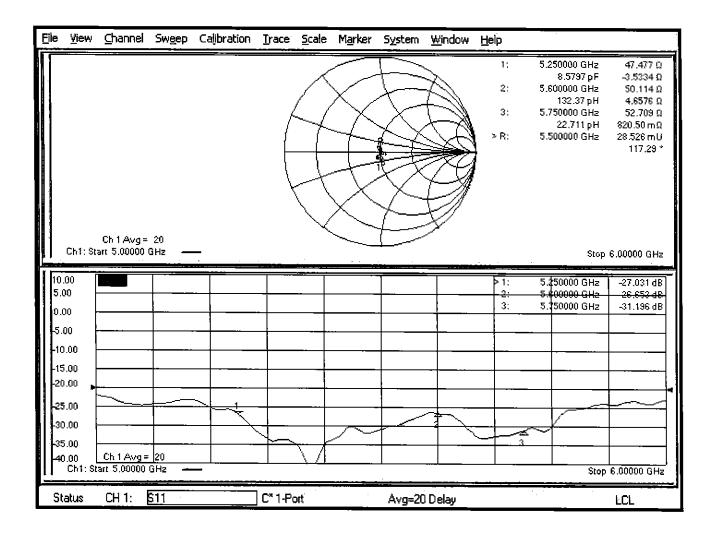
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.61 S/m; ϵ_r = 35.6; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.98 S/m; ϵ_r = 35.1; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.14 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51) @ 5250 MHz, ConvF(5.05, 5.05, 5.05) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.17 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.53 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.6 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 20.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.04 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

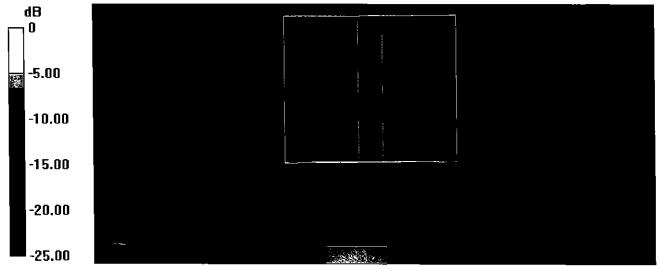
DASY5 Validation Report for Body TSL

Date: 10.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

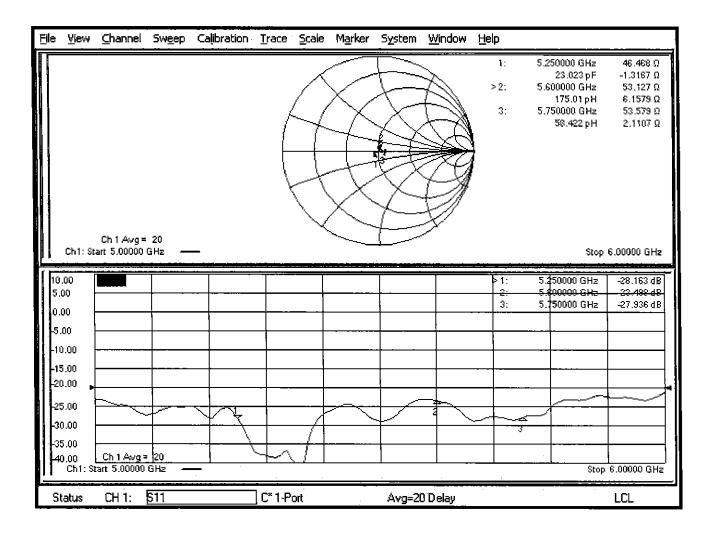
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 5.49 S/m; ϵ_r = 46.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.96 S/m; ϵ_r = 46.3; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.16 S/m; ϵ_r = 46; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.65, 4.65, 4.65) @ 5600 MHz, ConvF(4.57, 4.57, 4.57) @ 5750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.22 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 17.3 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.51 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.91 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.0 W/kg

0 dB = 18.0 W/kg = 12.55 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D5GHzV2 - SN: 1237

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

08/09/2019

Extended Calibration date:

Description:

SAR Validation Dipole at 5GHz

Calibration Equipment used:

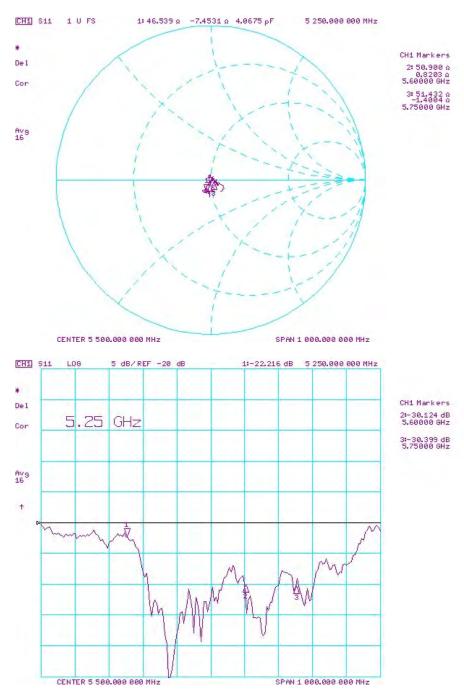
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2019	US39170118		
Agilent	N5182A	MXG Vector Signal Generator	6/27/2020	US46240505		
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	Annual	7/11/2020	1323	
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

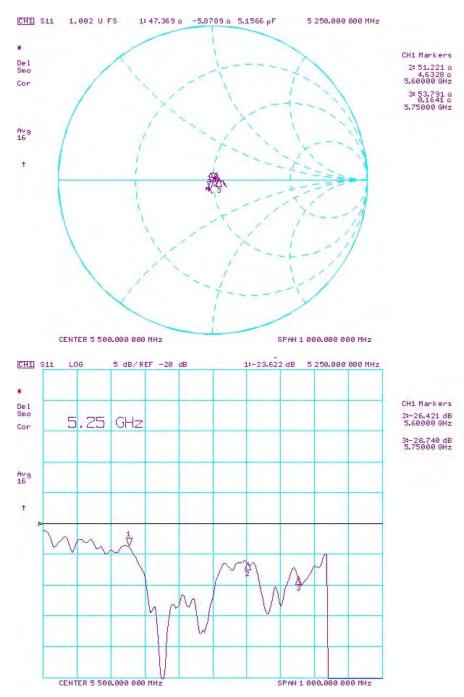
Object:	Date Issued:	Daga 1 of 1
D5GHzV2 – SN: 1237	08/09/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 17.0 dBm		Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	8/10/2018	8/9/2019	1.195	4.065	3.81	-6.27%	1.18	1.09	-7.23%	47.5	46.5	1	-3.5	-7.5	4	-27	-22.2	17.70%	PASS
5600	8/10/2018	8/9/2019	1.195	4.285	4.06	-5.25%	1.23	1.15	-6.12%	50.1	50.9	0.8	4.7	0.8	3.9	-26.7	-30.1	-12.80%	PASS
5750	8/10/2018	8/9/2019	1.195	4.03	3.8	-5.71%	1.16	1.07	-7.36%	52.7	51.4	1.3	0.8	-1.4	2.2	-31.2	-30.4	2.60%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5250	8/10/2018	8/9/2019	1.195	3.78	3.52	-6.88%	1.06	0.981	-7.45%	46.5	47.4	0.9	-1.3	-5.9	4.6	-28.2	-23.6	16.20%	PASS
5600	8/10/2018	8/9/2019	1.195	3.925	3.81	-2.93%	1.1	1.05	-4.55%	53.1	51.2	1.9	6.2	4.6	1.6	-23.5	-26.4	-12.40%	PASS
5750	8/10/2018	8/9/2019	1.195	3.795	3.58	-5.67%	1.06	1	-5.66%	53.6	53.8	0.2	2.1	0.2	1.9	-27.9	-28.7	-3.00%	PASS

Object:	Date Issued:	Daga 2 of 4
D5GHzV2 – SN: 1237	08/09/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dere 2 of 4
D5GHzV2 – SN: 1237	08/09/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Deris 4 of 4
D5GHzV2 – SN: 1237	08/09/2019	Page 4 of 4

Certification of Calibration

Object

D5GHzV2 - SN: 1237

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

08/10/2020

Extended Calibration date:

Description:

SAR Validation Dipole at 5GHz

Calibration Equipment used:

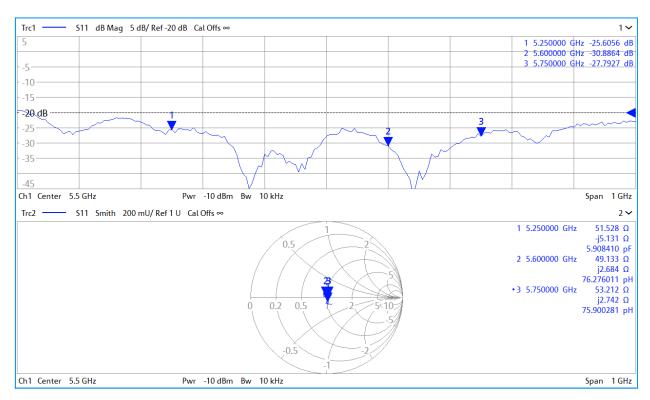
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	11/29/2018	Biennial	11/29/2020	181766816
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Agilent	85033E	3.5mm Standard Calibration Kit	6/6/2020	Annual	6/6/2021	MY53402352
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/27/2019	Annual	8/27/2020	1339027
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk Inc	NC-100	Torque Wrench	8/4/2020	Biennial	8/4/2022	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	4/21/2020	Annual	4/21/2021	7357
SPEAG	EX3DV4	SAR Probe	5/18/2020	Annual	5/18/2021	7538
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/1/2020	Annual	7/15/2021	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/6/2020	Annual	4/15/2021	1407

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

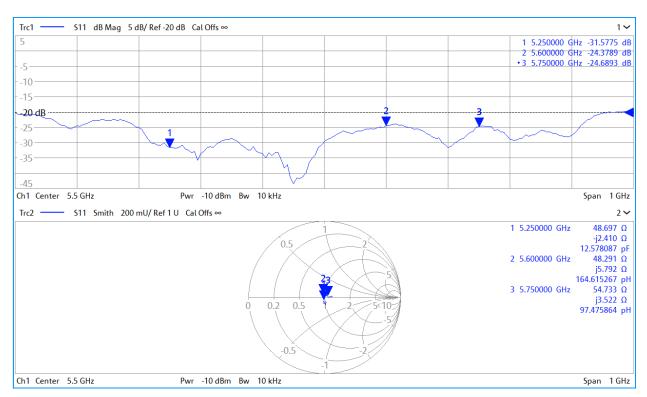
Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1237	08/10/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	Measured Head SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	Measured Head SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	8/10/2018	8/10/2020	1.195	4.065	3.69	-9.23%	1.18	1.06	-9.79%	47.5	51.5	4	-3.5	-5.1	1.6	-27	-25.6	5.20%	PASS
5600	8/10/2018	8/10/2020	1.195	4.285	4	-6.65%	1.23	1.13	-7.76%	50.1	49.1	1	4.7	2.7	2	-26.7	-30.9	-15.70%	PASS
5750	8/10/2018	8/10/2020	1.195	4.03	3.71	-7.94%	1.16	1.06	-8.23%	52.7	53.2	0.5	0.8	2.7	1.9	-31.2	-27.8	10.90%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5250	8/10/2018	8/10/2020	1.195	3.78	3.58	-5.29%	1.06	1	-5.66%	46.5	48.7	2.2	-1.3	-2.4	1.1	-28.2	-31.6	-12.00%	PASS
5600	8/10/2018	8/10/2020	1.195	3.925	3.72	-5.22%	1.1	1.04	-5.45%	53.1	48.3	4.8	6.2	5.8	0.4	-23.5	-24.4	-3.70%	PASS
5750	8/10/2018	8/10/2020	1.195	3.795	3.57	-5.93%	1.06	0.99	-6.51%	53.6	54.7	1.1	2.1	3.5	1.4	-27.9	-24.7	11.50%	PASS

Object:	Date Issued:	Daga 2 of 4
D5GHzV2 – SN: 1237	08/10/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dere 2 of 4
D5GHzV2 – SN: 1237	08/10/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dere 4 of 4
D5GHzV2 – SN: 1237	08/10/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D750V3-1161_Oct18

S

С

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration cert

lificates			

Client	PC Test

Dbject	D750V3 - SN:116	51	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
			BN $10-30-10$ kg $10-30-10$ kg its of measurements (SI). BN $20-2$ and are part of the certificate. $10-20-2$
Calibration date:	October 19, 2018	3	BN
			10-30-20-0
This calibration certificate documer	its the traceability to nati	ional standards, which realize the physical un	its of measurements (SI) BN
		robability are given on the following pages an	and are part of the certificate $10-20^{-21}$
		to basing the grout on the following pages an	
All calibrations have been conducte	of in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%
		$\frac{1}{2}$ identity, environment temperature (22 \pm 0) (σ and numberly < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
	consector canoradony		
Primary Standards	1D #	Cai Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards		Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	in house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	in house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	_ • <i>1</i>
		La construction de la construction La construction de la construction d	
Approved by:	Katja Pokovic	Technical Manager	Class
·			an an an a
			Issued: October 22, 2018
This calibration contificate shall not	he reproduced except in	full without written approval of the laboratory	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

· · · · · · · · · · · · · · · · · · ·		
DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	51 MF 24 56	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.03 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.32 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.55 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6 Ω - 1.9 jΩ	
Return Loss	- 25.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.6 Ω - 4.2 jΩ	
Return Loss	- 27.6 dB	

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.032 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

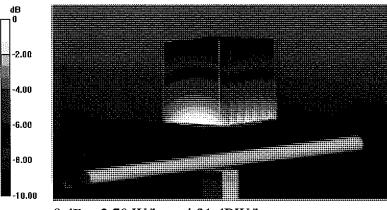
Manufactured by	SPEAG	
Manufactured on	November 19, 2015	

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89$ S/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 58.51 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.32 W/kg Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

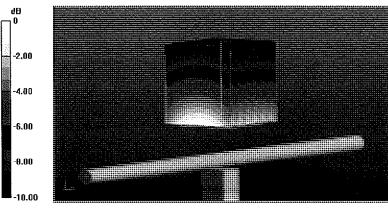
10.00 30.00 > 1: 750.00000 MHz -25.015 dE 10.00	Ele Vjew	Ch 1 Avg = 20	Calibration Irace Scale Mark	er System Window Help 1: 750.0000 1: 750.00000 1: 750.0000 1: 750.	12.30 pF - 1.8896 100 MHz - 56.138 m - 17.550	Ω nU 8°
5.00	T F				Stop 950.000 №	vlHz
Ch1: Start 550.000 MHz Stop 950.000 MH	5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -35.00 -35.00 -40.00	Ch 1 Avg = 20		> 1: 750.000		

DASY5 Validation Report for Body TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\varepsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.57 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dBW/kg

Impedance Measurement Plot for Body TSL

	ajibration <u>Trace Scale Mark</u>	er System Window Help 1: 750,000000 MH 51,109 g 2: 50,000000 MH	oF -4.1521 Ω
Ch 1 Avg = 20 Ch1: Start 550,000 MHz			8top 950.000 MHz
10.00 10.00 5.00		> 1: 750.00000 MH	12 -27.595 dB

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D750V3 – SN:1161

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 18, 2019

Description: S/

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

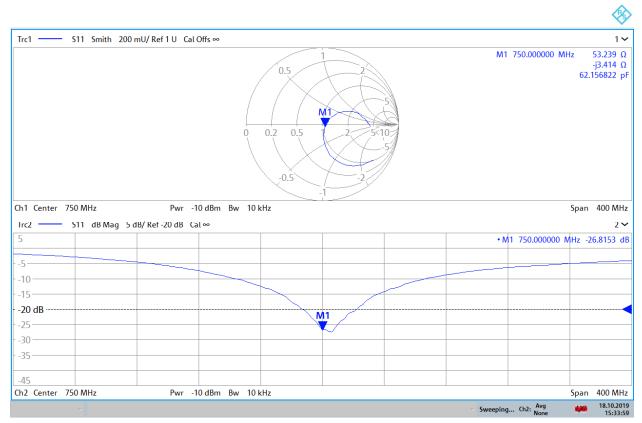
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Dogo 1 of 4
D750V3 – SN:1161	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

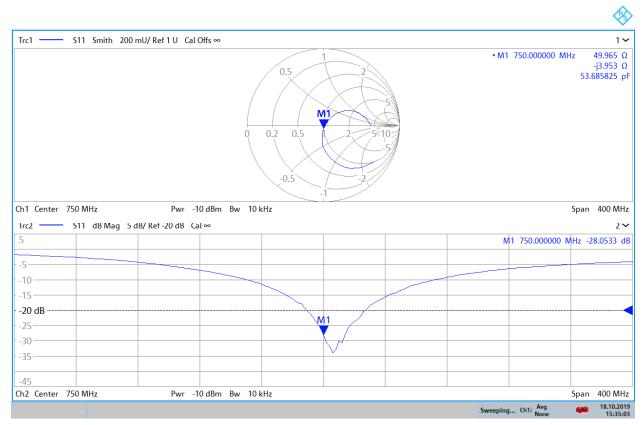
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Head SAR (1g)	(0/)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/19/2018	10/18/2019	1.032	1.61	1.64	2.12%	1.05	1.08	2.66%	55.6	53.2	2.4	-1.9	-3.4	1.5	-25	-26.8	-7.30%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0		(0/)	Certificate SAR Target Body (10g) W/kg @ 23.0	(40-) M///- @	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
			dBm	dDin		dBm	20.0 0.0111											

Object:	Date Issued:	Page 2 of 4
D750V3 – SN:1161	10/18/2019	Page 2 of 4


Impedance & Return-Loss Measurement Plot for Head TSL

15:34:00 18.10.2019

Object:	Date Issued:	Page 3 of 4
D750V3 – SN:1161	10/18/2019	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:35:04 18.10.2019

Object:	Date Issued:	Dago 4 of 4
D750V3 – SN:1161	10/18/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client PC Test		e e e e e e e e e e e e e e e e e e e	Certificate No: D835V2-4d047_Mar19
CALIBRATIONIC	Enteloat		
Object	D835V2 - SN 4d	047	
Calibration procedure(s)	QA CAL-05-v11 Calibration Proce	edure for SAR Validatio	n Sources between 0:7-3 GHz
Calibration date:	March 13, 2019		BN 04-12-2019
This calibration certificate docume	nts the traceability to nat	ional standards, which realize th	The physical units of measurements (SI). $04-12-20.19$ BNV Extends by BNV Extends BNV
		· · ·	wing pages and are part of the certificate. $'$ ture (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&Ti		ту тасниу, елиногипент тепрета	ure (22 ± 5) O and Humany < 70%.
Primary Standards	1D#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02	
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_D	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_0	Oct-19
Secondary Standards	D #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check F	
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check C	,
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check O	
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check C	
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check C	•
	Name	Function	Signature
Calibrated by:	Manu:Seitz	Laboratory Tech	
Approved by:	Katja Poković	Technical Manac	
			issued: March 13, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

· · · · · · · · · · · · · · · · · · ·		
DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	····
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.0 % (k=2)
		· · · ·
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity		
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m		
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.01 mho/m ± 6 %		
Body TSL temperature change during test	< 0.5 °C	****			

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 2.6 jΩ				
Return Loss	- 30.7 dB				

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 6.1 jΩ					
Return Loss	- 22.9 dB					

General Antenna Parameters and Design

/ (one direction)	1.387 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

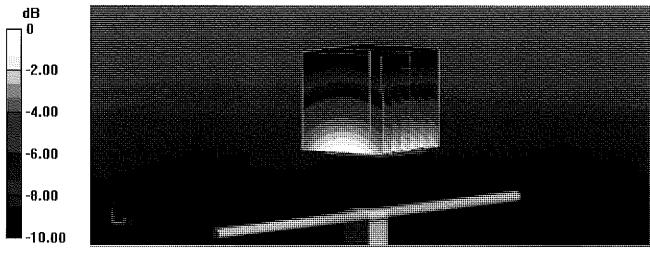
nufactured by	SPEAG
---------------	-------

DASY5 Validation Report for Head TSL

Date: 13.03.2019

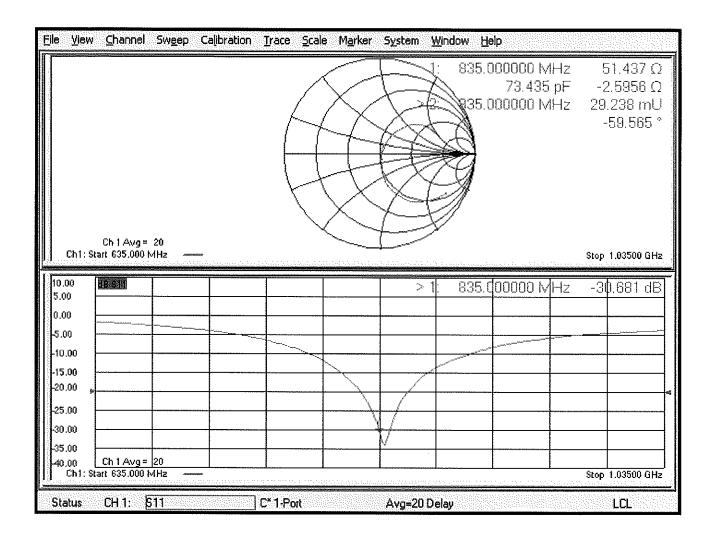
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.91 S/m; ϵ_r = 41.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.48 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

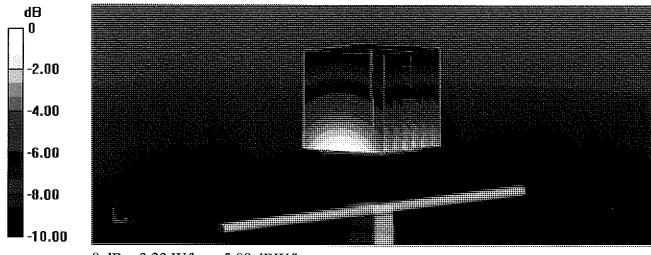
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.03.2019

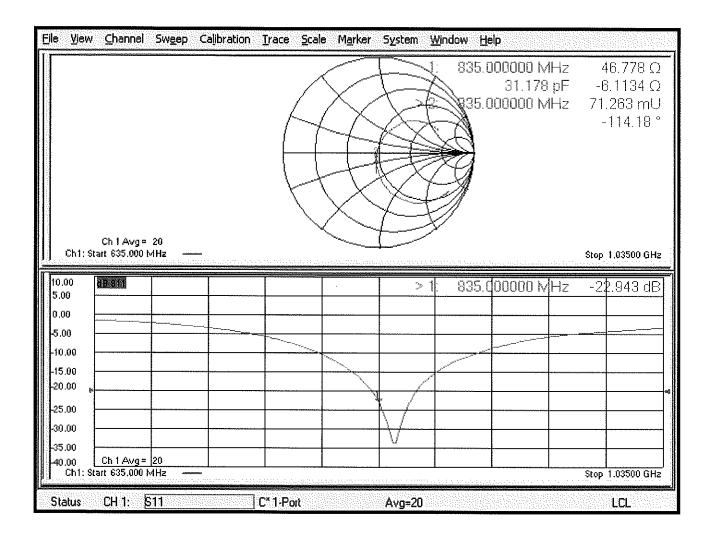
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Impedance Measurement Plot for Body TSL

Certification of Calibration

Object

D835V2 - SN: 4d047

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 3/13/2020

Description:

SAR Validation Dipole at 835 MHz

Calibration Equipment used:

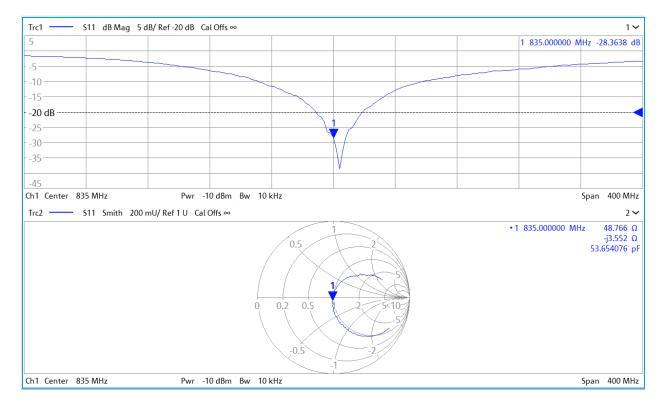
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100) Torque Wrench		Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	00+ Low Pass Filter		N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	7488
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1530

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

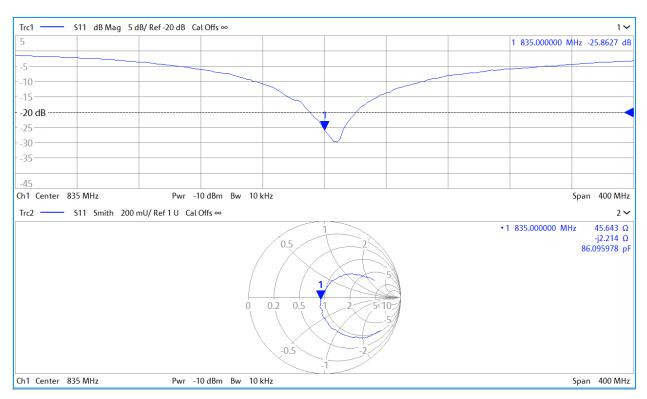
Object:	Date Issued:	Page 1 of 4
D835V2 – SN: 4d047	03/13/2020	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
3/13/2019	3/13/2020	1.387	1.884	1.87	-0.74%	1.226	1.22	-0.49%	51.4	48.8	2.6	-2.6	-3.6	1.0	-30.7	-28.4	7.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) 10/0	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
3/13/2019	3/13/2020	1.387	1.894	1.91	0.84%	1.254	1.26	0.48%	46.8	45.6	1.2	-6.1	-2.2	3.9	-22.9	-25.9	-12.90%	PASS

Object:	Date Issued:	Daga 2 of 4
D835V2 – SN: 4d047	03/13/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D835V2 – SN: 4d047	03/13/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dege 4 of 4
D835V2 – SN: 4d047	03/13/2020	Page 4 of 4

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland BC-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étaionnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No	D1750	V2-1148	May20	ie de la
Certificate Nu		72-1140	IVIAVZU	a sector s

CALIBRATION CERTIFICATE

Object	D1750V2 - SN:11	48	and the second second second at
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	
			BN 6-2-2020
Calibration date:	May 12, 2020		internet in the second s
The measurements and the uncerta	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778		
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21 Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
			200 20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	J. Kohn
Approved by:	Katja Pokovic	Technical Manager	Alle
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: May 13, 2020

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

rvice (SAS) e of the signatories to the EA

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	· · · · · · · · · · · · · · · · · · ·

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	35.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.69 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	·····
SAR measured	250 mW input power	8.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.80 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2 Ω - 1.9 jΩ
Return Loss	- 33.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 1.7 jΩ
Return Loss	- 25.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

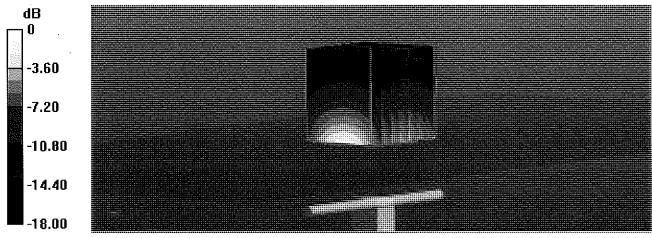
Manufactured by		SPEAG

DASY5 Validation Report for Head TSL

Date: 12.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.35 S/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.76, 8.76, 8.76) @ 1750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.6 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 16.4 W/kg **SAR(1 g) = 8.88 W/kg; SAR(10 g) = 4.69 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.4% Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

Impedance Measurement Plot for Head TSL

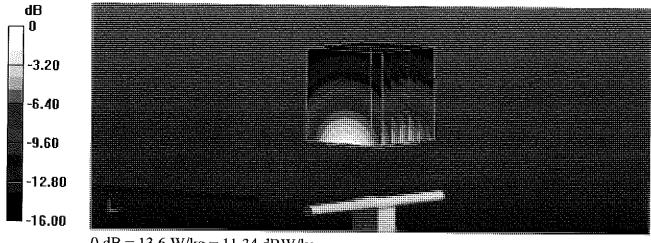
File	View	Channel	Sw <u>e</u> ep	Calibration	<u>Trace S</u> ca	le M <u>a</u> rker	System	Window	Help		
								A	.750000 GH 47.189 I.750000 GH	pF - Hz 20	49.234 Ω 1.9273 Ω 3.896 mU -110.57 °
	Ch1:Sta	Ch 1 Avg = art 1.55000 (GHz						<u>Banda Maria</u> tan Indonesia. Ang si	Stop	⊳ 1.95000 GHz
10.	aa 1	HICKNER AND A STREET							and the second se		
-10 5.0 -5.0 -10 -15 -20 -25 -30	00 - 00 - .00 ~ .00 - .00 .00 -						>		.750000 GH	Hz -3	33.599 dB
5.0 0.0 -5.0 -10 -15 -20 -25 -30 -35 -30 -35 -40	00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	<u>Ch 1 Avg =</u> art 1,55006 (20 20 21		C [*] 1:Port				.750000 Gr		33.539 dB

DASY5 Validation Report for Body TSL

Date: 12.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.61, 8.61, 8.61) @ 1750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.95 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 16.1 W/kg **SAR(1 g) = 8.98 W/kg; SAR(10 g) = 4.8 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 57.1% Maximum value of SAR (measured) = 13.6 W/kg

Impedance Measurement Plot for Body TSL

<u>File V</u> iev	v <u>C</u> hannel Sw <u>e</u> er	o Calibration	<u>T</u> race <u>S</u> cal	e M <u>a</u> rker	S <u>v</u> stem	<u>W</u> indow (Help			
	Ch 1 Avg = 20		A	XXX		A.	.750000 c 54.542 .750000 c	2 pF	45.048 -1.6674 54.971 m -160.39	Ω U
Cht:	Start 1.55000 GHz -						<u></u>		Stop 1.95000 G	Hz
10.00 5.00 6.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00					3		.750000 C	Hz	-25.197 d	
-35.00 -40.00 Ch1: :	Ch I Avg = 20 Start 1.55000 GHz -								Stop 1.95000 GI	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Service Service

Certificate No: D1750V2-1150_Oct18

Accreditation No.: SCS 0108

CALIBRATI	at which the true does not not	化乙酸盐 化乙酸盐 化氯化合物 化氯化合物 化氯化合物 化乙酸化合物
CALIBRAT.		이는 ^^ 이 아이에서 이 위 것 같

Object	Dject D1750V2 SN 1150							
Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz								
	BN							
Calibration date:	October 22, 2018		10130120-0 Boly					
Calibration date: October 22, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.								
Calibration Equipment used (M&TE								
Primary Standards	1D#	Cal Date (Certificate No.)	Scheduled Calibration					
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19					
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19					
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19					
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19					
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19					
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18					
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19					
Secondary Standards	ID #	Check Date (in house)	Scheduled Check					
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20					
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20					
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20					
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20					
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19					
	Name	Function	Signature					
Calibrated by:	Michael Weber	Laboratory Techniclan	Miles					
Approved by:	Katja Pokovic	Technical Manager	Elle -					
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	issued: October 22, 2018					