Report on the RF Testing of:

KYOCERA Corporation
Mobile Phone, Model: DB05

FCC ID: JOYDB05

In accordance with FCC Part 15 Subpart C

Japan

Prepared for: KYOCEF

KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku

Yokohama-shi, Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Add value. Inspire trust.

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-19154-0

SIGNATURE

Hir Sugula

NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Hiroaki Suzuki	Deputy Manager of RF Group	Approved Signatory	0 1 OCT 2019

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Japan Ltd. document control rules.

EXECUTIVE SUMMARY

A sample(s) of this product was tested and found to be compliant with FCC Part 15 Subpart C.

DISCLAIMER AND COPYRIGHT

The results in this report are applicable only to the equipment tested. This report shall not be re-produced except in full without the written approval of TÜV SÜD Japan Ltd.

ACCREDIATION

This test report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 Fax: +81 (0) 238 28 2888 www.tuv-sud.ip

Contents

1	Summary of Test	3
1.1 1.2	Modification history of the test report	3
1.3	Test methods	
1.4	Deviation from standards	
1.5 1.6	List of applied test(s) of the EUT Test information	
1.0 1.7	Test set up	
1.8	Test period	
2	Equipment Under Test	
2.1	EUT information	
2.1	Modification to the EUT	
2.3	Variation of family model(s)	
2.4	Operating channels and frequencies	
2.5	Operating mode	
2.6	Operating flow	6
3	Configuration of Equipment	7
3.1	Equipment used	7
3.2	Cable(s) used	7
3.3	System configuration	7
4	Test Result	8
4.1	6dB Bandwidth / Occupied Bandwidth (99%)	8
4.2	Maximum Peak Output Power	. 10
4.3	Band Edge Compliance of RF Conducted Emissions	
4.4	Spurious emissions - Conducted -	
4.5	Spurious Emissions - Radiated	
4.6 4.7	Restricted Band of Operation	
4.7 4.8	AC Power Line Conducted Emissions	
5	Antenna requirement	
6	Measurement Uncertainty	
7	Laboratory Information	
Appendi	x A. Test Equipment	
∆nnendi	x B. Duty Cycle	42

1 Summary of Test

1.1 Modification history of the test report

Document Number	Modification History	Issue Date
JPD-TR-19154-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 15 Subpart C

1.3 Test methods

ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
15.247(a)(2)	6dB Bandwidth	Conducted	PASS	-
15.247(b)(3)	Maximum Peak Output Power	Conducted	PASS	-
15.247(d)	Band Edge Compliance of RF Conducted Emissions	Conducted	PASS	-
15.247(d) 15.205 15.209	Spurious Emissions	Conducted Radiated	PASS	-
15.247(d) 15.205 15.209	Restricted Bands of Operation	Radiated	PASS	-
15.247(e)	Transmitter Power Spectral Density	Conducted	PASS	-
15.207	AC Power Line Conducted Emissions	Conducted	PASS	-

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

8-August-2019 - 29-August-2019

2 Equipment Under Test

2.1 EUT information

Applicant KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,

Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Equipment Under Test (EUT) Mobile Phone

Model number DB05
Serial number N/A

Trade name Kyocera

Number of sample(s)

EUT condition Pre-Production

Power rating Battery: DC 3.85 V

Size (W) $73.0 \times (D) 153.0 \times (H) 8.9 \text{ mm}$

Environment Indoor and Outdoor use

Terminal limitation -20 °C to 60 °C

Hardware version DMT1
Software version 0.400BE

Firmware version Not applicable

RF Specification

Protocol Bluetooth 5.0 + EDR
Frequency range 2402 MHz-2480 MHz

Number of RF Channels 40 Channels

Modulation method/Data rate GFSK (1 Mbps)

Channel separation 2 MHz

Conducted power 3.436 mW

Antenna type Internal antenna

Antenna gain -0.4 dBi

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

Modification State Description of Modification		Modification fitted by	Date of Modification		
Model: DB05, Serial Number: N/A					
0	As supplied by the applicant	Not Applicable	Not Applicable		

2.3 Variation of family model(s)

2.3.1 List of family model(s)

Not applicable

2.3.2 Reason for selection of EUT

Not applicable

2.4 Operating channels and frequencies

Channel	Frequency [MHz]	Channel	Frequency [MHz]
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

2.5 Operating mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Tested Channel	Frequency [MHz]
Low	2402
Middle	2440
High	2480

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

Tested Channel	Modulation Type	Data Rate
Low, Middle, High	GFSK	1 Mbps

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in Z-axis, and the worst case recorded.

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

2.6 Operating flow

[Tx mode]

- i) Test program setup to the Software
- ii) Select a Test mode Operating frequency: Channel Low: 2402 MHz, Channel Middle: 2440 MHz, Channel High: 2480 MHz
- iii) Start test mode

[Rx mode]

- i) Test program setup to the Software
- ii) Select a Test mode Operating frequency: Channel Low: 2402 MHz, Channel Middle: 2440 MHz, Channel High: 2480 MHz
- iii) Start test mode

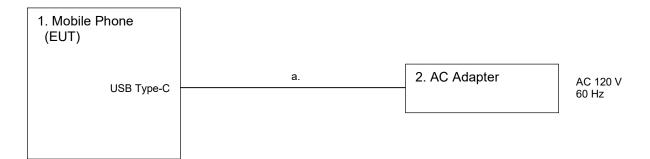
3 Configuration of Equipment

Numbers assigned to equipment on the diagram in "3.3 System configuration" correspond to the list in "3.1 Equipment used" and "3.2 Cable(s) used".

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
1	Mobile Phone	KYOCERA	DB05	N/A	JOYDB05	EUT
2	AC Adapter	KDDI	0301PQA	N/A	N/A	*


^{*:}AC power line Conducted Emission Test.

3.2 Cable(s) used

No.	Equipment	Length[m]	Shield	Connector	Comment
а	USB cable (for AC Adapter)	1.0	Yes	Metal	*

^{*:}AC power line Conducted Emission Test.

3.3 System configuration

4 Test Result

4.1 6dB Bandwidth / Occupied Bandwidth (99%)

4.1.1 Measurement procedure

[FCC 15.247(a)(2), KDB558074 D01 v05r02]

The bandwidth at 6 dB down from the highest inband spectral density is measured with spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) RBW = 100 kHz
- b) VBW $\geq 3 \times RBW$
- c) Sweep time = auto-couple
- d) Detector = peak
- e) Trace mode = max hold

- Test configuration

4.1.2 Limit

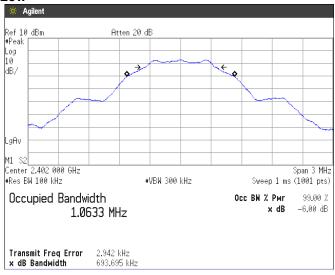
The minimum permissible 6dB bandwidth is 500kHz.

4.1.3 Measurement result

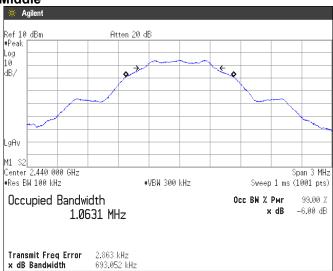
Date : 8-August-2019 Temperature : 23.1 [°C]

Humidity : 48.6 [%]

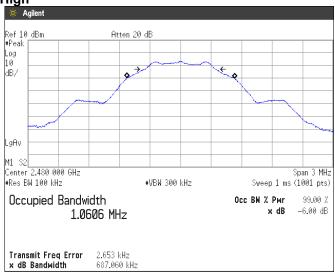
Test place : Shielded room No.4 Chiaki Kanno


Channel	Frequency [MHz]	6 dB bandwidth [MHz]	Occupied Bandwidth (99%) [MHz]
Low	2402	0.694	1.0633
Middle	2440	0.693	1.0631
High	2480	0.687	1.0606

Test engineer



4.1.4 Trace data


Channel Low

Channel Middle

Channel High

4.2 **Maximum Peak Output Power**

4.2.1 Measurement procedure

[FCC 15.247(b)(3), KDB558074 D01 v05r02]

The peak power is measured with a power sensor connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

- Test configuration

4.2.2 Limit

1 W(1000 mW) or less

4.2.3 Measurement result

Date 8-August-2019

23.1 [°C] Temperature

Humidity 48.6 [%] Test engineer

: Shielded room No.4 Chiaki Kanno Test place

Battery Full

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2402	-6.49	10.63	4.14	2.594	≦1000	PASS
Middle	2440	-5.27	10.63	5.36	3.436	≦1000	PASS
High	2480	-6.26	10.63	4.37	2.735	≦1000	PASS

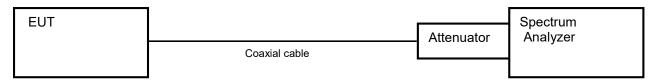
Calculation;

Reading (dBm) + Factor (dB) = Level (dBm)

10logP = Level (dBm)
P = 10^(Maximum Peak Output Power / 10) (mW)

4.3 Band Edge Compliance of RF Conducted Emissions

4.3.1 Measurement procedure


[FCC 15.247(d), KDB558074 D01 v05r02]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = Arbitrary setting. (Setting suitable for measurement.)
- b) RBW = 100 kHz
- c) VBW $\geq 3 \times RBW$
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold

- Test configuration

4.3.2 Limit

In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

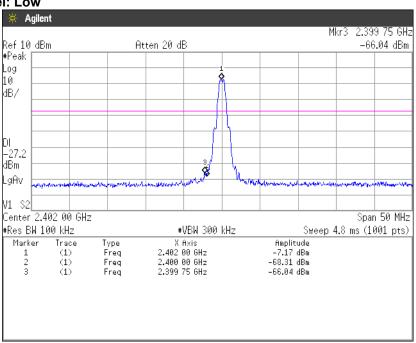
4.3.3 Measurement result

Date : 8-August-2019

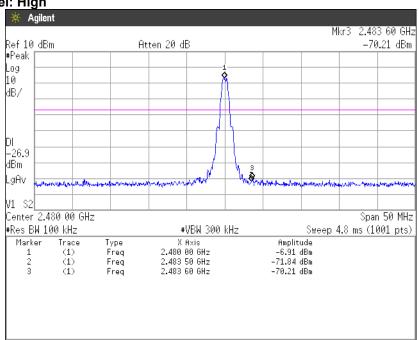
Temperature : 23.1 [°C]

Humidity : 48.6 [%]
Test place : Shielded room No.4

: 48.6 [%] Test engineer


RF Band-Band-**Difference** Frequency Power Limit edge edge Channel Result Level Frequency (MHz) Level Level (dBm) (dBm) (dBm) (MHz) (dBm) 2402 -7.17 2399.75 -66.04 58.87 At least 20dB below from peak of RF **PASS** Low 2480 -70.21 63.30 High -6.91 2483.60 At least 20dB below from peak of RF **PASS**

Chiaki Kanno



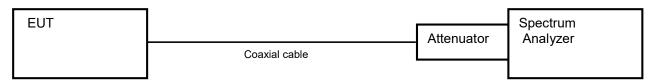
4.3.4 Trace data

Channel: Low

Channel: High

4.4 Spurious emissions - Conducted -

4.4.1 Measurement procedure


[FCC 15.247(d), KDB558074 D01 v05r02]

The spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = wide enough to fully capture the emission being measured.
- b) RBW = 100 kHz
- c) VBW ≥ RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold

- Test configuration

4.4.2 Limit

In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

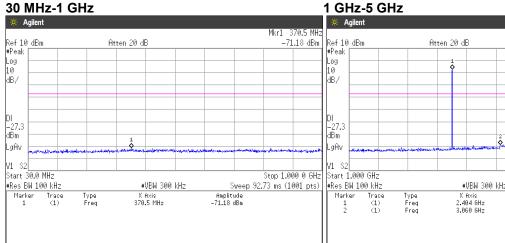
4.4.3 Measurement result

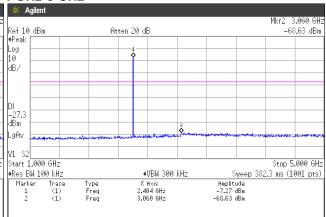
Date : 8-August-2019

Temperature : 23.1 [°C] Humidity : 48.6 [%]

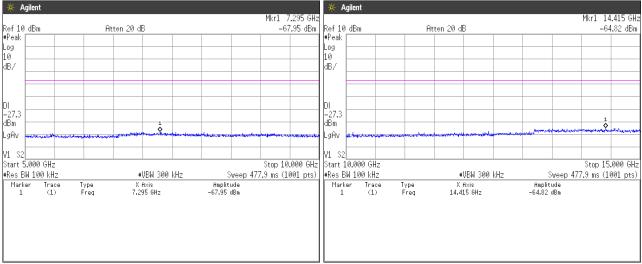
Test place : Shielded room No.4

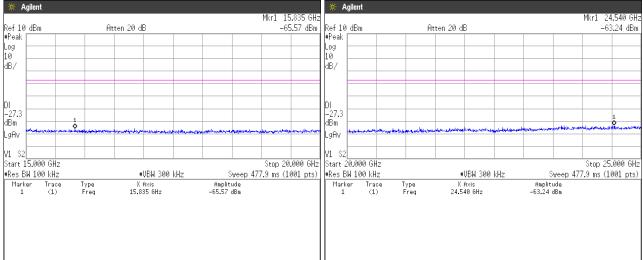
Test engineer

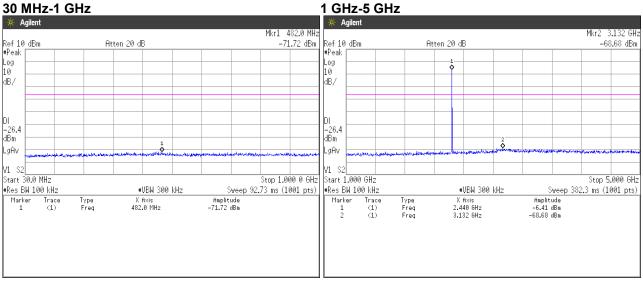

Chiaki Kanno


Channel	Frequency [MHz]	Limit [dB]	Results Chart	Result
Low	2402	At least 20dB below from peak of RF	See the trace Data	PASS
Middle	2440	At least 20dB below from peak of RF	See the trace Data	PASS
High	2480	At least 20dB below from peak of RF	See the trace Data	PASS

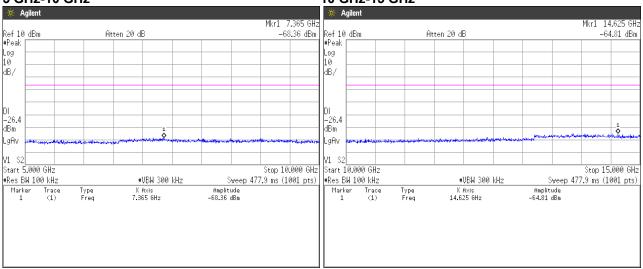

4.4.4 Trace data


Channel: Low 30 MHz-1 GHz

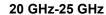

5 GHz-10 GHz

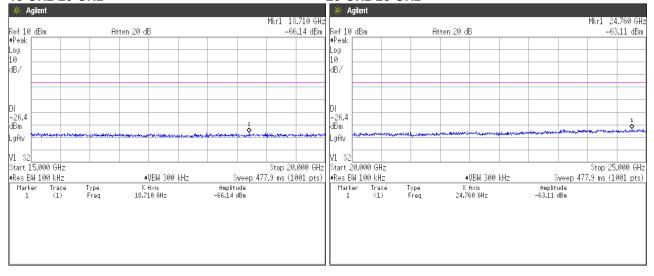

15 GHz-20 GHz

20 GHz-25 GHz

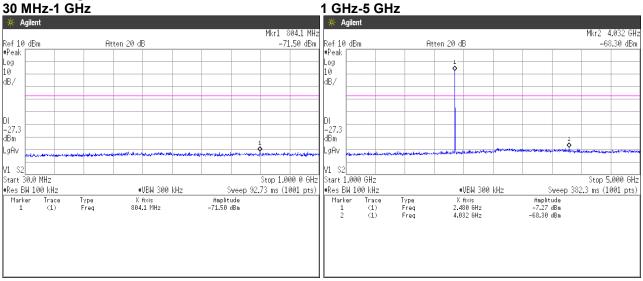


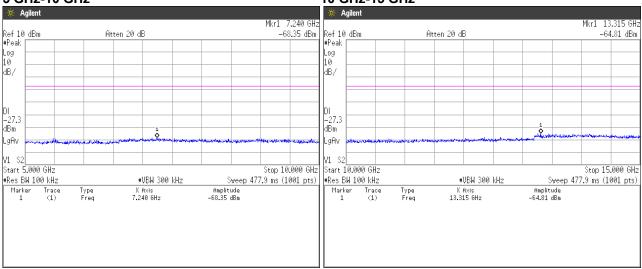
Channel: Middle 30 MHz-1 GHz



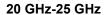

5 GHz-10 GHz

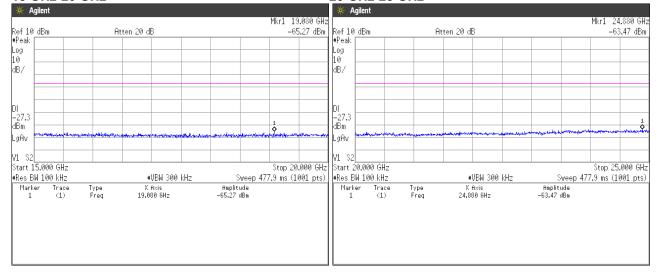
10 GHz-15 GHz


15 GHz-20 GHz



Channel: High 30 MHz-1 GHz




5 GHz-10 GHz

10 GHz-15 GHz

15 GHz-20 GHz

4.5 Spurious Emissions - Radiated -

4.5.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB558074 D01 v05r02]

Test was applied by following conditions.

Test method : ANSI C63.10 Frequency range : 9kHz to 25GHz

Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)1.0m × (D)1.0m × (H)0.8m (below 1GHz)

Styrofoam table / (W)0.6m × (D)0.6m ×(H)1.5m (above 1GHz)

Antenna distance : 3m

Test receiver setting Below 1GHz

- Detector : Average (9kHz-90kHz, 110kHz-490kHz), Quasi-peak

- Bandwidth : 200Hz, 120kHz Spectrum analyzer setting : Above 1GHz

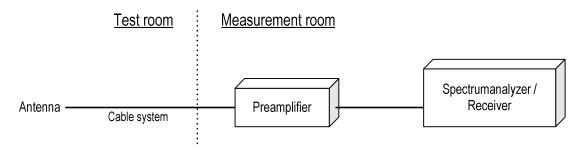
- Peak : RBW=1MHz, VBW=3MHz, Span=0Hz, Sweep=auto - Average : RBW=1MHz, VBW=3kHz, Span=0Hz, Sweep=auto

Display mode=Linear

Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
Bluetooth 5.0 LE	60.96	381	244	2.625	3kHz

Although these tests were performed other than open area test site,


adequate comparison measurements were confirmed against 30 m open are test site.

Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna, Double ridged guide antenna and Broad-band horn Antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane. The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated

for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.5.2 Calculation method

[9kHz to 150kHz]

Emission level = Reading + (Ant factor + Cable system loss)

Margin = Limit – Emission level

[150kHz to 25GHz]

Emission level = Reading + (Ant factor + Cable system loss - Amp. Gain)

Margin = Limit – Emission level

Example:

Limit @ 4804.0MHz : 74.0dBuV/m (Peak Limit)

S.A Reading = 39.9dBuV Cable system loss = 8.3dB

Result = 39.9 + 8.3 = 48.2dBuV/m Margin = 74.0 - 48.2 = 25.8dB

4.5.3 Limit

Frequency	Field s	Distance	
[MHz]	[uV/m]	[dBuV/m]	[m]
0.009-0.490	2400 / F [kHz]	20logE [uV/m]	300
0.490-1.705	24000 / F [kHz]	20logE [uV/m]	30
1.705-30	30	29.5	30
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level [dBuV/m] = 20log Emission [uV/m]
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition modulation.

4.5.4 Test data

9-August-2019 Date

Temperature 21.4 [°C] Humidity 57.8 [%]

Test engineer Test place 3m Semi-anechoic chamber

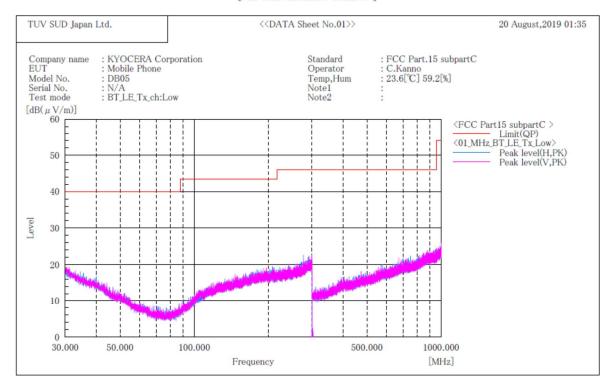
Chiaki Kanno

Date 20-August-2019

Temperature 23.6 [°C]

Humidity 59.2 [%]

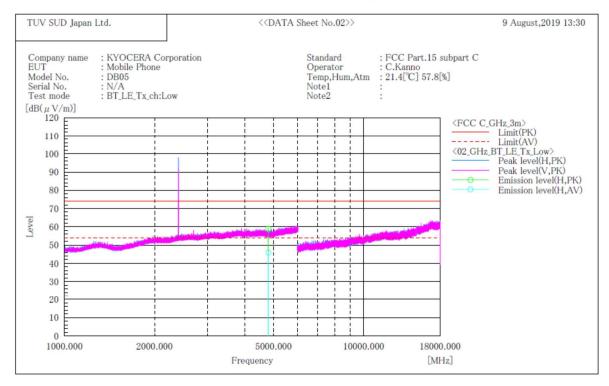
Test place 3m Semi-anechoic chamber Chiaki Kanno


Test engineer

[Transmission mode]

Channel: Low BELOW 1 GHz

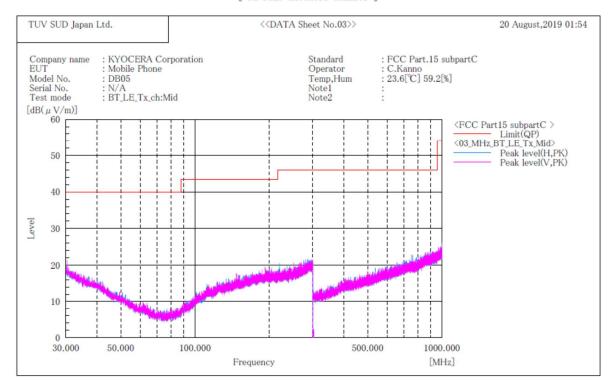
****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Channel: Low ABOVE 1 GHz

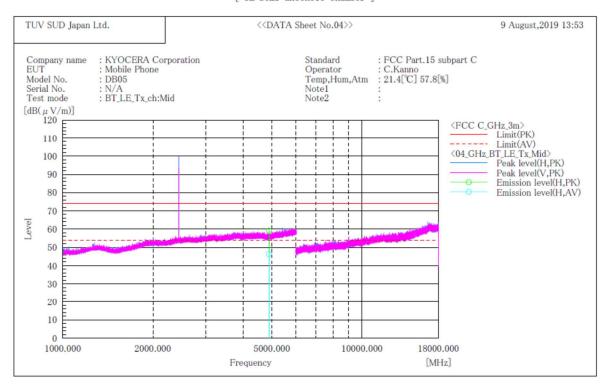
****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

Channel: Middle BELOW 1 GHz

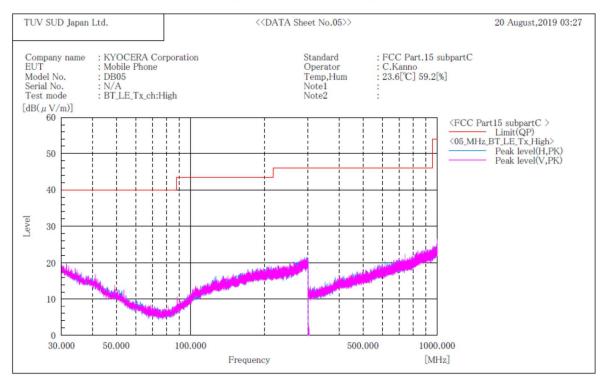
****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]


Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Channel: Middle ABOVE 1 GHz

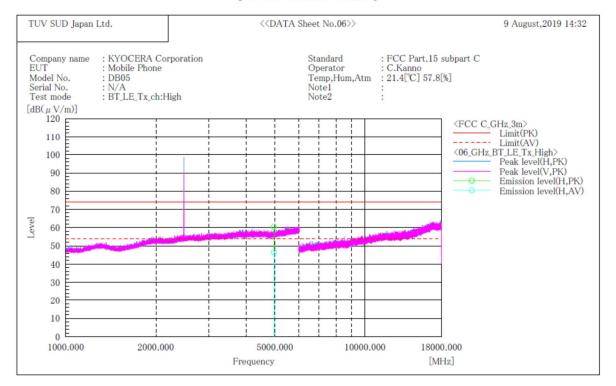
****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

Channel: High BELOW 1 GHz

****** RADIATED EMISSION ******
[3m Semi-anechoic chamber]


Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Channel: High ABOVE 1 GHz

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

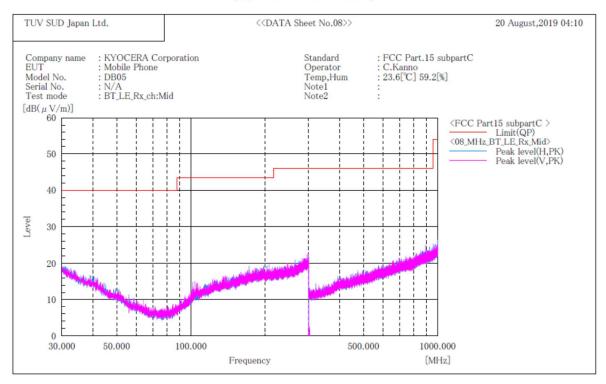


- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[Receive mode] Channel: Low BELOW 1 GHz

****** RADIATED EMISSION ******
[3m Semi-anechoic chamber]

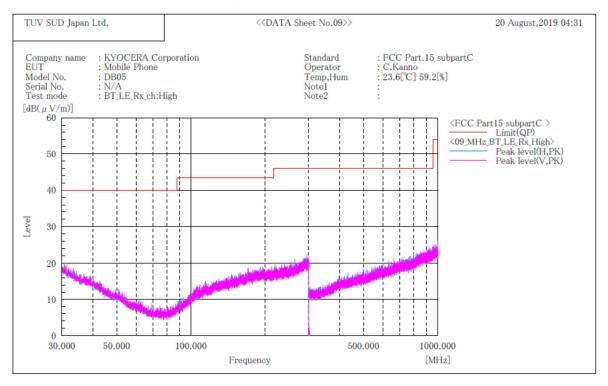
Final Result


- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz and 1GHz to 25GHz at the 3 meters distance.

Channel: Middle BELOW 1 GHz

****** RADIATED EMISSION ******

[3m Semi-anechoic chamber]


Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz and 1GHz to 25GHz at the 3 meters distance.

Channel: High BELOW 1 GHz

****** RADIATED EMISSION ******
[3m Semi-anechoic chamber]

Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz and 1GHz to 25GHz at the 3 meters distance.

4.6 Restricted Band of Operation

4.6.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB558074 D01 v05r02]

Test was applied by following conditions.

Test method : ANSI C63.10

Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)1.0m × (D)1.0m × (H)0.8m (below 1GHz)

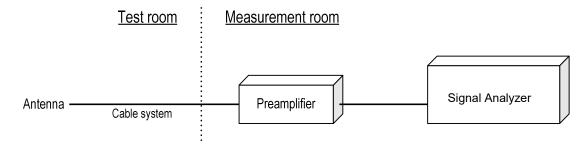
Styrofoam table / (W)0.6m × (D)0.6m ×(H)1.5m (above 1GHz)

Antenna distance : 3m

Spectrum analyzer setting

Peak
 RBW=1MHz, VBW=3MHz, Span=Arbitrary setting, Sweep=auto
 Average
 RBW=1MHz, VBW=3kHz, Span=Arbitrary setting, Sweep=auto

Display mode=Linear


Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
Bluetooth 5.0 LE	60.96	381	244	2.625	3kHz

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna, Double ridged guide antenna and Broad-band horn Antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane. The EUT is Placed on a turntable, which is 0.8 m/1.5 m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.6.2 Limit

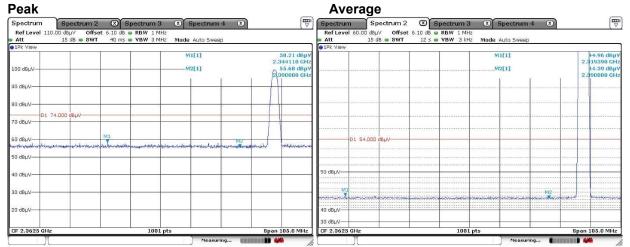
Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

4.6.3 Measurement result

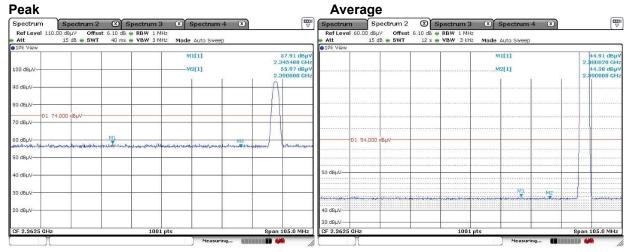
Channel	Frequency [MHz]	Results Chart	Result
Low	2402	See the Trace Data	Pass
High	2480	See the Trace Data	Pass

4.6.4 Test data

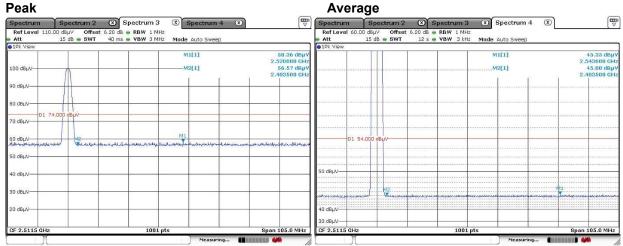
Date : 16-August-2019


Temperature : 23.7 [°C]

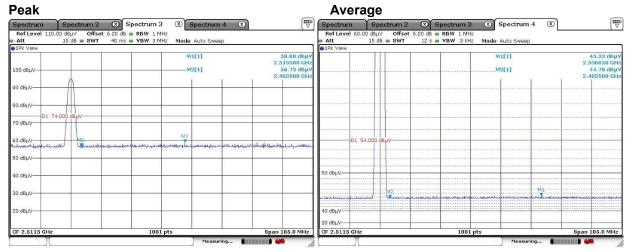
Humidity : 59 [%] Test engineer


Test place : 3m Semi-anechoic chamber Chiaki Kanno

Channel: Low Horizontal



Vertical

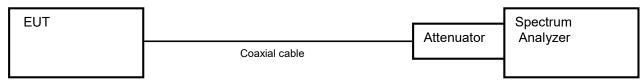


Channel: High Horizontal

Vertical

4.7 Transmitter Power Spectral Density

4.7.1 Measurement procedure


[FCC 15.247(e), KDB558074 D01 v05r02]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = 1.5 times the 6 dB bandwidth.
- b) RBW = 3kHz 100kHz.
- c) VBW \geq 3 x RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

- Test configuration

Test engineer

4.7.2 Limit

The peak power spectral density shall not be greater than 8dBm in any 3kHz band.

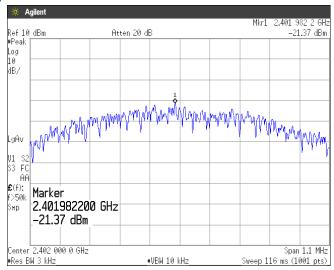
4.7.3 Measurement result

Date : 8-August-2019 Temperature : 23.1 [°C]

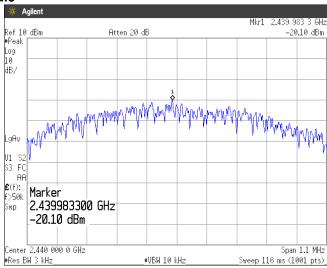
Humidity : 48.6 [%]

Test place : Shielded room No.4 Chiaki Kanno

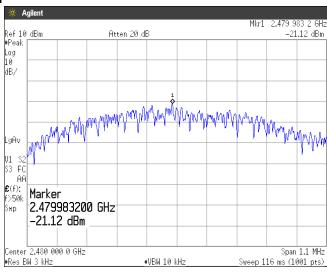
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2402	-21.37	10.63	-10.74	8.00	18.74	PASS
Middle	2440	-20.10	10.63	-9.47	8.00	17.47	PASS
High	2480	-21.12	10.63	-10.49	8.00	18.49	PASS


Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)



4.7.4 Trace data


Channel Low

Channel Middle

Channel High

4.8 AC Power Line Conducted Emissions

4.8.1 Measurement procedure

[FCC 15.207]

Test was applied by following conditions.

Test method : ANSI C63.10

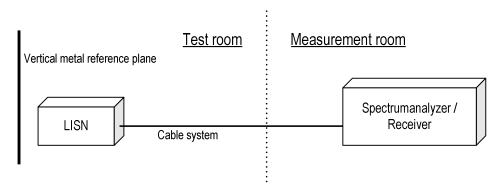
Frequency range : 0.15 MHz to 30 MHz

Test place : 3 m Semi-anechoic chamber

EUT was placed on : FRP table / (W)2.0 m × (D)1.0 m × (H)0.8 m Vertical Metal Reference Plane : (W)2.0 m × (H)2.0 m 0.4 m away from EUT

Test receiver setting

- Detector : Quasi-peak, Average


- Bandwidth : 9 kHz

EUT and peripherals are connected to $50\Omega/50\mu H$ Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

4.8.2 Calculation method

Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example:

Limit @ 6.770 MHz : 60.0 dBµV(Quasi-peak)

: 50.0 dBµV(Average)

(Quasi peak) Reading = 41.2 dBµV c.f = 10.3 dB

Emission level = $41.2 + 10.3 = 51.5 \, dB\mu V$

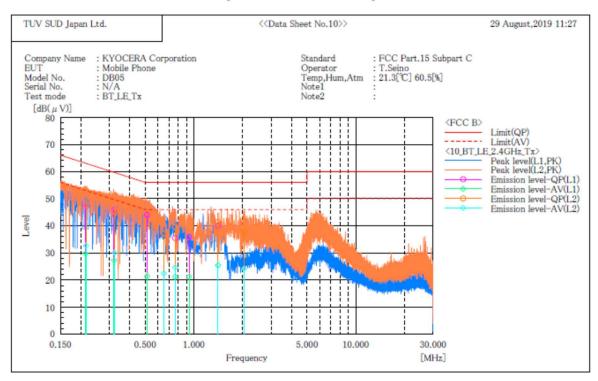
Margin = $60.0 - 51.5 = 8.5 \, dB$

(Average) Reading = $35.0 \text{ dB}\mu\text{V}$ c.f = 10.3 dB

Emission level = $35.0 + 10.3 = 45.3 \text{ dB}\mu\text{V}$

Margin = 50.0 - 45.3 = 4.7 dB

4.8.3 Limit


Frequency	Lin	nit
[MHz]	QP [dBuV]	AV [dBuV]
0.15-0.5	66-56*	56-46*
0.5-5	56	46
5-30	60	50

^{*:} The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

4.8.4 Test data

F2.4	FY 3 .
Hina	Result

	L1 Phase	-								
No.	Frequency	Reading	Reading	c. f	Result	Result	Limit	Limit	Margin	Margin
		QP	AV		QP	AV	QP	AV	QP	AV
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]
1	0.214	37. 2	19.4	10.4	47.6	29.8	63.0	53.0	15.4	23. 2
2	0.321	35. 4	16.9	10.4	45.8	27.3	59. 7	49.7	13.9	22.4
2 3 4 5	0.514	33.6	11. 1	10.4	44.0	21.5	56.0	46.0	12.0	24. 5
4	0.765	25. 1	10.9	10.4	35. 5	21.3	56.0	46.0	20.5	24.7
5	0.934	25.5	10.9	10.4	35. 9	21.3	56.0	46.0	20.1	24.7
6	1.410	29.7	15. 1	10.4	40.1	25. 5	56.0	46.0	15.9	20.5
	L2 Phase	_								
No.	Frequency	Reading	Reading	c. f	Result	Result	Limit	Limit	Margin	Margin
NO.	Frequency	QP	AV	C. 1	QP	AV	QP	AV	QP	AV
	[MHz]	[dB(μV)]	$[dB(\mu V)]$	[dB]	[dB(µV)]	$[dB(\mu V)]$		[dB(μV)]	[dB]	[dB]
1	0.216	37. 2	22.3	10.4	47.6	32.7	63.0	53.0	15.4	20.3
2 3	0.324	35.0	19.7	10.4	45.4	30.1	59.6	49.6	14.2	19.5
	0.653	26.7	12.1	10.4	37.1	22.5	56.0	46.0	18.9	23.5
5	0.765	29.1	14.3	10.4	39. 5	24.7	56.0	46.0	16.5	21.3
5	1.410	31.0	15. 1	10.4	41.4	25.5	56.0	46.0	14.6	20.5
6	2.041	27. 2	13.7	10.5	37. 7	24. 2	56.0	46.0	18.3	21.8

5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

6 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission, AMN (9 kHz – 150 kHz)	±3.8 dB
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB
Radiated emission (9kHz – 30 MHz)	±3.1 dB
Radiated emission (30 MHz – 1000 MHz)	±4.9 dB
Radiated emission (1 GHz – 6 GHz)	±4.8 dB
Radiated emission (6 GHz – 18 GHz)	±5.1 dB
Radiated emission (18 GHz – 40 GHz)	±5.8 dB
Radio Frequency	±1.4 * 10 ⁻⁸
RF power, conducted	±0.6 dB
Temperature	±0.6 °C
Humidity	±1.2 %
Voltage (DC)	±0.4 %
Voltage (AC, <10kHz)	±0.2 %

Judge		Measured value and standard limit value						
PASS		+Unce <u>rtainty -Un</u> certainty Even if it takes uncertainty into consideration, Measured value a standard limit value is fulfilled.						
	Case2	Although measured value is in a standard limit value, a limit value won't be fulfilled if uncertainty is taken into consideration.						
FAIL	Case3	Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration.						
	Case4	Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.						

7 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address: 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

Phone: +81-238-28-2881 Fax: +81-238-28-2888

Accreditation and Registration

NVLAP

LAB CODE: 200306-0

VLAC

Accreditation No.: VLAC-013

BSMI

Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada

Site number	Facility	Expiration date
4224A-4	3 m Semi-anechoic chamber	27-November-2020
4224A-5	10 m Semi-anechoic chamber No. 1	27-November-2020
4224A-6	10 m Semi-anechoic chamber No. 2	14-December-2019

VCCI Council

Registration number	Expiration date		
A-0166	03-July-2021		

Appendix A. Test Equipment

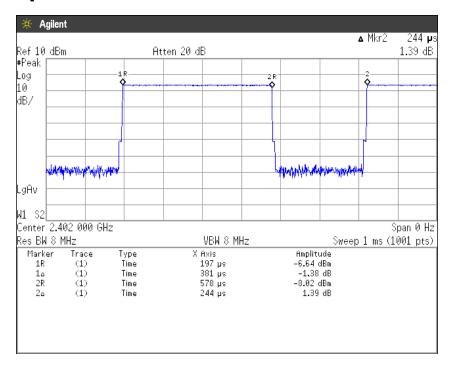
Antenna port conducted test

7					
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	31-Aug-2020	05-Aug-2019
Attenuator	Weinschel	56-10	J4180	31-Jul-2020	18-Jul-2019
Power meter	ROHDE&SCHWARZ	NRP2	103269	31-Jul-2020	18-Jul-2019
Power sensor	ROHDE&SCHWARZ	NRP-Z81	102467	31-Jul-2020	18-Jul-2019

Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2019	20-Sep-2018
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	31-Aug-2020	05-Aug-2019
Signal analyzer	ROHDE&SCHWARZ	FSV40	101731	31-Dec-2019	07-Dec-2018
Preamplifier	SONOMA	310	372170	30-Sep-2019	20-Sep-2018
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	100515	31-Mar-2020	07-Mar-2019
Attenuator	TOYO Connector	NA-PJ-6	N/A(S507)	31-Dec-2019	17-Dec-2018
Biconical antenna	Schwarzbeck	VHA9103/BBA9106	VHA91031308	31-May-2020	16-May-2019
Log periodic antenna	Schwarzbeck	UHALP9108A	0728	31-May-2020	16-May-2019
Attenuator	TAMAGAWA.ELEC	CFA-01/6dB	N/A(S465)	31-May-2020	17-May-2019
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2020	17-Jul-2019
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	31-Jan-2020	17-Jan-2019
Attenuator	AEROFLEX	26A-10	081217-08	31-Jan-2020	17-Jan-2019
Double ridged guide antenna	ETS LINDGREN	3117	00224193	31-Jan-2020	23-Jan-2019
Attenuator	Agilent Technologies	8491B	MY39268633	31-Mar-2020	08-Mar-2019
DRGH antenna		040.574	400	31-Aug-2019	24-Aug-2018
	A.H.Systems Inc.	SAS-574	469	31-Aug-2020	28-Aug-2019
D #6	TSJ	MLA-1840-B03-35	1240332	31-Aug-2019	24-Aug-2018
Preamplifier				31-Aug-2020	28-Aug-2019
Notch filter	Micro-Tronics	BRM50702	045	31-May-2020	16-May-2019
	LILIDED, CLIUNED	SUCOFLEX104/9m	MY30037/4	31-Jan-2020	16-Jan-2019
		SUCOFLEX104/1m	my24610/4	31-Jan-2020	16-Jan-2019
Microwave cable		SUCOFLEX104/8m	SN MY30031/4	31-Jan-2020	16-Jan-2019
	HUBER+SUHNER	SUCOFLEX104	MY32976/4	31-Jan-2020	16-Jan-2019
		SUCOFLEX104/1.5m	MY19309/4	31-Jan-2020	16-Jan-2019
		SUCOFLEX104/7m	41625/6	31-Jan-2020	16-Jan-2019
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V5.6.0	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2020	14-May-2019
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2020	13-May-2019

Conducted emission at mains port


Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2019	20-Sep-2018
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	31-Jan-2020	17-Jan-2019
Line impedance stabilization network	Kyoritsu Electrical Works, Ltd.	TNW-407F2	12-17-110-2	31-May-2020	16-May-2019
Coaxial cable	FUJIKURA	5D-2W/4m	N/A (S350)	31-Jan-2020	16-Jan-2019
Coaxial cable	FUJIKURA	5D-2W/1m	N/A (S193)	31-Jan-2020	16-Jan-2019
Coaxial cable	HUBER+SUHNER	RG214/U/10m	N/A (S194)	31-Jan-2020	16-Jan-2019
PC	DELL	DIMENSION	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/CE-AJ	0611193/V5.4.11	N/A	N/A

^{*:} The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

Appendix B. Duty Cycle

[Plot & Calculation]

Duty Cycle = Ton / (Ton + Toff) = $381[\mu s] / (381[\mu s] + 244[\mu s]) = 60.96[\%]$