

EMC Test Report

Application for FCC Grant of Equipment Authorization

FCC Part 15 Subpart C

Model: Battery Charger

FCC ID: 2AY43-GDCH1

APPLICANT: CCC del Uruguay Medical Devices

General Paz 1371

Montevideo, MON 11400-UY

TEST SITE(S): National Technical Systems

41039 Boyce Road.

Fremont, CA. 94538-2435

PROJECT NUMBER: PR136033

REPORT DATE: June 17, 2021

FINAL TEST DATES: April 14, 19 and 21

TOTAL NUMBER OF PAGES: 36

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from NTS.

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti

Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard

Senior Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	June 17, 2021	First release	

TABLE OF CONTENTS

COVER PAGE	
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	5
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
MEASUREMENT UNCERTAINTIES.	
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSUREMODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	10
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	15
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	16
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITSSAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF DEDODE	36

SCOPE

An electromagnetic emissions test has been performed on the CCC del Uruguay Medical Devices model Battery Charger, pursuant to the following rules:

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems test procedures:

ANSI C63.10-2013

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of CCC del Uruguay Medical Devices model Battery Charger complied with the requirements of the following regulations:

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of CCC del Uruguay Medical Devices model Battery Charger and therefore apply only to the tested sample. The sample was selected and prepared by Agustin Villavedra of CCC del Uruguay Medical Devices.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.225		Transmitter Fundamental Signal Emissions, 13.56 MHz	37.0 dBµV/m @ 13.567 MHz (margin: -13.5 dB)	Refer to table in limits section	Complies
15.209		Transmitter Radiated Spurious Emissions, 10 - 150 MHz	39.0 dBμV/m @ 40.67 MHz (margin: -1.0 dB)	Refer to table in limits section	Complies
15.225		Frequency Stability	9.2ppm	Less than 100 ppm	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)	
15.203	RF Connector	Integral Antenna	Unique or integral antenna required	Complies	
15.207	AC Conducted Emissions	40.5 dBµV @ 0.373 MHz (margin: -7.9 dB)	Refer to page 16	Complies	
Note 1 Pass/Fail criteria defined by standards listed above.					

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz	± 3.6 dB
\	'	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dΒμV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The CCC del Uruguay Medical Devices model Battery Charger is a charger that is designed to charge batteries in an implant. Since the EUT could be placed in any position during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 4.2VDC from the supplied AC charger.

The sample was received on April 13, 2021 and tested on April 14, 19 and 21. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
CCC dell Uruguay	13-100-005	Guardio Charger	000047	2AY43-GDCH1
Cell-Con	452241-LA	1-cell Li-lon charger	800000	-

OTHER EUT DETAILS

The following EUT details should be noted: The 3G radio module is disabled in firmware. The Battery Charger transmits a wake-up signal at 13.56 MHz and then communicates with an implant using the MICS band.

ANTENNA SYSTEM

The antenna system consists of integral loop.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 9 cm wide by 15 cm deep by 3.5 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
CCC Del Uruguay	CCM X11	Implant	A00032	2AY43-CCMX11
CCC Del Uruguay	CCM X11	Implant	A00022	2AY43-CCMX11

Note: One IPG paired with the Battery Charger was used for each test but not both for the same test.

The following equipment was used as remote support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Getac	RX10	Tablet	RK703R0127	-
Impulse Dynamics	13-100-007	Intelio Programming Interface	000082	N/A
Impulse Dynamics	13-100-008	Intelio Programming Wand	000081	2AY43-INPW0

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
TOIL	Port Connected to		Shielded or Unshielded	Length(m)
Charger Wand cable	Wand	Multiwire	Unshielded	1.4
Charging	AC Adapter	Two wire	Unshielded	1.6

EUT OPERATION

During emissions testing the EUT was commanded via the programming wand using scripts on the tablet to operate in the desired mode for the particular test (i.e. Tx Modulated 400 MHz for continuous transmit on a channel in the 402-405 MHz band, Tx Modulated 13 MHz for continuous transmit at 13.56 and Rx Emissions, or Search Loop for continuous attempts to establish a link in the MICS band).

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules, NTS has been recognized as an accredited test laboratory by the Commission. A description of the facilities employed for testing is maintained by NTS.

Site	Company / Registration Numbers	Location
Chamber 3 & 4	US1031	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site above 30 MHz and with an open field site below 30 MHz. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Ouasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for testing below 1 GHz and 1.5m for testing above 1 GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

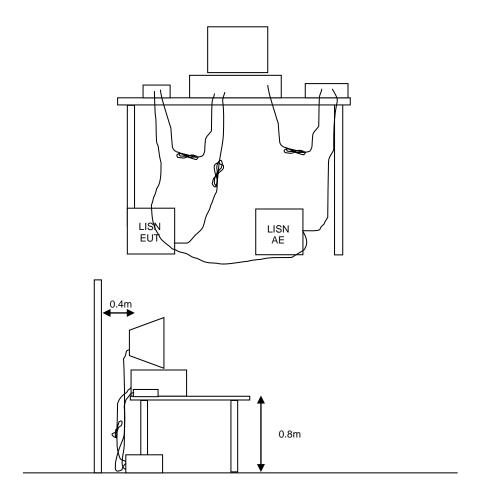
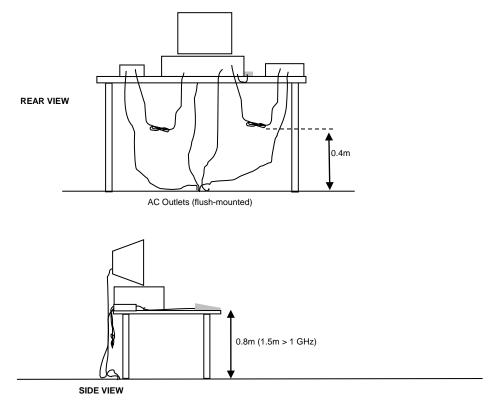
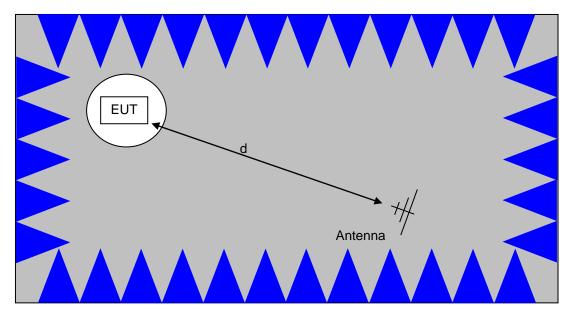


Figure 1 Typical Conducted Emissions Test Configuration

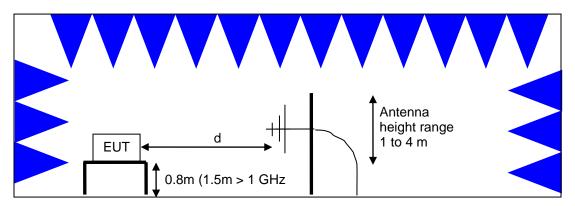


RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 7

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

R_C = Corrected Reading in dBuV/m L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter d where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer Radiated Emissions	<u>Description</u> , 0.03 - 400 MHz, 13-Apr-21	<u>Model</u>	Asset #	Calibrated	Cal Due
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
Rhode & Schwarz	Loop Antenna	HFH2-Z2	WC062457	1/23/2020	1/23/2022
Rohde & Schwarz	EMI Test Receiver, 20Hz- 7GHz	ESIB 7	WC064455	3/11/2021	3/11/2022
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	WC064573	12/3/2019	12/3/2021
Com-Power	Preamplifier, 1-1000 MHz	PAM-103	WC064733	7/31/2020	7/31/2021
Padiated Emissions	, .009 - 1,000 MHz, 14-Apr-2	1			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
Rhode & Schwarz	Loop Antenna	HFH2-Z2	WC062457	1/23/2020	1/23/2022
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	WC064536	1/29/2021	3/23/2023
Hewlett Packard	9KHz-1300MHz pre-amp	8447F	WC064718	12/7/2020	12/7/2021
Rhode & Schwarz	EMI Test Receiver 20Hz- 26.5GHz	ESI	WC071498	5/4/2020	5/4/2021
Conducted Emission	ns - AC Power Ports, 21-Ap	r-21			
ETS-Lindgren	EMC Chamber #3	FACT-10	WC055565	8/4/2019	8/4/2022
EMCO	LISN, 10 kHz-100 MHz	3825/2	WC064407	7/4/2020	7/4/2021
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	WC064445	7/6/2020	7/6/2021
Rohde & Schwarz	EMI test receiver, 20Hz- 40GHz	ESI	WC068000	6/17/2020	6/17/2021

Appendix B Test Data

 $TL136033\text{-RA-BC} \quad Pages \ 21-35$

Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Product	Battery Charger	T-Log Number:	TL136033-RA-BC
System Configuration:	-	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Emissions Standard(s):	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	B, Group 2
Immunity Standard(s):		Environment:	Radio

EMC Test Data

For The

CCC del Uruguay Medical Devices

Product

Battery Charger

Date of Last Test: 10/12/2021

Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Madalı	Pattory Charger	T-Log Number:	TL136033-RA-BC
Model.	Battery Charger	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	B, Group 2

Conducted Emissions

(NTS Silicon Valley, Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/20/2021 Config. Used: 1
Test Engineer: M. Birgani Config Change: -

Test Location: Fremont Chamber #3 EUT Voltage: Refer to individual run

General Test Configuration

The EUT was located on a table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN.

Ambient Conditions: Temperature: 22-23 °C

Rel. Humidity: 38-39 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz	CISPR 32, A.10	Pass	57.4 dBµV @ 0.162 MHz (margin: -8.0 dB)
2	CE, AC Power,120V/60Hz	FCC §15.207	Pass	40.5 dBµV @ 0.373 MHz (margin: -7.9 dB)

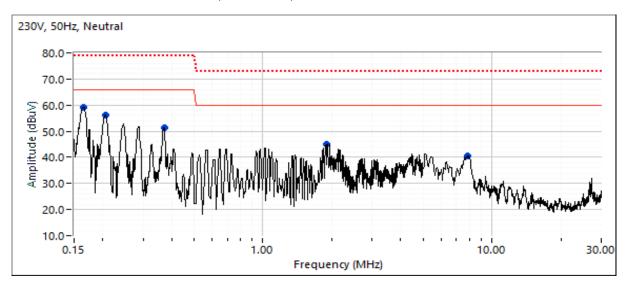
Modifications Made During Testing

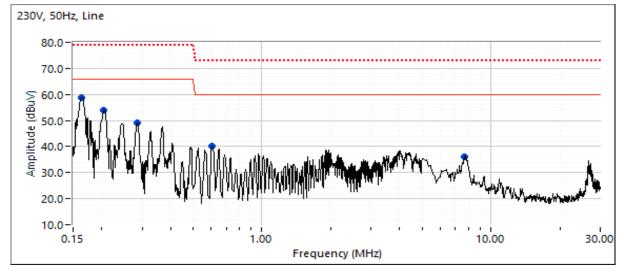
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

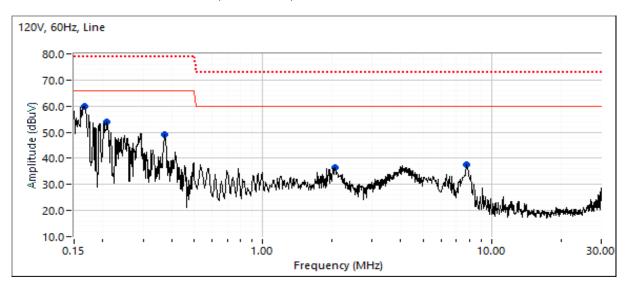
Test Note

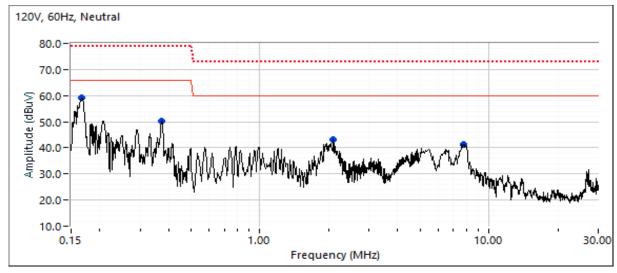

The unit was transmitting at 402.45MHz.


The 13.56 MHz radio is disabled when the Battery Charger is charging.

Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Model	Battery Charger	T-Log Number:	TL136033-RA-BC
Model.	Ballery Charger	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	B, Group 2

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz


Note 1: Limits on ploits are not for radio equipment but the limits in the tablular data are for radio equipment.


	NTS						EMC Test Da
Client:	CCC del Ur	uguay Medica	al Devices				PR Number: PR136033
N.A I I	Dallam Oba						T-Log Number: TL136033-RA-BC
Model:	Battery Charger						Project Manager: Christine Krebill
Contact:	Agustin Villa	avedra					Project Engineer: David Bare
	•	15, 18, 95, EN	J 55011 FN	301 839			Class: B, Group 2
Prelimina	ary peak rea		red during p	re-scan (pe	ak readings	vs. average limi	it)
Frequency		AC		32, A.10	Detector	Comments	
MHz	dBμV	Line	Limit	Margin	QP/Ave	 	
0.162	58.9	Line	55.4	3.5	Peak		
0.164	59.3	Neutral	55.3	4.0	Peak		
0.203	53.9	Line	53.5 53.4	0.4	Peak		
0.205 0.285	56.0 49.1	Neutral Line	53.4	2.6 -1.6	Peak Peak	+	
0.285	51.4	Neutral	48.5	2.9	Peak		
0.609	40.0	Line	46.0	-6.0	Peak		
1.902	44.9	Neutral	46.0	-0.0	Peak		
7.735	36.2	Line	50.0	-13.8	Peak		
7.765	40.5	Neutral	50.0	-9.5	Peak		
Final qua Frequency		l average rea		32, A.10	Detector	Comments	
MHz	dBμV	Line	Limit	Margin	QP/Ave	Comments	
0.162	57.4	Line	65.4	-8.0	QP	QP (1.00s)	
0.164	57.3	Neutral	65.3	-8.0	QP	QP (1.00s)	
0.164	40.9	Neutral	55.3	-14.4	AVG	AVG (0.10s)	
0.203	40.6	Line	53.5	-12.9	AVG	AVG (0.10s)	
0.205	53.6	Neutral	63.4	-9.8	QP	QP (1.00s)	
0.162	40.4	Line	55.4	-15.0	AVG	AVG (0.10s)	
0.205	40.4	Neutral	53.4	-13.0	AVG	AVG (0.10s)	
0.203	53.0	Line	63.5	-10.5	QP	QP (1.00s)	
0.609	32.3	Line	46.0	-13.7	AVG	AVG (0.10s)	
0.285	38.1	Line	50.7	-12.6	AVG	AVG (0.10s)	
	36.4	Neutral	48.5	-12.1	AVG	AVG (0.10s)	
0.370	110	Neutral	56.0	-14.1	QP	QP (1.00s)	
0.370 1.902	41.9		60.7	-13.2	QP	QP (1.00s)	
0.370 1.902 0.285	47.5	Line		400	AVG	AVG (0.10s)	
0.370 1.902 0.285 1.902	47.5 27.2	Neutral	46.0	-18.8			
0.370 1.902 0.285 1.902 0.370	47.5 27.2 45.7	Neutral Neutral	58.5	-12.8	QP	QP (1.00s)	
0.370 1.902 0.285 1.902 0.370 7.765	47.5 27.2 45.7 26.4	Neutral Neutral Neutral	58.5 50.0	-12.8 -23.6	QP AVG	AVG (0.10s)	
0.370 1.902 0.285 1.902 0.370 7.765 0.609	47.5 27.2 45.7 26.4 38.2	Neutral Neutral Neutral Line	58.5 50.0 56.0	-12.8 -23.6 -17.8	QP AVG QP	AVG (0.10s) QP (1.00s)	
0.370 1.902 0.285 1.902 0.370 7.765 0.609 7.765	47.5 27.2 45.7 26.4 38.2 35.8	Neutral Neutral Neutral Line Neutral	58.5 50.0 56.0 60.0	-12.8 -23.6 -17.8 -24.2	QP AVG QP QP	AVG (0.10s) QP (1.00s) QP (1.00s)	
0.370 1.902 0.285 1.902 0.370 7.765 0.609	47.5 27.2 45.7 26.4 38.2	Neutral Neutral Neutral Line	58.5 50.0 56.0	-12.8 -23.6 -17.8	QP AVG QP	AVG (0.10s) QP (1.00s)	

Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Model	Pattery Charger	T-Log Number:	TL136033-RA-BC
iviouei.	Battery Charger	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	B, Group 2

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Note 1: Limits on ploits are not for radio equipment but the limits in the tablular data are for radio equipment.

	NTS						EM	IC Test Da
Client:	CCC del Ur	uguay Medica	al Devices				PR Numbe	r: PR136033
		3 ,					T-Log Numbe	r: TL136033-RA-BC
Model:	Battery Cha	rger				r: Christine Krebill		
Contact:	Agustin Villa	avedra			Project Enginee			
	-	15, 18, 95, EN	J 55011. FN	301 839			, ,	s: B, Group 2
Prelimina	ary peak rea		red during p	ore-scan (pe	ak readings	vs. average lin	nit)	
Frequency		AC		15.207	Detector	Comments		
MHz 0.167	dBμV 59.0	Line Neutral	Limit 55.1	Margin 3.9	QP/Ave Peak	+		
0.167	59.0	Line	55.1	4.8	Peak			
0.107	53.8	Line	53.2	0.6	Peak			
0.371	49.2	Line	48.5	0.7	Peak			
0.373	50.1	Neutral	48.4	1.7	Peak			
2.057	36.6	Line	46.0	-9.4	Peak			
2.070	43.0	Neutral	46.0	-3.0	Peak			
2.070	1010							
7.661	37.4	Line	50.0	-12.6	Peak			
		Line Neutral	50.0 50.0	-12.6 -8.8	Peak Peak			
7.661 7.845 Final qua	37.4 41.2 si-peak and	Neutral average rea	50.0 adings	-8.8	Peak			
7.661 7.845 Final qua Frequency	37.4 41.2 si-peak and Level	Neutral average rea AC	50.0 adings FCC §	-8.8 15.207	Peak Detector	Comments		
7.661 7.845 Final qua Frequency MHz	37.4 41.2 si-peak and Level dBµV	Neutral average rea AC Line	50.0 ndings FCC § Limit	-8.8 15.207 Margin	Peak Detector QP/Ave			
7.661 7.845 Final qua Frequency MHz 0.373	37.4 41.2 si-peak and Level dBµV 40.5	Neutral average rea AC Line Neutral	50.0 adings FCC § Limit 48.4	-8.8 15.207 Margin -7.9	Peak Detector QP/Ave AVG	AVG (0.10s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167	37.4 41.2 si-peak and Level dBµV 40.5 56.8	Neutral average rea AC Line Neutral Line	50.0 adings FCC § Limit 48.4 65.1	-8.8 15.207 Margin -7.9 -8.3	Peak Detector QP/Ave AVG QP	AVG (0.10s) QP (1.00s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167 0.167	37.4 41.2 si-peak and Level dBµV 40.5 56.8 56.6	Neutral average rea AC Line Neutral Line Neutral	50.0 adings FCC § Limit 48.4 65.1 65.1	-8.8 15.207 Margin -7.9 -8.3 -8.5	Peak Detector QP/Ave AVG QP QP	AVG (0.10s) QP (1.00s) QP (1.00s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167	37.4 41.2 si-peak and Level dBµV 40.5 56.8	Neutral average rea AC Line Neutral Line	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4	-8.8 15.207 Margin -7.9 -8.3	Peak Detector QP/Ave AVG QP QP QP	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
7.661 7.845 Final qua requency MHz 0.373 0.167 0.167 0.373	37.4 41.2 si-peak and Level dBµV 40.5 56.8 56.6 48.9	Neutral average rea AC Line Neutral Line Neutral Neutral Neutral	50.0 adings FCC § Limit 48.4 65.1 65.1	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5	Peak Detector QP/Ave AVG QP QP	AVG (0.10s) QP (1.00s) QP (1.00s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167 0.373 0.167	37.4 41.2 si-peak and Level dBµV 40.5 56.8 56.6 48.9 40.7	Neutral average rea AC Line Neutral Line Neutral Neutral Neutral Neutral	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4	Peak Detector QP/Ave AVG QP QP QP AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167 0.373 0.167 0.167	37.4 41.2 si-peak and Level dBµV 40.5 56.8 56.6 48.9 40.7 39.4	Neutral AC Line Neutral Line Neutral Neutral Neutral Neutral Line	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1 55.1	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4 -15.7	Peak Detector QP/Ave AVG QP QP QP AVG AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167 0.373 0.167 0.167 0.371 0.209 0.371	37.4 41.2 si-peak and Level dBµV 40.5 56.8 56.6 48.9 40.7 39.4 38.0 47.5 45.9	Neutral AC Line Neutral Line Neutral Neutral Neutral Line Line Line Line Line	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1 55.1 48.5 63.2 58.5	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4 -15.7 -10.5 -15.7 -12.6	Peak Detector QP/Ave AVG QP QP QP AVG AVG AVG AVG QP QP	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167 0.167 0.167 0.167 0.371 0.209 0.371 7.845	37.4 41.2 si-peak and Level dBµV 40.5 56.8 56.6 48.9 40.7 39.4 38.0 47.5 45.9 26.4	Neutral AC Line Neutral Line Neutral Neutral Neutral Line Line Line Line Line Neutral	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1 55.1 48.5 63.2 58.5 50.0	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4 -15.7 -10.5 -15.7 -12.6 -23.6	Peak Detector QP/Ave AVG QP QP AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167 0.167 0.167 0.373 0.167 0.167 0.371 0.209 0.371 7.845 2.057	37.4 41.2 si-peak and Level dBµV 40.5 56.8 56.6 48.9 40.7 39.4 38.0 47.5 45.9 26.4 25.5	Neutral AC Line Neutral Line Neutral Neutral Line Line Line Line Line Line Line Line	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1 48.5 63.2 58.5 50.0 46.0	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4 -15.7 -10.5 -15.7 -12.6 -23.6 -20.5	Peak Detector QP/Ave AVG QP QP QP AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167 0.167 0.373 0.167 0.371 0.209 0.371 7.845 2.057 2.070	37.4 41.2 si-peak and Level dBµV 40.5 56.8 56.6 48.9 40.7 39.4 38.0 47.5 45.9 26.4 25.5 38.3	Neutral AC Line Neutral Line Neutral Neutral Line Line Line Line Line Line Line Line	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1 48.5 63.2 58.5 50.0 46.0 56.0	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4 -15.7 -10.5 -15.7 -12.6 -23.6 -20.5 -17.7	Peak Detector QP/Ave AVG QP QP QP AVG AVG AVG AVG AVG QP QP AVG QP QP AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167 0.373 0.167 0.371 0.209 0.371 7.845 2.057 2.070 0.209	37.4 41.2 si-peak and Level dBµV 40.5 56.8 56.6 48.9 40.7 39.4 38.0 47.5 45.9 26.4 25.5 38.3 31.0	Neutral AC Line Neutral Line Neutral Neutral Line Line Line Line Line Line Line Line	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1 55.1 48.5 63.2 58.5 50.0 46.0 56.0 53.2	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4 -15.7 -10.5 -15.7 -12.6 -23.6 -20.5 -17.7 -22.2	Peak Detector QP/Ave AVG QP QP QP AVG AVG AVG AVG QP QP AVG AVG AVG AVG AVG AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
7.661 7.845 Final qua requency MHz 0.373 0.167 0.167 0.373 0.167 0.371 0.209 0.371 7.845 2.057 2.070 0.209 2.070	37.4 41.2 si-peak and Level dB 40.5 56.8 56.6 48.9 40.7 39.4 38.0 47.5 45.9 26.4 25.5 38.3 31.0 24.1	Neutral AC Line Neutral Line Neutral Neutral Line Line Line Line Line Line Line Neutral Line Line Neutral Line Neutral Line Neutral Line Neutral Line Neutral Line Neutral	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1 55.1 48.5 63.2 58.5 50.0 46.0 56.0 53.2 46.0	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4 -15.7 -10.5 -15.7 -12.6 -23.6 -20.5 -17.7 -22.2 -21.9	Peak Detector QP/Ave AVG QP QP AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
7.661 7.845 Final qua requency MHz 0.373 0.167 0.167 0.373 0.167 0.371 0.209 0.371 7.845 2.057 2.070 0.209 2.070 7.661	37.4 41.2 si-peak and Level dB 40.5 56.8 56.6 48.9 40.7 39.4 38.0 47.5 45.9 26.4 25.5 38.3 31.0 24.1 23.2	Neutral AC Line Neutral Line Neutral Neutral Line Line Line Line Line Line Line Line	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1 55.1 48.5 63.2 58.5 50.0 46.0 56.0 53.2 46.0 50.0	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4 -15.7 -10.5 -15.7 -12.6 -23.6 -20.5 -17.7 -22.2 -21.9 -26.8	Peak Detector QP/Ave AVG QP QP QP AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
7.661 7.845 Final qua Frequency MHz 0.373 0.167 0.167 0.373 0.167 0.371 0.209 0.371 7.845 2.057 2.070 0.209 2.070	37.4 41.2 si-peak and Level dB 40.5 56.8 56.6 48.9 40.7 39.4 38.0 47.5 45.9 26.4 25.5 38.3 31.0 24.1	Neutral AC Line Neutral Line Neutral Neutral Line Line Line Line Line Line Line Neutral Line Line Neutral Line Neutral Line Neutral Line Neutral Line Neutral Line Neutral	50.0 adings FCC § Limit 48.4 65.1 65.1 58.4 55.1 55.1 48.5 63.2 58.5 50.0 46.0 56.0 53.2 46.0	-8.8 15.207 Margin -7.9 -8.3 -8.5 -9.5 -14.4 -15.7 -10.5 -15.7 -12.6 -23.6 -20.5 -17.7 -22.2 -21.9	Peak Detector QP/Ave AVG QP QP AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		

	NTS	EM	C Test Data
Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Model	Battery Charger	T-Log Number:	TL136033-RA-BC
Model.	Dattery Charger	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	B, Group 2

Test Configuration Photograph #1 (Conducted Emissions - Power Port)

	NTS	EMC Test Data
Client:	CCC del Uruguay Medical Devices	PR Number: PR136033
Model	Battery Charger	T-Log Number: TL136033-RA-BC
iviouei.	Battery Charger	Project Manager: Christine Krebill
Contact:	Agustin Villavedra	Project Engineer: David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class: B, Group 2

Test Configuration Photograph #2 (Conducted Emissions - Power Port)

Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Model	Pattery Charger	T-Log Number:	TL136033-RA-BC
wodei.	Battery Charger	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	B, Group 2

Radiated Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/14/2021 Config. Used: 1
Test Engineer: David Bare Config Change: None
Test Location: Fremont Chamber #4 EUT Voltage: Battery Mode

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if used) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 22 °C

Rel. Humidity: 30 %

Summary of Results

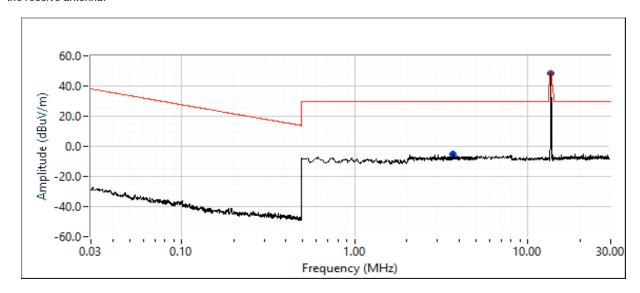
j				
Run #	Test Performed	Limit	Result	Margin
1	0.030 - 30 MHz	FCC 15.209/15.225	Doce	37.0 dBµV/m @ 13.567 MHz
l l	0.030 - 30 MHZ	FCC 13.209/13.223	Pass	(margin: -13.5 dB)
n	30 - 140 MHz, Maximized	FCC 15.209	Doce	39.0 dBµV/m @ 40.67 MHz (margin:
2	Emissions	FCC 15.209	Pass	-1.0 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

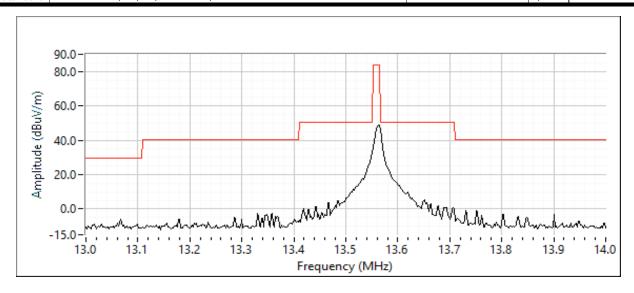
Deviations From The Standard

No deviations were made from the requirements of the standard.



Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Model:	Pattory Chargor	T-Log Number:	TL136033-RA-BC
	Battery Charger	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	B, Group 2

Run #1: Radiated Emissions, 10 - 30 MHz


Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
0.03 - 0.49 MHz	3	300	-80.0
0.49 - 1.705 MHz	3	30	-40.0
1.705 - 30.0 MHz	3	30	-40.0

Note - the extrapolation factor is based on 40*log(test distance/limit distance) as described in FCC §15.31 and ANSI C63.10 Based on preliminary testing, the maximum emissons from the EUT are with the EUT placed on its side ith the coil oriented toward the receive antenna.

Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Model:	Pattery Charger	T-Log Number:	TL136033-RA-BC
	Battery Charger	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	B, Group 2

Run #1: Radiated Emissions, 10 - 30 MHz

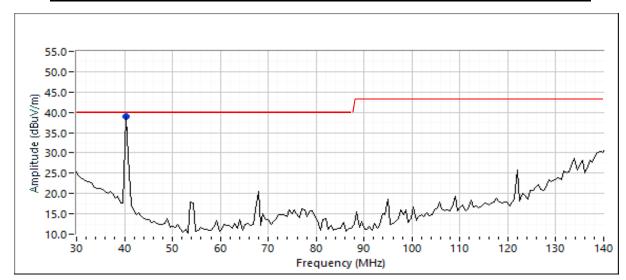
Preliminary readings

	. j rodanigo							
Frequency	Level	Pol	FCC 15.2	09/15.225	Detector	Azimuth	Height	Comments
MHz	dBμV/m	Loop	Limit	Margin	Pk/QP/Avg	degrees	meters	
3.689	-4.9	Open	29.5	-34.4	Peak	292	1.5	
13.567	48.3	Open	50.5	-2.2	Peak	188	1.5	

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, with a peak limit 20dB above the average limit.

Maximized readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	Loop	Limit	Margin	Pk/QP/Avg	degrees	meters	
13.567	37.0	Open	50.5	-13.5	QP	187	1.5	QP (1.00s)
13.567	34.1	Close	50.5	-16.4	QP	265	1.5	QP (1.00s)
3.689	-14.7	Open	29.5	-44.2	QP	290	1.5	QP (1.00s)


Note 1: The emissions limit used at the fundamental is the limit for the bands 13.410-13.533 MHz and 13.567-13.710 MHz as the bandwidth of the emission at 13.56 extends into these bands. See graph above.

Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Model:	Pattery Charger	T-Log Number:	TL136033-RA-BC
	Battery Charger	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	B, Group 2

Run #2: Maximized Readings - Spurious Emissions, 30 - 140 MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 -140 MHz	3	3	0.0

Spurious Emissions

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
40.674	39.0	V	40.0	-1.0	Peak	73	1.0	

Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033				
Model:	Pattery Charger	T-Log Number:	TL136033-RA-BC				
	Battery Charger	Project Manager:	Christine Krebill				
Contact:	Agustin Villavedra	Project Engineer:	David Bare				
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	N/A				

FCC Part 15 Frequency Stability

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

Ambient Conditions: Temperature:

Rel. Humidity: 41-42 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Frequency Stability	± 100ppm	Pass	-11.6ppm

23-24 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

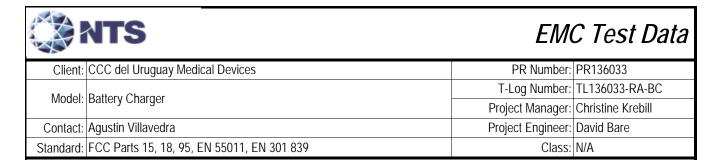
Deviations From The Standard

No deviations were made from the requirements of the standard.

i			
Client:	CCC del Uruguay Medical Devices	PR Number:	PR136033
Model:	Battery Charger	T-Log Number:	TL136033-RA-BC
	Battery Charger	Project Manager:	Christine Krebill
Contact:	Agustin Villavedra	Project Engineer:	David Bare
Standard:	FCC Parts 15, 18, 95, EN 55011, EN 301 839	Class:	N/A

Run #1: Frequency Stability

Date of Test: 4/19/2021 Config. Used: 1
Test Engineer: David Bare Config Change: None
Test Location: Fremont EMC Lab #4B EUT Voltage: Battery


Nominal Frequency: 13.56 MHz

Frequency Stability Over Temperature

The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and chamber had stabilized at that temperature.

<u>Temperature</u>	Frequency Measured	<u>D</u> i	<u>rift</u>
(Celsius)	(MHz)	(Hz)	(ppm)
-20	13.559843	-65	-4.8
-10	13.559887	-21	-1.5
0	13.559913	5	0.4
10	13.559920	12	0.9
20	13.559908	0	0.0
30	13.559890	-18	-1.3
40	13.559883	-25	-1.8
50	13.559875	-33	-2.4
55	13.559882	-26	-1.9
	Worst case:	-33	-4.8

Note 1: Frequency Stability for EN 300 330 only applicable for channelized systems.

Test Configuration Photographs

End of Report

This page is intentionally blank and marks the last page of this test report.