

TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0050

Page (1) of (61)

1. Client

Name

: HYUNDAI MOBIS CO., LTD.

Address

: 203, Teheran-ro, Gangnam-gu, Seoul, 06141, Korea

Date of Receipt

: 2019-09-20

2. Use of Report

: Certification

3. Name of Product and Model

: WIDE AVN / ATC32HYAN

4. Manufacturer and Country of Origin: Hyundai Mobis., Ltd. / Korea

5. FCC ID

: TQ8-ATC32HYAN

6. Date of Test

: 2019-10-01 to 2019-10-31

7. Test Standards

; FCC Part 15 Subpart C, 15.247

8. Test Results

: Refer to the test result in the test report

۸ (()

Tested by

Technical Manager

Affirmation

Name: MyeongJun Kwon

e) Nar

Name: Heesu Ahn

2020-02-09

KCTL Inc.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

Page (2) of (61)

Report No.:

KR20-SRF0050

www.kctl.co.kr

Report revision history

report revision motory		
Date	Revision	Page No
2020-02-09	Initial report	-
	_	

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KOLAS accreditation.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (3) of (61)

CONTENTS

1.	Ge	eneral information	
2.		evice information	
 2.´		Simultaneously transmission condition	
2.2		Information about derivative model	
2.3		Frequency/channel operations	
3.		ntenna requirement	
4.		ımmary of tests	
5.		easurement uncertainty	
6.		easurement results explanation example	
7		st results	
7.1		Maximum peak output power	
7.2	2.	Carrier frequency separation	
7.3	3.	20dB channel bandwidth	
7.4	1.	Number of hopping channels	23
7.5	5 .	Time of occupancy(Dwell time)	
7.6	3.	Radiated spurious emissions & band edge	
7.7	7.	Conducted Spurious Emission	57
8.	Мє	easurement equipment	61

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (4) of (61)

General information

Client : HYUNDAI MOBIS CO., LTD.

Address : 203, Teheran-ro, Gangnam-gu, Seoul, 06141, Korea

Manufacturer : Hyundai Mobis., Ltd

Address : 95, Sayang 2-Gil, Munbaek-Myeon, Jincheon-Gun, Chungcheongbuk-Do

27862 Korea

Laboratory : KCTL Inc.

Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132

VCCI Registration No.: R-20080, G-20078, C-20059, T-20056

Industry Canada Registration No.: 8035A

KOLAS No.: KT231

2. Device information

Equipment under test : WIDE AVN Model : ATC32HYAN

Derivative model : ATC32HCAN, ATC35HCAN

Frequency range : 2 402 Mb ~ 2 480 Mb (Bluetooth(BDR/EDR))

2 412 Mb ~ 2 462 Mb (802.11b/g/n_HT20)

UNII-1: 5 180 Mb ~ 5 240 Mb (802.11a/n_HT20/ac_VHT20)
UNII-1: 5 190 Mb ~ 5 230 Mb (802.11n_HT40/ac_VHT40)

UNII-1: 5 210 Mb (802.11ac VHT80)

UNII-2A: 5 260 Mz ~ 5 320 Mz (802.11a/n_HT20/ac_VHT20) UNII-2A: 5 270 Mz ~ 5 310 Mz (802.11n_HT40/ac_VHT40)

UNII-2A: 5 290 Mb (802.11ac VHT80)

UNII-2C: 5 500 Mb ~ 5 720 Mb (802.11a/n_HT20/ac_VHT20)
UNII-2C: 5 510 Mb ~ 5 710 Mb (802.11n_HT40/ac_VHT40)

UNII-2C: 5 530 Mb ~ 5 690 Mb (802.11ac_VHT80)

UNII-3: 5 745 Mb ~ 5 825 Mb (802.11a/n_HT20/ac_VHT20)
UNII-3: 5 755 Mb ~ 5 795 Mb (802.11n_HT40/ac_VHT40)

UNII-3: 5 775 Mb (802.11ac VHT80)

Modulation technique : Bluetooth(BDR/EDR)_ GFSK, π /4DQPSK, 8DPSK

WIFI(802.11a/b/g/n20/n40/ac20/ac40/ac80) DSSS, OFDM

Number of channels : Bluetooth(BDR/EDR)_79ch

2.4 WIFI (802.11b/g/n_HT20)_11ch

UNII-1: 4 ch (20 吨), 2 ch (40 吨), 1 ch (80 吨) UNII-2A: 4 ch (20 吨), 2 ch (40 吨), 1 ch (80 吨) UNII-2C: 9 ch (20 吨), 5 ch (40 吨), 2 ch (80 吨) UNII-3: 5 ch (20 吨), 2 ch (40 吨), 1 ch (80 吨)

Power source : DC 14.4 V

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (5) of (61)

Antenna specification : WIFI/Bluetooth(BDR/EDR)_Pattern Antenna Antenna gain : 2.4 WIFI (802.11b/g/n_HT20) : -0.70 dBi

Bluetooth(BDR/EDR) : 0.29 dBi UNII-1 :3.51 dBi, UNII-2A : 3.12 dBi UNII-2C : 2.28 dBi, UNII-3 : -0.84 dBi

Software version : MQ4.USA.0000.V028.001.190821

Hardware version : MQ4.USA.STD_AVN_G5_WIDE.004.001

Test device serial No. : N/A

Operation temperature : -20 °C ~ 70 °C

2.1. Simultaneously transmission condition

Technology	Modulation	Test mode	Frequency (∰)
WLAN 2.4 GHz	OFDM	802.11g	2 412
WLAN 5 GHz	OFDM	802.11a / UNII-2C	5 500
Bluetooth	GFSK	BDR	2 441

2.2. Information about derivative model

The difference between basic model and derivative models is:

The derivative models have a different product identification number.

ATC32HCAN(96560 P4720), ATC35HCAN(96560 P4920)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (6) of (61)

2.3. Frequency/channel operations

This device contains the following capabilities:

WIFI(2.4 \oplus z band 802.11b/g/n(HT20), 5 \oplus z band 802.11a/n(HT20/HT40)/ac(VHT/20/40/80)), Bluetooth(BDR/EDR)

Ch.	Frequency (쌘)
00	2 402
39	2 441
78	2 480

Table 2.3.1. Bluetooth(BDR/EDR) mode

15.247 Requirements for Bluetooth transmitter:

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
 - 1) This system is hopping pseudo-randomly.
 - 2) Each frequency is used equally on the average by each transmitter.
 - 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
 - 4) The receiver shifts frequencies in synchronization with the transmitted signals.
 - 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed tocomply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
 - 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (7) of (61)

Antenna requirement

Requirement of FCC part section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

- The transmitter has permanently attached Pattern Antenna (internal antenna) on board.
- The E.U.T Complies with the requirement of §15.203, §15.247.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (8) of (61)

4. Summary of tests

FCC Part section(s)	Parameter	Test results
15.247(b)(1),(4)	Maximum peak output power	Pass
15.247(a)(1)	Carrier frequency separation	Pass
15.247(a)(1)	20dB channel bandwidth	Pass
-	Occupied Bandwidth	Pass
15.247(a)(iii) 15.247(b)(1)	Number of hopping channel	Pass
15.247(a)(iii)	Time of occupancy(dwell time)	Pass
15.205(a),	Spurious emission	Pass
15.209(a), 15.247(d)	Band-edge, restricted band	Pass
15.207(a)	Conducted Emissions	N/A(Note2)

Notes

- 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. This test is not applicable because the EUT falls into the automotive device and it's not to be connected to the public utility(AC) power line.
- 3. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 4. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that X orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in X orientation
- 5. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.10-2013
 - KDB 558074 D01 v05r02

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (9) of (61)

Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (±)	
Conducted RF power	1.76 dB	
Conducted spurious emissions	4.03 dB	
	9 kHz ~ 30 MHz	2.28 dB
Radiated spurious emissions	30 MHz ~ 300 MHz	4.98 dB
	300 MHz ~ 1 000 MHz	5.14 dB
	1 GHz ~ 6 GHz	6.70 dB
	Above 6 @z	6.60 dB
Conducted emissions	9 kHz ~ 150 kHz	3.66 dB
	150 kHz ~ 30 MHz	3.26 dB

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (10) of (61)

6. Measurement results explanation example

The offset level is set in the spectrum analyzer to compensate the RF cable loss factor between EUT conducted output port and spectrum analyzer.

With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Frequency (쌘)	Factor(dB)	Frequency (酏)	Factor(dB)
30	6.15	9 000	8.23
50	6.18	10 000	8.61
100	6.23	11 000	8.47
200	6.35	12 000	8.54
300	6.44	13 000	9.15
400	6.53	14 000	9.86
500	6.61	15 000	9.51
600	6.69	16 000	9.71
700	6.75	17 000	9.89
800	6.83	18 000	10.17
900	6.92	19 000	9.94
1 000	6.90	20 000	10.04
2 000	7.79	21 000	10.17
3 000	7.90	22 000	10.70
4 000	8.01	23 000	11.58
5 000	8.05	24 000	10.64
6 000	8.16	25 000	11.48
7 000	8.30	26 000	10.66
8 000	8.37	26 500	10.58

Note.

Offset(dB) = RF cable loss(dB) + Power Divider(dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (11) of (61)

7 Test results
7.1. Maximum peak output power
Test setup

EUT

Divider

Power sensor

Bluetooth tester

Limit

According to §15.247(b)(1), for frequency hopping systems operating in the 2 400-2 483.5 Mb band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 850 Mb band: 1 watt. For all other frequency hopping systems in the 2 400-2 483.5 Mb band: 0.125 watts.

According to §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test procedure

ANSI C63.10-2013 - Section 7.8.5

Test settings

The test follows ANSI C63.10-2013 – Section 7.8.5. Using the power sensor instead of a spectrum analyzer.

Notes:

A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

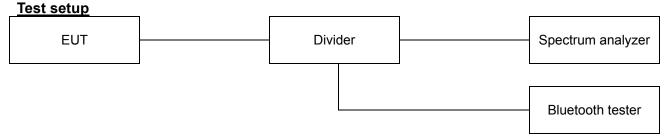
Report No.: KR20-SRF0050

Page (12) of (61)

Test results

Eromonov(Mir)	Dete vete/Mbns)	Measured output power(dBm)		Line (4/JDm)
Frequency(쌘)	Data rate(Mbps)	Peak	Average	Limit(dBm)
2 402	1	3.13	2.35	
2 441	1	3.70	3.11	30.00
2 480	1	3.60	2.96	
2 402	2	0.91	-2.50	
2 441	2	1.74	-1.52	30.00
2 480	2	1.82	-1.52	
2 402	3	1.11	-2.44	
2 441	3	1.81	-1.52	30.00
2 480	3	1.85	-1.50	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR20-SRF0050

Page (13) of (61)

7.2. Carrier frequency separation

<u>Limit</u>

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 kHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 kHz.

Test procedure

ANSI C63.10-2013 - Section 7.8.2

Test settings

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

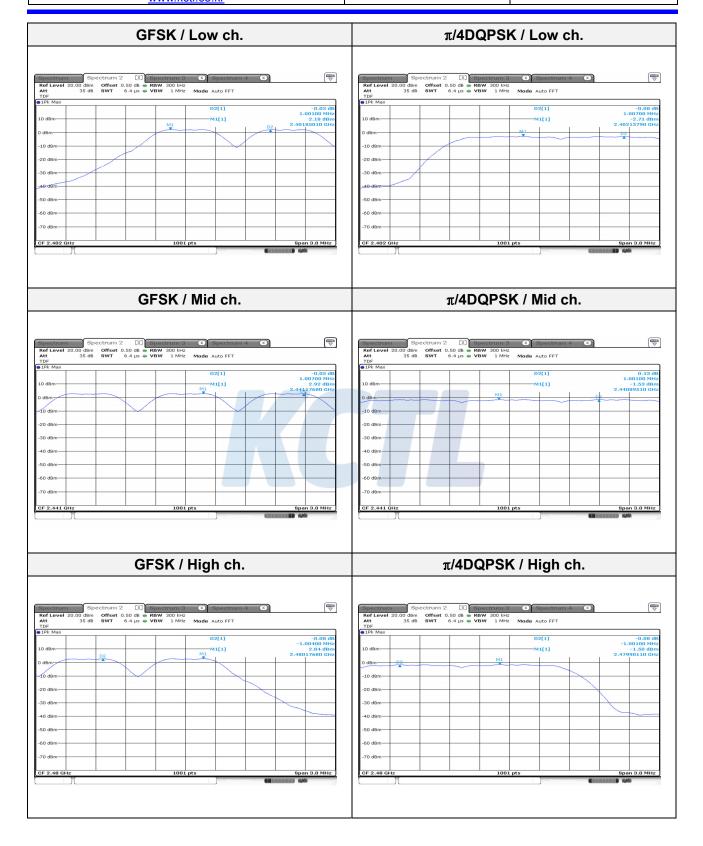
www.kctl.co.kr

Report No.: KR20-SRF0050

Page (14) of (61)

Test results

Frequency(眦)	Data rate(Mbps)	Carrier frequency separation(쌘)
2 402	1	1.001
2 441	1	1.007
2 480	1	1.004
2 402	2	1.007
2 441	2	1.001
2 480	2	1.001
2 402	3	1.001
2 441	3	1.001
2 480	3	1.001


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (15) of (61)

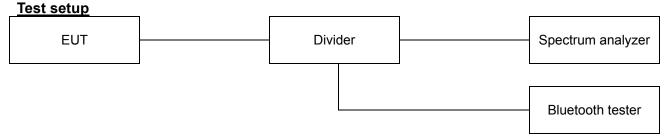

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (16) of (61)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR20-SRF0050

Page (17) of (61)

7.3. 20dB channel bandwidth

Limit

According to §15.247(a), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kllz or the 20 dl bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 kllz band may have hopping channel carrier frequencies that are separated by 25 kllz or two-thirds of the 20 dl bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 kllz.

Test procedure

ANSI C63.10-2013 - Section 6.9.2

20dB channel bandwidth and Occupied bandwidth

Test settings

The occupied bandwidth is measured as the width of the spectral envelope of the modulated signal, at an amplitude level reduced from a reference value by a specified ratio (or in decibels, a specified number of dB down from the reference value). Typical ratios, expressed in dB, are -6 dB, -20 dB, and -26 dB, corresponding to 6 dB BW, 20 dB BW, and 26 dB BW, respectively. In this subclause, the ratio is designated by "-xx dB." The reference value is either the level of the unmodulated carrier or the highest level of the spectral envelope of the modulated signal, as stated by the applicable requirement. Some requirements might specify a specific maximum or minimum value for the "-xx dB" bandwidth; other requirements might specify that the "-xx dB" bandwidth be entirely contained within the authorized or designated frequency band.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.
- b) Span: Two times and five times the OBW.
- c) RBW = 1 % to 5 % of the OBW and VBW \geq 3 x RBW
- d) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Detector: peak
- g) Trace mode: max hold.
- h) Allow the trace to stabilize.
- i) Determine the "-xx dB down amplitude" using ((reference value) xx). Alternatively, this calculation may be made by using the marker-delta function of the instrument.
- j) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (18) of (61)

the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).

k) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

Test results

20 dB Bandwidth

Frequency(Mb)	Data rate (Mbps) 20 dB Bandwidth (Mb)	
2 402	1	1.046
2 441	1	0.890
2 480	1	1.406
2 402	2	1.343
2 441	2	1.349
2 480	2	1.346
2 402	3	1.307
2 441	3	1.343
2 480	3 1.310	

99% Bandwidth

Frequency(Mb)	Data rate (Mbps)	99% bandwidth(∰z)
2 402	1	0.935
2 441	1	0.911
2 480	1	0.914
2 402	2	1.202
2 441	2	1.208
2 480	2	1.205
2 402	3	1.202
2 441	3	1.214
2 480	3	1.202

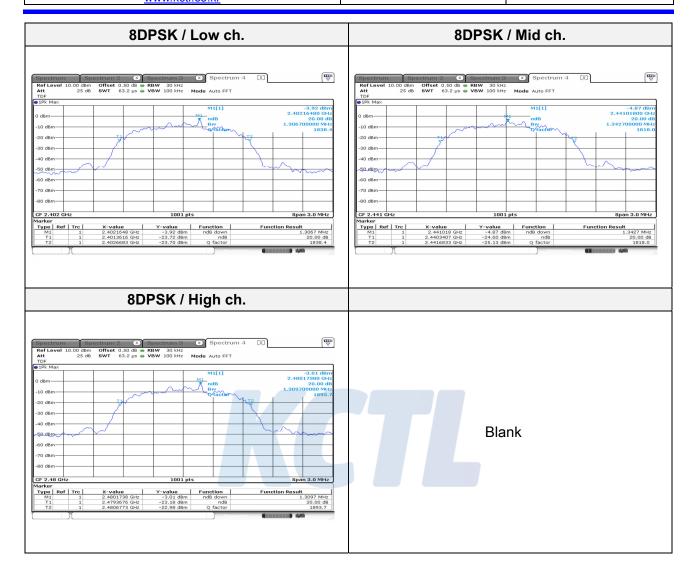
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (19) of (61)

20 dB bandwidth(Mb)

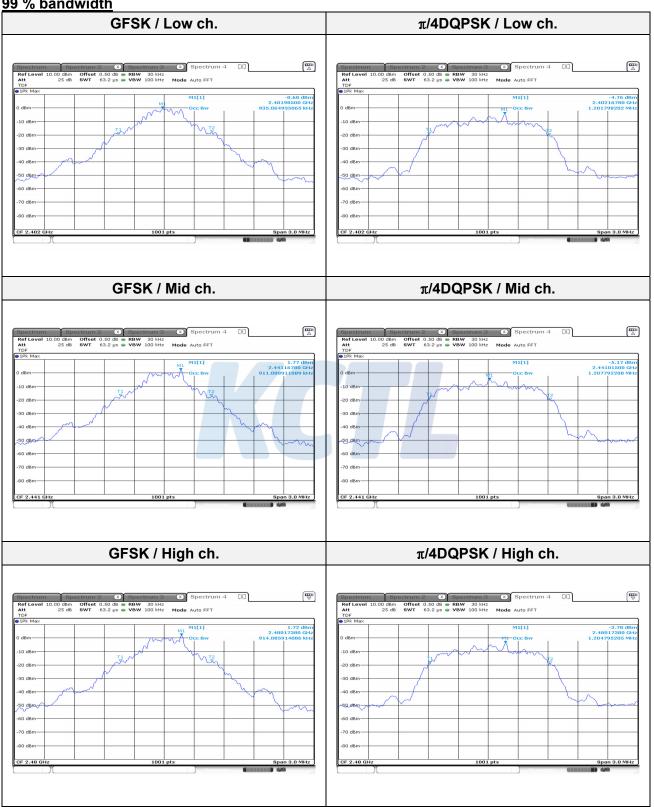

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (20) of (61)

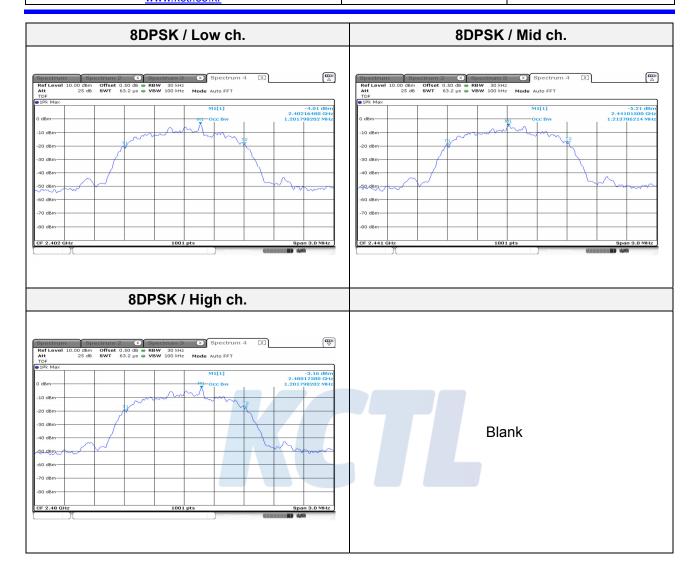
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR20-SRF0050

Page (21) of (61)

99 % bandwidth

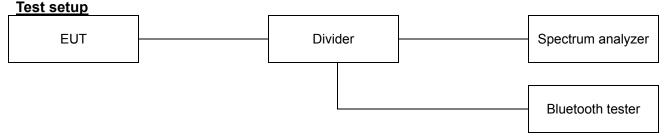

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (22) of (61)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR20-SRF0050

Page (23) of (61)

7.4. Number of hopping channels

<u>Limit</u>

According to §15.247(a)(1)(iii), frequency hopping systems in the 2 400-2 483.5 Mb band shall use at least 15 channels.

Test procedure

ANSI C63.10-2013 - Section 7.8.3

Test settings

- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b)RBW: To identify clearly the individual channels, set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

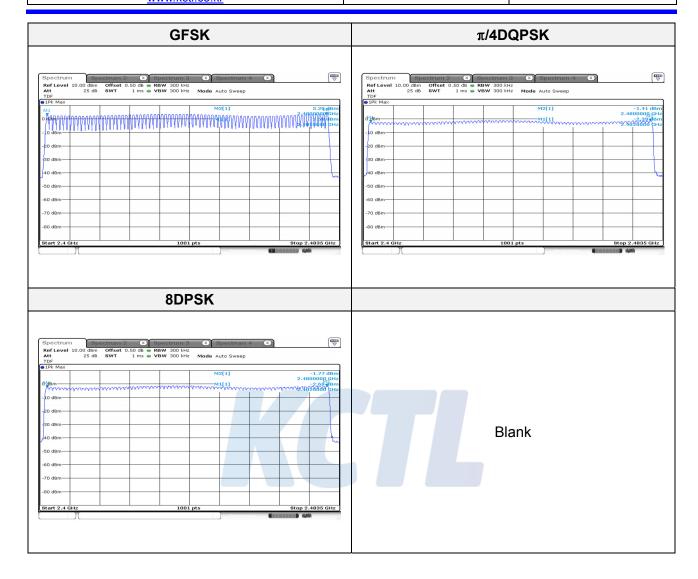
It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

Test results

Mode	Number of hopping channel	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Note:

In case of AFH mode, minimum number of hopping channels is 20.

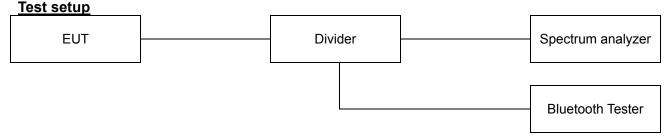

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (24) of (61)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR20-SRF0050

Page (25) of (61)

7.5. Time of occupancy(Dwell time)

<u>Limit</u>

According to §15.247(a)(1)(iii), frequency hopping systems in the 2 400-2 483.5 Mb band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test procedure

ANSI C63.10-2013 - Section 7.8.4

Test settings

- a) Span: Zero span, centered on a hopping channel.
- b) RBW ≤ channel spacing and >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.
- f) Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (26) of (61)

Test results

- Non-AFH

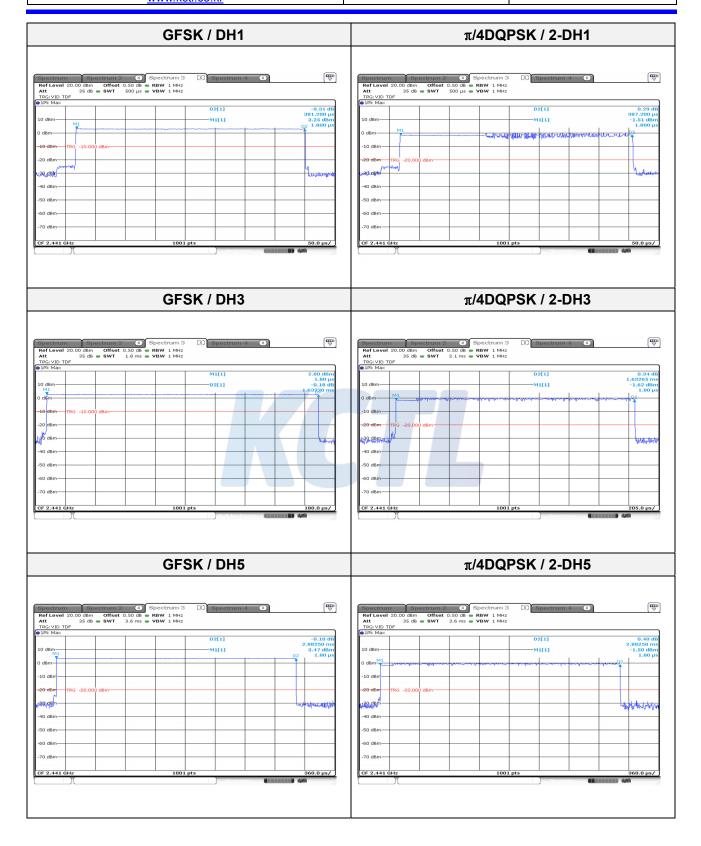
Modulation	Frequency (Mb)	Pulse Width (ms)	Hopping rate (hop/s)	Number of Channels	Result (s)	Limit (s)
DH1	2 441	0.381	800.000	79	0.122	0.400
DH3	2 441	1.632	400.000	79	0.261	0.400
DH5	2 441	2.883	266.667	79	0.307	0.400
2-DH1	2 441	0.387	800.000	79	0.124	0.400
2-DH3	2 441	1.633	400.000	79	0.261	0.400
2-DH5	2 441	2.883	266.667	79	0.307	0.400
3-DH1	2 441	0.388	800.000	79	0.124	0.400
3-DH3	2 441	1.633	400.000	79	0.261	0.400
3-DH5	2 441	2.883	266.667	79	0.307	0.400

- AFH

Modulation	Frequency (Mb)	Pulse Width (ms)	Hopping rate (hop/s)	Number of Channels	Result (s)	Limit (s)
DH1	2 441	0.381	400.000	20	0.061	0.400
DH3	2 441	1.632	200.000	20	0.131	0.400
DH5	2 441	2.883	133.333	20	0.154	0.400
2-DH1	2 441	0.387	400.000	20	0.062	0.400
2-DH3	2 441	1.633	200.000	20	0.131	0.400
2-DH5	2 441	2.883	133.333	20	0.154	0.400
3-DH1	2 441	0.388	400.000	20	0.062	0.400
3-DH3	2 441	1.633	200.000	20	0.131	0.400
3-DH5	2 441	2.883	133.333	20	0.154	0.400

Notes:

- 1. Non-AFH
- Period Time: 0.4 sec x 79 channels = 31.6 sec
- Result (s)= (Hopping rate (hop/s/slot) / 79 channels) x 31.6 sec x Pulse width (ms)
- 2. AFH
- Period Time: 0.4 sec x 20 channels = 8 sec
- Result (s)= (Hopping rate (hop/s/slot) / 20 channels) x 8 sec x Pulse width (ms)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0050

Page (27) of (61)

