

FCC PART 15.247 TEST REPORT

For

QUEST USA CORP

495 Flatbush Ave, Brooklyn, NY 11225, USA

FCC ID: 2AJQ7BURST

Report Type:

Product Type:

Original Report

IJOY BURST LIGHT UP WIRELESS LED SPEAKER

Candy, Li

WITH MIC

Report Number: SZXX1210611-22988E-RF

Report Date: 2021-06-21

Candy Li

Reviewed By: RF Engineer

Prepared By: Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen,

Guangdong, P.R. China Tel: (0755) 26503290 Fax: (0755) 26503396 Http://www.atc-lab.com

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant.

Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES.	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC §15.203 – ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUPTEST PROCEDURE	
TRANSD FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	16
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	_
TEST PROCEDURE	_
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
12011 ROCLDORD	

Test Data	37
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	40
APPLICABLE STANDARD	
TEST PROCEDURE	40
TEST DATA	40
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	50
APPLICABLE STANDARD	50
TEST PROCEDURE	50
TEST DATA	50
FCC §15.247(d) - BAND EDGES TESTING	56
APPLICABLE STANDARD	56
TEST PROCEDURE	56
Test Data	56

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	IJOY BURST LIGHT UP WIRELESS LED SPEAKER WITH MIC
Tested Model No.	IJSPBRT01
Multiple Model No.	IJSPBRT01-DG, IJSPBRT01-BJ
Model Differences	Only the model number is different.
Frequency Range	2402~2480MHz
Maximum conducted Peak output power	2.6dBm
Modulation Technique	GFSK, π/4-DQPSK, 8DPSK
Antenna Specification*	Internal Antenna: -0.68dBi(provided by the applicant)
Voltage Range	DC 3.7V by battery or DC 5V from USB port.
Date of Test	2021-06-19 to 2021-06-21
Sample number	SZXX1210611-22988E-RF-S_9R2 (Assigned by ATC)
Received date	2021-06-11
Sample/EUT Status	Good condition

Report No.: SZXX1210611-22988E-RF

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

For Radiated Emissions testing, please refer to DA 00-705 Released March 30, 2000, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 62

Radiated

Parameter Uncertainty AC Power Lines Conducted Emissions 2.72dB 30MHz - 1GHz 4.28dB Emissions 1.0Hz 10GHz 4.00 HP

1GHz-18GHz

18GHz- 26.5GHz

Report No.: SZXX1210611-22988E-RF

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

4.98dB

5.06dB

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A-2.

FCC Part 15.247 Page 5 of 62

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

Software "BT TOOL" was used during testing and the power level was 7*.

Special Accessories

No special accessory.

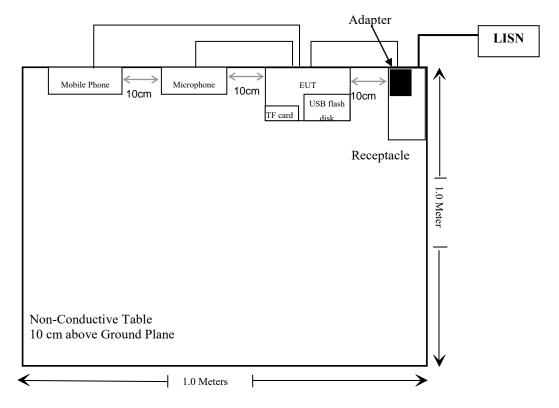
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
XIAOMI	Mobile Phone	Redmi Note 9 pro	Unknown
HUAWEI	Adapter	HW-050100C01	H779K8K6V19398
Unknown	TF card	Unknown	Unknown
KINGSTON	USB flash disk	Datatraveler G3	Unknown

Report No.: SZXX1210611-22988E-RF


External I/O Cable

Cable Description	Length (m)	From Port	То
Unshielded Detachable USB cable	0.8	EUT	Adapter
Unshielded Detachable MIC cable	2.90	EUT	Microphone
Unshielded Detachable AUX cable	1.80	Mobile Phone	EUT

FCC Part 15.247 Page 6 of 62

Block Diagram of Test Setup

For conducted emission:

FCC Part 15.247 Page 7 of 62

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC§15.247 (i), \$\times .1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
\$15.205, \$15.209 & \$15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

FCC Part 15.247 Page 8 of 62

Schwarzbeck

Schwarzbeck

Unknown

Unknown

Unknown

Unknown

Rohde&Schwarz

Rohde & Schwarz

Rohde & Schwarz

Horn Antenna

HORN ANTENNA

RF Coaxial Cable

RF Coaxial Cable

RF Coaxial Cable

RF Coaxial Cable

Spectrum Analyzer

Open Switch and

Control Unit

Test Receiver

BBHA9120D

BBHA9170

N-5m

N-5m

N-1m

N-1m

FSV40

OSP120 +OSP

-B157

ESPI3

RF Conducted Test

9120D-1067

9170-359

No.3

No.4

No.5

No.6

101495

101244 +

100866

100396

2020/01/05

2020/01/05

2020/12/25

2020/12/25

2020/12/25

2020/12/25

2020/12/24

2020/12/24

2020/12/24

2023/01/04

2023/01/04

2021/12/24

2021/12/24

2021/12/24

2021/12/24

2021/12/23

2021/12/23

2021/12/23

Report No.: SZXX1210611-22988E-RF

FCC Part 15.247 Page 9 of 62

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (Minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	$*(180/f^2)$	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain		Tune up conducted power		Evaluation Distance	Power Density	MPE Limit		
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm^2)	$ (cm) \qquad (mW/cm^2) $	(mW/cm ²)
2402-2480	-0.68	0.86	3	2	20	0.0003	1		

Result: Pass

FCC Part 15.247 Page 10 of 62

^{* =} Plane-wave equivalent power density

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

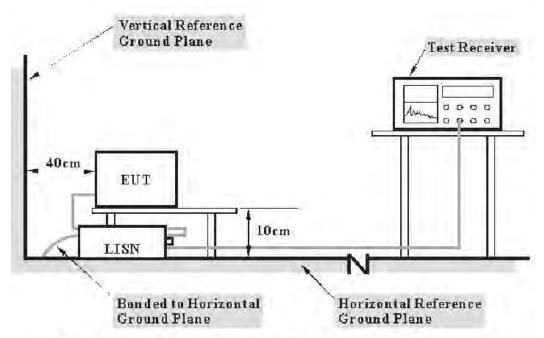
According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: SZXX1210611-22988E-RF

Antenna Connector Construction

The EUT has one internal Antenna arrangement, which was permanently attached and the antenna gain is -0.68 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


FCC Part 15.247 Page 11 of 62

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 10 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

FCC Part 15.247 Page 12 of 62

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Transd Factor & Margin Calculation

The Transd factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: SZXX1210611-22988E-RF

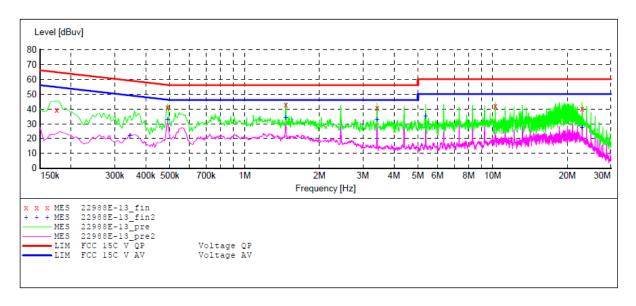
```
Transd Factor = LISN VDF + Cable Loss
```

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

```
Margin = Limit – level
Level= reading level+ Transd Factor
```

Test Data

Environmental Conditions


Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

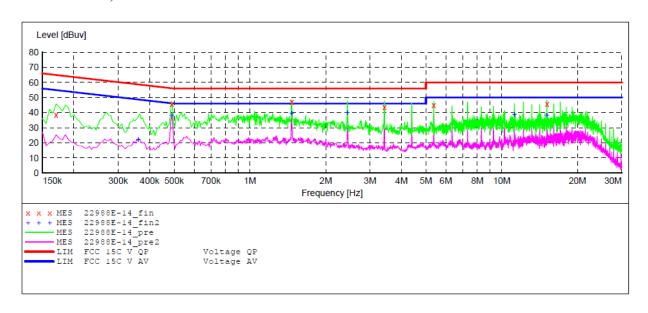
The testing was performed by Fan Yang on 2021-06-21.

EUT operation mode: Transmitting (the worst case is 8DPSK Mode, Low channel)

FCC Part 15.247 Page 13 of 62

AC 120V/60 Hz, Line

MEASUREMENT RESULT: "22988E-13 fin"


44						
Level dBuv	Transd dB	Limit dBuv	Margin dB	Detector	Line	PE
39.40	10.8	65	25.6	QP	L1	GND
41.10	11.0	56	14.9	QP	L1	GND
42.80	11.2	56	13.2	QP	L1	GND
40.60	11.4	56	15.4	QP	L1	GND
42.20	11.6	60	17.8	QP	L1	GND
40.00	11.7	60	20.0	QP	L1	GND
	Level dBuv 39.40 41.10 42.80 40.60 42.20	Level Transd dBuv dB 39.40 10.8 41.10 11.0 42.80 11.2 40.60 11.4 42.20 11.6	Level Transd Limit dBuv dB dBuv 39.40 10.8 65 41.10 11.0 56 42.80 11.2 56 40.60 11.4 56 42.20 11.6 60	Level Transd Limit Margin dBuv dB dB	Level Transd Limit Margin Detector dBuv dB dBuv dB Detector dBuv dB Section d	Level Transd dBuv Limit dBuv Margin dB Detector Line dBuv 39.40 10.8 65 25.6 QP L1 41.10 11.0 56 14.9 QP L1 42.80 11.2 56 13.2 QP L1 40.60 11.4 56 15.4 QP L1 42.20 11.6 60 17.8 QP L1

MEASUREMENT RESULT: "22988E-13 fin2"

2021-6-21	11:44						
Freque	-	vel Trans Buv d	d Limit B dBuv	_	Detector	Line	PE
0.345	000 22	.00 10.	9 49	27.0	AV	L1	GND
0.490	000 33	.00 11.	0 46	13.0	AV	L1	GND
1.465	000 34	.20 11.	2 46	11.8	AV	L1	GND
3.420	000 33	.00 11.	4 46	13.0	AV	L1	GND
5.370	000 35	.10 11.	5 50	14.9	AV	L1	GND
22.950	000 27	.50 11.	7 50	22.5	AV	L1	GND

FCC Part 15.247 Page 14 of 62

AC 120V/60 Hz, Neutral

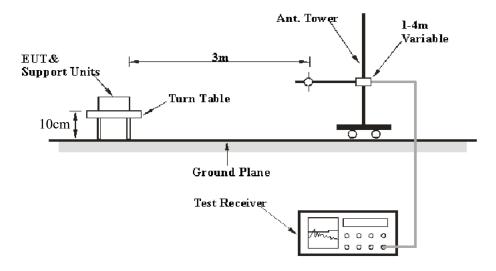
MEASUREMENT RESULT: "22988E-14 fin"

2021-6-21	11:46							
Freque	ncy MHz	Level dBuv	Transd dB	Limit dBuv	Margin dB	Detector	Line	PE
0.170	000	38.50	10.8	65	26.5	QP	N	GND
0.490	000	45.50	11.0	56	10.5	QP	N	GND
1.465	000	47.20	11.2	56	8.8	QP	N	GND
3.420	000	43.80	11.4	56	12.2	ÕP	N	GND
5.370	000	44.70	11.5	60	15.3	ÕP	N	GND
15.125	000	45.60	11.6	60	14.4	Q̈́Ρ	N	GND

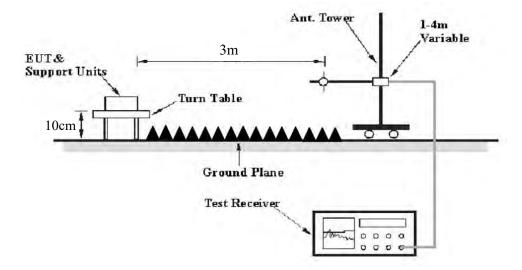
MEASUREMENT RESULT: "22988E-14 fin2"

20	21-6-21 11:							
	Frequency MHz	Level dBuv	Transd dB	Limit dBuv	Margin dB	Detector	Line	PE
	0.360000	22.50	10.9	49	26.5	AV	N	GND
	0.490000	38.40	11.0	46	7.6	AV	N	GND
	1.465000	39.90	11.2	46	6.1	AV	N	GND
	2.440000	40.20	11.3	46	5.8	AV	N	GND
	11.225000	39.00	11.6	50	11.0	AV	N	GND
	15.125000	38.50	11.6	50	11.5	AV	N	GND

FCC Part 15.247 Page 15 of 62


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

FCC Part 15.247 Page 16 of 62

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, according to the DA 00-705 Released March 30, 2000, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
Above I GHZ	1 MHz	10 Hz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

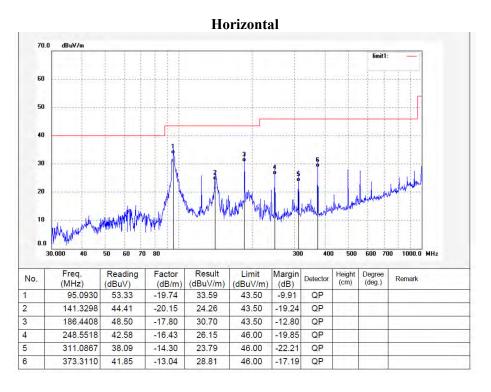
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

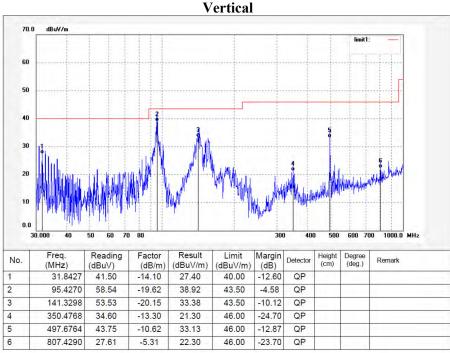
Margin = Result - Limit

Test Data

Environmental Conditions

Temperature:	24 ℃	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	


The testing was performed by Fan Yang on 2021-06-19


EUT operation mode: Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode, the worst case is 8DPSK Mode)

FCC Part 15.247 Page 17 of 62

Below 1GHz: 8DPSK Mode, Low channel

FCC Part 15.247 Page 18 of 62

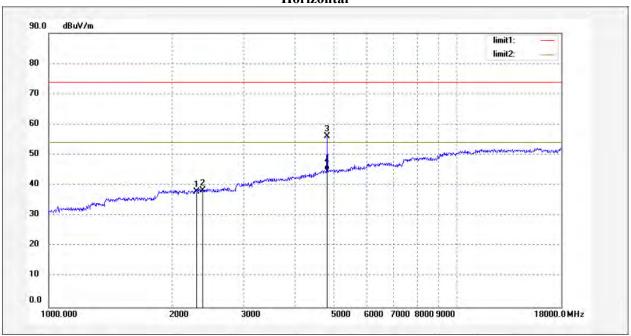
Above 1GHz (worst case):

Frequency (MHz)	Recei	iver	Turntable Angle	Rx An	tenna	Factor (dB/m)	Absolute Level	Limit (dBuV/m)	Margin (dB)
(WIIIZ)	Reading	PK/Ave	Degree	Height	Polar	(dD/III)	(dBuV/m)	(ubu v/iii)	(uD)
	(dBuV)	110/1100	Degree	(m)	(H/V)				
	Low Channel								
2310	44.79	PK	86	2.2	Н	-6.84	37.95	74	36.05
2310	47.72	PK	121	1.1	V	-6.84	40.88	74	33.12
2390	44.9	PK	36	1.7	Н	-6.44	38.46	74	35.54
2390	47.82	PK	318	1.1	V	-6.44	41.38	74	32.62
4804	53.43	PK	274	1.2	Н	2.81	56.24	74	17.76
4804	41.99	AVG	191	1.6	Н	2.81	44.8	54	9.2
4804	55.64	PK	358	1.0	V	2.81	58.45	74	15.55
4804	42.55	AVG	241	1.3	V	2.81	45.36	54	8.64
				Middle C	hannel				
4882	52.59	PK	93	1.6	Н	3.04	55.63	74	18.37
4882	40.01	AVG	307	1.1	Н	3.04	43.05	54	10.95
4882	54.14	PK	165	1.6	V	3.04	57.18	74	16.82
4882	41.23	AVG	46	1.4	V	3.04	44.27	54	9.73
				High Ch	nannel				
2483.5	44.91	PK	83	1.3	Н	-5.96	38.95	74	35.05
2483.5	47.78	PK	172	1.8	V	-5.96	41.82	74	32.18
2500	45.63	PK	349	1.7	Н	-5.88	39.75	74	34.25
2500	48.97	PK	230	1.1	V	-5.88	43.09	74	30.91
4960	51.16	PK	32	1.4	Н	3.29	54.45	74	19.55
4960	39.69	AVG	222	1.5	Н	3.29	42.98	54	11.02
4960	53.42	PK	99	1.1	V	3.29	56.71	74	17.29
4960	40.07	AVG	63	2.2	V	3.29	43.36	54	10.64

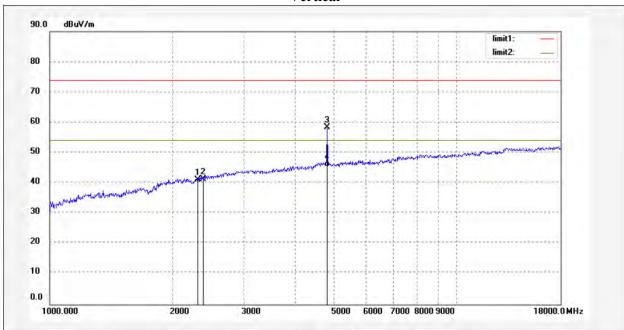
 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Absolute Level = Factor + Reading Margin = Limit - Absolute Level

The other spurious emission which is in the noise floor level was not recorded.


The test result of peak was less than the limit of average, so just peak value were recorded.

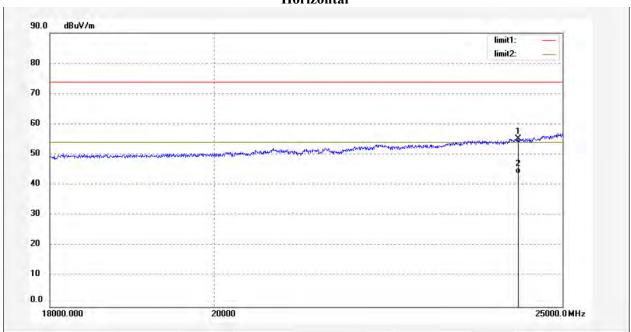
FCC Part 15.247 Page 19 of 62


1 GHz - 18 GHz: (Pre-Scan plots)

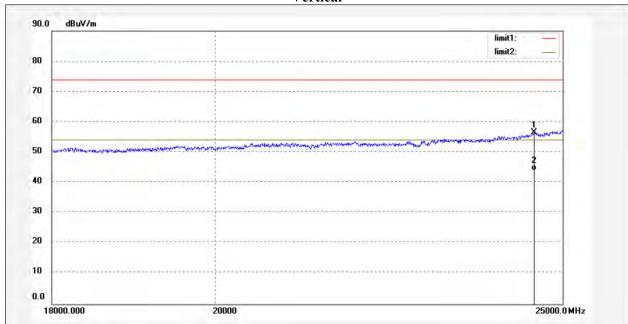
Low Channel

Horizontal

Vertical



FCC Part 15.247 Page 20 of 62


18-25GHz: (Pre-Scan plots)

High Channel

Vertical

FCC Part 15.247 Page 21 of 62

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Report No.: SZXX1210611-22988E-RF

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

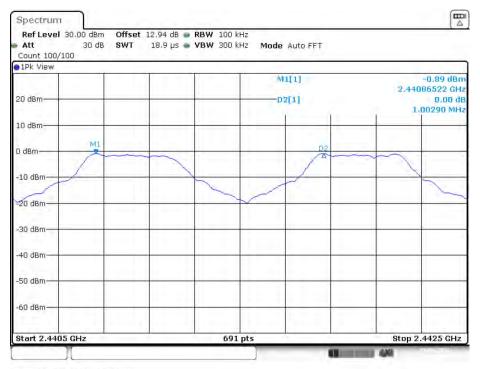
Test Data

Environmental Conditions

Temperature:	24 °C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

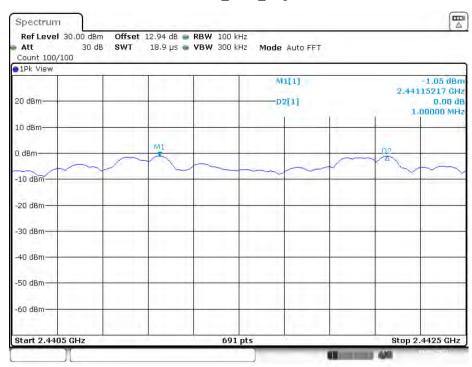
The testing was performed by Fan Yang on 2021-06-19

EUT operation mode: Transmitting


Test Result: Compliant.

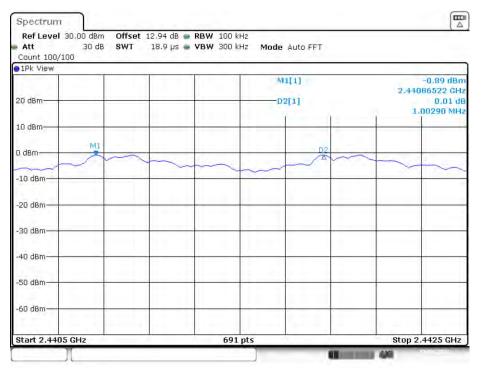
Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	>=0.598	PASS
2DH1	Antl	Нор	1	>=0.850	PASS
3DH1	Antl	Нор	1.003	>=0.838	PASS

Please refer to the below plots:


FCC Part 15.247 Page 22 of 62

DH1_Ant1_Hop

Date: 19.JUN.2021 15:10:46


2DH1_Ant1_Hop

Date: 19.JUN.2021 15:29:45

FCC Part 15.247 Page 23 of 62

3DH1_Ant1_Hop

Date: 19.JUN.2021 15:21:20

FCC Part 15.247 Page 24 of 62

Report No.: SZXX1210611-22988E-RF

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

FCC Part 15.247 Page 25 of 62

Environmental Conditions

Temperature:	24 °C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

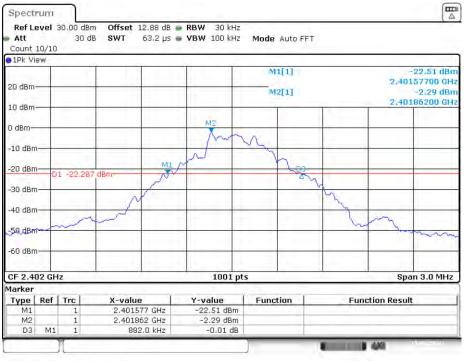
The testing was performed by Fan Yang on 2021-06-19.

EUT operation mode: Transmitting

Test Result: Compliant.

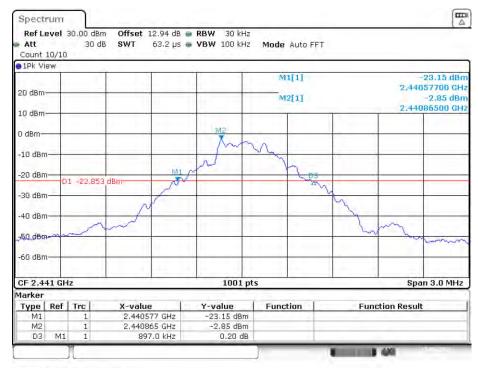
Test Mode	Antenna	Channel	20db EBW[MHz]	Limit[MHz]	Verdict
		2402	0.882		PASS
DH1	Ant1	2441	0.897		PASS
		2480	0.894		PASS
		2402	1.275		PASS
2DH1	Ant1	2441	1.272		PASS
		2480	1.269		PASS
3DH1		2402	1.254		PASS
	Ant1	2441	1.254		PASS
		2480	1.257		PASS

Report No.: SZXX1210611-22988E-RF


Test Mode	Antenna	Channel	99% Occupied Bandwidth [MHz]	Limit[MHz]	Verdict
		2402	0.83		PASS
DH1	Antl	2441	0.833		PASS
		2480	0.833		PASS
		2402	1.16		PASS
2DH1	Ant1	2441	1.157		PASS
		2480	1.16		PASS
3DH1		2402	1.163		PASS
	Antl	2441	1.163		PASS
		2480	1.163		PASS

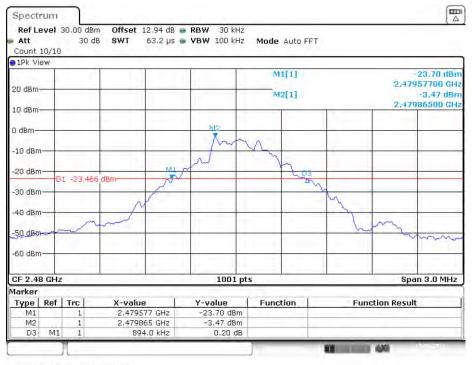
Please refer to the below plots:

FCC Part 15.247 Page 26 of 62

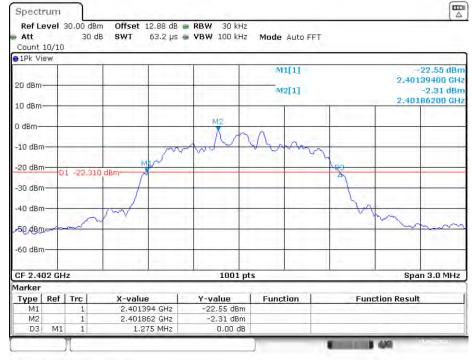

20 dB EMISSION BANDWIDTH

DH1_Ant1_2402MHz

Date: 19.JUN.2021 14:59:58

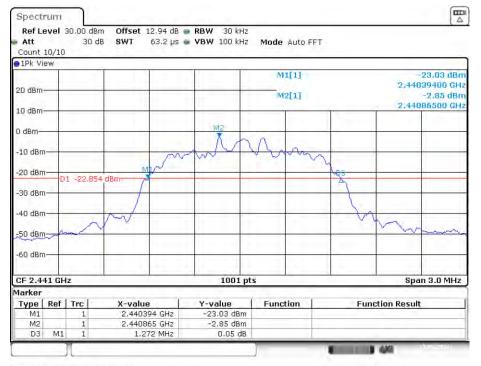

DH1_Ant1_2441MHz

Date: 19.JUN.2021 15:01:06

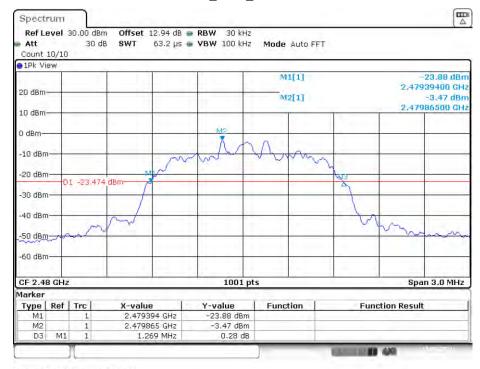

FCC Part 15.247 Page 27 of 62

DH1_Ant1_2480MHz

Date: 19.JUN.2021 15:01:58

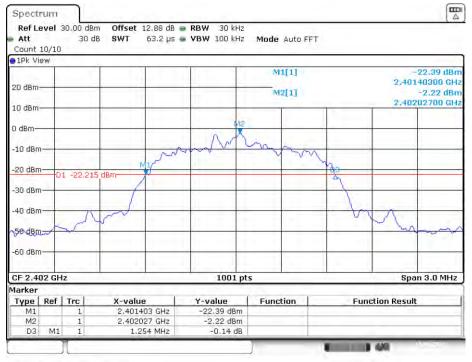

2DH1_Ant1_2402MHz

Date: 19.JUN.2021 15:03:30

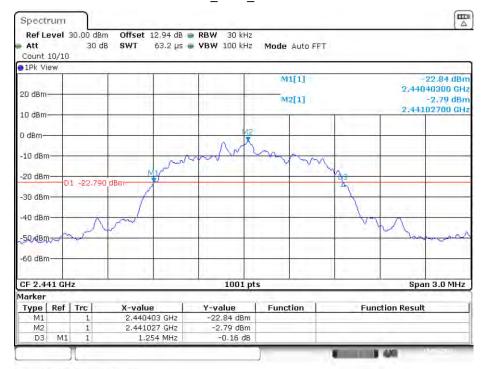

FCC Part 15.247 Page 28 of 62

2DH1_Ant1_2441MHz

Date: 19.JUN.2021 15:04:39

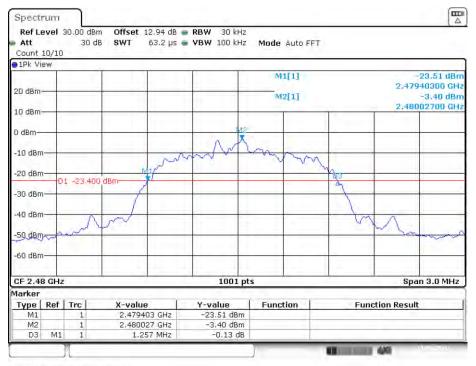

2DH1_Ant1_2480MHz

Date: 19.JUN.2021 15:05:32


FCC Part 15.247 Page 29 of 62

3DH1_Ant1_2402MHz

Date: 19.JUN.2021 15:06:42


3DH1_Ant1_2441MHz

Date: 19.JUN.2021 15:07:56

FCC Part 15.247 Page 30 of 62

3DH1_Ant1_2480MHz



Date: 19.JUN.2021 15:09:10

FCC Part 15.247 Page 31 of 62


99% OCCUPIED BANDWIDTH

DH1_Ant1_2402MHz

Date: 19.JUN.2021 15:00:15

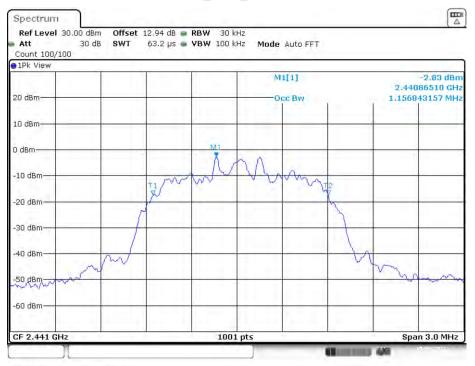
DH1_Ant1_2441MHz

Date: 19.JUN.2021 15:01:22

FCC Part 15.247 Page 32 of 62

DH1_Ant1_2480MHz

Date: 19.JUN.2021 15:02:14


2DH1_Ant1_2402MHz

Date: 19.JUN.2021 15:03:47

FCC Part 15.247 Page 33 of 62

2DH1_Ant1_2441MHz

Date: 19.JUN.2021 15:04:56

2DH1_Ant1_2480MHz

Date: 19.JUN.2021 15:05:48

FCC Part 15.247 Page 34 of 62

3DH1_Ant1_2402MHz

Date: 19.JUN.2021 15:06:59

3DH1_Ant1_2441MHz

Date: 19.JUN.2021 15:08:13

FCC Part 15.247 Page 35 of 62

$3DH1_Ant1_2480MHz$

Date: 19.JUN.2021 15:09:26

FCC Part 15.247 Page 36 of 62

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: SZXX1210611-22988E-RF

Test Procedure

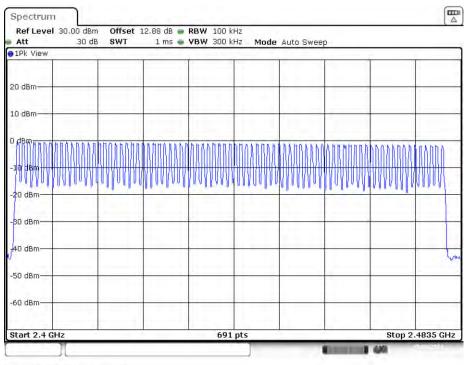
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

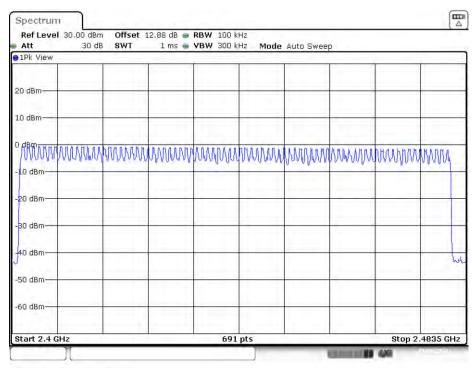
Temperature:	24 °C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Fan Yang on 2021-06-19.


EUT operation mode: Transmitting

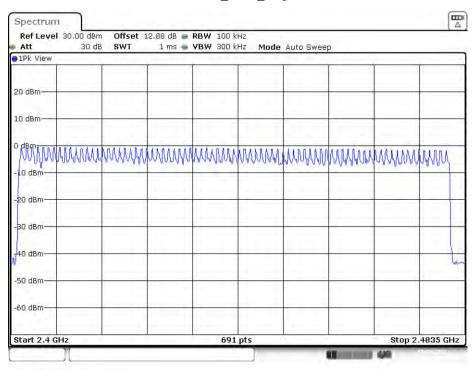
Test Result: Compliant.

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Antl	Нор	79	>=15	PASS
2DH1	Antl	Нор	79	>=15	PASS
3DH1	Antl	Нор	79	>=15	PASS


FCC Part 15.247 Page 37 of 62

DH1_Ant1_Hop

Date: 19.JUN.2021 15:11:27


2DH1_Ant1_Hop

Date: 19.JUN.2021 15:15:42

FCC Part 15.247 Page 38 of 62

3DH1_Ant1_Hop

Date: 19.JUN.2021 15:21:56

FCC Part 15.247 Page 39 of 62

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $> 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

Environmental Conditions

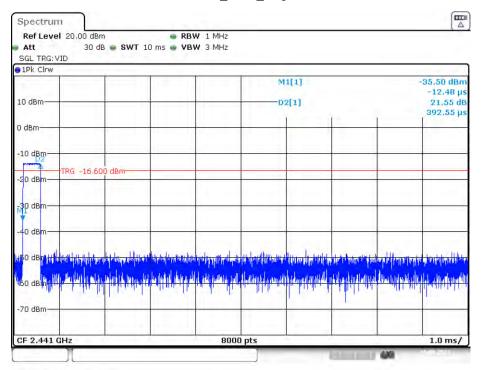
Temperature:	24 °C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Fan Yang on 2021-06-19.

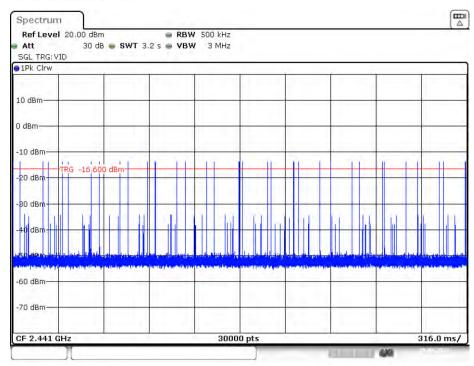
EUT operation mode: Transmitting

Test Result: Compliant.

Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.39	330	0.13	<=0.4	PASS
DH3	Ant1	Нор	1.64	160	0.263	<=0.4	PASS
DH5	Ant1	Нор	2.88	80	0.231	<=0.4	PASS
2DH1	Ant1	Нор	0.40	330	0.133	<=0.4	PASS
2DH3	Ant1	Нор	1.65	180	0.296	<=0.4	PASS
2DH5	Ant1	Нор	2.89	70	0.202	<=0.4	PASS
3DH1	Ant1	Нор	0.41	330	0.134	<=0.4	PASS
3DH3	Ant1	Нор	1.65	180	0.296	<=0.4	PASS
3DH5	Ant1	Нор	2.89	110	0.318	<=0.4	PASS

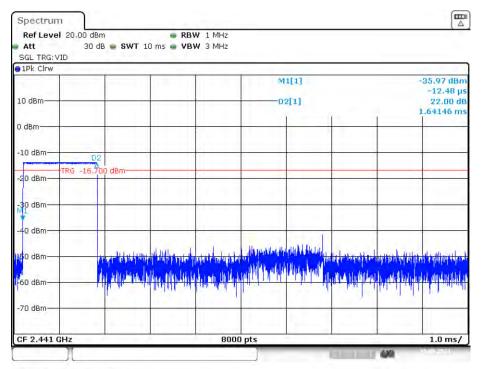

Note 1: A period time=0.4*79=31.6(S), Result=Burst Width*Total Hops

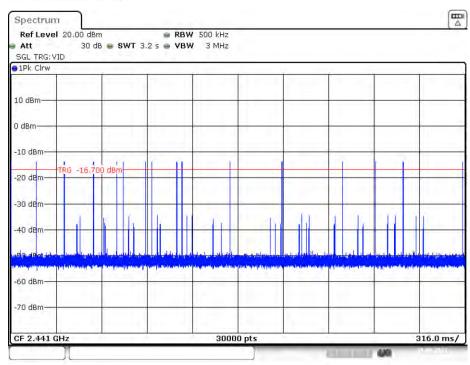
Note 2: Total Hops = Hopping Number in 3.16s*10


Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

FCC Part 15.247 Page 40 of 62

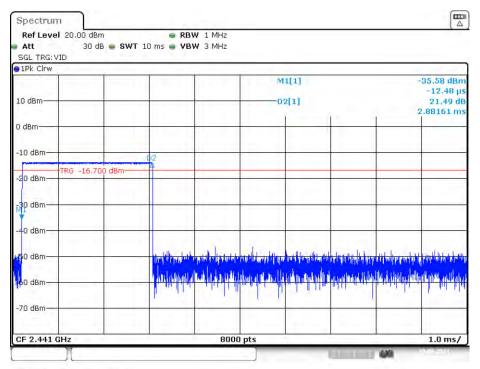
DH1_Ant1_Hop

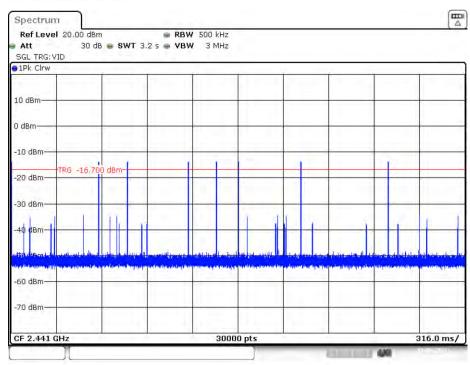

Date: 19.JUN.2021 15:11:45


Date: 19.JUN.2021 15:11:50

FCC Part 15.247 Page 41 of 62

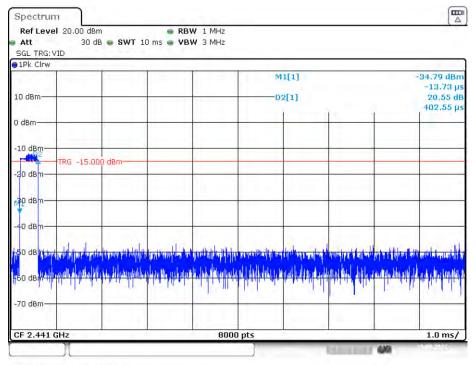
DH3_Ant1_Hop

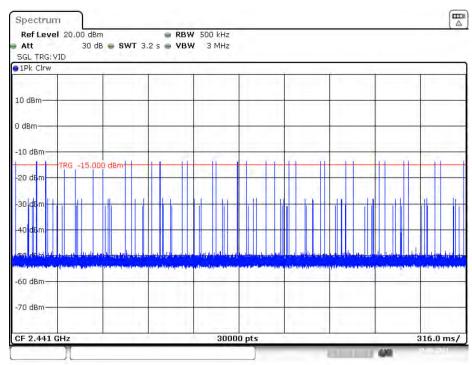

Date: 19.JUN.2021 15:12:22


Date: 19.JUN.2021 15:12:27

FCC Part 15.247 Page 42 of 62

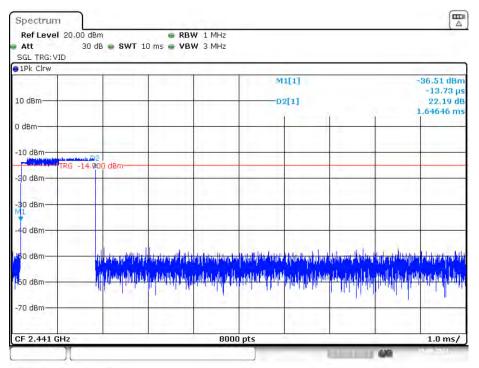
DH5_Ant1_Hop

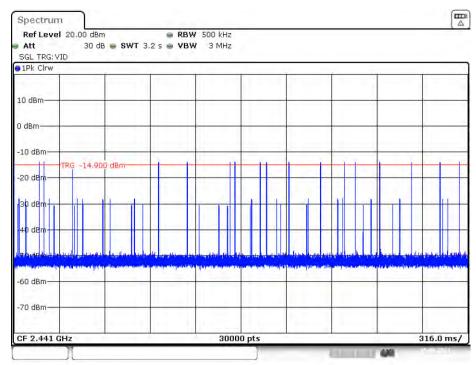

Date: 19.JUN.2021 15:12:53


Date: 19.JUN.2021 15:12:58

FCC Part 15.247 Page 43 of 62

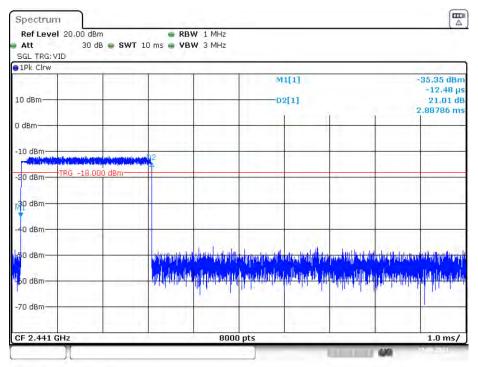
2DH1_Ant1_Hop

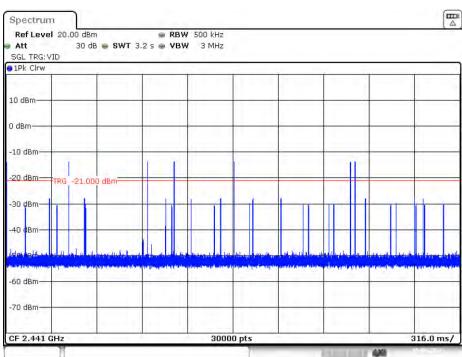

Date: 19.JUN.2021 15:16:00


Date: 19.JUN.2021 15:16:05

FCC Part 15.247 Page 44 of 62

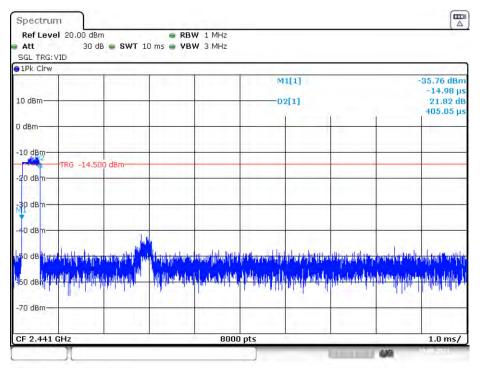
2DH3_Ant1_Hop

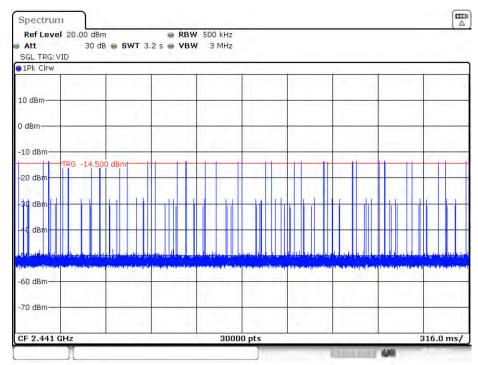

Date: 19.JUN.2021 15:16:35


Date: 19.JUN.2021 15:16:40

FCC Part 15.247 Page 45 of 62

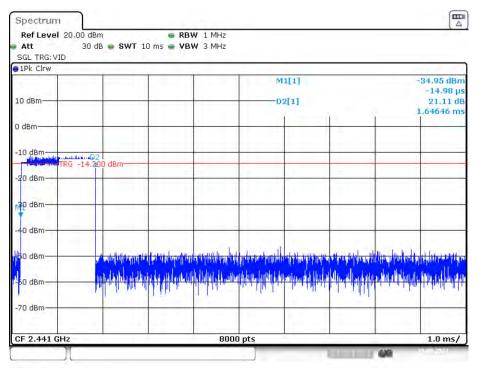
2DH5_Ant1_Hop

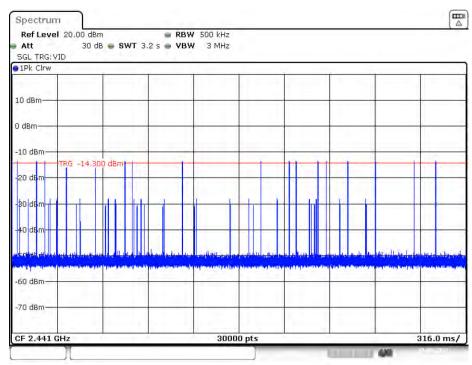

Date: 19.JUN.2021 15:30:04


Date: 19.JUN.2021 15:30:09

FCC Part 15.247 Page 46 of 62

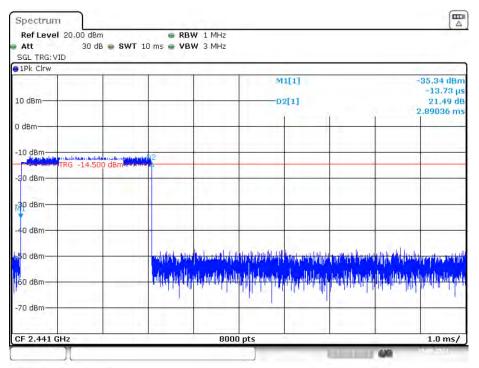
3DH1_Ant1_Hop

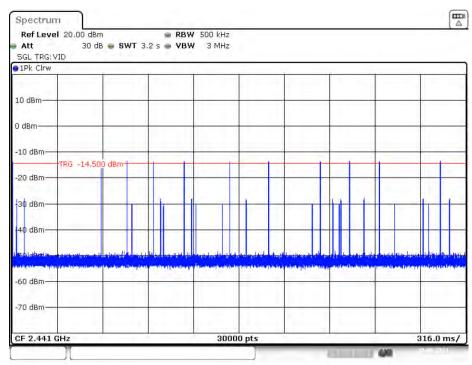

Date: 19.JUN.2021 15:22:14


Date: 19.JUN.2021 15:22:19

FCC Part 15.247 Page 47 of 62

3DH3_Ant1_Hop


Date: 19.JUN.2021 15:22:47


Date: 19.JUN.2021 15:22:52

FCC Part 15.247 Page 48 of 62

3DH5_Ant1_Hop

Date: 19.JUN.2021 15:33:04

Date: 19.JUN.2021 15:33:11

FCC Part 15.247 Page 49 of 62

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Report No.: SZXX1210611-22988E-RF

Test Procedure

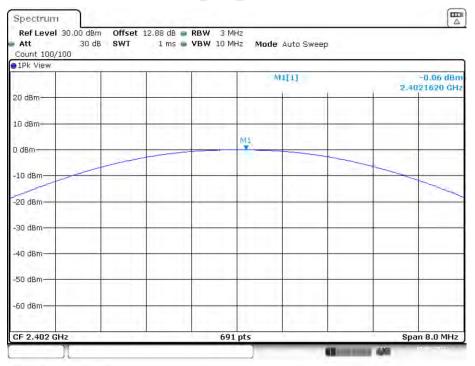
- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

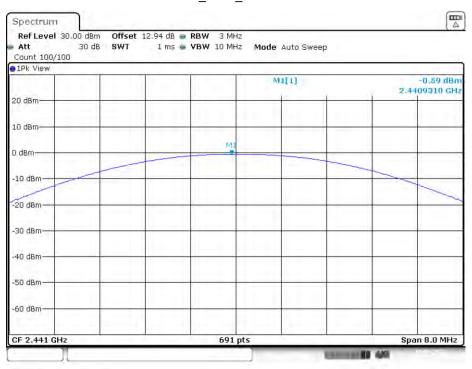
Temperature:	24°C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-06-19.


EUT operation mode: Transmitting

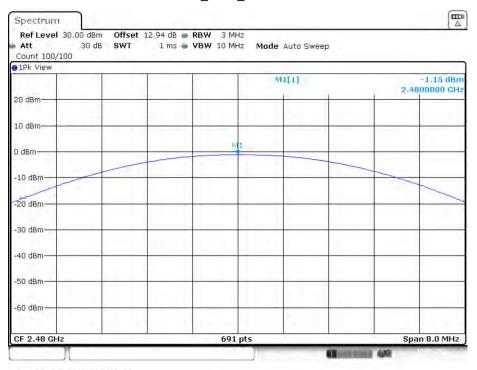
Test Result: Compliant.

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
DH1 Ant1		2402	-0.06	<=20.97	PASS
	Ant1	2441	-0.59	<=20.97	PASS
		2480	-1.15	<=20.97	PASS
2DH1 Ant1		2402	2.05	<=20.97	PASS
	Ant1	2441	1.52	<=20.97	PASS
		2480	0.97	<=20.97	PASS
3DH1	Ant1	2402	2.6	<=20.97	PASS
		2441	2.12	<=20.97	PASS
		2480	1.51	<=20.97	PASS

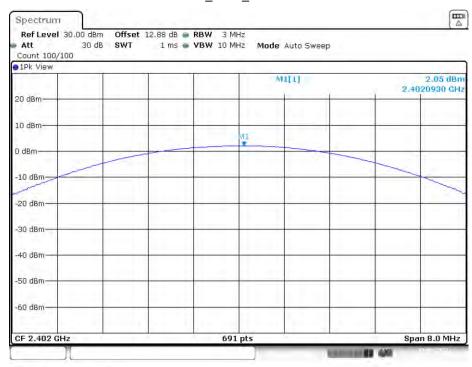

FCC Part 15.247 Page 50 of 62

DH1_Ant1_2402MHz

Date: 19.JUN.2021 15:24:19

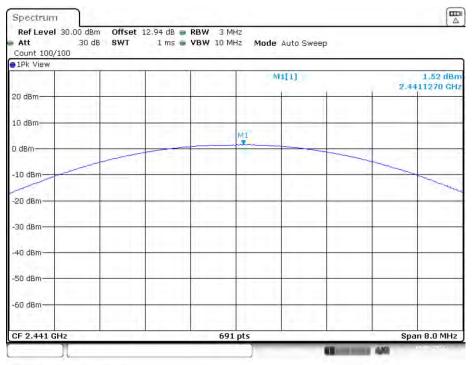

DH1_Ant1_2441MHz

Date: 19.JUN.2021 15:24:47

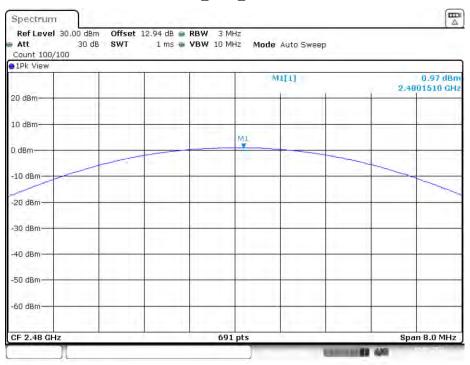

FCC Part 15.247 Page 51 of 62

DH1_Ant1_2480MHz

Date: 19.JUN.2021 15:25:08

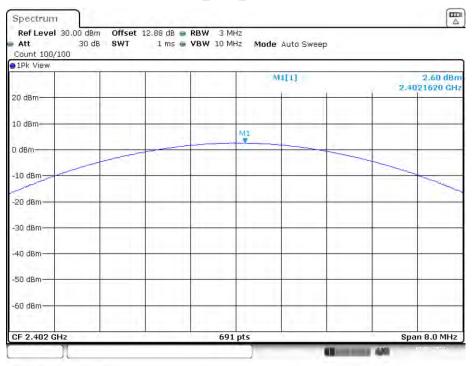

2DH1_Ant1_2402MHz

Date: 19.JUN.2021 15:25:30

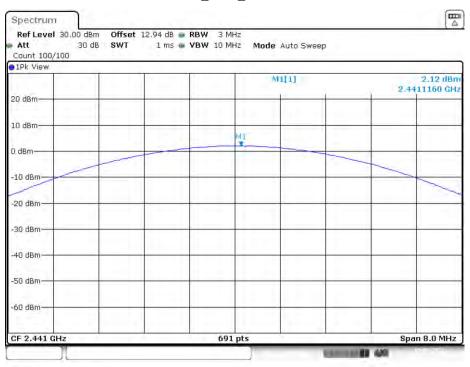

FCC Part 15.247 Page 52 of 62

2DH1_Ant1_2441MHz

Date: 19.JUN.2021 15:25:52

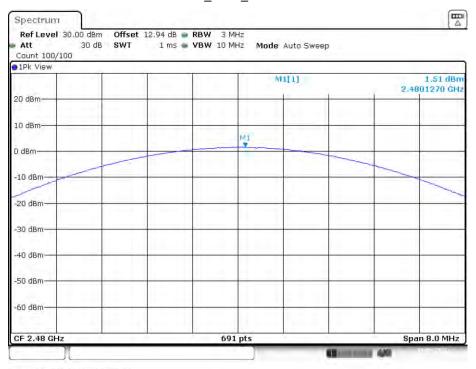

2DH1_Ant1_2480MHz

Date: 19.JUN.2021 15:26:11


FCC Part 15.247 Page 53 of 62

3DH1_Ant1_2402MHz

Date: 19.JUN.2021 15:26:36


$3DH1_Ant1_2441MHz$

Date: 19.JUN.2021 15:26:59

FCC Part 15.247 Page 54 of 62

$3DH1_Ant1_2480MHz$

Date: 19.JUN.2021 15:27:19

FCC Part 15.247 Page 55 of 62

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: SZXX1210611-22988E-RF

Test Procedure

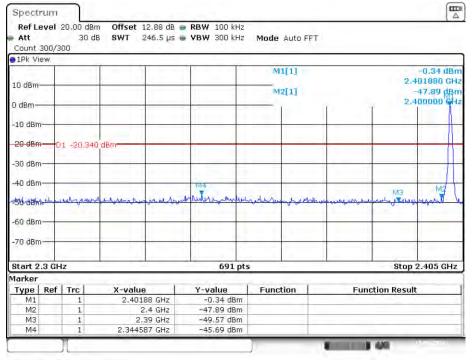
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

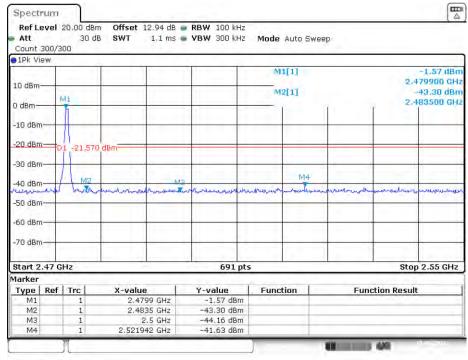
Temperature:	24°C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Fan Yang on 2021-06-19.


EUT operation mode: Transmitting

Test Result: Compliant.

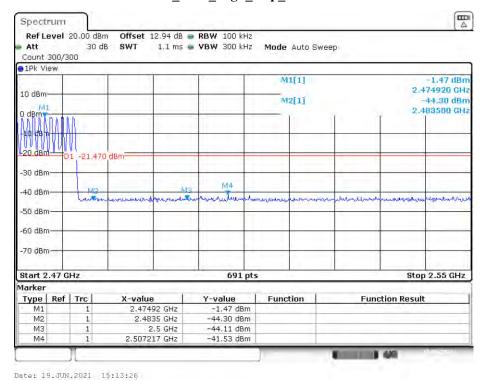
FCC Part 15.247 Page 56 of 62


Conducted Band Edge Result:

DH1_Ant1_Low_2402MHz

Date: 19.JUN.2021 15:00:30

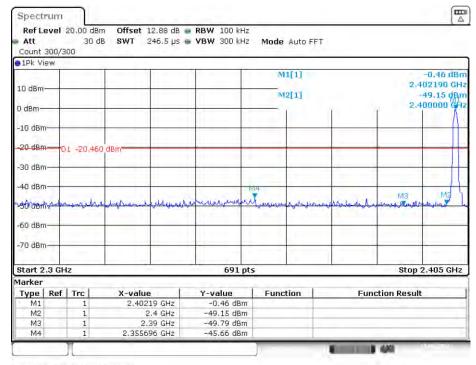
DH1_Ant1_High_2480MHz



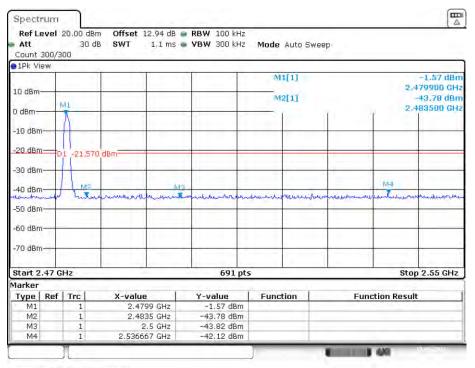
Date: 19.JUN.2021 15:02:29

FCC Part 15.247 Page 57 of 62

DH1_Ant1_Low_Hop_2402MHz m A Ref Level 20.00 dBm Offset 13.10 dB @ RBW 100 kHz Att 30 dB SWT 246.5 µs • VBW 300 kHz Mode Auto FFT Count 300/300 1Pk View M1[1] -0.79 dBn 2.402040 GHz 10 dBm -48.54 dBi 2.400000 🖨 M2[1] 0 dBm -10 dBm-20 dBm-D1 -20,790 dBm= -30 dBm 40 dBm SO GOW 60 dBm 70 dBm-Start 2.3 GHz 691 pts Stop 2.405 GHz Marker Type Ref Trc X-value Y-value Function **Function Result** 2,40204 GHz -0.79 dBm -48.54 dBm M1 M2 2.4 GHz 2.39 GHz -49.42 dBm 2.344587 GHz -45.79 dBm


DH1_Ant1_High_Hop_2480MHz

Date: 19.JUN.2021 15:38:15

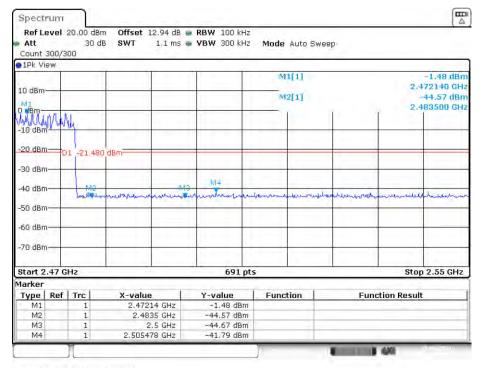

FCC Part 15.247 Page 58 of 62

2DH1_Ant1_Low_2402MHz

Date: 19.JUN.2021 15:04:02

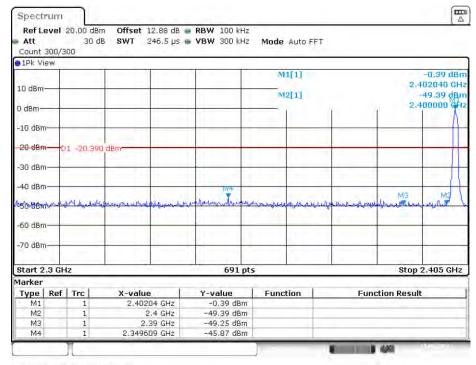
2DH1_Ant1_High_2480MHz

Date: 19.JUN.2021 15:06:03

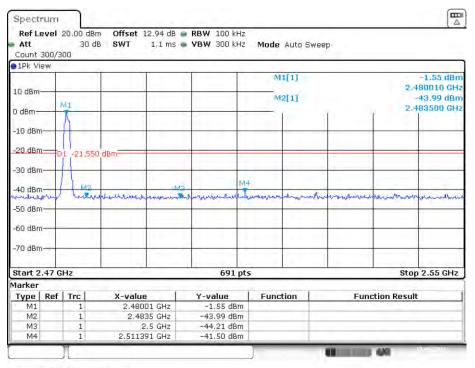

FCC Part 15.247 Page 59 of 62

2DH1_Ant1_Low_Hop_2402MHz

Date: 19.JUN.2021 15:14:01

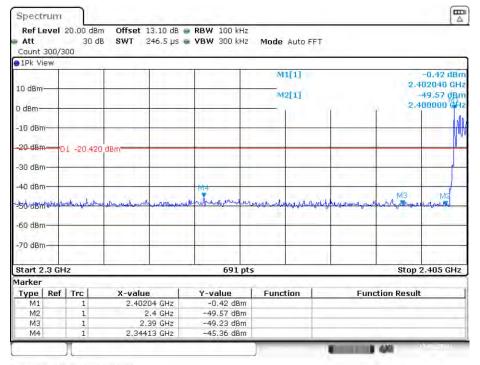

2DH1_Ant1_High_Hop_2480MHz

Date: 19.JUN.2021 15:20:05

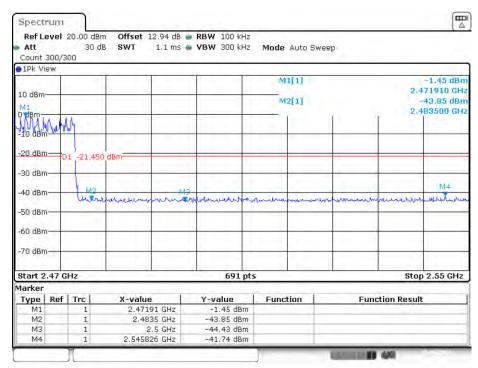

FCC Part 15.247 Page 60 of 62

3DH1_Ant1_Low_2402MHz

Date: 19.JUN.2021 15:07:14


3DH1_Ant1_High_2480MHz

Date: 19.JUN.2021 15:09:41


FCC Part 15.247 Page 61 of 62

3DH1_Ant1_Low_Hop_2402MHz

Date: 19.JUN.2021 15:20:39

3DH1_Ant1_High_Hop_2480MHz

Date: 19.JUN.2021 15:23:49

***** END OF REPORT *****

FCC Part 15.247 Page 62 of 62