

Report No.: STS2503037H01

Issued for

SHENZHEN FCAR TECHNOLOGY CO.,LTD

8th floor, Chuangyi Building, No. 3025 Nanhai Ave., Nanshan, Shenzhen, Guangdong, China 518060

Product Name: AUTO DIAGNOSTIC SYSTEM

Brand Name: FCAR

Model Name: E91

E91-W, E91-D, E91-G, E91-M, E91-VM, E91-LITE, E91 PLUS, E91 PRO, E92,

Series Model(s): E93, E94, E95, E91-ALIGNER, FD-505M,

FD-505S, FD-505, FD-305S, FD-305, AD-

305, AD-305S, FA-305, FA-305S

FCC ID: 2AJDD-IDIAGSE91

ANSI/IEEE Std. C95.1

Test Standard: FCC 47 CFR Part 2 (2.1093)

IEEE Std. 1528-2013

Max. Report

SAR (1g)

Body: 0.608 W/kg

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Page 2 of 45 Report No.: STS2503037H01

TEST REPORT CERTIFICATION

Applicant's name	SHENZHEN FCAR TECHNOLOGY CO.,	LTD
------------------	-------------------------------	-----

Shenzhen, Guangdong, China 518060

Manufacturer's Name: SHENZHEN FCAR TECHNOLOGY CO.,LTD

Shenzhen, Guangdong, China 518060

Product description

Product name AUTO DIAGNOSTIC SYSTEM

Brand name: FCAR

Model name: E91

E91-W, E91-D, E91-G, E91-M, E91-VM, E91-LITE, E91

PLUS, E91 PRO, E92, E93, E94, E95, E91-ALIGNER, FD-

305S, FA-305, FA-305S

ANSI/IEEE Std. C95.1

Standards FCC 47 CFR Part 2 (2.1093)

IEEE Std. 1528-2013

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test

Date of Issue...... 17 Mar. 2025

Test Result..... Pass

Testing Engineer :

(Xin.Liu)

Technical Manager:

(Shifan, Long)

Authorized Signatory:

(Bovey Yang)

TESTING APPROV

Page 3 of 45 Report No.: STS2503037H01

Table of Contents

5
5
7
7
8
9
9
9
12
12
14
15
15
16
17
18
19
22
22
23
23
26
26
29
29
32
34
34
35
36
42
45

Page 4 of 45

Revision History

Report No.: STS2503037H01

Rev.	Issue Date	Issue Date Report No.		Contents
00	17 Mar. 2025	STS2503037H01	ALL	Initial Issue
	7			

Page 5 of 45 Report No.: STS2503037H01

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

1.1 EUT Descri	ption									
Product Name	AUTO DIA	GNOSTIC SYSTEM								
Brand Name	FCAR	FCAR								
Model Name	E91	<u>=</u> 91								
Series Model	E94, E95,	E91-W, E91-D, E91-G, E91-M, E91-VM, E91-LITE, E91 PLUS, E91 PRO, E92, E93, E94, E95, E91-ALIGNER, FD-505M, FD-505S, FD-505, FD-305S, FD-305, AD-305, AD-305S, FA-305S								
Model Difference	Only the na	only the name is different								
Sample No.	250303005	5-1								
Battery		Rated Voltage: Charge Limit Voltage: Capacity:								
Device Category	Portable	Portable								
Product stage	Production	Production unit								
RF Exposure Environment	General Po	General Population / Uncontrolled								
Hardware Version	N/A									
Software Version	N/A									
Frequency Range	WLAN 80 WLAN 802 WLAN 802	WLAN802.11b/g/n20/ax20: 2412 MHz ~ 2462 MHz WLAN 802.11n40/ax40: 2422 MHz ~ 2452 MHz WLAN 802.11a/n20/n40/ac20/ac40/ax20/ax40: 5150 ~ 5250 MHz WLAN 802.11a/n20/n40/ac20/ac40/ax20/ax40: 5725 ~ 5850 MHz BLE: 2402 MHz to 2480 MHz								
Max. Reported	Band	Mode	Body Worn (W/kg)						
SAR(1g):	DTS	2.4G WLAN	0.291							
(Limit:1.6W/kg) Test distance:	NII	5.2G WLAN	0.608	_						
Body:0mm	NII 5.8G WLAN 0			0.556						
FCC Equipment Class		nsmission System (DTS I National Information Ir								

Page 6 of 45 Report No.: STS2503037H01

Operating Mode:	2.4G WLAN: 802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11ax(OFDM):BPSK,QPSK,16-QAM,64-QAM 5G WLAN: 802.11a(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11ac(OFDM):BPSK,QPSK,16-QAM,64-QAM,256-QAM 802.11ax(OFDM):BPSK,QPSK,16-QAM,64-QAM,256-QAM BLE: GFSK
Antenna Specification:	Bluetooth: PIFA Antenna WLAN: PIFA Antenna
Hotspot Mode	Not Support
DTM Mode	Not Support
Noto	

Note

^{1.} The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

Page 7 of 45 Report No.: STS2503037H01

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°ℂ)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

ShenZhen STS Test Services Co.,Ltd.

101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Rao'an District, Shonzhon, Guang Dong, China

District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration No.: 625569

IC Registration No.: 12108A A2LA Certificate No.: 4338.01

Page 8 of 45 Report No.: STS2503037H01

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
10	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.4 8.0 20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

Page 9 of 45 Report No.: STS2503037H01

3. SAR Measurement System

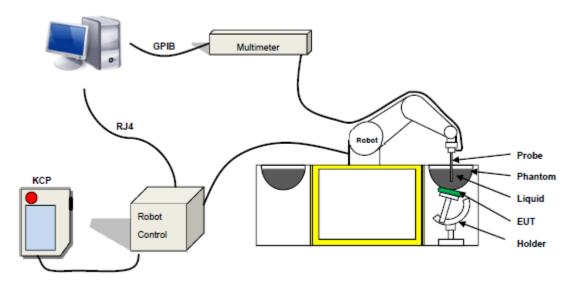
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

 ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Page 10 of 45 Report No.: STS2503037H01

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The Open SAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 08/21 EPGO352 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 150 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

Page 11 of 45 Report No.: STS2503037H01

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.4. Tissue Simulating Liquids

Page 12 of 45 Report No.: STS2503037H01

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max _ 5 %) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 1 g averaging, the maximum weighting coefficient for SAR is 0.5.

IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Frequency	εr	σ 10g S/m
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 to 2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27
		· · · · · · · · · · · · · · · · · · ·

Page 13 of 45

Report No.: STS2503037H01

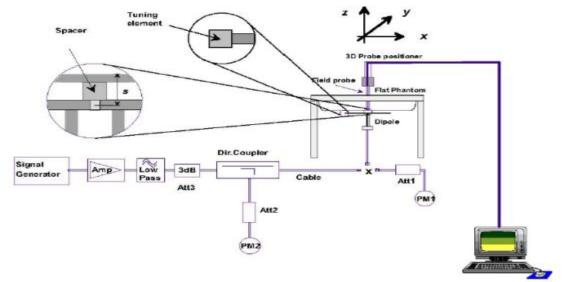
The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

Head (Reference IEEE1528)								
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)		(%)	(%)				σ (S/m)	
, ,	(%)			(%)	(%)	(%)		3
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0
2450	55.0	0	0	0.1	0	44.9	1.80	39.2
2600	54.9	0	0	0.1	0	45.0	1.96	39.0
Frequency	Water	ŀ	Hexyl Carbito	ol	Triton	X-100	Conductivity	Permittivity
(MHz)	(%)	(%)			(%)		σ (S/m)	3
5200	62.52		17.24 17.24					36.0
5800	62.52		17.24		17.24		5.27	35.3
		Body (F	rom instrun	nent manu	facturer)			
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0.1	0	31.3	1.95	52.7
2600	68.2	0	0	0.1	0	31.7	2.16	52.5
			DGBE		Salt		Conductivity	Permittivity
Frequency(MHz)	Water	(%)		(%)		σ (S/m)	ε	
5200	78.60		21.40		/		5.30	49.00
5800	78.50		21.40			0.1		48.20

Page 14 of 45

Report No.: STS2503037H01

LIQUID MEASUREMENT RESULTS


Date	Ambient		Simulating Liquid		Parameters	Torget	Measured	Deviation	Limited		
Date	Temp.	Humidity %	Frequency (MHz)	Temp. [°C]	Parameters	Target	Measured	%	%		
2025-03-11	20.5	45	2437	20.1	Permittivity	39.22	39.21	-0.03	±5		
2025-03-11	20.5	45	2437	20.1	Conductivity	1.79	1.84	2.88	±5		
2025 02 44	20.0	45	2450	20.2	Permittivity	39.20	40.31	2.83	±5		
2025-03-11	20.6	45	2450	20.3	Conductivity	1.80	1.86	3.33	±5		
0005.00.40	04.7	50	5400	100	Permittivity	36.02	36.62	1.67	±5		
2025-03-12	21.7	52	5160	5180	5180	21.5	Conductivity	4.64	4.66	0.45	±5
0005 00 40	04.7	50	5000	04.4	Permittivity	36.00	36.66	1.83	±5		
2025-03-12	21.7	52	5200	21.4	Conductivity	4.66	4.66	0.00	±5		
0005.00.40	04.7	50	57.45	04.0	Permittivity	35.36	36.49	3.21	±5		
2025-03-12	21.7	52	5745	21.3	Conductivity	5.21	5.26	0.92	±5		
2005.00.40	0.4 =			04.4	Permittivity	35.32	35.87	1.57	±5		
2025-03-12	21.7	52	5785	21.4	Conductivity	5.25	5.27	0.30	±5		
0005 00 40	04.7	50	5000	04.4	Permittivity	35.30	36.47	3.31	±5		
2025-03-12	21.7	52	5800	21.4	Conductivity	5.27	5.34	1.33	±5		
0005.00.40	04.7	50	5005	04.4	Permittivity	35.28	35.99	2.03	±5		
2025-03-12	21.7	52	5825	21.4	Conductivity	5.30	5.30	0.07	±5		

Page 15 of 45 Report No.: STS2503037H01

5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder. The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

Page 16 of 45 Report No.: STS2503037H01

5.2 Validation Result

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (>20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole		Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
SN 30/14 DIP2G450-	Llood Liquid	2023-07-04	-26.03	/	46.3	/
335	Head Liquid	2024-07-01	-26.42	1.50	47.25	2.05
CN 42/44 M/C 422	Llood Liquid	2023-07-04	< -8.23	/	/	/
SN 13/14 WGA32	Head Liquid	2024-07-01	-13.17	1	/	1

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2025-03-11	2450	100	5.197	51.97	54.70	-4.99	10
2025-03-12	5200	100	16.597	165.97	163.88	1.28	10
2025-03-12	5800	100	17.684	176.84	188.95	-6.41	10

Note:

- 1. The tolerance limit of System validation ±10%.
- 2. The dipole input power (forward power) was 100 mW.
- 3. The results are normalized to 1 W input power.

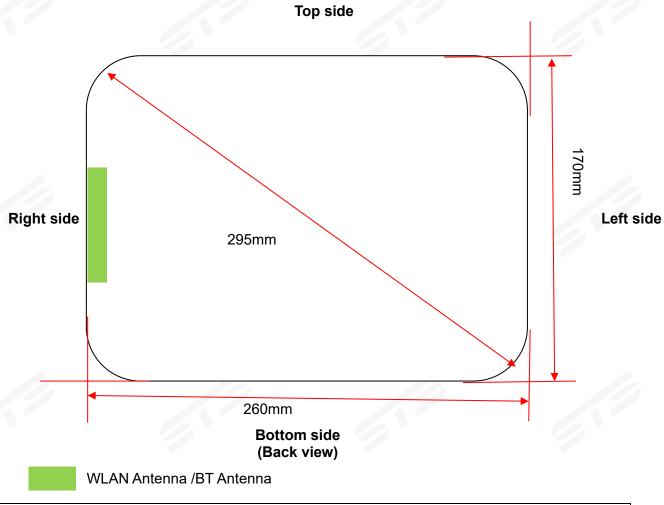
Page 17 of 45 Report No.: STS2503037H01

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan


First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

Page 18 of 45 Report No.: STS2503037H01

7. EUT Antenna Location Sketch

It is a AUTO DIAGNOSTIC SYSTEM, support GSM/WCDMA/LTE/WLAN/BT mode.

Antenna Separation Distance(cm)									
ANT	ANT Back Side Left Side Right Side Top Side Bottom Side								
WLAN/BT 1 23 ≤0.5 7 7									

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

Page 19 of 45 Report No.: STS2503037H01

7.1 SAR test exclusion consider table

The WLAN/BT SAR evaluation of Maximum power (dBm) summing tolerance.

THE WLANDI	SAR evaluation of Maximum power (dbm	<i>)</i> summing	weighted		
	Wireless Interface	ВТ	2.4G	5.2G	5.8G
Evacuro	wireless interface	DI	WLAN	WLAN	WLAN
Exposure Position	Calculated Frequency(GHz)	2.402	2.437	5.18	5.745
Position	Maximum Turn-up power (dBm)	-1	13.5	14	13
	Maximum rated power(mW)	0.79	22.39	25.12	19.95
	Separation distance (cm)	1	1	1	1
Back Side	exclusion threshold(mW)	10.39	10.29	6.30	5.89
	Testing required?	NO	YES	YES	YES
Left Side	Separation distance (cm)	23	23	23	23
	exclusion threshold(mW)	3989.49	3991.24	4083.63	4096.48
	Testing required?	NO	NO	NO	NO
	Separation distance (cm)	≤0.5	≤0.5	≤0.5	≤0.5
Right Side	exclusion threshold(mW)	2.79	2.76	1.51	1.39
	Testing required?	NO	YES	YES	YES
	Separation distance (cm)	7	7	7	7
Top Side	exclusion threshold(mW)	417.28	415.91	350.22	342.05
	Testing required?	NO	NO	NO	NO
	Separation distance (cm)	7	7	7	7
Bottom Side	exclusion threshold(mW)	417.28	415.91	350.22	342.05
	Testing required?	NO	NO	NO	NO

Note:

- 1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D04, if the maximum time-averaged power available does not exceed 1 mW. This stand-alone SAR exemption test.

Page 20 of 45 Report No.: STS2503037H01

4. Per KDB 447498 D04, the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} (\text{mW}) = \begin{cases} ERP_{20\ cm} (d/20\ \text{cm})^x & d \leq 20\ \text{cm} \\ ERP_{20\ cm} & 20\ \text{cm} < d \leq 40\ \text{cm} \end{cases}$$
 Where
$$x = -\log_{10} \left(\frac{60}{ERP_{20\ cm} \sqrt{f}}\right) \text{ and } f \text{ is in GHz};$$
 and
$$ERP_{20\ cm} (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \leq f < 1.5\ \text{GHz} \\ 3060 & 1.5\ \text{GHz} \leq f \leq 6\ \text{GHz} \end{cases}$$

$$d = \text{the separation distance (cm)};$$

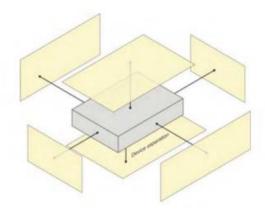
5. Per KDB 447498 D04, An alternative to the SAR-based exemption is using below table and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in below table to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

	RF Source frequency (MHz)	Threshold ERP(watts)
l	0.3-1.34	1,920 R ² .
	1.34-30	3,450 R ² /f ² .
ĺ	30-300	3.83 R².
	300-1,500	0.0128 R ² f.
	1,500-100,000	19.2R ² .

Page 21 of 45 Report No.: STS2503037H01

- 6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.
- 7. Per KDB 616217 D04, SAR evaluation for the front surface of tablet display screens are generally not necessary.
- 8. Per KDB 248227, as maximum rated power for U-NII-1>U-NII-2A, U-NII-1 was chosen for SAR evaluation. Based on the measurements obtained, SAR measurements on U-NII-2A are not required as highest reported SAR from U-NII-1 band is≤1.2W/Kg.

Page 22 of 45 Report No.: STS2503037H01


8. EUT Test Position

This EUT was tested in Back Side and Right Side.

8.1 Body-worn Position Conditions

Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative test separation distance configuration may be used to support both SAR conditions. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

Page 23 of 45 Report No.: STS2503037H01

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

approximately the 95	% contide			verage fac y- SN 08/21					
	Measure			JT averaged		/ 10 gram			
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10g Ui (+- %)	vi
			Measurer	nent Systen	1				
Probe calibration	E.2.1	5.72	N	1.00	1.00	1.00	5.72	5.72	8
Axial Isotropy	E.2.2	0.18	R	1.73	0.71	0.71	0.07	0.07	8
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.71	0.71	0.42	0.42	8
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	00
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	8
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	8
Modulation response	E2.5	3.42	R	1.73	1.00	1.00	1.97	1.97	8
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	8
Response Time	E.2.7	0.17	R	1.73	1.00	1.00	0.10	0.10	8
Integration Time	E.2.8	1.43	R	1.73	1.00	1.00	0.83	0.83	8
RF ambient conditions-Noise	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	8
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	00
Probe positioner mechanical tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	8
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	8
			Test sam	ple Related					
Test sample positioning	E.4.2	3.10	N	1.00	1.00	1.00	3.10	3.10	8
Device holder uncertainty	E.4.1	3.80	N	1.00	1.00	1.00	3.80	3.80	8
Output power variation— SAR drift measurement	E.2.9	4.50	R	1.73	1.00	1.00	2.60	2.60	8
SAR scaling	E.6.5	1.80	R	1.73	1.00	1.00	1.04	1.04	8
		Pha	ntom and t	issue paran	neters				
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	М
Liquid permittivity measurement	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	М
Liquid conductivity— temperature uncertainty	E.3.4	2.70	R	1.73	0.23	0.26	0.36	0.41	8
Liquid permittivity— temperature uncertainty	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	8
Combined Standard Uncertainty			RSS				10.08	9.59	
Expanded Uncertainty (95% Confidence interval)			K=2				19.58	19.18	

Page 24 of 45 Report No.: STS2503037H01

		SATIMO) Uncertaint	y- SN 08/21	EPGO352				
	System Val	lidation unce	ertainty for I	DUT averag	ed over 1 gra	am / 10 gram	ı.		
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10g Ui (+-%)	vi
Measurement System		-1			///				
Probe calibration	E.2.1	5.72	N	1.00	1.00	1.00	5.72	5.72	8
Axial Isotropy	E.2.2	0.18	R	1.73	1.00	1.00	0.10	0.10	8
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.00	0.00	0.00	0.00	8
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	8
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	8
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	8
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	8
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	8
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	8
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	8
RF ambient conditions- Noise	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	8
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	00
Probe positioner mechanical tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	8
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	∞
System validation source									
Deviation of experimental dipole from numerical dipole	E.6.4	4.80	N	1.00	1.00	1.00	4.80	4.80	8
Input power and SAR drift measurement	8,6.6.4	5.10	R	1.73	1.00	1.00	2.94	2.94	00
Dipole axis to liquid distance	8,E.6.6	2.40	R	1.73	1.00	1.00	1.39	1.39	8
Phantom and set-up			•	•					
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	00
Liquid conductivity (temperature uncertainty)	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	8
Liquid conductivity (measured)	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	М
Liquid permittivity (temperature uncertainty)	E.3.4	2.70	R	1.73	0.23	0.26	0.36	0.41	8
Liquid permittivity (measured)	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	М
Combined Standard Uncertainty			RSS				9.72	9.52	
Expanded Uncertainty (95% Confidence interval)			K=2				19.44	19.03	

Page 25 of 45 Report No.: STS2503037H01

		SATIMO) Uncertain	ty- SN 08/2	1 EPGO352				
	System	Check unc	ertainty for	DUT averag	ed over 1 gr	am / 10 gram	١.		
Uncertainty Component	Sec.	Tol	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10g Ui (+-%)	vi
		(+- %)							
Measurement System									
Probe calibration drift	E.2.1.3	5.72	N	1.00	1.00	1.00	5.72	5.72	8
Axial Isotropy	E.2.2	0.18	R	1.73	0.00	0.00	0.00	0.00	00
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.00	0.00	0.00	0.00	00
Boundary effect	E.2.3	0.8	R	1.73	0.00	0.00	0.00	0.00	00
Linearity	E.2.4	1.25	R	1.73	0.00	0.00	0.00	0.00	00
System detection limits	E.2.4	1.20	R	1.73	0.00	0.00	0.00	0.00	00
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	00
				_			1		
Readout Electronics	E.2.6	0.26	N	1.00	0.00	0.00	0.00	0.00	00
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	8
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	8
RF ambient conditions- Noise	E.6.1	3.51	R	1.73	0.00	0.00	0.00	0.00	00
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	0.00	0.00	0.00	0.00	8
Probe positioner mechanical tolerance	E.6.2	1.2	R	1.73	1.00	1.00	0.69	0.69	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	1.73	1.00	1.00	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	3.9	R	1.73	0.00	0.00	0.00	0.00	8
System check source (dipole)									
Deviation of experimental dipoles	E.6.4	4.8	N	1.00	1.00	1.00	4.80	4.80	8
Input power and SAR drift measurement	8,6.6.4	5.1	R	1.73	1.00	1.00	2.94	2.94	00
Dipole axis to liquid distance	8,E.6.6	2.4	R	1.73	1.00	1.00	1.39	1.39	8
Phantom and tissue parameters									
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.7	R	1.73	1.00	1.00	2.14	2.14	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1.00	1.00	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	2.4	R	1.73	0.78	0.71	1.08	0.98	8
Liquid permittivity measurement	E.3.3	4.1	N	1.00	0.78	0.71	3.20	2.91	М
Liquid conductivity— temperature uncertainty	E.3.4	2.7	R	1.73	0.23	0.26	0.36	0.41	00
Liquid permittivity— temperature uncertainty	E.3.4	4.8	N	1.00	0.23	0.26	1.10	1.25	М
Combined Standard Uncertainty			RSS				5.56	5.20	
Expanded Uncertainty (95% Confidence interval)			K=2				11.12	10.41	

Page 26 of 45

Report No.: STS2503037H01

10. Conducted Power Measurement

10.1 Test Result

2.4G WLAN

		2.4GWIFI			
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)	
	1	2412	13.31	21.43	
802.11b	7	2437	13.35	21.63	
	11	2462	13.25	21.13	
	1	2412	12.36	17.22	
802.11g	7	2437	12.04	16.00	
	11	2462	11.97	15.74	
	1	2412	12.16	16.44	
802.11 n-HT20	7	2437	11.86	15.35	
	11	2462	12.31	17.02	
	3	2422	12.57	18.07	
802.11 n-HT40	6	2437	12.46	17.62	
	9	2452	12.67	18.49	
	1	2412	12.91	19.54	
802.11 ax-HEW20	7	2437	12.40	17.38	
	11	2462	12.09	16.18	
	3	2422	12.62	18.28	
802.11 ax-HEW40	6	2437	12.37	17.26	
	9	2452	12.52	17.86	

BLE

	BLE								
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)					
	0	2402	-1.45	0.72					
GFSK(1Mbps)	19	2440	-2.34	0.58					
	39	2480	-2.61	0.55					
	0	2402	-1.56	0.70					
GFSK(2Mbps)	19	2440	-2.44	0.57					
	39	2480	-2.69	0.54					

Page 27 of 45

Report No.: STS2503037H01

		5.2G WLAN			
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW	
	36	5180	13.57	22.75	
802.11a	40	5200	13.34	21.58	
	48	5240	12.90	19.50	
	36	5180	12.35	17.18	
802.11 n-HT20	40	5200	12.35	17.18	
	48	5240	12.37	17.26	
	38	5190	12.57	18.07	
802.11 n-HT40	46	5230	12.06	16.07	
	36	5180	12.49	17.74	
802.11ac-VHT20	40	5200	12.51	17.82	
	48	5240	12.26	16.83	
000.44	38	5190	12.63	18.32	
802.11ac-VHT40	46	5230	12.12	16.29	
	36	5180	12.25	16.79	
802.11ax-HEW20	40	5200	12.12	16.29	
	48	5240	12.14	16.37	
000 44 11514/40	38	5190	12.18	16.52	
802.11ax-HEW40	46	5230	11.89	15.45	

Page 28 of 45

Report No.: STS2503037H01

		5.8G WLAN			
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)	
	149	5745	12.68	18.54	
802.11a	157	5785	12.54	17.95	
	165	5825	12.28	16.90	
	149	5745	12.56	18.03	
802.11 n-HT20	157	5785	12.72	18.71	
	165	5825	12.27	16.87	
000.44	151	5755	12.86	19.32	
802.11 n-HT40	159	5795	12.85	19.28	
	149	5745	12.88	19.41	
802.11ac-VHT20	157	5785	12.70	18.62	
	165	5825	12.49	17.74	
000.44	151	5755	12.02	15.92	
802.11ac-VHT40	159	5795	12.83	19.19	
	149	5745	12.96	19.77	
802.11ax-HEW20	157	5785	12.17	16.48	
	165	5825	11.73	14.89	
000 44 UEW40	151	5755	12.18	16.52	
802.11ax-HEW40	159	5795	11.61	14.49	

Page 29 of 45 Report No.: STS2503037H01

11. EUT and Test Setup Photo

11.1 EUT Photo

Back side

Page 30 of 45 Report No.: STS2503037H01

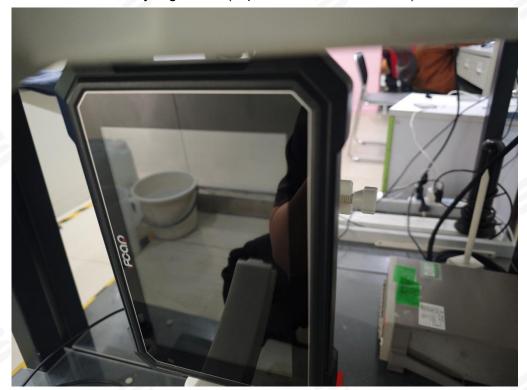
Top side

Bottom side

Page 31 of 45 Report No.: STS2503037H01

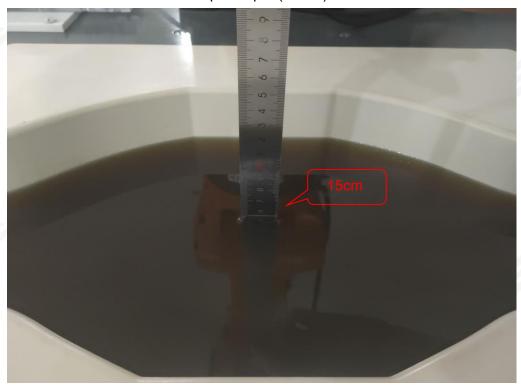
Left side

Right side



Page 32 of 45 Report No.: STS2503037H01

Body Back side(separation distance is 0mm)


Body Right Side (separation distance is 0mm)

Page 33 of 45 Report No.: STS2503037H01

Liquid depth (15 cm)

Page 34 of 45 Report No.: STS2503037H01

12. SAR Result Summary

12.1 Body-worn SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn- up Power(dBm)	Meas.Output Power(dBm)	Scaling Factor	Scaled SAR (W/Kg)	Meas.No.
2.4GHz	802.11b	Back Side	2437	0.255	2.93	13.50	13.35	1.035	0.264	/
WLAN	602.110	Right Side	2437	0.281	3.40	13.50	13.35	1.035	0.291	1
5.2GHz	902.446	Back Side	5180	0.398	3.94	14.00	13.57	1.104	0.439	/
WLAN	802.11a	Right Side	5180	0.551	0.45	14.00	13.57	1.104	0.608	2
		Back Side	5745	0.405	-1.71	13.00	12.96	1.009	0.409	/
5.8GHz	802.11ax-	Right Side	5745	0.551	-2.08	13.00	12.96	1.009	0.556	3
WLAN	HEW20	Right Side	5785	0.455	0.34	13.00	12.17	1.211	0.551	1
		Right Side	5825	0.410	2.07	13.00	11.73	1.340	0.549	1

Note:

- 1. The test separation of all above table is 0mm.
- 2. Per KDB 447498 D04, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 3. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was **0.369** W/Kg for Body)
- 4. Per KDB 248227- When the highest reported SAR for U-NII-1 is adjusted by the ratio of U-NII-2A to U-NII-1 specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for U-NII-1 is adjusted by the ratio of U-NII-2A to U-NII-1 specified maximum output power was 0.232 W/Kg for Body)
- 5. When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

Page 35 of 45 Report No.: STS2503037H01

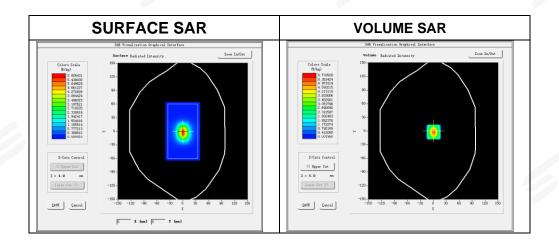
13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHzDipole	MVG	SID2450	SN 30/14 DIP2G450-335	2023.07.04	2026.07.03
Waveguide	MVG	SWG5500	SN 13/14 WGA32	2023.07.04	2026.07.03
E-Field Probe	MVG	SSE2	SN 08/21 EPGO352	2024.09.18	2025.09.17
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2024.09.18	2025.09.17
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	N/A	N/A
Phantom3	MVG	SAM	SN 21/21 ELLI48	N/A	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	N/A	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	N/A	N/A
Attenuator	Agilent	HXT-10-8-SMA	240327017	2025-02-22	2026-02-21
Directional coupler	Xi'an Xingbo	XBOH-OA08- 20dB	211123-4-3	2025-02-22	2026-02-21
Network Analyzer	Agilent	E5071C	MY46520378	2024-09-25	2025-09-26
Multi Meter	Keithley	Multi Meter 2000	4050073	2024-09-25	2025-09-26
Signal Generator	Agilent	N5182A	MY50140530	2024-09-25	2025-09-26
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2025-02-22	2026-02-21
Wireless Communication Test Set	R&S	CMW500	156324	2024-09-25	2025-09-26
Power Amplifier	DESAY	ZHL-42W	9638	2024-09-25	2025-09-26
Power Meter	R&S	NRP	100510	2024-09-25	2025-09-26
Power Sensor	R&S	NRP-Z11	101919	2024-09-25	2025-09-26
Power Sensor	Keysight	U2021XA	MY56280002	2024-09-25	2025-09-26
Temperature hygrometer	SuWei	SW-108	N/A	2024.10.15	2025.10.14
Thermograph	Elitech	RC-4	S/N EF7176501537	2024.10.15	2025.10.14

Page 36 of 45 Report No.: STS2503037H01

Appendix A. System Validation Plots

System Performance Check Data (2450MHz)

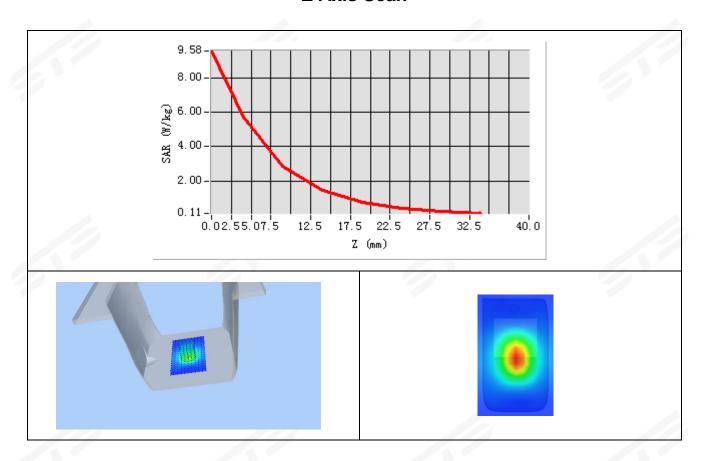

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm, dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2025-03-11

Experimental conditions.

Device Position	Validation plane
Band	2450 MHz
Channels	-
Signal	CW
Frequency (MHz)	2450
Relative permittivity	40.31
Conductivity (S/m)	1.86
Probe	SN 08/21 EPGO352
ConvF	1.80
Crest factor:	1:1


Maximum location: X=1.00, Y=0.00

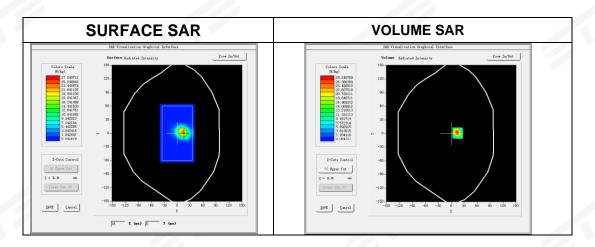
SAR 10g (W/Kg)	2.433616
SAR 1g (W/Kg)	5.197197

Page 37 of 45 Report No.: STS2503037H01

Z Axis Scan

Page 38 of 45 Report No.: STS2503037H01

System Performance Check Data (5200MHz)

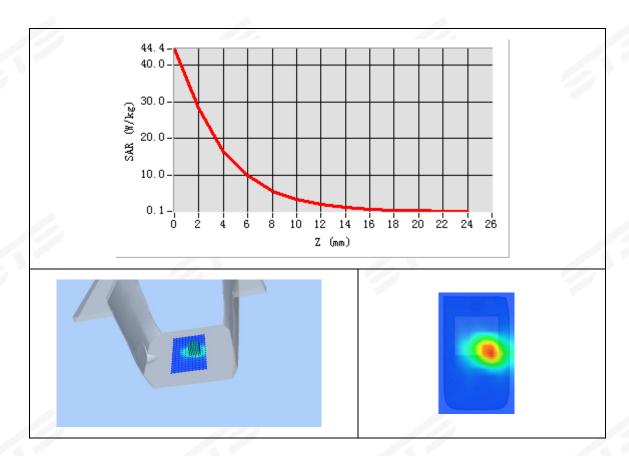

Type: Dipole measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2025-03-12

Experimental conditions.

·	
Device Position	Validation plane
Band	5200 MHz
Channels	<u>/-//</u>
Signal	CW
Frequency (MHz)	5200
Relative permittivity	36.66
Conductivity (S/m)	4.66
Probe	SN 08/21 EPGO352
ConvF	1.33
Crest factor:	1:1


Maximum location: X=7.00, Y=2.00

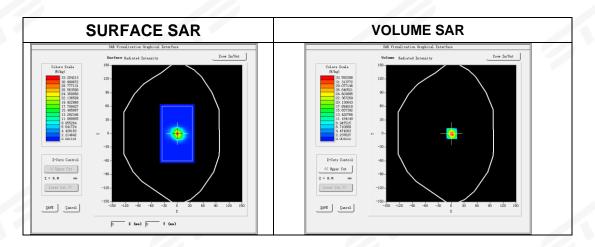
SAR 10g (W/Kg)	5.867857
SAR 1g (W/Kg)	16.597484

Page 39 of 45 Report No.: STS2503037H01

Z Axis Scan

Page 40 of 45 Report No.: STS2503037H01

System Performance Check Data (5800MHz)

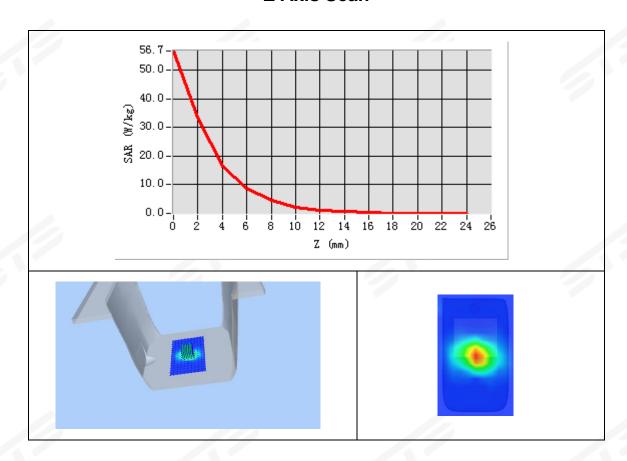

Type: Dipole measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2025-03-12

Experimental conditions.

Device Position	Validation plane
Band	5800 MHz
Channels	<u>/-//</u>
Signal	CW
Frequency (MHz)	5800
Relative permittivity	36.47
Conductivity (S/m)	5.34
Probe	SN 08/21 EPGO352
ConvF	1.35
Crest factor:	1:1

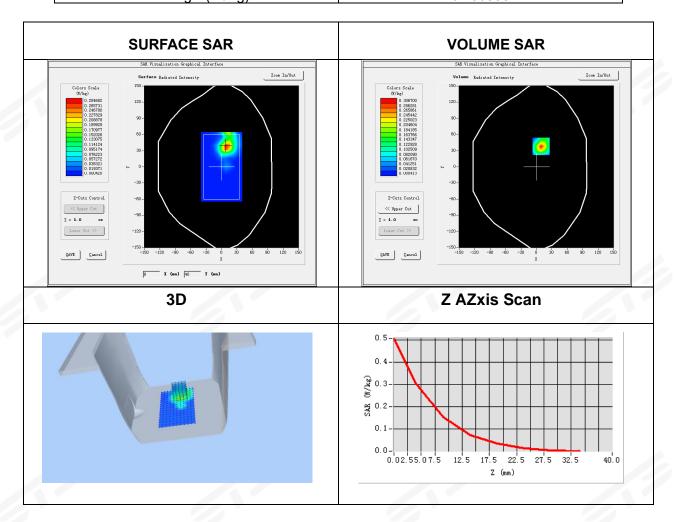

Maximum location: X=7.00, Y=2.00

SAR 10g (W/Kg)	6.367096
SAR 1g (W/Kg)	17.684192

Page 41 of 45 Report No.: STS2503037H01

Z Axis Scan

Page 42 of 45 Report No.: STS2503037H01


Appendix B. SAR Test Plots

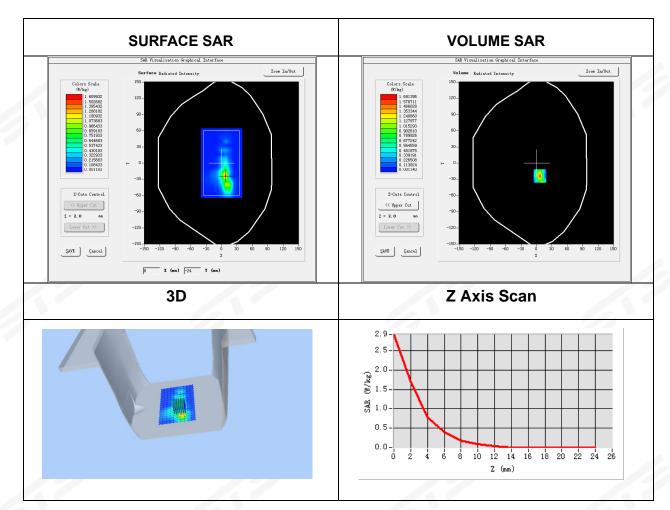
Plot 1: DUT: AUTO DIAGNOSTIC SYSTEM; EUT Model: E91

Test Date	2025-03-11
ConvF	1.80
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7, dx=8mm, dy=8mm, dz=5mm
Phantom	Validation plane
Device Position	Right Side
Band	IEEE 802.11b ISM
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2437
Relative permittivity (real part)	39.21
Conductivity (S/m)	1.84

Maximum location: X=9.00, Y=38.00 SAR Peak: 0.51 W/kg

SAR 10g (W/Kg)	0.118086
SAR 1g (W/Kg)	0.280595

Page 43 of 45 Report No.: STS2503037H01

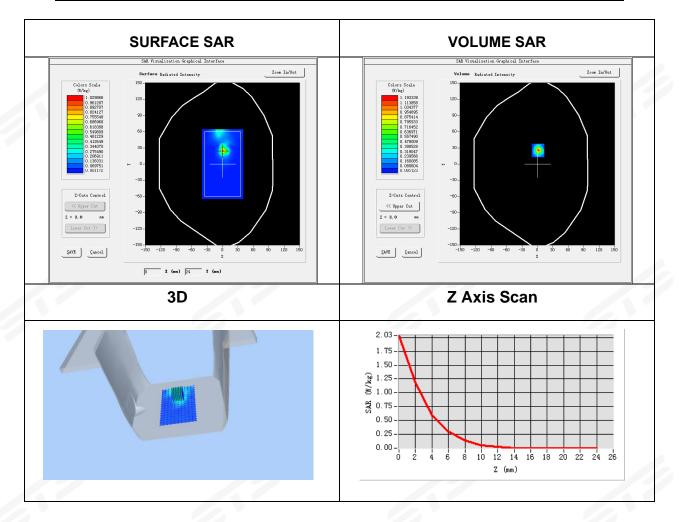

Plot 2: DUT: AUTO DIAGNOSTIC SYSTEM; EUT Model: E91

Test Date	2025-03-12
ConvF	1.33
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	7x7x12, dx=4mm, dy=4mm, dz=2mm,
Phantom	Validation plane
Device Position	Right Side
Band	IEEE 802.11a
Signal	IEEE802.a (Crest factor: 1.0)
Frequency (MHz)	5180
Relative permittivity (real part)	36.62
Conductivity (S/m)	4.66

Maximum location: X=7.00, Y=-24.00

SAR Peak: 3.06 W/kg

SAR 10g (W/Kg)	0.225951
SAR 1g (W/Kg)	0.550644


Page 44 of 45 Report No.: STS2503037H01

Plot 3: DUT: AUTO DIAGNOSTIC SYSTEM; EUT Model: E91

Test Date	2025-03-12
ConvF	1.35
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	7x7x12, dx=4mm, dy=4mm, dz=2mm,
Phantom	Validation plane
Device Position	Right Side
Band	802.11ax-HEW20
Signal	HEW20 (Crest factor: 1.0)
Frequency (MHz)	5745
Relative permittivity (real part)	36.49
Conductivity (S/m)	5.26

Maximum location: X=1.00, Y=25.00 SAR Peak: 2.24 W/kg

	9
SAR 10g (W/Kg)	0.219736
SAR 1g (W/Kg)	0.550506

Page 45 of 45 Report No.: STS2503037H01

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT***