Power Density Calculation

	G (dBi)	h (m)	Width (m)	A (m²)	OD (m)	θ (3dB BW Az ^{o)}	P (W)	S _{surface} (w/m2)	R _{nf (m)}	S _{nf} (w/m²)	S _{nfmax} (w/m ²)	R _{ff (m)}	S _{ff} (w/m ²)
Omni 7.5	7.5	0.276			0.0254		0.066	2.9983	0.7760	2.9983	2.9983	0.7760	0.0491
Omni 9	9.0	0.5			0.0400		0.066	1.0510	1.9858	1.0510	1.0510	1.9858	0.0106
Omni 12	12.0	0.83			0.0560		0.066	0.4522	6.5773	0.4522	0.4522	6.5773	0.0019
SEC-5V/H- 90-17	17.0	0.65	0.216	0.1404		90	0.066	1.8803	4.0721	0.0040	0.0108	4.0721	0.0159
SEC-5V/H- 60-18	18.0	0.65	0.216	0.1404		60	0.066	1.8803	3.4177	0.0047	0.0108	3.4177	0.0284

Where:

G: antenna gain

h: the height of the antenna

A: physical area of the aperture antenna

P: radio output power, P_{max} = 0.066 W

 $S_{surface}$: maximum power density at the antenna surface, $S_{surface} = 4P/A$, with omni antenna, $S_{surface} = P/(2x3.14xODxh)$

 R_{nf} : extent of near field, R_{nf} = $D^2/4\lambda$, where λ is wavelength, at 5.8GHz, λ =0.052m;

With omni antenna, Rnf is where S $_{\mbox{\scriptsize nf}}\mbox{=}S_{\mbox{\scriptsize ff}}\mbox{, Rnf=Gh/2, where G is the antenna gain}$

With sector antenna, R_{nf} is where S_{nf} = S_{ff} , R_{n} f= $\theta hG/720$

 $S_{\text{nf max}}\!\!:$ maximum near field power density,

For panel and parabolic antennas, Snf = $16\eta P/\pi D2$ (D is the antenna diameter); for worst case situation, η is assmumed to be 1

For omni and sector antenna, $S_{nf}\text{=}180P/(\theta\pi h~R_{nf})$

R_{ff}: distance to beginning of far field; with omni and sector antenna, R_{ff} starts at the point where S_{nf}=S_{ff}

 $S_{\rm ff}$: far field power density (on axis); $S_{\rm ff}$ = $PG/4\pi R^2$

Note: Power density beyond 1.5m from the center of antenna must be within 10W/m² or 1mW/cm²