Report No.: FR271226 # RADIO TEST REPORT FCC ID : RRK-ARSDG01 Equipment : BSD RADAR Brand Name : ALPHA Model Name : ARS-DG01 Applicant : Alpha Networks Inc. NO. 8 LI-SHING 7TH RD SCIENCE-BASED INDUSTRIAL PARK HSINCHU 300 TAIWAN Standard: 47 CFR FCC Part 95M The product was received on Jul. 13, 2022, and testing was started from Jul. 22, 2022 and completed on Oct. 12, 2022. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full. Approved by: Sam Chen Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.) TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A17_2 Ver1.3 Page Number : 1 of 29 Issued Date : Dec. 23, 2022 Report Version : 01 # **Table of Contents** | Histo | ory of this test report | 3 | |-------|--|----| | Sumi | mary of Test Result | 4 | | 1 | General Description | 5 | | 1.1 | Information | 5 | | 1.2 | Applicable Standards | 6 | | 1.3 | Testing Location Information | 6 | | 1.4 | Measurement Uncertainty | 6 | | 2 | Test Configuration of EUT | 7 | | 2.1 | Test Channel Frequencies Configuration | 7 | | 2.2 | Conformance Tests and Related Test Frequencies | 7 | | 2.3 | The Worst Case Measurement Configuration | 7 | | 2.4 | EUT Operation during Test | 8 | | 2.5 | Accessories | 8 | | 2.6 | Support Equipment | 8 | | 2.7 | Far Field Boundary Calculations | 8 | | 2.8 | Test Setup Diagram | 9 | | 3 | Transmitter Test Result | 10 | | 3.1 | Occupied Bandwidth | 10 | | 3.2 | Radiated E.I.R.P Power | 12 | | 3.3 | Transmitter Radiated Unwanted Emissions | 14 | | 3.4 | Frequency Stability | 26 | | 4 | Test Equipment and Calibration Data | 28 | Appendix A. Test Photos Photographs of EUT v01 TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A17_2 Ver1.3 Page Number : 2 of 29 Issued Date : Dec. 23, 2022 Report No.: FR271226 Report Version : 01 # History of this test report | Report No. | Version | Description | Issued Date | |------------|---------|-------------------------|---------------| | FR271226 | 01 | Initial issue of report | Dec. 23, 2022 | TEL: 886-3-656-9065 Page Number : 3 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 Report Template No.: CB-A17_2 Ver1.3 Report Version : 01 **Report No. : FR271226** ## **Summary of Test Result** Report No.: FR271226 | Report
Clause | Ref Std.
Clause | Test Items | Result
(PASS/FAIL) | Remark | |------------------|--------------------|---|-----------------------|--------| | 3.1 | 95.303 | Occupied Bandwidth | PASS | - | | 3.2 | 95.3367 | Radiated E.I.R.P Power | PASS | - | | 3.3 | 95.3379 | Transmitter Radiated Unwanted Emissions | PASS | - | | 3.4 | 95.3379 | Frequency Stability | PASS | - | #### **Declaration of Conformity:** - 1. The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results. - 2. The measurement uncertainty please refer to report "Measurement Uncertainty". #### **Comments and Explanations:** The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. Reviewed by: Sam Chen Report Producer: Viola Huang TEL: 886-3-656-9065 Page Number : 4 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 ## 1 General Description #### 1.1 Information #### 1.1.1 RF General Information | | RF General Information | | | | |--------------------------|---------------------------------------|-------------------------|------------|--| | Frequency Range
(GHz) | Operating Frequency
Range
(GHz) | Test Frequency
(GHz) | Modulation | | | 76-81 | 78.1-78.58 | 78.32 | FMCW | | **Report No. : FR271226** #### 1.1.2 Antenna Information | Ant. | Brand | Model Name | Antenna Type | Connector | Gain (dBi) | |------|-------|------------|---------------------|-----------|------------| | 1 | ALPHA | ARS-DG01 | Patch array Antenna | N/A | 12.3 | Note: The above information was declared by manufacturer. #### 1.1.3 EUT Operational Condition | EUT Power Type | From DC 12V | | | | |----------------|-------------|----|------------------|----| | Supply Voltage | | AC | State AC voltage | - | | Supply Voltage | \boxtimes | DC | State DC voltage | 12 | ## 1.1.4 Test Signal Duty Cycle | | Test Signal Duty Cycle | |-------------|--| | \boxtimes | Continuous transmission – 4.1% | | | Transmissions occur regularly in time% | TEL: 886-3-656-9065 Page Number : 5 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### 1.2 Applicable Standards According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: Report No.: FR271226 - 47 CFR FCC Part 95M - ANSI C63.10 Testing Unlicensed Wireless Devices - KDB653005 D01 76-81 GHz Radars v01r01 The following reference test guidance is not within the scope of accreditation of TAF. FCC KDB 414788 D01 v01r01 #### 1.3 Testing Location Information **Testing Location Information** Test Lab.: Sporton International Inc. Hsinchu Laboratory Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.) (TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085 Test site Designation No. TW3787 with FCC. Conformity Assessment Body Identifier (CABID) TW3787 with ISED. | Test Condition | Test Site No. | Test Engineer | Test Environment (°C / %) | Test Date | |--|---------------|---------------|---------------------------|---------------| | Radiated
(For Frequency Stability test) | TH03-CB | Eddie Weng | 24.7~25.5 / 63~69 | Jul. 22, 2022 | | Radiated (For other test items) | 03CH06-CB | KJ Chang | 24.4~25.5 / 55~58 | Oct. 12, 2022 | ## 1.4 Measurement Uncertainty ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) | Test Items | Uncertainty | Remark | |--------------------------------------|-------------|--------------------------| | Radiated Emission (9kHz ~ 30MHz) | 3.4 dB | Confidence levels of 95% | | Radiated Emission (30MHz ~ 1,000MHz) | 5.6 dB | Confidence levels of 95% | | Radiated Emission (1GHz ~ 18GHz) | 5.2 dB | Confidence levels of 95% | | Radiated Emission (18GHz ~ 40GHz) | 4.7 dB | Confidence levels of 95% | | Radiated Emission (40GHz ~ 60GHz) | 3.0 dB | Confidence levels of 95% | | Radiated Emission (60GHz ~ 90GHz) | 3.2 dB | Confidence levels of 95% | | Radiated Emission (90GHz ~ 200GHz) | 4.3 dB | Confidence levels of 95% | | Radiated Emission (200GHz ~ 280GHz) | 5.0 dB | Confidence levels of 95% | | Temperature | 1.2°C | Confidence levels of 95% | TEL: 886-3-656-9065 Page Number : 6 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 ## 2 Test Configuration of EUT ## 2.1 Test Channel Frequencies Configuration | Test Software Version | 02010004.0134H.0115NM | |------------------------|-----------------------| | Test Frequencies (GHz) | 78.32 | | Software Setting | Default | **Report No.: FR271226** ## 2.2 Conformance Tests and Related Test Frequencies | Test Item | Test Frequencies (GHz) | |---|------------------------| | Occupied Bandwidth | 78.32 | | Radiated E.I.R.P Power | 78.32 | | Transmitter Spurious Emissions (below 1 GHz) | 78.32 | | Transmitter Spurious Emissions (1 GHz-40 GHz) | 78.32 | | Transmitter Spurious Emissions (above 40 GHz) | 78.32 | | Frequency Stability | 78.32 | ## 2.3 The Worst Case Measurement Configuration | Т | The Worst Case Mode for Following Conformance Tests | | | | | |--|---|--|--|--|--| | Tests Item Occupied Bandwidth Radiated E.I.R.P Power Frequency Stability | | | | | | | Test Condition Radiated measurement | | | | | | | | стх | | | | | | Operating Mode | After evaluating, the worst case was found at X axis for Radiated E.I.R.P Power. So the measurement will follow this same test configuration. | | | | | | 1 | EUT in X axis | | | | | | The Worst Case Mode for Following Conformance Tests | | | | | |---|---|--|--|--| | Tests Item | Transmitter Radiated Unwanted Emissions | | | | | Test Condition | Radiated measurement | | | | | | СТХ | | | | | Operating Mode < 1GHz | After evaluating, the worst case was found at X axis for Radiated E.I.R.P Power. So the measurement will follow this same test configuration. | | | | | 1 | EUT in X axis | | | | | | СТХ | | | | | Operating Mode > 1GHz | After evaluating, the worst case was found at X axis for Radiated E.I.R.P Power. So the measurement will follow this same test configuration. | | | | | 1 | EUT in X axis | | | | TEL: 886-3-656-9065 Page Number: 7 of 29 ## 2.4 EUT Operation during Test During the test, executed the test program to control the EUT continuously transmit RF signal. #### 2.5 Accessories N/A ## 2.6 Support Equipment | | Support Equipment | | | | | | | |--|-------------------|-------|-----------|-----|--|--|--| | No. Equipment Brand Name Model Name FCC ID | | | | | | | | | Α | Car Charger | YUASA | 38B19L-MF | N/A | | | | **Report No.: FR271226** ## 2.7 Far Field Boundary Calculations The far-field boundary is given as: far field = $(2 * L^2)/\lambda$ where: L = Largest Antenna Dimension, including the reflector, in meters λ = wavelength in meters | Far Field (m) | | | | | | | |-----------------|-------|------------|------------------|-------------------|--|--| | Frequency (GHz) | L (m) | Lambda (m) | d(Far Field) (m) | d(Far Field) (cm) | | | | 78.32 | 0.04 | 0.0038304 | 0.8354 | 83.54 | | | TEL: 886-3-656-9065 Page Number: 8 of 29 FAX: 886-3-656-9085 Issued Date: Dec. 23, 2022 # 2.8 Test Setup Diagram **Report No. : FR271226** TEL: 886-3-656-9065 Page Number : 9 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### 3 Transmitter Test Result ## 3.1 Occupied Bandwidth ## 3.1.1 Occupied Bandwidth (OBW) Limit | Occupied Bandwidth (EBW) Limit | |--------------------------------| | Information only | **Report No.: FR271226** #### 3.1.2 Measuring Instruments Refer a test equipment and calibration data table in this test report. #### 3.1.3 Test Procedures | | Test Method | | | | | | |-------------|-------------|--|--|--|--|--| | \boxtimes | For | the Occupied bandwidth shall be measured using one of the options below: | | | | | | | \boxtimes | Refer as ANSI C63.10, clause 7.8.7 for EBW measurement. | | | | | | | | Refer as ANSI C63.10, clause 6.9.2 for occupied bandwidth testing. | | | | | | \boxtimes | Ref | er as ANSI C63.10, clause 9 for radiated measurement. | | | | | | | | Radiated test was conducted at far-field distance. the distance from the radiating element of the EUT to the edge of the far field may be calculated from $[r \ge 2D^2/\lambda]$ r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m λ is the wavelength of the emission under investigation [300/f (MHz)], in m | | | | | #### 3.1.4 Test Setup TEL: 886-3-656-9065 Page Number : 10 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### 3.1.5 Test Result of Occupied Bandwidth | Test Results | | | | | |---|--------|-----|--|--| | Test Freq. (GHz) 99% Occupied Bandwidth (MHz) Limit (MHz) | | | | | | 78.32 | 426.91 | N/A | | | **Report No.: FR271226** TEL: 886-3-656-9065 Page Number : 11 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### 3.2 Radiated E.I.R.P Power #### 3.2.1 Radiated E.I.R.P Power Limit #### Radiated E.I.R.P Power \boxtimes 76-81 GHz Band: Peak: EIRP 55 dBm [279uW/cm² at 3m] Average: EIRP 50 dBm [88uW/cm² at 3m] **Report No.: FR271226** #### **Measuring Instruments** 3.2.2 Refer a test equipment and calibration data table in this test report. | 3. | 2.3 | Test Procedures | | | | |-------------|-----|--|--|--|--| | | | Test Method | | | | | \boxtimes | For | the Occupied bandwidth shall be measured using one of the options below: | | | | | \boxtimes | Ref | er as ANSI C63.10, clause 9 for radiated measurement. | | | | | | | Radiated test was conducted at far-field distance. the distance from the radiating element of the EUT to the edge of the far field may be calculated from $[r \ge 2D^2/\lambda]$ r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m λ is the wavelength of the emission under investigation [300/f (MHz)], in m | | | | | | | The measured power level is converted to EIRP using the Friis equation:
E Meas = 126.8 - 20log(λ) + P – G | | | | | | | where E is the field strength of the emission at the measurement distance, in dB μ V/m is the power measured at the output of the test antenna, in dBm λ is the wavelength of the emission under investigation [300/fMHz], in m G is the gain of the test antenna, in dBi | | | | | | | EIRP = E Meas + 20 log(d Meas) – 104.7 where EIRP : is the equivalent isotropically radiated power, in dBm. E Meas : is the field strength of the emission at the measurement distance, in dBμV/m. d Meas : is the measurement distance, in m. | | | | TEL: 886-3-656-9065 Page Number : 12 of 29 FAX: 886-3-656-9085 : Dec. 23, 2022 Issued Date #### 3.2.4 Test Setup **Report No.: FR271226** #### 3.2.5 Measurement Results Calculation The measured Level is calculated using: EIRP = Read Level - Rx Gain +20*LOG(4*3.14159* Distance / (300/(Test Freq.*1000))). #### 3.2.6 Test Result of Radiated E.I.R.P Power | Freq.
(GHz) | Rx Gain
(dBi) | P-Peak
(dBm) | P-Average
(dBm) | E-Meas-
Peak
(dBuV/m) | E-Meas-
Average
(dBuV/m) | Distance
(m) | EIRP-
Peak
(dBm) | EIRP-
Average
(dBm) | |----------------|------------------|-----------------|--------------------|-----------------------------|--------------------------------|-----------------|------------------------|---------------------------| | 78.32 | 23.9 | -36.69 | -44.56 | 114.55 | 106.68 | 1.00 | 9.75 | 1.88 | | | EIRP Limit | | | | | | | 50 | TEL: 886-3-656-9065 Page Number : 13 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### 3.3 Transmitter Radiated Unwanted Emissions #### 3.3.1 Transmitter Radiated Unwanted Emissions Limit | Transmitter Radiated Unwanted Emissions Limit (Below 40 GHz) | | | | | | |--|-----------------------|-------------------------|----------------------|--|--| | Frequency Range (MHz) | Field Strength (uV/m) | Field Strength (dBuV/m) | Measure Distance (m) | | | | 0.009~0.490 | 2400/F(kHz) | 48.5 - 13.8 | 300 | | | | 0.490~1.705 | 24000/F(kHz) | 33.8 - 23 | 30 | | | | 1.705~30.0 | 30 | 29 | 30 | | | | 30~88 | 100 | 40 | 3 | | | | 88~216 | 150 | 43.5 | 3 | | | | 216~960 | 200 | 46 | 3 | | | | Above 960 - 40000 | 500 | 54 | 3 | | | **Report No.: FR271226** | Frequency Range (GHz) | EIRP (dBm) | Power Density
(pW/cm² @ 3m) | |-----------------------|------------|--------------------------------| | 40 - 200 | -1.7 | 600 | | 200 - 231 | 0.5 | 1000 | #### 3.3.2 Measuring Instruments Refer a test equipment and calibration data table in this test report. #### 3.3.3 Test Procedures | | Test Method – General Information | | | | | | |-------------|---|--|---|--|--|--| | \boxtimes | ☐ For the transmitter unwanted emissions shall be measured using following options below: | | | | | | | | \boxtimes | Refer as ANSI C63.10, clause 6.3 for unwanted emissions into non-restricted bands. | | | | | | | \boxtimes | For unwanted emissions below 40GHz bands. | | | | | | | | Radiated emissions below 40 GHz shall not exceed the general limits in LP0002 Section 2.8 | | | | | | | | Refer as ANSI C63.10, clause 4.1.4.2.3 (Video Averaging) average measurements us spectrum reduced video bandwidth (VBW≥10Hz) - [duty cycle ≥ 98 or external power trigge | | | | | | | | | Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions. | | | | | | | | Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit. | | | | TEL: 886-3-656-9065 Page Number : 14 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 \boxtimes ## **Test Method** For radiated measurement below 40GHz. Refer as ANSI C63.10, clause 6.3 through 6.6 for radiated emissions from below 40 GHz. For radiated measurement above 40GHz. Refer as ANSI C63.10, clause 9.12 for radiated Radiated test was conducted at far-field distance. the distance from the radiating element of the EUT to the edge of the far field may be calculated from $[r \ge 2D^2/\lambda]$ r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m λ is the wavelength of the emission under investigation [300/f (MHz)], in m The measured power level is converted to EIRP using the Friis equation: E Meas = $126.8 - 20\log(\lambda) + P - G$ is the field strength of the emission at the measurement distance, in dBµV/m is the power measured at the output of the test antenna, in dBm is the wavelength of the emission under investigation [300/fMHz], in m is the gain of the test antenna, in dBi EIRP = E Meas + 20 log(d Meas) - 104.7 Report No.: FR271226 where where Ε Ρ G measurement. M EIRP: is the equivalent isotropically radiated power, in dBm. E Meas: is the field strength of the emission at the measurement distance, in dBμV/m. d Meas: is the measurement distance, in m. Equations to calculate power density Calculate the power density at the distance specified by the limit from the EIRP in watts using Equation: $$PD = \frac{EIRP_{Linear}}{4\pi d^2}$$ where PD is the power density at the distance specified by the limit, in W/m2 is the equivalent isotropically radiated power, in watts **EIRPLinear** is the distance at which the power density limit is specified, in m. TEL: 886-3-656-9065 Page Number : 15 of 29 FAX: 886-3-656-9085 : Dec. 23, 2022 Issued Date DIO TEST REPORT Report No. : FR271226 #### 3.3.4 Test Setup TEL: 886-3-656-9065 Page Number : 16 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 1GHz ~40GHz EUT 4M 1.5M Spectrum Analyzer **Above 40GHz** Waveguide + Mixer EUT $2D^2/\lambda$ RF Cable 0.8M Spectrum Analyzer **Report No.: FR271226** #### 3.3.5 Measurement Results Calculation The measured Level is calculated using: For below 40GHz Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level. For above 40GHz EIRP = Read Level - Rx Gain +20*LOG(4*3.14159* Distance / (300/(Test Freq.*1000))). TEL: 886-3-656-9065 Page Number : 17 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### 3.3.6 Test Result of Transmitter Radiated Unwanted Emissions (Below 30MHz) There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar. **Report No.: FR271226** All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported. The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate. TEL: 886-3-656-9065 Page Number : 18 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### Test Result of Transmitter Radiated Unwanted Emissions (30MHz ~ 1GHz) 3.3.7 | Test Range | 30 MHz – 1000 MHz | Test Freq. (GHz) | 78.32 | |---------------|-------------------|------------------|-------| | Test Distance | 3 m | | | **Report No.: FR271226** #### **Horizontal** Page Number TEL: 886-3-656-9065 : 19 of 29 FAX: 886-3-656-9085 : Dec. 23, 2022 **Issued Date** : 01 #### Vertical Report No.: FR271226 Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) TEL: 886-3-656-9065 Page Number : 20 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### 3.3.8 Test Result of Transmitter Radiated Unwanted Emissions (1GHz - 40GHz) | Test Range | st Range 1GHz – 18GHz | | 78.32 | |---------------|-----------------------|--|-------| | Test Distance | 3 m | | | **Report No.: FR271226** #### **Horizontal** TEL: 886-3-656-9065 Page Number : 21 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### Vertical **Report No. : FR271226** TEL: 886-3-656-9065 Page Number : 22 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 | Test Range | 18GHz – 40GHz | Test Freq. (GHz) | 78.32 | |---------------|---------------|------------------|-------| | Test Distance | 1 m | | | **Report No. : FR271226** #### **Horizontal** TEL: 886-3-656-9065 Page Number : 23 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 #### Vertical **Report No. : FR271226** TEL: 886-3-656-9065 Page Number : 24 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 ## 3.3.9 Test Result of Transmitter Radiated Unwanted Emissions (40GHz – 200GHz) **Report No. : FR271226** | Test Freq.
(GHz) | Rx Gain
(dBi) | Distance
(m) | Read Worse
Frequency
(GHz) | Read Level
(dBm) | EIRP
(dBm) | Specification Distance (m) | Power Density
(pW/cm^2) | Test
Result | |---------------------|------------------|-----------------|----------------------------------|---------------------|---------------|----------------------------|----------------------------|----------------| | 78.32 | 23.9 | 1.00 | 156.62 | -68.53 | -16.09 | 3 | 21.7480 | PASS | | | Limit | | | | | | | | ## 3.3.10 Test Result of Transmitter Radiated Unwanted Emissions (200GHz – 231GHz) | Test Freq.
(GHz) | Rx Gain
(dBi) | Distance
(m) | Read Worse
Frequency
(GHz) | Read Level
(dBm) | EIRP
(dBm) | Specification Distance (m) | Power Density
(pW/cm^2) | Test
Result | |---------------------|------------------|-----------------|----------------------------------|---------------------|---------------|----------------------------|----------------------------|----------------| | 78.32 | 23.9 | 1.00 | 202.86 | -67.92 | -13.23 | 3 | 41.9881 | PASS | | | Limit | | | | | | | - | TEL: 886-3-656-9065 Page Number : 25 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 ## 3.4 Frequency Stability #### 3.4.1 Frequency Stability Limit #### **Frequency Stability Limit** Report No.: FR271226 Fundamental emissions must be contained within the frequency bands specified in this 76-81GHz band during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage. #### 3.4.2 Measuring Instruments Refer a test equipment and calibration data table in this test report. #### 3.4.3 Test Procedures # Test Method □ For the frequency stability shall be measured using one of the options below: □ Refer as ANSI C63.10, clause 9.14 for frequency stability measurement. □ Refer as ANSI C63.10, clause 9 for radiated measurement. □ Radiated test was conducted at far-field distance. the distance from the radiating element of the EUT to the edge of the far field may be calculated from [r ≥ 2D²/λ] □ r is the distance from the radiating element of the EUT to the edge of the far field, in m □ D is the largest dimension of both the radiating element and the test antenna (horn), in m □ λ is the wavelength of the emission under investigation [300/f (MHz)], in m □ The mixer may be placed outside the chamber in front of the temperature chamber door, and the chamber door opened for each reading. #### 3.4.4 Test Setup TEL: 886-3-656-9065 Page Number : 26 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 ## 3.4.5 Test Result of Frequency Stability Test Freq. (GHz): 78.32 | Test Temperature: | Measured Frequency | Delta Frequency | Limit | |-------------------|--------------------|-----------------|-------------| | (°C) | (MHz) | (kHz) | (±kHz) | | -40 | 78330.855 | 2895 | within band | | -30 | 78330.13 | 2170 | within band | | -20 | 78330.13 | 2170 | within band | | -10 | 78327.35 | -610 | within band | | 0 | 78329.41 | 1450 | within band | | 10 | 78327.96 | 0 | within band | | 20 | 78327.96 | Reference | within band | | 30 | 78327.96 | 0 | within band | | 40 | 78328.685 | 725 | within band | | 50 | 78326.51 | -1450 | within band | | 60 | 78327.235 | -725 | within band | | 70 | 78326.515 | -1445 | within band | | 85 | 78326.515 | -1445 | within band | | Test Voltage: | Measured Frequency | Delta Frequency | Limit | | (Vdc) | (MHz) | (kHz) | (±kHz) | | 10.2 | 78327.96 | 0 | within band | | 12 | 78327.96 | Reference | within band | | 13.8 | 78327.96 | 0 | within band | Report No.: FR271226 TEL: 886-3-656-9065 Page Number : 27 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 # 4 Test Equipment and Calibration Data | Instrument | Brand | Model No. | Serial No. | Characteristics | Calibration
Date | Calibration
Due Date | Remark | |--|-----------------|----------------------|---------------------|-------------------|---------------------|-------------------------|--------------------------| | Loop Antenna | Teseq | HLA 6120 | 24155 | 9kHz - 30 MHz | May 14, 2022 | May 13, 2023 | Radiation
(03CH06-CB) | | 3m Semi
Anechoic
Chamber NSA | TDK | SAC-3M | 03CH06-CB | 30 MHz ~ 1 GHz | Aug. 04, 2022 | Aug. 03. 2023 | Radiation
(03CH06-CB) | | 3m Semi
Anechoic
Chamber
VSWR | TDK | SAC-3M | 03CH06-CB | 1GHz ~18GHz
3m | Sep. 30, 2022 | Sep. 29, 2023 | Radiation
(03CH06-CB) | | Bilog Antenna
with 6 dB
attenuator | TESEQ &
EMCI | CBL6112D &
N-6-06 | 37878 &
AT-N0606 | 20MHz ~ 2GHz | Jul. 31, 2022 | Jul. 30, 2023 | Radiation
(03CH06-CB) | | Horn Antenna | SCHWARZB
ECK | BBHA9120D | BBHA
9120D-1292 | 1GHz~18GHz | Aug. 09, 2022 | Aug. 08, 2023 | Radiation
(03CH06-CB) | | Horn Antenna | SCHWARZB
EAK | BBHA9170 | BBHA9170252 | 15GHz ~ 40GHz | Aug. 22, 2022 | Aug. 21, 2023 | Radiation
(03CH06-CB) | | Pre-Amplifier | Agilent | 310N | 187290 | 0.1MHz ~ 1GHz | Nov. 04, 2021 | Nov. 03, 2022 | Radiation
(03CH06-CB) | | Pre-Amplifier | Agilent | 83017A | MY53270064 | 0.5GHz ~ 26.5GHz | Aug. 02, 2022 | Aug 01, 2023 | Radiation
(03CH06-CB) | | Pre-Amplifier | MITEQ | TTA1840-35-
HG | 1864479 | 18GHz ~ 40GHz | Jul. 20, 2022 | Jul. 19, 2023 | Radiation
(03CH06-CB) | | Spectrum
analyzer | R&S | FSP40 | 100080 | 9kHz~40GHz | Dec. 24, 2021 | Dec. 23, 2022 | Radiation
(03CH06-CB) | | EMI Test
Receiver | R&S | ESCS | 826547/017 | 9kHz ~ 2.75GHz | Jun. 17, 2022 | Jun. 16, 2023 | Radiation
(03CH06-CB) | | RF Cable-low | Woken | RG402 | Low
Cable-24+67 | 30MHz~1GHz | Oct. 03, 2022 | Oct. 02, 2023 | Radiation
(03CH06-CB) | | RF Cable-high | Woken | RG402 | High Cable-67 | 1GHz~18GHz | Oct. 03, 2022 | Oct. 02, 2023 | Radiation
(03CH06-CB) | | RF Cable-high | Woken | RG402 | High
Cable-05+67 | 1GHz~18GHz | Oct. 03, 2022 | Oct. 02, 2023 | Radiation
(03CH06-CB) | | High Cable | Woken | WCA0929M | 40G#5+7 | 1GHz ~ 40 GHz | Dec. 14, 2021 | Dec. 13, 2022 | Radiation
(03CH06-CB) | | High Cable | Woken | WCA0929M | 40G#5 | 1GHz ~ 40 GHz | Dec. 08, 2021 | Dec. 07, 2022 | Radiation
(03CH06-CB) | | High Cable | Woken | WCA0929M | 40G#7 | 1GHz ~ 40 GHz | Dec. 14, 2021 | Dec. 13, 2022 | Radiation
(03CH06-CB) | | Test Software | SPORTON | SENSE | V5.10 | - | N.C.R. | N.C.R. | Radiation
(03CH06-CB) | | Mixer | OML | M19HWA | U91113-1 | 40 ~ 60 GHz | Mar. 10, 2022* | Mar. 09, 2023* | Radiation
(03CH06-CB) | | Mixer | OML | M12HWA | E91113-1 | 60 ~ 90 GHz | Nov. 14, 2020* | Nov. 13, 2022* | Radiation
(03CH06-CB) | | Mixer | OML | M08HWA | F91113-1 | 90 ~ 140 GHz | Mar. 10, 2022* | Mar. 09, 2023* | Radiation
(03CH06-CB) | Report No.: FR271226 TEL: 886-3-656-9065 Page Number: 28 of 29 FAX: 886-3-656-9085 Issued Date: Dec. 23, | Instrument | Brand | Model No. | Serial No. | Characteristics | Calibration
Date | Calibration
Due Date | Remark | |----------------------------------|---------------------|----------------------|---------------|-----------------|---------------------|-------------------------|--------------------------| | Mixer | OML | M05HW/A | G91113-1 | 140 ~ 220 GHz | Mar. 10, 2022* | Mar. 09, 2023* | Radiation
(03CH06-CB) | | Mixer | OML | M03HWD | 120320-1 | 220 ~ 325 GHz | Mar. 10, 2022* | Mar. 09, 2023* | Radiation
(03CH06-CB) | | Standard Horn
Antenna | Custom
Microwave | M19RH | U91113-A | 40 ~ 60 GHz | N.C.R | N.C.R | Radiation
(03CH06-CB) | | Standard Horn
Antenna | Custom
Microwave | M15RH | V91113-A | 50 ~ 75 GHz | N.C.R | N.C.R | Radiation
(03CH06-CB) | | Standard Horn
Antenna | Custom
Microwave | M12RH | E91113-A | 60 ~ 90 GHz | N.C.R | N.C.R | Radiation
(03CH06-CB) | | Standard Horn
Antenna | Custom
Microwave | M08RH | F91113-A | 90 ~ 140 GHz | N.C.R | N.C.R | Radiation
(03CH06-CB) | | Standard Horn
Antenna | Custom
Microwave | M05RH | G91113-A | 140 ~ 220 GHz | N.C.R | N.C.R | Radiation
(03CH06-CB) | | Standard Horn
Antenna | Custom
Microwave | M03RH | 120320-A | 220 ~ 325 GHz | N.C.R | N.C.R | Radiation
(03CH06-CB) | | Spectrum analyzer | R&S | FSV40 | 101028 | 9kHz~40GHz | Jan. 07, 2022 | Jan. 06, 2023 | Radiation
(TH03-CB) | | Temp. and
Humidity
Chamber | Gaint Force | GTH-408-40-
CP-AR | MAA1410-011 | -40~100 degree | Sep. 09, 2021 | Sep. 08, 2022 | Radiation
(TH03-CB) | | RF Cable-high | Woken | RG402 | High Cable-11 | 1 GHz –18 GHz | Oct. 04, 2021 | Oct. 03, 2022 | Radiation
(TH03-CB) | | RF Cable-high | Woken | RG402 | High Cable-12 | 1 GHz –18 GHz | Oct. 04, 2021 | Oct. 03, 2022 | Radiation
(TH03-CB) | | RF Cable-high | Woken | RG402 | High Cable-13 | 1 GHz –18 GHz | Oct. 04, 2021 | Oct. 03, 2022 | Radiation
(TH03-CB) | | RF Cable-high | Woken | RG402 | High Cable-14 | 1 GHz –18 GHz | Oct. 04, 2021 | Oct. 03, 2022 | Radiation
(TH03-CB) | | RF Cable-high | Woken | RG402 | High Cable-15 | 1 GHz –18 GHz | Oct. 04, 2021 | Oct. 03, 2022 | Radiation
(TH03-CB) | Report No.: FR271226 Note: Calibration Interval of instruments listed above is one year. TEL: 886-3-656-9065 Page Number : 29 of 29 FAX: 886-3-656-9085 Issued Date : Dec. 23, 2022 [&]quot;*" Calibration Interval of instruments listed above is two years. N.C.R. means Non-Calibration required.