

Page 1 of 41

TEST REPORT

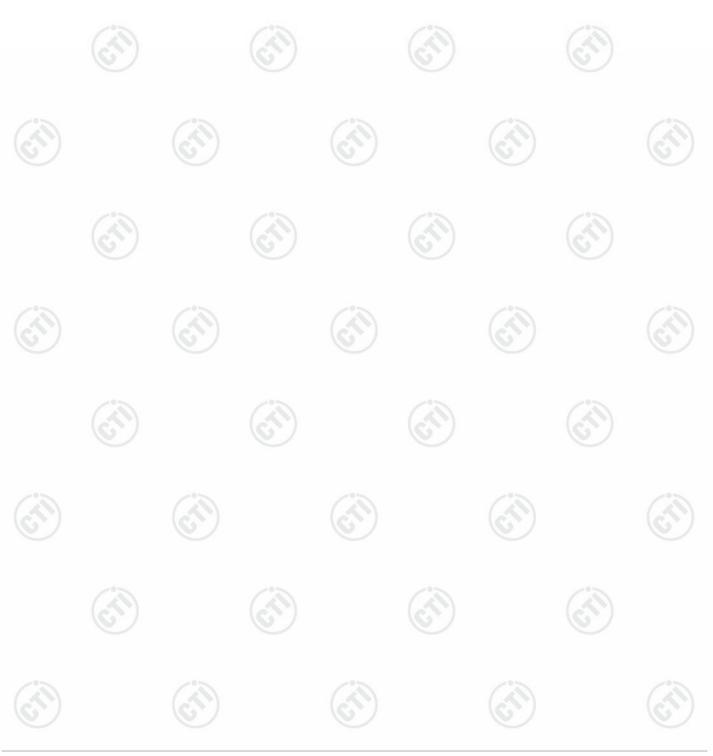
Product	:	V3 Smart Band
Trade mark	0	SKG
Model/Type reference	9	S9246LA
Serial Number	:	N/A
Report Number	:	EED32O81953901
FCC ID	:	2AYVT-S9246LA
Date of Issue	:	Jan. 04, 2023
Test Standards	:	47 CFR Part 15 Subpart C
Test result	5	PASS

Prepared for:

SKG Health Technologies Co., Ltd.

23A Floor,Building 3,Zhongke R&D Park,No.009,Gaoxin South 1st Road, High-tech Zone Community,Yuehai street, Nanshan District,Shenzhen City,Guangdong Province,P.R.China

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385 Martin Let Compiled by: Reviewed by: Martin Lee Tom Chen MAN Date: Jan. 04, 2023 Aaron Ma Check No.: 4739061222 Report Seal


Page 2 of 41

	N				
	IMMARY				
4 GENERA	L INFORMATION			<u> </u>	
4.2 GEN 4.3 TES ⁻ 4.4 TES ⁻ 4.5 DES 4.6 TES ⁻	NT INFORMATION ERAL DESCRIPTION OF E CONFIGURATION ENVIRONMENT CRIPTION OF SUPPORT U LOCATION SUREMENT UNCERTAINTY	UT	٢	6	
	ENT LIST				
	SULTS AND MEASUR				
6.2 MAX 6.3 DTS 6.4 MAX 6.5 BANI	ENNA REQUIREMENT MUM CONDUCTED OUTP BANDWIDTH MUM POWER SPECTRAL DEDGE MEASUREMENTS ATED SPURIOUS EMISSIO	UT POWER DENSITY AND CONDUCTED SP	URIOUS EMISSION		
7 APPEND	IX BLE		\sim		••••••
8 РНОТОС	RAPHS OF TEST SET	ГИР			••••••
	RAPHS OF EUT CON	STRUCTIONAL DE	TAILS	<u></u>	

Vorsion

Version No.	Date	Description)
00	Jan. 04, 2023	Original	
2	1		10
(6	S) (c		(6)

3 Test Summary

Page 4 of 41

s Test Summary			
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	N/A	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

N/A: When the EUT charging, BT will not work , So Not Applicable. Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

4 General Information

4.1 Client Information

Applicant:	SKG Health Technologies Co., Ltd.
Address of Applicant:	23A Floor,Building 3,Zhongke R&D Park,No.009,Gaoxin South 1st Road, High-tech Zone Community,Yuehai street, Nanshan District,Shenzhen City,Guangdong Province,P.R.China
Manufacturer:	SKG Health Technologies Co., Ltd.
Address of Manufacturer:	23A Floor,Building 3,Zhongke R&D Park,No.009,Gaoxin South 1st Road, High-tech Zone Community,Yuehai street, Nanshan District,Shenzhen City,Guangdong Province,P.R.China

Page 5 of 41

4.2 General Description of EUT

Product Name:	V3 Smart Band			
Model No.:	S9246LA			
Trade mark:	SKG	~°>>		~
Hardware Version:	MOY-80119.02	(\mathcal{A})		
Software Version:	QQK3-2.0.6	U		U
Device type:	Portale			
Operation Frequency:	2402MHz~2480MHz		~	
Modulation Type:	GFSK			
Transfer Rate:	⊠1Mbps ⊠2Mbps		Y	
Number of Channel:	40			
Antenna Type:	FPC Antenna			
Antenna Gain:	-1.56dBi			
Power Supply:	Lithium battery: DC 3.8V, Charge by	y DC 5.0V		(C)
Test Voltage:	DC 3.8V			
Sample Received Date:	Dec. 12, 2022			
Sample tested Date:	Dec. 12, 2022 to Jan. 04, 2023			
(6.5)			(6.2)	

Channe	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Softwar	e Settings:					
Software:	RTL876	L8762x_RFTestTool_v1.0.1.9 (manufacturer declare)				
EUT Power Grade:	Class2 (selected	(Power level is built-in s I)	set parameters and c	annot be changed and		
Use test software to transmitting of the	•	ency, the middle freque	ncy and the highest f	requency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	СН0	2402		
Mode b	GFSK	1Mbps	CH19	2440		
Mode c	GFSK	1Mbps	СН39	2480		
Mode d	Mode d GFSK 2M		СН0	2402		
Mode e	Mode e GFSK		CH19	2440		
Mode f	GFSK	2Mbps	CH39	2480		

Page 7 of 41

4.4 Test Environment

	Operating Environment	Operating Environment:							
263	Radiated Spurious Emissions:								
10	Temperature:	22~25.0 °C			(2)		(2)		
2	Humidity:	50~55 % RH	C		C		C		
	Atmospheric Pressure:	1010mbar							
	Conducted Emissions:								
	Temperature:	22~25.0 °C				(in)			
	Humidity:	50~55 % RH		(0)		$\langle \mathcal{O} \rangle$			
	Atmospheric Pressure:	1010mbar							
	RF Conducted:								
20	Temperature:	22~25.0 °C	13		1		13		
(N)	Humidity:	50~55 % RH	(c^{γ})		(c^{γ})		(\mathcal{S})		
9	Atmospheric Pressure:	1010mbar	U		U		U		

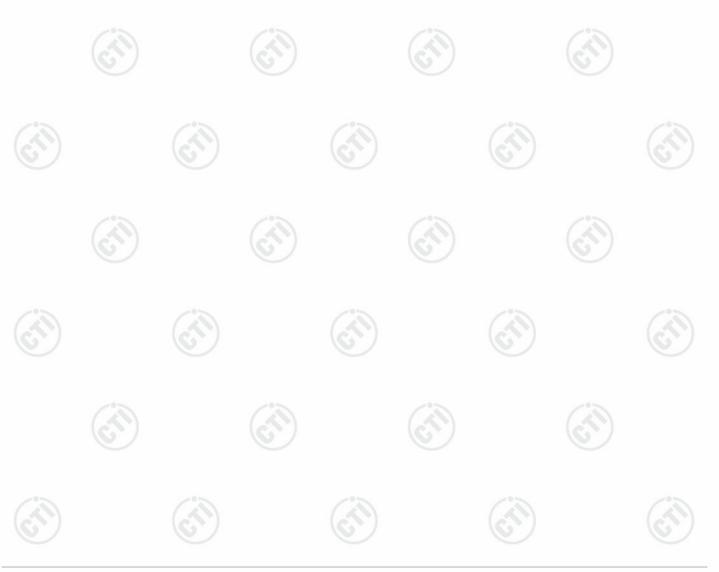
4.5 Description of Support Units

The EUT has been tested independently.

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164



Page 8 of 41

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower, conducted	0.46dB (30MHz-1GHz)
2 R	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
and and		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

5 Equipment List

6

Page 9 of 41

BT/WIFI/SRD RF	test system				i
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication tset set	R&S	CMW500	107929	07-06-2022	07-05-2023
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-15-2022	09-14-2023
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI- 42	07-06-2022	07-05-2023
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021 12-23-2022	12-23-2022 12-22-2023
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(<u>)</u>

	3M Semi-ar	nechoic Chamber (2)	- Radiated distu	rbance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber a Accessory Equipment	ТДК	SAC-3		05-22-2022	05-21-2025	
Receiver	R&S	ESCI7	100938-003	09-28-2022	09-27-2023	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05-22-2022	05-21-2023	
Multi device Controller	maturo	NCD/070/10711112				
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-17-2021	04-16-2024	
Microwave Preamplifier	Agilent	8449B	3008A02425	06-20-2022	06-19-2023	
12		1	-07		10	

Page 10 of 41

				(2
		3M full-anechoic (Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021 12-23-2022	12-23-2022 12-22-2023
Communication test set	R&S	CMW500	102898	12-24-2021 12-23-2022	12-23-2022 12-22-2023
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3	\odot	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	-	- 0
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	\odot	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- 6	<u> </u>
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	9	9
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u> </u>	- (2
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u></u>	

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos
The antenna is EPC antenna	The best case gain of the antenna is -1.56dBi

Page 12 of 41

6.2 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
	Test Method:	ANSI C63.10 2013	
	Test Setup:	Control Congular Cong	(L)
	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold.	<u>C</u>
	1.5	g) Allow trace to fully stabilize.h) Use peak marker function to determine the peak amplitude level.	
°	Limit:	30dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Test Mode:	Refer to clause 5.3	
2	Test Results:	Refer to Appendix BLE	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

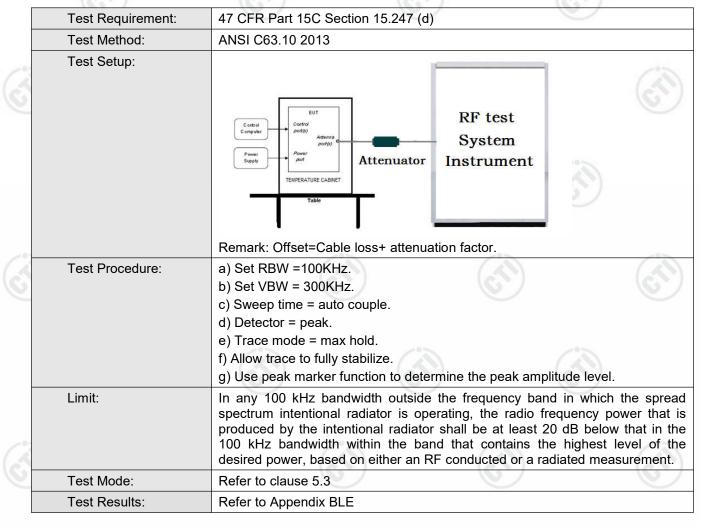
6.3 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Centrel Centrel Centrel Centrel Potter Potter Supply TeMPERATURE CABINET Table
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold.
	 e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix BLE

Page 14 of 41

6.4 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Computer Power Supply TeMPERATURE CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
Limit:	≤8.00dBm/3kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix BLE

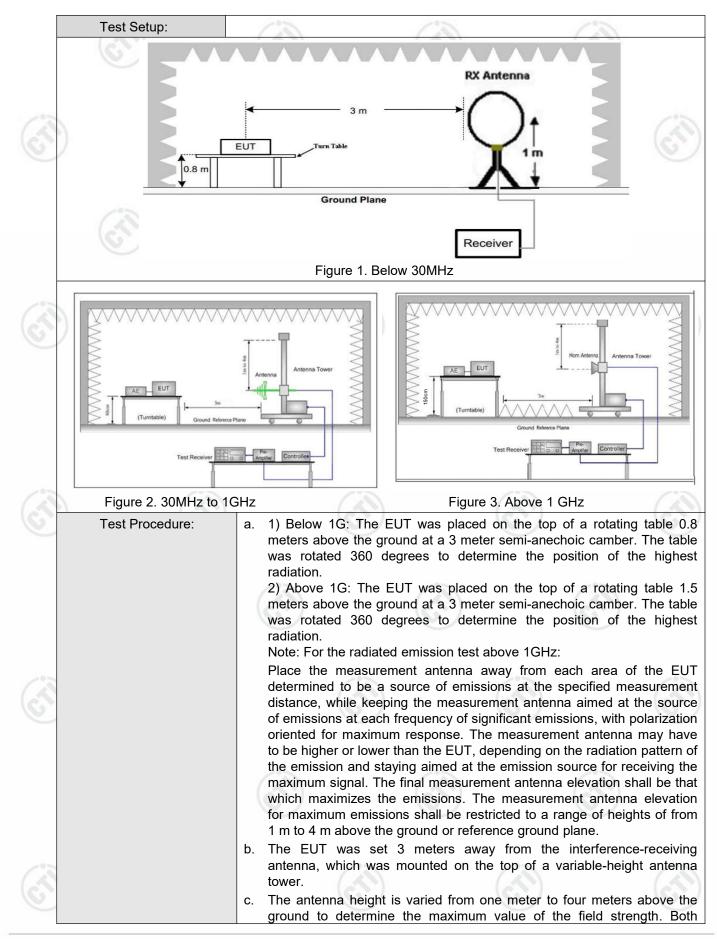


Page 15 of 41

6.5 Band Edge measurements and Conducted Spurious Emission

Page 16 of 41

6.6 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Secti	ion 15.	209 and 15	.205		C			
	Test Method:	ANSI C63.10 2013								
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Receiver Setup:	Frequency	0	Detector	RBW	6	VBW	Remark		
(O)		0.009MHz-0.090MH	łz	Peak	10kHz	z	30kHz	Peak		
		0.009MHz-0.090MH	łz	Average	10kHz	z	30kHz	Average		
		0.090MHz-0.110MH	łz	Quasi-peak	10kHz	z	30kHz	Quasi-peak		
		0.110MHz-0.490MH	łz	Peak	10kHz	z	30kHz	Peak		
		0.110MHz-0.490MH	łz	Average	10kHz	z	30kHz	Average		
		0.490MHz -30MHz	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak		
		30MHz-1GHz		Quasi-peak	. 100 k⊢	łz	300kHz	Quasi-peak		
13			~	Peak	1MHz	2	3MHz	Peak		
6		Above 1GHz	S) [Peak	1MHz		10kHz	Average		
	Limit:	Frequency		l strength ovolt/meter)	Limit (dBuV/m)	Remark		Measuremer distance (m)		
		0.009MHz-0.490MHz	240	0/F(kHz)	-		- 200	300		
		0.490MHz-1.705MHz	240	00/F(kHz)	-		- (2)	30		
		1.705MHz-30MHz		30	-		<u>e</u>	30		
		30MHz-88MHz		100	40.0	Q	uasi-peak	3		
		88MHz-216MHz		150	43.5	Q	uasi-peak	3		
		216MHz-960MHz	9	200	46.0	Q	uasi-peak	3		
(U)		960MHz-1GHz		500	54.0	Q	uasi-peak	3		
		Above 1GHz		500	54.0		Average	3		
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	s 20dB equipm	above the nent under t	maximum est. This p	pe	rmitted ave	erage emission		

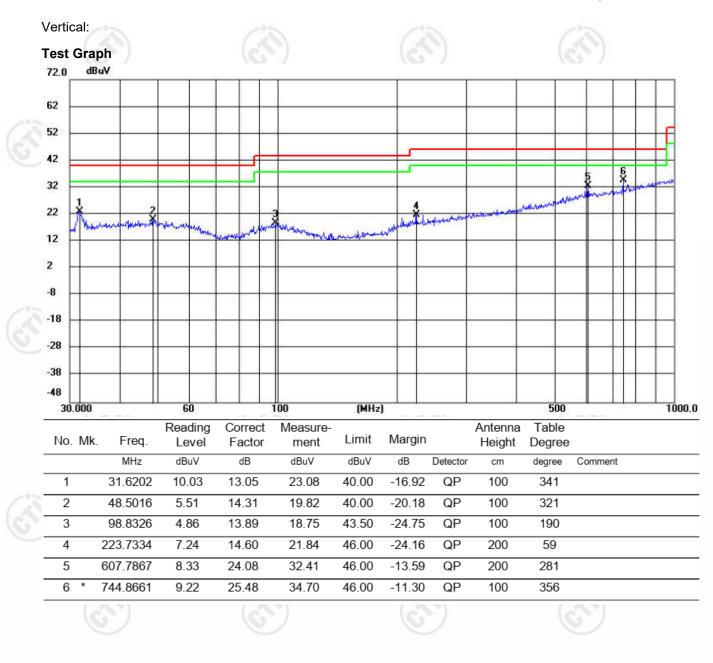
Page 17 of 41

CTI华测检测

Report No.: EED32O81953901

	Test Results:	Pass
	Test Mode:	Refer to clause 5.3
		i. Repeat above procedures until all frequencies measured was complete.
3		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
2		 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		horizontal and vertical polarizations of the antenna are set to make the measurement.


Page 18 of 41



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode c was recorded in the report.

Hotline:400-6788-333

Radiated Spurious Emission above 1GHz:

BLE_1M:

	Mode	:		BLE GFSK Tra	ansmitting		Channel:		2402 MHz	Z
3	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1439.2439	1.42	40.16	41.58	74.00	32.42	Pass	Н	PK
Ī	2	2001.7002	4.55	38.69	43.24	74.00	30.76	Pass	Н	PK
Ī	3	3890.0593	-19.12	2 56.48	37.36	74.00	36.64	Pass	Н	PK
	4	7205.2804	-11.83	3 58.63	46.80	74.00	27.20	Pass	Н	PK
ĺ	5	12008.6006	-5.30	53.31	48.01	74.00	25.99	Pass	Н	PK
	6	16270.8847	1.49	49.62	51.11	74.00	22.89	Pass	Н	PK
	7	1029.4029	0.92	41.84	42.76	74.00	31.24	Pass	V	PK
3	8	1598.0598	2.28	39.82	42.10	74.00	31.90	Pass	V	PK
	9	3987.0658	-18.92	2 53.14	34.22	74.00	39.78	Pass	V	PK
-	10	5759.1839	-13.72	2 56.57	42.85	74.00	31.15	Pass	V	PK
Ī	11	7205.2804	-11.83	3 58.23	46.40	74.00	27.60	Pass	V	PK
Ī	12	12008.6006	-5.30	57.94	52.64	74.00	21.36	Pass	V	PK
-										

									27 Y I			
	Mode:		BLE GFSK Transmitting Channel				Channel:		2440 MHz			
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	1114.8115	0.84	40.82	41.66	74.00	32.34	Pass	Н	PK		
2	2	1831.2831	3.52	39.09	42.61	74.00	31.39	Pass	Н	PK		
	3	4242.0828	-17.69	54.76	37.07	74.00	36.93	Pass	Н	PK		
	4	7319.288	-11.65	58.70	47.05	74.00	26.95	Pass	Н	PK		
	5	11184.5456	-6.40	51.36	44.96	74.00	29.04	Pass	Н	PK		
	6	14414.761	1.00	47.35	48.35	74.00	25.65	Pass	Н	PK		
	7	1153.8154	0.82	40.42	41.24	74.00	32.76	Pass	V	PK		
	8	1918.2918	4.12	39.26	43.38	74.00	30.62	Pass	V	PK		
	9	3249.0166	-20.08	57.56	37.48	74.00	36.52	Pass	V	PK		
3	10	5760.184	-13.71	56.35	42.64	74.00	31.36	Pass	V	PK		
	11	7320.288	-11.65	56.83	45.18	74.00	28.82	Pass	V	PK		
_	12	12199.6133	-5.12	56.90	51.78	74.00	22.22	Pass	V	PK		

Page 21 of 41

Ì

Page 22 of 41

	10-		10-					-O house				
Mo	Mode:		bde: BLE GFSK Transmitting					Channel:		2480 MHz Polarity Remark H PK		
N	O Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	1255.4255	0.95	40.36	41.31	74.00	32.69	Pass	н	PK			
2	1847.6848	3.63	39.19	42.82	74.00	31.18	Pass	Н	PK			
3	3863.0575	-19.15	55.41	36.26	74.00	37.74	Pass	Н	PK			
4	5760.184	-13.71	53.31	39.60	74.00	34.40	Pass	Н	PK			
5	7440.296	-11.34	56.44	45.10	74.00	28.90	Pass	Н	PK			
6	14413.7609	1.02	47.53	48.55	74.00	25.45	Pass	Н	PK			
7	1284.0284	1.01	40.53	41.54	74.00	32.46	Pass	V	PK			
8	1912.2912	4.09	39.17	43.26	74.00	30.74	Pass	V	PK			
g	3425.0283	-20.15	59.06	38.91	74.00	35.09	Pass	V	PK			
1	5759.1839	-13.72	55.81	42.09	74.00	31.91	Pass	V	PK			
1	1 7439.296	-11.34	56.37	45.03	74.00	28.97	Pass	V	PK			
1:	2 12398.6266	-4.70	53.40	48.70	74.00	25.30	Pass	V	PK			
1	÷				i i i i i i i i i i i i i i i i i i i			·				

BLE_2M:

-						-05			20-		
	Mode:			BLE GFSK Tra	ansmitting		Channel:		2402 MH	Z	
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1267.2267	0.98	40.40	41.38	74.00	32.62	Pass	Н	PK	
	2	1826.0826	3.47	39.34	42.81	74.00	31.19	Pass	Н	PK	
	3	3898.0599	-19.10	55.25	36.15	74.00	37.85	Pass	Н	PK	
	4	7207.2805	-11.83	56.98	45.15	74.00	28.85	Pass	Н	PK	
	5	11225.5484	-6.48	51.26	44.78	74.00	29.22	Pass	Н	PK	
	6	14373.7583	0.78	48.02	48.80	74.00	25.20	Pass	Н	PK	
	7	1243.0243	0.91	40.34	41.25	74.00	32.75	Pass	V	PK	
	8	1875.2875	3.85	38.88	42.73	74.00	31.27	Pass	V	PK	
	9	3817.0545	-19.22	. 54.55	35.33	74.00	38.67	Pass	V	PK	
	10	5759.1839	-13.72	. 55.90	42.18	74.00	31.82	Pass	V	PK	
à	11	7204.2803	-11.84	58.48	46.64	74.00	27.36	Pass	V	PK	
6	12	12007.6005	-5.30	55.69	50.39	74.00	23.61	Pass	V	PK	
-											

Page 23 of 41

			60		(A)					
Mode):		BLE GFSK Tra	nsmitting		Channel:		2440 MHz	2	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1204.4204	0.81	41.34	42.15	74.00	31.85	Pass	Н	PK	
2	1843.4843	3.61	38.96	42.57	74.00	31.43	Pass	Н	PK	
3	3846.0564	-19.17	56.55	37.38	74.00	36.62	Pass	н	PK	
4	5760.184	-13.71	53.76	40.05	74.00	33.95	Pass	Н	PK	
5	7321.2881	-11.65	55.81	44.16	74.00	29.84	Pass	н	PK	
6	11922.5948	-5.70	51.76	46.06	74.00	27.94	Pass	Н	PK	
7	1310.6311	1.09	40.75	41.84	74.00	32.16	Pass	V	PK	
8	1825.0825	3.47	39.24	42.71	74.00	31.29	Pass	V	PK	
9	4388.0925	-17.07	53.42	36.35	74.00	37.65	Pass	V	PK	
10	5760.184	-13.71	57.29	43.58	74.00	30.42	Pass	V	PK	
11	7320.288	-11.65	59.36	47.71	74.00	26.29	Pass	V	PK	
12	12197.6132	-5.14	51.94	46.80	74.00	27.20	Pass	V	PK	

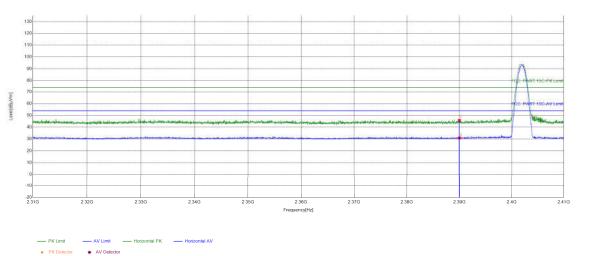
Mode	e:		BLE GFSK Trai	nsmitting		Channel:		2480 MHz	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1257.2257	0.95	40.89	41.84	74.00	32.16	Pass	Н	PK
2	1824.2824	3.46	39.05	42.51	74.00	31.49	Pass	Н	PK
3	3860.0573	-19.15	55.82	36.67	74.00	37.33	Pass	Н	PK
4	5591.1727	-14.29	53.03	38.74	74.00	35.26	Pass	Н	PK
5	7441.2961	-11.34	56.62	45.28	74.00	28.72	Pass	Н	PK
6	12399.6266	-4.69	53.28	48.59	74.00	25.41	Pass	Н	PK
7	1238.2238	0.90	40.45	41.35	74.00	32.65	Pass	V	PK
8	1985.2985	4.47	39.63	44.10	74.00	29.90	Pass	V	PK
9	3806.0537	-19.24	54.44	35.20	74.00	38.80	Pass	V	PK
10	5760.184	-13.71	56.06	42.35	74.00	31.65	Pass	V	PK
11	7438.2959	-11.35	56.20	44.85	74.00	29.15	Pass	V	PK
12	12397.6265	-4.71	53.78	49.07	74.00	24.93	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Page 24 of 41

Restricted bands:

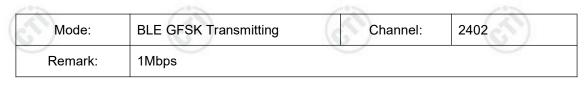


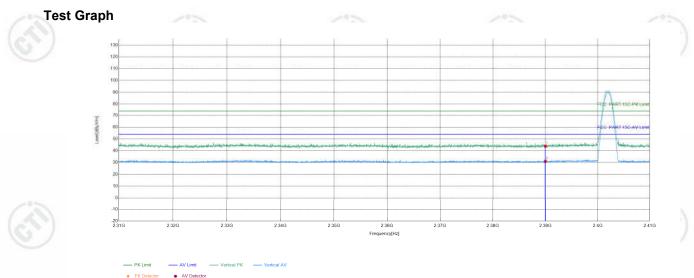
Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402	(A)
Remark:	1Mbps	e		Y

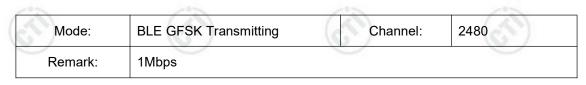
Test Graph

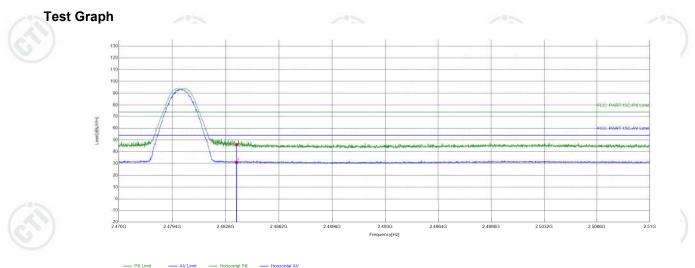
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Γ	1	2390	5.77	39.99	45.76	74.00	28.24	PASS	Horizontal	PK
	2	2390	5.77	25.08	30.85	54.00	23.15	PASS	Horizontal	AV



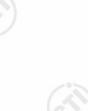


	Sugnasted List								
Suspect	ed List	1	1			1			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	38.13	43.90	74.00	30.10	PASS	Vertical	PK
2	2390	5.77	25.19	30.96	54.00	23.04	PASS	Vertical	AV
7		ST/		(J)					(C)

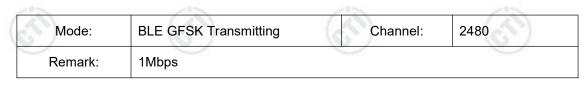


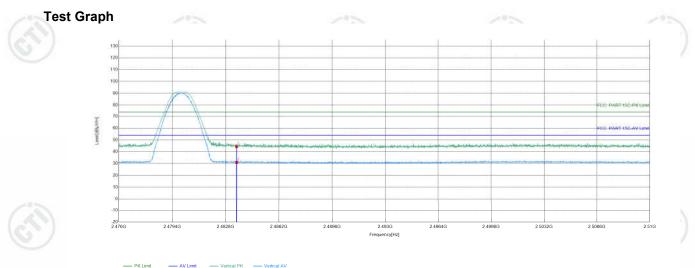


	22		_^°>		/°>			<u>/°></u>	
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	39.41	45.98	74.00	28.02	PASS	Horizontal	PK
2	2483.5	6.57	24.40	30.97	54.00	23.03	PASS	Horizontal	AV
)		GT /		67)		G			G



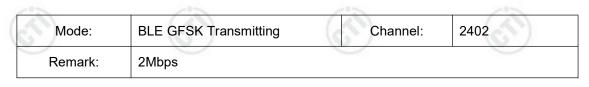
* AV Detecto

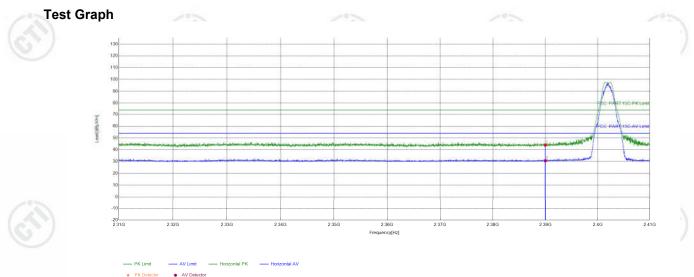




	2				2°2			1°2	
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	37.77	44.34	74.00	29.66	PASS	Vertical	PK
2	2483.5	6.57	24.33	30.90	54.00	23.10	PASS	Vertical	AV
)		G T		67)				•	(C)

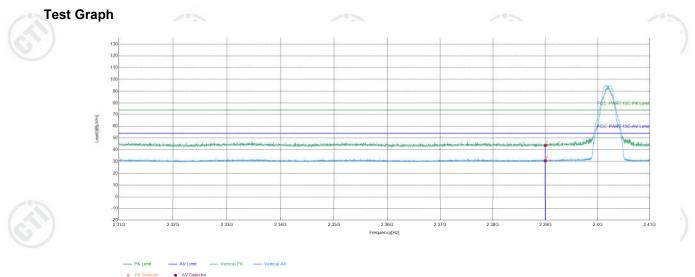
* AV Detecto



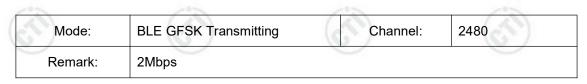


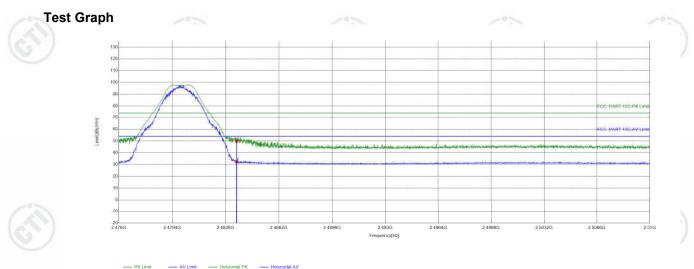
					/°>				
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	38.22	43.99	74.00	30.01	PASS	Horizontal	PK
2	2390	5.77	24.92	30.69	54.00	23.31	PASS	Horizontal	AV
7		ST/		67)		G		•	(C)





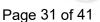
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	37.89	43.66	74.00	30.34	PASS	Vertical	PK
2	2390	5.77	24.82	30.59	54.00	23.41	PASS	Vertical	AV

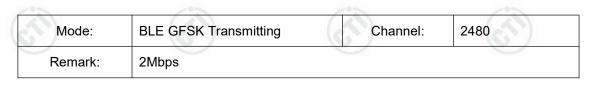


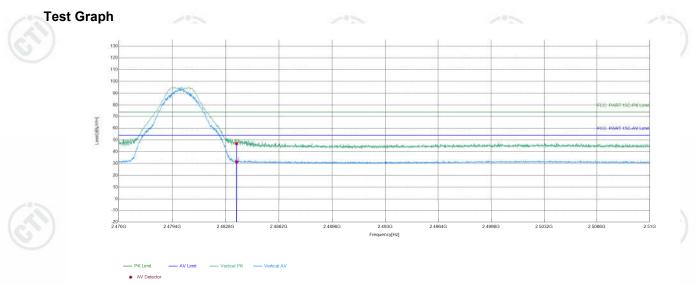


Suspecte	ed List				_				
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	43.15	49.72	74.00	24.28	PASS	Horizontal	PK
2	2483.5	6.57	25.71	32.28	54.00	21.72	PASS	Horizontal	AV
7		ST/		67)		G		•	G

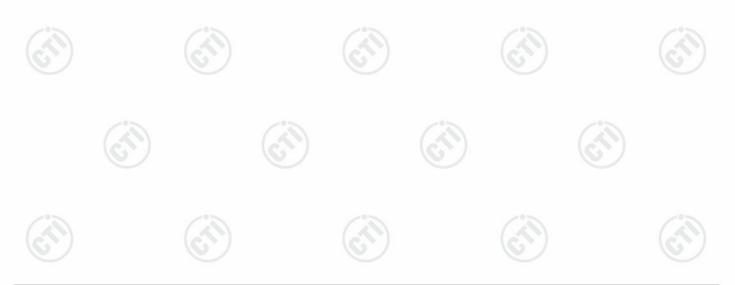
* AV Detecto







Suspected List


L	ouspecte				-	-				
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	40.30	46.87	74.00	27.13	PASS	Vertical	PK
	2	2483.5	6.57	24.74	31.31	54.00	22.69	PASS	Vertical	AV
	1		6.7.1		(6.7)		LC.			6.7

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com