FCC RADIO TEST REPORT **FCC ID: 2ARNF-M07333** Product: Wireless Racing Wheel for Xbox One/PC - Hyperkin Trade Name: Hyperkin Model Name: M07333 Serial Model: N/A Report No.: PTC19060602604E-FC01 ## **Prepared for** Hyperkin, inc 1939 West Mission Blvd. Pomona, CA 91766 ## **Prepared by** DongGuan Precise testing & Certification Corp. Ltd Building D, Baoding Technology Park, Guangming Road 2, Guangming Community, Dongcheng District, Dongguan, Guangdong, China ## **TEST RESULT CERTIFICATION** | Applicant's name: | Hyperkin, inc | |--|---| | Address: | 1939 West Mission Blvd. Pomona, CA 91766 | | Manufacture's Name: | LiteStar Electronics Technology Co., Ltd. | | Vaarbee . | Xingchen Sci.&Tech. Park, Lianbi Rd., Wulian Ind. Area,
Fenggang Town, Dongguan, P.R.China | | Product description | | | Product name: | Wireless Racing Wheel for Xbox One/PC - Hyperkin | | Trade Mark: | Hyperkin | | Model and/or type reference .: | M07333 | | Standards | FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013 | | Corp. Ltd, and the test results with the FCC requirements. As report. This report shall not be reproducted or reductions and the test results. | has been tested by DongGuan Precise testing &Certification show that the equipment under test (EUT) is in compliance and it is applicable only to the tested sample identified in the duced except in full, without the written approval of UNI, this evised by DongGuan Precise testing &Certification Corp. be noted in the revision of the document. | | Date of Test | : | | Date (s) of performance of tests | | | Date of Issue | : Jun. 17, 2019 | | Test Result | : Pass | | Reviewer: | Leo Yang / Engineer | | NOTIONAL. | Chris Du / Manager | ## Table of Contents Page 3 of 41 | 1. TEST SUMMARY | 5 | |---|----| | 2. GENERAL INFORMATION | 6 | | 2.1 GENERAL DESCRIPTION OF EUT | 6 | | 2.2 Carrier Frequency of Channels | 6 | | 2.3 Operation of EUT during testing | 6 | | 2.4 DESCRIPTION OF TEST SETUP | 7 | | 2.5 MEASUREMENT INSTRUMENTS LIST | 8 | | 3. CONDUCTED EMISSIONS TEST | 9 | | 3.1 Conducted Power Line Emission Limit | 9 | | 3.2 Test Setup | 9 | | 3.3 Test Procedure | 9 | | 3.4 Test Result | 9 | | 4. RADIATED EMISSION TEST | 12 | | 4.1 Radiation Limit | 12 | | 4.2 Test Setup | 12 | | 4.3 Test Procedure | 13 | | 4.4 Test Result | 13 | | 5. BAND EDGE | 18 | | 5.1 Limits | 18 | | 5.2 Test Procedure | 18 | | 5.3 Test Result | 18 | | 6. OCCUPIED BANDWIDTH MEASUREMENT | 20 | | 6.1 Test Limit | 20 | | 6.2 Test Procedure | 20 | | 6.3 Measurement Equipment Used | 20 | | 6.4 Test Result | 20 | | 7. POWER SPECTRAL DENSITY TEST | 26 | | 7.1 Test Limit | 26 | | 7.2 Test Procedure | 26 | | 7.3 Measurement Equipment Used | 26 | | 7.4 Test Result | 26 | | 8. PEAK OUTPUT POWER TEST | 32 | | 8.1 Test Limit | 32 | | 8.2 Test Procedure | 32 | ## Page 4 of 41 Report No.: PTC19060602604E-FC01 | | Table of Contents | Page | |------------------|----------------------|------| | 8.3 Measureme | nt Equipment Used | 32 | | 8.4 Test Result | | 32 | | 9. OUT OF BAND | EMISSIONS TEST | 33 | | 9.1 Test Limit | | 33 | | 9.2 Test Proced | ure | 33 | | 9.3 Test Setup | | 33 | | 9.4 Test Result | | 33 | | 10. SPURIOUS R | F CONDUCTED EMISSION | 35 | | 10.1 Test Limit | | 35 | | 10.2 Test Proce | dure | 35 | | 10.3 Test Setup. | | 35 | | 10.4 Test Result | | 35 | | 11. ANTENNA RE | QUIREMENT | 39 | | 12. PHOTOGRAP | H OF TEST | 40 | | 12.1 Radiated E | mission (Below 1G) | 40 | | 12.2 Radiated E | mission (Above 1G) | 40 | | 12.3 Conducted | Emission | 41 | #### 1. TEST SUMMARY #### TEST PROCEDURES AND RESULTS | DESCRIPTION OF TEST | RESULT | |--------------------------------|-----------| | CONDUCTED EMISSIONS TEST | COMPLIANT | | RADIATED EMISSION TEST | COMPLIANT | | BAND EDGE | COMPLIANT | | OCCUPIED BANDWIDTH MEASUREMENT | COMPLIANT | | POWER SPECTRAL DENSITY | COMPLIANT | | PEAK OUTPUT POWER | COMPLIANT | | OUT OF BAND EMISSIONS | COMPLIANT | | ANTENNA REQUIREMENT | COMPLIANT | | | | #### 1.1 TEST FACILITY Test Firm : DongGuan Precise testing & Certification Corp. Ltd Address : Building D, Baoding Technology Park, Guangming Road 2, Guangming Community, Dongcheng District, Dongguan, Guangdong, China FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A-1 #### 1.2 MEASUREMENT UNCERTAINTY Measurement Uncertainty Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2 ## 2. GENERAL INFORMATION ## 2.1 GENERAL DESCRIPTION OF EUT | Equipment | Wireless Racing Wheel for Xbox One/PC - Hyperkin | |--------------------|--| | Trade Mark | Hyperkin | | Model Name | M07333 | | Serial No. | N/A | | Model Difference | N/A | | FCC ID | 2ARNF-M07333 | | Antenna Type | Internal Antenna | | Antenna Gain | OdBi | | Frequency Range | 802.11b/g/n20: 2412~2462 MHz | | Number of Channels | 802.11b/g/n20: 11CH | | Modulation Type | DSSS, OFDM | | Power Source | DC 3.7V | | Fower Source | DC 5V from Xbox | ## 2.2 Carrier Frequency of Channels | Channel List for 802.11b/g/n(20MHz) | | | | | | | | |-------------------------------------|-----------------|---------|-----------------|---------|-----------------|---------|-----------------| | Channel | Frequency (MHz) | | 01 | 2412 | 04 | 2427 | 07 | 2442 | 10 | 2457 | | 02 | 2417 | 05 | 2432 | 08 | 2447 | 11 | 2462 | | 03 | 2422 | 06 | 2437 | 09 | 2452 | | | ## 2.3 Operation of EUT during testing Operating Mode The mode is used: Transmitting mode for 802.11b/g/n (20MHz) Low Channel: 2412MHz/2422MHz Middle Channel: 2437MHz High Channel: 2462MHz ## 2.4 DESCRIPTION OF TEST SETUP ## Operation of EUT during Conducted testing: Operation of EUT during Radiation and Above1GHz Radiation testing: ## Table for auxiliary equipment: | Equipment Description | Manufacturer | Model | |-----------------------|--------------|----------| | Computer Monitor | acer | V193WV | | Xbox | Hyperkin | Xbox One | ## 2.5 MEASUREMENT INSTRUMENTS LIST | Item | Equipment | Manufacturer | Model No. | Serial No. | Calibrated until | | | | |------|--|---------------|---------------|---------------|------------------|--|--|--| | | CONDUCTED EMISSIONS TEST | | | | | | | | | 1 | AMN | Schwarzbeck | NNLK8121 | 8121370 | 2019.9.9 | | | | | 2 | AMN | ETS | 3810/2 | 00020199 | 2019.9.9 | | | | | 3 | EMI TEST
RECEIVER | Rohde&Schwarz | ESCI | 101210 | 2019.9.9 | | | | | 4 | AAN | TESEQ | T8-Cat6 | 38888 | 2019.9.9 | | | | | | | RADIATED | EMISSION TEST | | | | | | | 1 | Horn Antenna | Sunol | DRH-118 | A101415 | 2019.9.29 | | | | | 2 | BicoNILog Antenna | Sunol | JB1 Antenna | A090215 | 2019.9.29 | | | | | 3 | PREAMP | HP | 8449B | 3008A00160 | 2019.9.9 | | | | | 4 | PREAMP | HP | 8447D | 2944A07999 | 2019.9.9 | | | | | 5 | EMI TEST
RECEIVER | Rohde&Schwarz | ESR3 | 101891 | 2019.9.9 | | | | | 6 | VECTOR Signal
Generator | Rohde&Schwarz | SMU200A | 101521 | 2019.9.28 | | | | | 7 | Signal Generator | Agilent | E4421B | MY4335105 | 2019.9.28 | | | | | 8 | MXA Signal Analyzer | Agilent | N9020A | MY50510140 | 2019.9.28 | | | | | 9 | MXA Signal Analyzer | Agilent | N9020A | MY51110104 | 2019.9.9 | | | | | 10 | ANT Tower&Turn table Controller | Champro | EM 1000 | 60764 | 2019.9.28 | | | | | 11 | Anechoic Chamber | Taihe Maorui | 9m*6m*6m | 966A0001 | 2019.9.9 | | | | | 12 | Shielding Room | Taihe Maorui | 6.4m*4m*3m | 643A0001 | 2019.9.9 | | | | | 13 | RF Power sensor | DARE | RPR3006W | 15I00041SNO88 | 2020.3.13 | | | | | 14 | RF Power sensor | DARE | RPR3006W | 15I00041SNO89 | 2020.3.13 | | | | | 15 | RF power divider | Anritsu | K241B | 992289 | 2019.9.28 | | | | | 16 | Wideband radio communication tester | Rohde&Schwarz | CMW500 | 154987 | 2019.9.28 | | | | | 17 | Biconical antenna | Schwarzbeck | VHA 9103 | 91032360 | 2019.9.8 | | | | | 18 | Biconical antenna | Schwarzbeck | VHA 9103 | 91032361 | 2019.9.8 | | | | | 19 | Broadband Hybrid
Antennas | Schwarzbeck | VULB9163 | VULB9163#958 | 2019.9.8 | | | | | 20 | Horn Antenna | Schwarzbeck | BBHA9120D | 9120D-1680 | 2019.9.12 | | | | | 21 | Active Receive Loop
Antenna | Schwarzbeck | FMZB 1919B | 00023 | 2019.9.8 | | | | | 22 | Horn Antenna | Schwarzbeck | BBHA 9170 | BBHA9170651 | 2020.3.13 | | | | | 23 | Microwave
Broadband
Preamplifier | Schwarzbeck | BBV 9721 | 100472 | 2019.9.8 | | | | | 24 | Active Loop Antenna | Com-Power | AL-130R | 10160009 | 2020.5.09 | | | | | 25 | Power Meter | KEYSIGHT | N1911A | MY50520168 | 2020.5.09 | | | | | 26 | Frequency Meter | VICTOR | VC2000 | 997406086 | 2020.5.09 | | | | | 27 | DC Power Source | HYELEC | HY5020E | 055161818 | 2020.5.09 | | | | | | Test software | | | | | | | | | 1 | E3 | XINHUA | 6.101223a | N/A | N/A | | | | #### CONDUCTED EMISSIONS TEST #### 3.1 Conducted Power Line Emission Limit For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following | Frequency | Maximum RF Line Voltage(dBμV) | | | | | |-----------|-------------------------------|------|---------|--------|--| | | CLASS A | | CLASS B | | | | (MHz) | Q.P. | Ave. | Q.P. | Ave. | | | 0.15~0.50 | 79 | 66 | 66~56* | 56~46* | | | 0.50~5.00 | 73 | 60 | 56 | 46 | | | 5.00~30.0 | 73 | 60 | 60 | 50 | | ^{*} Decreasing linearly with the logarithm of the frequency For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table. #### 3.2 Test Setup #### 3.3 Test Procedure - 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. A wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10. - 2, Support equipment, if needed, was placed as per ANSI C63.10. - 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10. - 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane. - 5, All support equipments received AC power from a second LISN, if any. - 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver. - 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. #### 3.4 Test Result #### Pass #### Remark: - 1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported. - 2. All modes were tested at Low, Middle, and High channel, only the worst result of 802.11b Low Channel was reported as below: | Temperature: | 24℃ | Relative Humidity: | 48% | | | |---|---------------|--------------------|---------|--|--| | Test Date: | Jun. 14, 2019 | Pressure: | 1010hPa | | | | Test Voltage: | AC 120V/60Hz | Phase: | Line | | | | Test Mode: Transmitting mode of 802.11b 2412MHz | | | | | | | | | | LISN | Cable | Limit | Over | | |----|-------|-------|--------|-------|-------|--------|---------| | | Freq | Level | Factor | Loss | Line | Limit | Remark | | - | MHz | dBuV | dB | dB | dBuV | dB | 1 - | | 1 | 0.21 | 50.21 | 9.64 | 0.25 | 53.23 | -3.02 | Average | | 2 | 0.21 | 56.99 | 9.64 | 0.25 | 63.23 | -6.24 | QP | | 3 | 0.29 | 45.95 | 9.62 | 0.25 | 50.46 | -4.51 | Average | | 4 | 0.29 | 50.25 | 9.62 | 0.25 | 60.46 | -10.21 | QP | | 5 | 0.38 | 44.08 | 9.60 | 0.25 | 48.34 | -4.26 | Average | | 6 | 0.38 | 46.96 | 9.60 | 0.25 | 58.34 | -11.38 | QP | | 7 | 0.54 | 42.73 | 9.59 | 0.25 | 46.00 | -3.27 | Average | | 8 | 0.54 | 48.66 | 9.59 | 0.25 | 56.00 | -7.34 | QP | | 9 | 0.88 | 42.23 | 9.60 | 0.26 | 46.00 | -3.77 | Average | | 10 | 0.88 | 47.25 | 9.60 | 0.26 | 56.00 | -8.75 | QP | | 11 | 10.51 | 42.45 | 9.69 | 0.39 | 50.00 | -7.55 | Average | | 12 | 10.51 | 52.36 | 9.69 | 0.39 | 60.00 | -7.64 | QP | | | | | | | | | | Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit. | Temperature: | 24 ℃ | Relative Humidity: | 48% | |---------------|----------------------------------|--------------------|---------| | Test Date: | Jun. 14, 2019 | Pressure: | 1010hPa | | Test Voltage: | AC 120V/60Hz | Phase: | Neutral | | Test Mode: | Transmitting mode of 802.11b 241 | 2MHz | | | | | | LISN | Cable | Limit | Over | | |----|-------|-------|--------|-------|-------|--------|---------| | | Freq | Level | Factor | Loss | Line | Limit | Remark | | - | MHz | dBuV | dB | dB | dBuV | dB | - | | 1 | 0.21 | 47.06 | 9.57 | 0.25 | 53.18 | -6.12 | Average | | 2 | 0.21 | 54.60 | 9.57 | 0.25 | 63.18 | -8.58 | QP | | 3 | 0.46 | 40.05 | 9.59 | 0.25 | 46.67 | -6.62 | Average | | 4 | 0.46 | 46.59 | 9.59 | 0.25 | 56.67 | -10.08 | QP | | 5 | 0.55 | 40.20 | 9.59 | 0.25 | 46.00 | -5.80 | Average | | 6 | 0.55 | 47.30 | 9.59 | 0.25 | 56.00 | -8.70 | QP | | 7 | 0.88 | 41.24 | 9.60 | 0.26 | 46.00 | -4.76 | Average | | 8 | 0.88 | 45.10 | 9.60 | 0.26 | 56.00 | -10.90 | QP | | 9 | 4.45 | 38.65 | 9.66 | 0.30 | 46.00 | -7.35 | Average | | 10 | 4.45 | 43.58 | 9.66 | 0.30 | 56.00 | -12.42 | QP | | 11 | 10.96 | 41.77 | 9.70 | 0.40 | 50.00 | -8.23 | Average | | 12 | 10.96 | 51.58 | 9.70 | 0.40 | 60.00 | -8.42 | QP | Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit. #### 4. RADIATED EMISSION TEST #### 4.1 Radiation Limit For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: | Frequency | Distance | Radiated | Radiated | |-----------|----------|----------|----------| | (MHz) | (Meters) | (dBµV/m) | (µV/m) | | 30-88 | 3 | 40 | 100 | | 88-216 | 3 | 43.5 | 150 | | 216-960 | 3 | 46 | 200 | | Above 960 | 3 | 54 | 500 | For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table. ## 4.2 Test Setup #### 1. Radiated Emission Test-Up Frequency Below 30MHz #### 2. Radiated Emission Test-Up Frequency 30MHz~1GHz Page 13 of 41 Report No.: PTC19060602604E-FC01 3. Radiated Emission Test-Up Frequency Above 1GHz #### 4.3 Test Procedure - 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane. - 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions. - 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance. - 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. - 6. Repeat above procedures until the measurements for all frequencies are complete. - 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a). - 8. The distance between test antenna and EUT as following table states: | Test Frequency range | Test Antenna Type | Test Distance | |----------------------|---------------------|---------------| | 9KHz-30MHz | Active Loop Antenna | 3 | | 30MHz-1GHz | Bilog Antenna | 3 | | 1GHz-18GHz | Horn Antenna | 3 | | 18GHz-25GHz | Horn Anternna | 1 | #### Note: For battery operated equipment, the equipment tests shall be performed using a new battery. #### 4.4 Test Result ### **PASS** #### Remark: - 1. All modes of 802.11b/g/n20 were test at Low, Middle, and High channel, only the worst result of 802.11b Low Channel was reported for below 1GHz test. - 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report. Below 1GHz Test Results: | Temperature: | 22 ℃ | Relative Humidity: | 48% | |---------------|------------------------|--------------------|------------| | Test Date: | Jun. 14, 2019 | Pressure: | 1010hPa | | Test Voltage: | AC 120V/60Hz | Polarization: | Horizontal | | Test Mode: | Transmitting mode of 8 | 802.11b 2412MHz | | | | | | Read | Antenna | Cable | | Limit | Over | | |---|---|-------|-------|---------|-------|--------|--------|-------|--------| | | | Freq | Level | Factor | Loss | Level | Line | Limit | Remark | | | | MHz | dBuV | dB/m | dB | dBuV/m | dBuV/m | dB | | | 1 | | 33.21 | 19.64 | 13.48 | 0.27 | 33.39 | 40.00 | -6.61 | QP | | 2 | | 38.21 | 20.16 | 13.26 | 0.16 | 33.58 | 40.00 | -6.42 | QP | | 3 | ! | 44.12 | 20.93 | 13.28 | 0.13 | 34.34 | 40.00 | -5.66 | QP | | 4 | ! | 50.23 | 23.58 | 12.98 | 0.12 | 36.68 | 40.00 | -3.32 | QP | | 5 | ! | 63.98 | 22.42 | 11.86 | 0.13 | 34.41 | 40.00 | -5.59 | QP | | 6 | ! | 72.59 | 22.80 | 11.62 | 0.14 | 34.56 | 40.00 | -5.44 | QP | Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier | Temperature: | 22 °C | Relative Humidity: | 48% | |---------------|---------------------------------|--------------------|----------| | Test Date: | Jun. 14, 2019 | Pressure: | 1010hPa | | Test Voltage: | AC 120V/60Hz | Polarization: | Vertical | | Test Mode: | Transmitting mode of 802.11b 24 | 12MHz | | | | | | Read | Antenna | Cable | | Limit | Over | | |---|---|--------|-------|---------|-------|--------|--------|--------|--------| | | | Freq | Level | Factor | Loss | Level | Line | Limit | Remark | | | - | MHz | dBuV | dB/m | dB | dBuV/m | dBuV/m | dB | - | | 1 | | 38.48 | 10.12 | 13.30 | 0.16 | 23.58 | 40.00 | -16.42 | QP | | 2 | | 44.74 | 10.91 | 13.25 | 0.12 | 24.28 | 40.00 | -15.72 | QP | | 3 | | 50.41 | 15.35 | 12.96 | 0.12 | 28.43 | 40.00 | -11.57 | QP | | 4 | | 73.62 | 15.01 | 12.91 | 0.14 | 28.06 | 40.00 | -11.94 | QP | | 5 | | 101.29 | 22.34 | 11.28 | 0.17 | 33.79 | 43.50 | -9.71 | QP | | 6 | ! | 111.74 | 25.91 | 11.88 | 0.19 | 37.98 | 43.50 | -5.52 | QP | Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier #### Remark: - (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor. - (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply. - (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. ## Above 1GHz Test Results (802.11b Worst Case): ## CH Low (2412MHz) ## Horizontal | Frequency | Reading
Result | Factor | Emission Level | Limits | Margin | Detector | | | |--------------|-------------------|---------------|--------------------|----------------|-------------|-------------|--|--| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | | | 4824 | 61.53 | -3.64 | 57.89 | 74.00 | -16.11 | PK | | | | 4824 | 50.25 | -3.64 | 46.61 | 54.00 | -7.39 | AV | | | | 7236 | 57.17 | -0.95 | 56.22 | 74.00 | -17.78 | PK | | | | 7236 | 44.94 | -0.95 | 43.99 | 54.00 | -10.01 | AV | | | | Remark: Fact | or = Antenna | Factor + Cabl | e Loss – Pre-ampli | fier. Margin = | Absolute Le | vel – Limit | | | ## Vertical | Frequency | Reading
Result | Factor | Emission Level | Limits | Margin | Detector | |--------------|-------------------|---------------|--------------------|-----------------|-------------|-------------| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | 4824 | 60.32 | -3.64 | 56.68 | 74.00 | -17.32 | PK | | 4824 | 46.33 | -3.64 | 42.69 | 54.00 | -11.31 | AV | | 7236 | 56.45 | -0.95 | 55.5 | 74.00 | -18.5 | PK | | 7236 | 43.06 | -0.95 | 42.11 | 54.00 | -11.89 | AV | | Remark: Fact | or = Antenna | Factor + Cabl | e Loss – Pre-ampli | ifier. Margin = | Absolute Le | vel – Limit | ## CH Middle (2437MHz) ### Horizontal | Frequency | Reading
Result | Factor | Emission Level | Limits | Margin | Detector | | | |--------------|-------------------|---------------|--------------------|-----------------|-------------|--------------|--|--| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | | | 4874 | 59.47 | -3.51 | 55.96 | 74.00 | -18.04 | PK | | | | 4874 | 46.32 | -3.51 | 42.81 | 54.00 | -11.19 | AV | | | | 7311 | 59.52 | -0.82 | 58.7 | 74.00 | -15.3 | PK | | | | 7311 | 46.74 | -0.82 | 45.92 | 54.00 | -8.08 | AV | | | | Remark: Fact | or = Antenna | Factor + Cabl | e Loss – Pre-ampli | ifier. Margin = | Absolute Le | evel – Limit | | | ## Vertical | Frequency | Reading
Result | Factor | Emission Level | Limits | Margin | Detector | |--------------|-------------------|---------------|--------------------|-----------------|-------------|-------------| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | 4874 | 59.87 | -3.51 | 56.36 | 74.00 | -17.64 | PK | | 4874 | 49.58 | -3.51 | 46.07 | 54.00 | -7.93 | AV | | 7311 | 55.33 | -0.82 | 54.51 | 74.00 | -19.49 | PK | | 7311 | 48.69 | -0.82 | 47.87 | 54.00 | -6.13 | AV | | Remark: Fact | or = Antenna | Factor + Cabl | e Loss – Pre-ampli | ifier. Margin = | Absolute Le | vel – Limit | #### Horizontal | Frequency | Reading
Result | Factor | Emission Level | Limits | Margin | Detector | |--------------|-------------------|---------------|--------------------|----------------|-------------|-------------| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | 4924 | 60.11 | -3.43 | 56.68 | 74.00 | -17.32 | PK | | 4924 | 50.09 | -3.43 | 46.66 | 54.00 | -7.34 | AV | | 7386 | 54.57 | -0.75 | 53.82 | 74.00 | -20.18 | PK | | 7386 | 47.17 | -0.75 | 46.42 | 54.00 | -7.58 | AV | | Remark: Fact | or = Antenna | Factor + Cabl | e Loss – Pre-ampli | fier. Margin = | Absolute Le | vel – Limit | #### Vertical | V 0.1.00 | | | | | | | | |--------------|-------------------|---------------|--------------------|-----------------|-------------|-------------|--| | Frequency | Reading
Result | Factor | Emission Level | Limits | Margin | Detector | | | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | | 4924 | 58.78 | -3.43 | 55.35 | 74.00 | -18.65 | PK | | | 4924 | 48.69 | -3.43 | 45.26 | 54.00 | -8.74 | AV | | | 7386 | 57.33 | -0.75 | 56.58 | 74.00 | -17.42 | PK | | | 7386 | 45.82 | -0.75 | 45.07 | 54.00 | -8.93 | AV | | | Remark: Fact | or = Antenna | Factor + Cabl | e Loss – Pre-ampli | ifier. Margin = | Absolute Le | vel – Limit | | #### Remark: - (1) Measuring frequencies from 1 GHz to the 25 GHz. - (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. - (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply. - (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. - (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz. - (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed. #### 5.1 Limits FCC PART 15.247 Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. #### 5.2 Test Procedure The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10kHz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge. #### 5.3 Test Result #### PASS Remark: We tested at 802.11b/g/n20 mode at the antenna single; and recored the worst data at 802.11b mode. Radiated Band Edge Test: Worst case on 802.11b ## Horizontal | Frequency | Reading Result | Factor | Emission Level | Limits | Margin | Detector | | |--------------|---|--------|----------------|----------|--------|----------|--| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | | 2310 | 56.68 | -5.81 | 50.87 | 74.00 | -23.13 | PK | | | 2310 | 49.74 | -5.81 | 43.93 | 54.00 | -10.07 | AV | | | 2390 | 61.14 | -5.84 | 55.30 | 74.00 | -18.7 | PK | | | 2390 | 50.38 | -5.84 | 44.54 | 54.00 | -9.46 | AV | | | 2400 | 56.14 | -5.81 | 50.33 | 74.00 | -23.67 | PK | | | 2400 | 49.72 | -5.81 | 43.91 | 54.00 | -10.09 | AV | | | Remark: Fact | Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. | | | | | | | ## Vertical | Frequency | Reading Result | Factor | Emission Level | Limits | Margin | Detector | | | |--------------|---|--------|----------------|----------|--------|----------|--|--| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | | | 2310 | 55.56 | -5.81 | 49.75 | 74.00 | -24.25 | PK | | | | 2310 | 50.56 | -5.81 | 44.75 | 54.00 | -9.25 | AV | | | | 2390 | 62.48 | -5.84 | 56.64 | 74.00 | -17.36 | PK | | | | 2390 | 51.36 | -5.84 | 45.52 | 54.00 | -8.48 | AV | | | | 2400 | 63.17 | -5.84 | 57.33 | 74.00 | -16.67 | PK | | | | 2400 | 50.19 | -5.84 | 44.35 | 54.00 | -9.65 | AV | | | | Remark: Fact | Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. | | | | | | | | ### Horizontal | Frequency | Reading Result | Factor | Emission Level | Limits | Margin | Detector | | | |--------------|---|--------|----------------|----------|--------|----------|--|--| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | | | 2483.5 | 54.35 | -5.54 | 48.81 | 74.00 | -25.19 | PK | | | | 2483.5 | 49.71 | -5.54 | 44.17 | 54.00 | -9.83 | AV | | | | 2500 | 55.23 | -5.72 | 49.51 | 74.00 | -24.49 | PK | | | | 2500 | 50.36 | -5.72 | 44.64 | 54.00 | -9.36 | AV | | | | Remark: Fact | Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. | | | | | | | | ### Vertical | Frequency | Reading Result | Factor | Emission Level | Limits | Margin | Detector | | | |--------------|---|--------|----------------|----------|--------|----------|--|--| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Туре | | | | 2483.5 | 55.38 | -5.54 | 49.84 | 74.00 | -24.16 | PK | | | | 2483.5 | 50.34 | -5.54 | 44.8 | 54.00 | -9.2 | AV | | | | 2500 | 54.98 | -5.72 | 49.26 | 74.00 | -24.74 | PK | | | | 2500 | 49.42 | -5.72 | 43.7 | 54.00 | -10.3 | AV | | | | Remark: Fact | Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. | | | | | | | | ### 6. OCCUPIED BANDWIDTH MEASUREMENT #### 6.1 Test Limit | FCC Part15(15.247), Subpart C | | | | | | |-------------------------------|-----------|------------------------------|--------------------------|--------|--| | Section | Test Item | Limit | Frequency Range
(MHz) | Result | | | 15.247(a)(2) | Bandwidth | >= 500KHz
(6dB bandwidth) | 2400-2483.5 | PASS | | ### 6.2 Test Procedure - 1. The EUT was placed on a turn table which is 0.8m above ground plane. - 2. Set EUT as normal operation. - 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz. - 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector. #### 6.3 Measurement Equipment Used Same as Radiated Emission Measurement 6.4 Test Result **PASS** | TX 802.11b Mode | | | | | | | |--------------------|------------------------|--------------------------|--------|--|--|--| | Frequency
(MHz) | 6dB Bandwidth
(MHz) | Channel Separation (MHz) | Result | | | | | 2412 | 9.555 | >=500KHz | PASS | | | | | 2437 | 9.568 | >=500KHz | PASS | | | | | 2462 | 9.193 | >=500KHz | PASS | | | | CH: 2412MHz #### CH: 2437MHz #### CH: 2462MHz | | TX 802.11g Mode | | | | | | | |--------------------|------------------------|--------------------------|--------|--|--|--|--| | Frequency
(MHz) | 6dB Bandwidth
(MHz) | Channel Separation (MHz) | Result | | | | | | 2412 | 15.14 | >=500KHz | PASS | | | | | | 2437 | 15.13 | >=500KHz | PASS | | | | | | 2462 | 15.12 | >=500KHz | PASS | | | | | CH: 2412MHz #### CH: 2437MHz #### CH: 2462MHz | TX 802.11n/HT20 Mode | | | | | | | |----------------------|------------------------|--------------------------|--------|--|--|--| | Frequency
(MHz) | 6dB Bandwidth
(MHz) | Channel Separation (MHz) | Result | | | | | 2412 | 15.11 | >=500KHz | PASS | | | | | 2437 | 15.10 | >=500KHz | PASS | | | | | 2462 | 15.16 | >=500KHz | PASS | | | | CH: 2412MHz #### CH: 2437MHz #### CH: 2462MHz ## 7. POWER SPECTRAL DENSITY TEST #### 7.1 Test Limit | FCC Part15(15.247), Subpart C | | | | | | |-------------------------------|---------------------------|------------------------|--------------------------|--------|--| | Section | Test Item | Limit | Frequency Range
(MHz) | Result | | | 15.247 | Power Spectral
Density | 8 dBm
(in any 3KHz) | 2400-2483.5 | PASS | | #### 7.2 Test Procedure - 1. The EUT was placed on a turn table which is 0.8m above ground plane. - 2. Set EUT as normal operation. - 3. Based on FCC Part15 C Section 15.247: RBW=3KHz, VBW=10KHz. - 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector. ## 7.3 Measurement Equipment Used Same as Radiated Emission Measurement #### 7.4 Test Result **PASS** | | TX 802.11b Mode | | | | | | | |--------------------|-----------------------------|---------------------|--------|--|--|--|--| | Frequency
(MHz) | Power Density
(dBm/3KHz) | Limit
(dBm/3KHz) | Result | | | | | | 2412 | -9.888 | 8 | PASS | | | | | | 2437 | -11.421 | 8 | PASS | | | | | | 2462 | -9.467 | 8 | PASS | | | | | CH: 2412MHz CH: 2437MHz #### CH: 2462MHz | TX 802.11g Mode | | | | | |--------------------|-----------------------------|---------------------|--------|--| | Frequency
(MHz) | Power Density
(dBm/3KHz) | Limit
(dBm/3KHz) | Result | | | 2412 | -10.677 | 8 | PASS | | | 2437 | -11.807 | 8 | PASS | | | 2462 | -10.679 | 8 | PASS | | CH: 2412MHz #### CH: 2437MHz #### CH: 2462MHz | TX 802.11n/HT20 Mode | | | | | | |----------------------|-----------------------------|---------------------|--------|--|--| | Frequency
(MHz) | Power Density
(dBm/3KHz) | Limit
(dBm/3KHz) | Result | | | | 2412 | -11.911 | 8 | PASS | | | | 2437 | -9.845 | 8 | PASS | | | | 2462 | -10.192 | 8 | PASS | | | CH: 2412MHz #### CH: 2437MHz #### CH: 2462MHz ## 8. PEAK OUTPUT POWER TEST ### 8.1 Test Limit | FCC Part15(15.247), Subpart C | | | | | | |-------------------------------|----------------------|-----------------|--------------------------|--------|--| | Section | Test Item | Limit | Frequency Range
(MHz) | Result | | | 15.247(b)(3) | Peak Output
Power | 1 watt or 30dBm | 2400-2483.5 | PASS | | ### 8.2 Test Procedure 1. The EUT was directly connected to the Power meter. ## 8.3 Measurement Equipment Used Same as Radiated Emission Measurement #### 8.4 Test Result #### **PASS** All the test modes completed for test. | TX 802.11b Mode | | | | | | |-------------------|-----------|-------------------------------------|-------|--|--| | Test | Frequency | Maximum Peak Conducted Output Power | LIMIT | | | | Channel | (MHz) | (dBm) | (dBm) | | | | CH01 | 2412 | 8.15 | 30 | | | | CH06 | 2437 | 8.34 | 30 | | | | CH11 | 2462 | 8.06 | 30 | | | | TX 802.11g Mode | | | | | | | CH01 | 2412 | 8.36 | 30 | | | | CH06 | 2437 | 8.22 | 30 | | | | CH11 | 2462 | 8.12 | 30 | | | | TX 802.11n20 Mode | | | | | | | CH01 | 2412 | 7.99 | 30 | | | | CH06 | 2437 | 7.84 | 30 | | | | CH11 | 2462 | 7.68 | 30 | | | #### Note: ¹⁾ Measured output power at difference data rate for each mode and recorded worst case for each mode. ^{2).} Test results including cable loss. #### 9. OUT OF BAND EMISSIONS TEST #### 9.1 Test Limit In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB #### 9.2 Test Procedure - 1. The EUT was placed on a turn table which is 0.8m above ground plane. - 2. Set EUT as TX operation and connect directly to the spectrum analyzer. - 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz. - 4. Set detected by the spectrum analyzer with peak detector. ### 9.3 Test Setup #### 9.4 Test Result **PASS** Page 35 of 41 Report No.: PTC19060602604E-FC01 ### 10. SPURIOUS RF CONDUCTED EMISSION #### 10.1 Test Limit - 1. Below -20dB of the highest emission level in operating band. - 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209. - 3.For below 30MHz,For 9KHz-150kHz,150K-10MHz,We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz,RBW 1KHz, The Limit= the highest emission level-20-10log(100/1)= the highest emission level-40. #### 10.2 Test Procedure The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013, For 9KHz-150kHz, Set RBW=1kHz and VBW= 3KHz; For 150KHz-10MHz, Set RBW=10kHz and VBW= 30KHz:For 10MHz-25GHz, Set RBW=100kHz and VBW= 300KHz in order to measure the peak field strength, and mwasure frequeny range from 9KHz to 25GHz. #### 10.3 Test Setup #### 10.4 Test Result #### **PASS** Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data. and record the worstest data for 802.11b in report . ## Channel 01 #VBW 300 kHz ### 30MHz ~3GHz 3GHz~25GHz ## Channel 06 ### 30MHz ~3GHz 3GHz~25GHz ## Channel 11 ### 30MHz ~3GHz 3GHz~25GHz ### 11. ANTENNA REQUIREMENT ### Standard Applicable: For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. ### Antenna Connected Construction The antenna used in this product is an Internal Antenna, The directional gains of antenna used for transmitting is 0dBi. #### ANTENNA: # 12. PHOTOGRAPH OF TEST ## 12.1 Radiated Emission (Below 1G) ## 12.2 Radiated Emission (Above 1G) ## 12.3 Conducted Emission ***End of Report***