DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.445 \text{ S/m}; \ \epsilon_r = 53.727; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-07-2019; Ambient Temp: 22.1°C; Tissue Temp: 22.8°C Probe: EX3DV4 - SN7357; ConvF(8.43, 8.43, 8.43) @ 1750 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2018 Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687 # 1750 MHz System Verification at 20.0 dBm (100 mW) Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.49 W/kg SAR(1 g) = 3.65 W/kg Deviation(1 g) = -0.27% ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.565 \text{ S/m}; \ \epsilon_r = 52.735; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 12-09-2018; Ambient Temp: 21.6°C; Tissue Temp: 21.1°C Probe: ES3DV3 - SN3332; ConvF(4.77, 4.77, 4.77) @ 1900 MHz; Calibrated: 8/22/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) # 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.36 W/kg SAR(1 g) = 4.14 W/kg Deviation(1 g) = 4.55% 0 dB = 5.29 W/kg = 7.23 dBW/kg ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.556 \text{ S/m}; \ \epsilon_r = 51.119; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 12-12-2018; Ambient Temp: 23.6°C; Tissue Temp: 22.0°C Probe: ES3DV3 - SN3332; ConvF(4.77, 4.77, 4.77) @ 1900 MHz; Calibrated: 8/22/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ## 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.50 W/kg SAR(1 g) = 4.2 W/kg Deviation(1 g) = 7.14% 0 dB = 5.36 W/kg = 7.29 dBW/kg #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.543 \text{ S/m}; \ \epsilon_r = 52.462; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-02-2019; Ambient Temp: 22.9°C; Tissue Temp: 22.4°C Probe: ES3DV3 - SN3332; ConvF(4.77, 4.77, 4.77) @ 1900 MHz; Calibrated: 8/22/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) # 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 6.81 W/kgSAR(1 g) = 3.86 W/kgDeviation(1 g) = -1.53% 0 dB = 4.90 W/kg = 6.90 dBW/kg ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.554 \text{ S/m}; \ \epsilon_r = 51.435; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-04-2019; Ambient Temp: 21.9°C; Tissue Temp: 22.1°C Probe: ES3DV3 - SN3332; ConvF(4.77, 4.77, 4.77) @ 1900 MHz; Calibrated: 8/22/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) # 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.21 W/kg SAR(1 g) = 4.06 W/kg Deviation(1 g) = 3.05% 0 dB = 5.17 W/kg = 7.13 dBW/kg DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 MHz Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.018 \text{ S/m}; \ \epsilon_r = 52.828; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 12-11-2018; Ambient Temp: 20.5°C; Tissue Temp: 20.4°C Probe: ES3DV3 - SN3347; ConvF(4.64, 4.64, 4.64) @ 2450 MHz; Calibrated: 3/27/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) # 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.06 W/kg Deviation(1 g) = 1.00% 0 dB = 6.68 W/kg = 8.25 dBW/kg ## DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.011 \text{ S/m}; \ \epsilon_r = 52.581; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-02-2019; Ambient Temp: 21.7°C; Tissue Temp: 21.9°C Probe: ES3DV3 - SN3347; ConvF(4.64, 4.64, 4.64) @ 2450 MHz; Calibrated: 3/27/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ## 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 10.7 W/kg SAR(1 g) = 4.94 W/kg Deviation(1 g) = -1.40% 0 dB = 6.56 W/kg = 8.17 dBW/kg ## DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.017 \text{ S/m}; \ \epsilon_r = 50.605; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-17-2019; Ambient Temp: 23.4°C; Tissue Temp: 22.5°C Probe: ES3DV3 - SN3319; ConvF(4.51, 4.51, 4.51) @ 2450 MHz; Calibrated: 3/13/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/7/2018 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ## 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 11.0 W/kg SAR(1 g) = 5.18 W/kg Deviation(1 g) = 1.77% 0 dB = 6.92 W/kg = 8.40 dBW/kg **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1071** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 MHz Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.156 \text{ S/m}; \ \epsilon_r = 52.593; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 12-11-2018; Ambient Temp: 20.5°C; Tissue Temp: 20.4°C Probe: ES3DV3 - SN3347; ConvF(4.49, 4.49, 4.49) @ 2600 MHz; Calibrated: 3/27/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ## 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.35 W/kg Deviation(1 g) = -1.29% 0 dB = 7.14 W/kg = 8.54 dBW/kg **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.224 \text{ S/m}; \ \epsilon_r = 51.993; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-02-2019; Ambient Temp: 21.7°C; Tissue Temp: 21.9°C Probe: ES3DV3 - SN3347; ConvF(4.49, 4.49, 4.49) @ 2600 MHz; Calibrated: 3/27/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ## 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.2 W/kg SAR(1 g) = 5.35 W/kg Deviation(1 g) = -1.11% 0 dB = 7.16 W/kg = 8.55 dBW/kg DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057 Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5250 \text{ MHz}; \ \sigma =
5.476 \text{ S/m}; \ \epsilon_r = 47.696; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-21-2019; Ambient Temp: 20.6°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7308; ConvF(4.48, 4.48, 4.48) @ 5250 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ## 5250 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.6 W/kg **SAR**(1 g) = 3.73 W/kg Deviation(1 g) = -1.71% 0 dB = 9.10 W/kg = 9.59 dBW/kg ## DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057 Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 5.977 \text{ S/m}; \ \epsilon_r = 47.026; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-21-2019; Ambient Temp: 20.6°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7308; ConvF(4, 4, 4) @ 5600 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ## 5600 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 4.06 W/kgDeviation(1 g) = 1.63% 0 dB = 9.84 W/kg = 9.93 dBW/kg DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057 Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5750 \text{ MHz}; \ \sigma = 6.205 \text{ S/m}; \ \epsilon_r = 46.7; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-21-2019; Ambient Temp: 20.6°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7308; ConvF(4.18, 4.18, 4.18) @ 5750 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ## 5750 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.6 W/kg **SAR**(1 g) = 3.65 W/kg Deviation(1 g) = -4.82% 0 dB = 9.18 W/kg = 9.63 dBW/kg ## DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191 Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5250 \text{ MHz}; \ \sigma = 5.402 \text{ S/m}; \ \epsilon_r = 47.349; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-03-2019; Ambient Temp: 21.5°C; Tissue Temp: 21.0°C Probe: EX3DV4 - SN7308; ConvF(4.48, 4.48, 4.48) @ 5250 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ## 5250 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.1 W/kg SAR(10 g) = 0.999 W/kgDeviation(10 g) = -7.50% 0 dB = 8.58 W/kg = 9.33 dBW/kg ## DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191 Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 5.888 \text{ S/m}; \ \epsilon_r = 46.674; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-03-2019; Ambient Temp: 21.5°C; Tissue Temp: 21.0°C Probe: EX3DV4 - SN7308; ConvF(4, 4, 4) @ 5600 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) ### 5600 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.5 W/kg SAR(10 g) = 1.08 W/kg **SAR(10 g) = 1.08 W/kg** Deviation(10 g) = -2.70% 0 dB = 9.75 W/kg = 9.89 dBW/kg # DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191 Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5750 \text{ MHz}; \ \sigma = 6.138 \text{ S/m}; \ \epsilon_r = 46.378; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-03-2019; Ambient Temp: 21.5°C; Tissue Temp: 21.0°C Probe: EX3DV4 - SN7308; ConvF(4.18, 4.18, 4.18) @ 5750 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.12 (7450) # 5750 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.3 W/kg SAR(10 g) = 0.979 W/kgDeviation(10 g) = -7.64% 0 dB = 8.81 W/kg = 9.45 dBW/kg # APPENDIX C: PROBE CALIBRATION ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienet Service suisse d'étalonnage Sorvizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatorios to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D750V3-1054_Mar17 # CALIBRATION CERTIFICATE Object D750V3 - SN:1054 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz 10. 02-2012 13-27 201 Calibration date: March 07, 2017 04-04-20 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN; 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Referenco Probo EX3DV4 | SN: 7349 | 31-Dec-16 (No. EX3-7349_Dec16) | Dec-17 | | DAE4 | SN: 601 | 04-Jan-17 (No. DAE4-601_Jan17) | Jan-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-16 (In house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oot-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN; US37390585 | 18-Oct-01 (in house check Oct-18) | In house check: Oct-17 | | | Name | Function | Signature | | Calibrated by: | Johannes Kurikka | Laboratory Technician | Ju len | | Approved by: | Katja Pokovic | Technical Manager | All | Issued: March 14, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerlscher Kalibrierdienst Service sulsse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,v,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e)
DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|--| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | A Million of the control cont | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.37 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.50 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55 .5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.6 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | ** | # SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | · | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.61 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.68 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.7 Ω - 0.7]Ω | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.7 Ω - 3.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.7 dB | ## General Antenna Parameters and Design | | Y | |----------------------------------|----------| | Electrical Delay (one direction) | 1.033 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 08, 2011 | Certificate No: D750V3-1054_Mar17 ## **DASY5 Validation Report for Head TSL** Date: 07.03.2017 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31,12.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.01.2017 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.21 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg Maximum value of SAR (measured) = 2.85 W/kg 0 dB = 2.85 W/kg = 4.55 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 07.03.2017 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 54.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.01.2017 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.94 W/kg $\cdot 0 \text{ dB} = 2.94 \text{ W/kg} = 4.68 \text{ dBW/kg}$ # Impedance Measurement Plot for Body TSL PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D750V3 - SN:1054 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.
Extended Calibration date: March 07, 2018 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agllent | 8753ES | S-Parameter Network Analyzer | 8/3/2017 | Annual | 8/3/2018 | MY40000670 | | Agilent | N5182A | MXG Vector Signal Generator | 1/24/2018 | Annual | 1/24/2019 | MY47420651 | | Amplifler Research | 15S1G6 | · Amplifier | C8T | N/A | CBT | 433971 | | Anritsu | MA24118 | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 10/16/2017 | Annual | 10/16/2018 | 1126066 | | Anritsu | ML2495A | Power Meter | 10/22/2017 | Annual | 10/22/2018 | 1328004 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017 | Annual | 6/1/2018 | MY53401181 | | Mini-Circuits | 8W-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2208-6 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Seekonk | NC-100 | Torque Wrench 5/16", 8" lbs | 1/22/2018 | Annual | 1/22/2019 | N/A | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/13/2017 | Annual | 7/13/2018 | 1322 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/21/2017 | Annual | 6/21/2018 | 1333 | | SPEAG | EX3DV4 | SAR Probe | 7/17/2017 | Annual | 7/17/2018 | 7410 | | SPEAG | ES3DV3 | SAR Probe | 9/18/2017 | Annual | 9/18/2018 | 3287 | ## Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BANDEE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 204 | | Object: | Date Issued: | Page 1 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1054 | 03/07/2018 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Electrical | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | Measured
Head SAR (1g)
W/kg @ 23.0
dBm | (9/) | Certificate
SAR Target
Head (10g)
W/kg @ 23.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | | | | | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|------------|--|---|-------|---|--------------|----------------------|--|------|-----|------|------|----------------------------------|---|--------------------------------------|---------------|-----------| | 3/7/2017 | 3/7/2018 | 1.033 | 1.67 | 1.70 | 1.55% | 1.10 | 1.11 | 0.91% | 54.7 | 53.4 | 1.3 | -0.7 | -2.5 | 1.8 | -26.8 | -28.0 | -4.60% | PASS | | Calibration
Date | Extension Date | | Certificate
SAR Target
Body (1g)
W/kg @ 23.0
dBm | Measured
Body SAR (1g)
W/kg @ 23.0
dBm | | Certificate
SAR Target
Body (10g)
W/kg @ 23.0
dBm | Measured
Body SAR
(10g) W/kg @
23.0 dBm | | | Measured
Impedance
Body (Ohm)
Real | | Certificate
Impedance
Body (Ohm)
Imaginary | | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|-------|--|---|--------|---|--|--------|------|---|-----|---|------|----------------------------------|---|--------------------------------------|---------------|-----------| | 3/7/2017 | 3/7/2018 | 1.033 | 1.72 | 1.70 | -1.28% | 1.14 | 1.12 | -1.41% | 50.7 | 50.4 | 0.3 | -3.6 | -3.9 | 0.3 | -28.7 | -28.5 | 0.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1054 | 03/07/2018 | Fage 2 01 4 | # Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date ssued: | Page 3 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1054 | 03/07/2018 | rage 3 01 4 | # Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date issued: | Page 4 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1054 | 03/07/2018 | raye 4 01 4 | # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D835V2-4d047_Oct18 # **CALIBRATION CERTIFICATE** Object D835V2 - SN:4d047 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz Calibration date: October 19, 2018 BN 20-2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Manu Seitz | Laboratory Technician | 24 | | | | • | | | Approved by: | Katja Pokovic | Technical Manager | Al UK | | | | | | Issued: October 22, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF se sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) 1EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010 - d) KDB 865664, "SAR Measurement Requirements for
100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.6 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 44 A4 MA | | # **SAR** result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.47 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.55 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.14 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.9 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.71 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.60 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.36 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d047_Oct18 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.0 Ω - 0.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 39.6 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.6 Ω - 4.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.0 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 16, 2006 | Certificate No: D835V2-4d047_Oct18 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 19.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.84 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.24 W/kg 0 dB = 3.24 W/kg = 5.11 dBW/kg Certificate No: D835V2-4d047_Oct18 # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 19.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.27 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.28 W/kg 0 dB = 3.28 W/kg = 5.16 dBW/kg ## Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étatonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 8 Client PC Test Certificate No: D1750V2-1148_May17 | | ERTIFICATE | | | |--|---|--|--| | Object | D1750V2 SN:1 | 148 | | | calibration procedure(s) | QA CAL-05.v9
Calibration proce | dure for dipole validation kits abo | ove 700 MHz
BN
05-23-231
BN
05-09-2 | | Calibration date: | May 09, 2017 | | 05-25 251
250000000000000000000000000000000000 | | | cted in the closed laborato | robability are given on the following pages an | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | | | | | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Арт-18 | | | SN: 104778
SN: 103244 | | · | | ower sensor NRP-Z91 | | 04-Apr-17 (No. 217-02521/02522) | Арт-18 | | ower sensor NRP-Z91
ower sensor NRP-Z91
eference 20 dB Attenuator | SN: 103244
SN: 103245
SN: 5058 (20k) |
04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521) | Арг-18
Арг-18 | | ower sensor NRP-Z91
ower sensor NRP-Z91
eference 20 dB Attenuator
ype-N mismatch combination | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529) | Арт-18
Арт-18
Арг-18 | | ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator type-N mismatch combination leference Probe EX3DV4 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529)
31-Dec-16 (No. EX3-7349_Dec16) | Арг-18
Арг-18
Арг-18
Арг-18 | | ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator type-N mismatch combination leference Probe EX3DV4 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529) | Арг-18
Арг-18
Арг-18
Арг-18
Арг-18 | | ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 lAE4 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529)
31-Dec-16 (No. EX3-7349_Dec16) | Apr-18
Apr-18
Apr-18
Apr-18
Apr-18
Dec-17 | | ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 lAE4 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529)
31-Dec-16 (No. EX3-7349_Dec16)
28-Mar-17 (No. DAE4-601_Mar17) | Apr-18
Apr-18
Apr-18
Apr-18
Apr-18
Dec-17
Mar-18 | | ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 lAE4 lecondary Standards ower meter EPM-442A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Power match combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 | | ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 lAE4 secondary Standards ower meter EPM-442A lower sensor HP 8481A lift generator R&S SMT-06 | SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe EX3DV4 POAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Regenerator R&S SMT-06 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Ref generator R&S SMT-06 Network Analyzer HP 8753E | SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | Issued: May 11, 2017 Certificate No: D1750V2-1148_May17 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A not applicable or not measure ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.4 W/kg ±
17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.83 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.3 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.7 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.1 7 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.93 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.8 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1148_May17 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.8 Ω - 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 42.9 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.7 Ω - 0.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.9 dB | #### **General Antenna Parameters and Design** | | Y | |----------------------------------|----------| | Electrical Delay (one direction) | 1.223 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 30, 2014 | Certificate No: D1750V2-1148_May17 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 09.05.2017 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 09.05.2017 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.49 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg Maximum value of SAR (measured) = 13.1 W/kg 0 dB = 13.1 W/kg = 11.17 dBW/kg # Impedance Measurement Plot for Body TSL ## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D1750V2 – SN: 1148 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: May 09, 2018 Description: SAR Validation Dipole at 1750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | | Biennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017 | Annual | 6/1/2018 | MY53401181 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/9/2018 | Annual | 2/9/2019 | 1272 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/21/2017 | Annual | 6/21/2018 | 1333 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/12/2017 | Annual | 9/12/2018 | 1091 | | SPEAG | ES3DV3 | SAR Probe | 9/18/2017 | Annual | 9/18/2018 | 3287 | | SPEAG | ES3DV3 | SAR Probe | 2/13/2018 | Annual | 2/13/2019 | 3213 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1339018 | | Agilent | N5182A | MXG Vector Signal Generator | 4/18/2018 | Annual | 4/18/2019 | MY47420800 | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Agilent | 8753ES | S-Parameter Network Analyzer | 9/14/2017 | Annual | 9/14/2018 | US39170118 | | Pasternack | NC-100 | Torque Wrench | 4/18/2018 | Annual | 4/18/2019 | 1445 | | Anritsu | ML2495A | Power Meter | 10/22/2017 | Annual | 10/22/2018 | 941001 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODTE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1148 | 05/09/2018 | Page 1 of 4 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Date | Extension Date | Certificate
Electrical
Delay (ns) | Head (1g)
W/kg @ 20.0
dBm | Head SAR (1g) | (%) | VV/kg @ 20.0
dBm | (10g) W/kg @
20.0 dBm | | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Head (dB) | Head (dB) | Deviation (%) | | |---------------------|----------------|---|---------------------------------|---------------|--------|---|--------------------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 5/9/2017 |
5/9/2018 | 1.223 | 3.64 | 3.59 | -1.37% | 1.93 | 1.91 | -1.04% | 49.8 | 49.0 | 0.8 | -0.7 | 0.1 | 0.8 | -42.9 | -38.7 | 9.90% | PASS | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Mar @ 20 0 | (9/.) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 5/9/2017 | 5/9/2018 | 1.223 | 3.7 | 3.88 | 4.86% | 1.98 | 2.06 | 4.04% | 45.7 | 45.4 | 0.3 | -0.5 | -2.6 | 2.1 | -26.9 | -25.0 | 7.20% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1148 | 05/09/2018 | rage 2 01 4 | ## Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1148 | 05/09/2018 | Page 3 of 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL CENTER 1 750.000 000 MHz | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1148 | 05/09/2018 | Page 4 of 4 | SPAN 400.000 000 MHz ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D1750V2-1150_Oct18 ## **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1150 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz BN/ 10/30/2018 Calibration date: October 22, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | Mull - | | | | | n.rez_ | | Approved by: | Katja Pokovic | Technical Manager | M100 | | | | | 16605 | Issued: October 22, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 1.33 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.76 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.2 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.5 ± 6 % | 1.46 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.04 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 36.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.82 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.4 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1150_Oct18 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.9 Ω - 0.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 40.1 dB | ### **Antenna Parameters with Body TSL** | Impedance,
transformed to feed point | 46.6 Ω - 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.2 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.217 ns | | |----------------------------------|----------|--| | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 10, 2015 | ### **DASY5 Validation Report for Head TSL** Date: 22.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.33 \text{ S/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electromics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg Maximum value of SAR (measured) = 14.0 W/kg 0 dB = 14.0 W/kg = 11.46 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 22.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.46 \text{ S/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 13.6 W/kg 0 dB = 13.6 W/kg = 11.34 dBW/kg ## Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D1900V2-5d080_Oct18 ## **CALIBRATION CERTIFICATE** Object D D1900V2 - SN:5d080 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz Calibration date: October 23, 2018 BN 201 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|------------------------| | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | | | | | ID# | Check Date (in house) | Scheduled Check | | SN: GB37480704 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | Name | Function | Signature | | Jeton Kastrati | Laboratory Technician | - Î/- | | | He | | | | V | | | Katja Pokovic | Technical Manager | 60 ML | | | | /s/c/5 | | | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeton Kastrati | SN: 104778 | Issued: October 23, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d080_Oct18 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d080_Oct18 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | do to to | | ### SAR result with Head TSL | SAR
averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | , , , , , , | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.62 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d080_Oct18 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.5 Ω + 7.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.8 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.1 Ω + 8.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.5 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.193 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | June 28, 2006 | Certificate No: D1900V2-5d080_Oct18 ### **DASY5 Validation Report for Head TSL** Date: 23.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 23.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg ## Impedance Measurement Plot for Body TSL ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D1900V2-5d148_Feb18 ## **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d148 Calibration procedure(s) **QA CAL-05.v9** Calibration procedure for dipole validation kits above 700 MHz 13-05-5018 Calibration date: February 07, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | (IA) | | Approved by: | Katja Pokovic | Technical Manager | I M | Issued: February 7, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is
mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.68 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d148_Feb18 ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $52.1 \Omega + 5.8 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.3 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.8 Ω + 6.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.1 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 4 400 | |----------------------------------|----------| | Liectical Delay (one direction) | 1.199 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 11, 2011 | ## **DASY5 Validation Report for Head TSL** Date: 07.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.22 W/kg Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.85 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 07.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.48 \text{ S/m}$; $\varepsilon_r = 55.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.0 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.14 W/kg Maximum value of SAR (measured) = 14.4 W/kg 0 dB = 14.4 W/kg = 11.58 dBW/kg # Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatori The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D1900V2-5d149_Oct18 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d149 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz Calibration date: October 23, 2018 10-30-201 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Dalmana Okamala uda | Lib # | Cal Data (Cartificate No.) | Cabadulad Callbridge | |---------------------------------|--------------------|-----------------------------------|------------------------| | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | | • | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In
house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 7 | | | | | | | Approved by: | Katja Pokovic | Technical Manager | 10011 | | | | | Let 15 | | 1 | | | P | Issued: October 23, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | MALE | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.68 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.9 Ω + 6.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23,4 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.5 Ω + 8.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.5 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.193 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 11, 2011 | Certificate No: D1900V2-5d149_Oct18 ### **DASY5 Validation Report for Head TSL** Date: 23.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 15.4 W/kg 0 dB = 15.4 W/kg = 11.88 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 23,10,2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.1 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg ## Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration
certificates Accreditation No.: SCS 0108 Client PC Test Certificate No: D2450V2-719_Aug17 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN:719 Calibration procedure(s) QA CAL-05.v9 (3) A. 42-1 (444-4) (44-4-4) Calibration procedure for dipole validation kits above 700 MHz 8/27/17 Extended Calibration date: 7/19/2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 d8 Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Reference Probe EX3DV4 | SN: 7349 | 31-May-17 (No. EX3-7349_May17) | May-18 | | DAE4 | SN: 601 | 28-Mar-17 (No. DAE4-601_Mar17) | Mar-18 | | Secondary Standards | 1D # | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | în house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | in house check: Oct-17 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | H.Hebes | | Approved by: | Katja Pokovic | Technical Manager | All H | Issued: August 17, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-719_Aug17 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V 52.10.0 | |------------------------------|------------------------|------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.9 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.00 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-719_Aug17 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $55.7 \Omega + 7.0 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 21.4 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.4 Ω + 8.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.8 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.150 ns | |----------------------------------|----------| | | <u> </u> | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 10, 2002 | #### **DASY5 Validation Report for Head TSL** Date: 17.08.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** • Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (front); Type: QD
000 P50 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 21.6 W/kg 0 dB = 21.6 W/kg = 13.34 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 17.08.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** • Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.0 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 25.2 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6 W/kg Maximum value of SAR (measured) = 19.8 W/kg 0 dB = 19.8 W/kg = 12.97 dBW/kg # Impedance Measurement Plot for Body TSL ### PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D2450V2 – SN: 719 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: 07/18/2018 Description: SAR Validation Dipole at 2450 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | E4438C | ESG Vector Signal Generator | 3/24/2017 | Biennial | 3/24/2019 | MY42082385 | | Agilent | 8753ES | S-Parameter Network Analyzer | 9/14/2017 | Annual | 9/14/2018 | US39170118 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Anritsu | ML2495A | Power Meter | 11/28/2017 | Annual | 11/28/2018 | 1039008 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 11/15/2017 | Annual | 11/15/2018 | 1339007 | | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Biennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018 | Annual | 6/4/2019 | MY53401181 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | PE5011-1 | Torque Wrench | 7/19/2017 | Biennial | 7/19/2019 | N/A | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/7/2018 | Annual | 3/7/2019 | 1368 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 8/9/2017 | Annual | 8/9/2018 | 1323 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/12/2017 | Annual | 9/12/2018 | 1091 | | SPEAG | ES3DV3 | SAR Probe | 3/13/2018 | Annual | 3/13/2019 | 3319 | | SPEAG | ES3DV3 | SAR Probe | 8/14/2017 | Annual | 8/14/2018 | 3332 | #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODTE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 30K | | Object: | Date Issued: | Dogg 4 of 4 | |-------------------|--------------|-------------| | D2450V2 – SN: 719 | 07/18/2018 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Date | Extension Date | Certificate
Electrical
Delay (ns) | Head (1g)
W/kg @ 20.0
dBm | asm | (%) | VV/kg @ 20.0
dBm | (10g) W/kg @
20.0 dBm | | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Head (dB) | Deviation (%) | | |---------------------|----------------|---|---------------------------------|---------------|-------|---|--------------------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 8/17/2017 | 7/18/2018 | 1.150 | 5.19 | 5.46 | 5.20% | 2.43 | 2.51 | 3.29% | 55.7 | 53.9 | 1.8 | 7.0 | 2.9 | 4.1 | -21.4 | -25.4 | -18.70% | PASS | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Body SAR (1g) | (9/.) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 8/17/2017 | 7/18/2018 | 1.150 | 5.01 | 5.19 | 3.59% | 2.37 | 2.38 | 0.42% | 51.4 | 50.2 | 1.2 | 8.1 | 5.9 | 2.2 | -21.8 | -24.6 | -12.80% | PASS | | Object: | Date Issued: | Dogo 2 of 4 | |-------------------|--------------|-------------| | D2450V2 – SN: 719 | 07/18/2018 | Page 2 of 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Dogo 2 of 4 | |-------------------|--------------|-------------| | D2450V2 – SN: 719 | 07/18/2018 | Page 3 of 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL CENTER 2 450.000 000 MHz | Object: | Date Issued: | Dogo 4 of 4 | |-------------------|--------------|-------------| | D2450V2 – SN: 719 | 07/18/2018 | Page 4 of 4 | SPAN 400.000 000 MHz #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 **PC Test** Certificate No: D2450V2-797_Sep17 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN:797 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 11, 2017 700 MHz 360 17 10/03/2019 Extended PMV J/20/2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|---------------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Type-N mismatch combination | SN: 5047,2 / 08327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Reference Probe EX3DV4 | SN: 7349 | 31-May-17 (No. EX3-7349_May17) | May-18 | | DAE4 | SN: 601 | 28-Mar-17 (No. DAE4-601_Mar17) | Mar-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN; US37292783 | 07-Oct-15
(in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-08 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | in house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | MULCO | | | | | 11110X | | Approved by: | Katja Pokovic | Technical Manager | Il M | | | | · · · · · · · · · · · · · · · · · · · | 10-00 | Issued: September 11, 2017 Certificate No: D2450V2-797_Sep17 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerlscher Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,v,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10,0 | |------------------------------|-------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | - | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ± 16.5 % (k=2) | à #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | . 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.9 ± 6 % | 2.04 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | Military and | | ### SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.1 W/kg ± 17.0 % (k≃2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.2 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.8 Ω + 7.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.9 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.7 Ω + 9.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20,9 dB | #### General Antenna Parameters and Design | | <u>,</u> | |------------------------------------|--------------| | | | | I Floatrical Delay (one direction) | l 1.152 ns l | | Electrical Delay (one direction) | I 1.152 ns I | | | ******* | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | January 24, 2006 | -در در در #### **DASY5 Validation Report for Head TSL** Date: 11.09.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 113.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 21.6 W/kg 0 dB = 21.6 W/kg = 13.34 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 11.09.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.4 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 20.3 W/kg 0 dB = 20.3 W/kg = 13.07 dBW/kg # Impedance Measurement Plot for Body TSL ## PCTEST ENGINEERING LABORATORY, INC. 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel, +1.410.290.6652 / Fax
+1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D2450V2 - SN: 797 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. **Extended Calibration date:** September 11, 2018 Description: SAR Validation Dipole at 2450 MHz. Calibration Equipment used: | | | | Thousand one of Lancoon | months of the day of the control | Fig. Oncome Calmin Company (Co. | | | |-----------------------|-----------|---|-------------------------|----------------------------------|---------------------------------|---------------|--| | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | | | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Biennial | 3/31/2019 | 170232394 | | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | | Keysight | 7720 | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018 | Annuai | 6/4/2019 | MY53401181 | | | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 8/30/2018 | Annuai | 8/30/2019 | MY40003841 | | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT . | N/A | CBT | N/A | | | SPEAG | DAK-3,5 | Dielectric Assessment Kit | 5/15/2018 | Annual | 5/15/2019 | 1070 | | | SPEAG | EX3DV4 | SAR Probe | 7/20/2018 | Annual | 7/20/2019 | 7410 | | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2018 | Annual | 7/11/2019 | 1322 | | | SPEAG | ES3DV3 | SAR Probe | 3/13/2018 | Annual | 3/13/2019 | 3319 | | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/7/2018 | Annual | 3/7/2019 | 1368 | | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1207364 | | | Anritsu | MA2411B | Puise Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1339018 | | | Anritsu | ML2495A | Power Meter | 10/22/2017 | Annual | 10/22/2018 | 1328004 | | | Aglient | N5182A | MXG Vector Signal Generator | 4/18/2018 | Annual | 4/18/2019 | MY47420800 | | | Seekonk | NC-100 | Torque Wrench | 7/11/2018 | Annual | 7/11/2019 | N/A | | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | СВТ | N/A | | | Narda | 4014C-6 | 4 - 8 GHz SMA 6 dB Directional Coupler | СВТ | N/A | CBT | N/A | | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Team Lead Engineer | BAOPTE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D2450V2 – SN; 797 | 09/11/2018 | | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20,0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | SAR Target
Head (10g)
W/kg @ 20.0
dBm | Measured
Head SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Gertificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Gertificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Devation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|---------------------|--|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|--------------|-----------| | 9/11/2017 | 9/11/2018 | 1.152 | 5.27 | 5.52 | 4.74% | 2.48 | 2.54 | 2.42% | 53.8 | 49.8 | 4 | 7.4 | 7.1 | 0.3 | -21.9 | -23 | -4.80% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | SAR Target
Body (1g)
W/kg @ 20.0
dBm | W/No / 20.0 | Deviation 1g
(%) | SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20,0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|---|-------------|---------------------|--|--|----------------------|--|---|--------------------------|-----|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 9/11/2017 | 9/11/2018 | 1.152 | 5.11 | 5.17 | 1.17% | 2.42 | 2.37 | -2.07% | 49.7 | 49.8 | 0.1 | 9.1 | 7.2 | 1.9 | -20,9 | -22.6 | -8.20% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D2450V2 - SN: 797 | 09/11/2018 | Page 2 of 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |-----------------|--------------|--------------| | D2450V2 SN: 797 | 09/11/2018 | 1 ago o or 1 | ### Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | ĺ | |-------------------|--------------|--------------|---| | D2450V2 - SN: 797 | 09/11/2018 | l age 4 of 4 | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D2450V2-981_Aug18 ## CALIBRATION CERTIFICATE Object D2450V2 - SN:981 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz BN V 09-06/2012 Calibration date: August 16, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | • | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Apr-19 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Dec-18
Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 | | | Name
 Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | C 1 4/1 | | | н | | self fully | | Approved by: | Katja Pokovic | Technical Manager | MM | | | | | 1660 | Issued: August 23, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-981_Aug18 Page 1 of 11 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Servizio svizzero di taratur S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the size. The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5.0 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Head TSL** | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.8 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.2 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.0 Ω + 2.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.6 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.2 Ω + 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.6 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1,162 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | December 30, 2014 | | Certificate No: D2450V2-981_Aug18 # Appendix (Additional assessments outside the scope of SCS 0108) ## **Measurement Conditions** DASY system configuration, as far as not given on page 1 and 3. | Phantom | 0.4144 | | |-------------|------------------|--------------------------------| | T Halltolli | SAM Head Phantom | For usage with cSAR3DV2-R/L | | | | 1 0 404g0 Will OOA 10D VZ-11/L | # SAR result with SAM Head (Top) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.6 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.0 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.2 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Mouth) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.6 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.0 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.3 W/kg ± 16.9 % (k=2) | ## SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.2 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.74 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 34.7 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | |
---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 17.5 W/kg ± 16.9 % (k=2) | Certificate No: D2450V2-981_Aug18 ## **DASY5 Validation Report for Head TSL** Date: 13.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.6 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.1 W/kg 0 dB = 22.1 W/kg = 13.44 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 13.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.0 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 20.7 W/kg 0 dB = 20.7 W/kg = 13.16 dBW/kg # Impedance Measurement Plot for Body TSL ## **DASY5 Validation Report for SAM Head** Date: 16.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 26.10.2017 - Phantom: SAM Head - DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # SAM Head Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 22.0 W/kg # SAM Head Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 21.7 W/kg # SAM Head Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.0 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 20.5 W/kg # SAM Head Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.03 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 8.74 W/kg; SAR(10 g) = 4.4 W/kg Maximum value of SAR (measured) = 13.5 W/kg Certificate No: D2450V2-981_Aug18 0 dB = 22.0 W/kg = 13.42 dBW/kg ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** ! Certificate No: D2600V2-1071_Sep16 ## CALIBRATION CERTIFICATE Object D2600V2 - SN:1071 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 13, 2016 Extended PM \ 9/20/2018 This callbration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate, All calibrations have been conducted in the closed laboratory facility; environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Reference Probe EX3DV4 | SN: 7349 | 15-Jun-16 (No. EX3-7349_Jun16) | Jun-17 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | וו מו | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (No. 217-02222) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (No. 217-02223) | In house check: Oct-16 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 | | Nelwork Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Signature 2 | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 121/1 | | | • | | 9 | | Approved by: | , Kalja Pokovic | Technical Manager | 1811C | | | | · · · · · · / | | issued: September 13, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1071_Sep16 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland C Sohweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Appreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL _ tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------
------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 2.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | bà nà âr-ma | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.45 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.3 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2,16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.1 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | . 14 16-44 | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW Input power | 13.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24,5 W/kg ± 16.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.9 Ω - 6.7]Ω | |--------------------------------------|-----------------| | Return Loss | - 23.5 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.1 Ω - 2.1 jΩ | |--------------------------------------|-----------------| | Return Loss | -26.7 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 17, 2013 | ### **DASY5 Validation Report for Head TSL** Date: 13.09.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.05 \text{ S/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52** Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.45 W/kg Maximum value of SAR (measured) = 24.6 W/kg 0 dB = 24.6 W/kg = 13.91 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 13.09.2016 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22 \text{ S/m}$; $\epsilon_r = 51.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 23.3 W/kg 0 dB = 23.3 W/kg = 13.67 dBW/kg ## Impedance Measurement Plot for Body TSL ## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D2600V2 - SN: 1071 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Calibration date: 09/07/2017 Description: SAR Validation Dipole at 2600 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Biennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight | 7720 | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017 | Annual | 6/1/2018 | MY53401181 | | Agilent | 8753ES | S-Parameter Network Analyzer | 10/26/2016 | Annual | 10/26/2017 | US39170118 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/13/2017 | Annual | 7/13/2018 | 1322 | | SPEAG | DAK-3,5 | Dielectric Assessment Kit | 5/10/2017 | Annual | 5/10/2018 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 7/17/2017 | Annual | 7/17/2018 | 7410 | | Anritsu | MA2411B | Pulse Power Sensor | 2/10/2017 | Annual | 2/10/2018 | 1207364 | | Anritsu | MA24118 | Pulse Power Sensor | 2/10/2017 | Annual | 2/10/2018 | 1339018 | | Anritsu | ML2495A | Power Meter | 10/16/2015 | Biennial | 10/16/2017 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 2/28/2017 | Annual | 2/28/2018 | MY47420800 | | Seekonk | NC-100 | Torque Wrench | 11/6/2015 | Biennial | 11/6/2017 | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BAOPTE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 30K- | | Object: | Date Issued: | Page 1 of 4 | |------------------|--------------|-------------| | D2600V2 SN: 1071 | 09/07/2017 | ·g- · · | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Head SAR (1g) | Deviation 1g
(%)
| | Head SAR | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|-------------------|---|--|---|---------------------|---|----------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 9/13/2016 | 9/7/2017 | 1.153 | 5.63 | 5.73 | 1.78% | 2.53 | 2.52 | -0.40% | 49.9 | 50.3 | 0.4 | -6.7 | -5.7 | 1.0 | -23.5 | -24.0 | -2.10% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 9/13/2016 | 9/7/2017 | 1.153 | 5.42 | 5.34 | -1.48% | 2.45 | 2.33 | -4.90% | 46.1 | 47.9 | 1.8 | -2.1 | -5.3 | 3.2 | -26.7 | -25.0 | 6.40% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D2600V2 - SN: 1071 | 09/07/2017 | raye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D2600V2 - SN: 1071 | 09/07/2017 | rage 5 or 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | | |--------------------|--------------|--------------|--| | D2600V2 - SN: 1071 | 09/07/2017 | 1 age 4 01 4 | | # PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D2600V2 - SN: 1071 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Calibration date: 09/11/2018 Description: SAR Validation Dipole at 2600 MHz. Calibration Equipment used: | | | | 8 1485533555555 | | ECONOMIC TO THE PARTY OF PA | | |-----------------------|-----------|---|-----------------|--------------|--|---------------| | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Biennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennlal | 5/2/2019 | 170330156 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9405 | | Keysight | 7720 | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | B5033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018 | Annual | 6/4/2019 | MY53401181 | | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 8/30/2018 | Annยอl | 8/30/2019 | MY40003841 | | Mini-Circuits | 8W-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/15/2018 | Annual | 5/15/2019 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 7/20/2018 | Annual | 7/20/2019 | 7410 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2018 | Annual | 7/11/2019 | 1322 | | SPEAG | ES3DV3 | SAR Probe | 3/13/2018 | Annual | 3/13/2019 | 3319 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/7/2018 | Annual | 3/7/2019 | 1368 | | Anritsu | MA24118 | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1339018 | | Anritsu | ML2495A | Power Meter | 10/22/2017 | Annual | 10/22/2018 | 1328004 | | Agilent | N5182A | MXG Vector Signal Generator | 4/18/2018 | Annual | 4/18/2019 | MY47420800 | | Seekonk | NC-100 | Torque Wrench | 7/11/2018 | Annual | 7/11/2019 | N/A | | MiniCircuits | V£F-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Narda | 4014C-6 | 4 - 8 GHz SMA 6 dB Directional Coupler | CBT | N/A | CBT | N/A | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 30K- | | Object: | Date Issued: | Dogo 4 of 4 | |--------------------|--------------|-------------| | D2600V2 - SN: 1071 | 09/11/2018 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|------|---|--------|---|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 9/13/2016 | 9/11/2018 | 1.153 | 5.63 | 5.52 | -1.95% | 2.53 | 2.47 | -2.37% | 49.9 | 49 | 0.9 | -6.7 | -5.4 | 1.3 | -23.5 | -25.2 | -7.40% | PASS | |
Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | (10a) M/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 9/13/2016 | 9/11/2018 | 1.153 | 5.42 | 5.57 | 2.77% | 2.45 | 2.46 | 0.41% | 46.1 | 47.7 | 1.6 | -2.1 | -4.6 | 2.5 | -26.7 | -25.6 | 4.30% | PASS | | 3/13/2010 | 3/11/2010 | 1.100 | 5.42 | 5.57 | 2.1170 | 2.43 | 2.40 | 0.4170 | 4 0. I | 47.7 | 1.0 | *Z. I | -4.0 | 2.5 | -20.7 | -23.0 | 4.3076 | FASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D2600V2 - SN: 1071 | 09/11/2018 | raye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D2600V2 - SN: 1071 | 09/11/2018 | 9 | ## Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D2600V2 - SN: 1071 | 09/11/2018 | Page 4 of 4 | # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Accreditation No.: SCS 0108 Certificate No: D2600V2-1126_Aug18 # CALIBRATION CERTIFICATE Object D2600V2 - SN:1126 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 13, 2018 BN 09-06/2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|---------------------------------------|--|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | • | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Apr-19 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Dec-18
Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | 1/4// _ | | | | and the second of o | 11.102 | | Approved by: | Katja Pokovic | Technical Manager | 00 m | | | * * * * * * * * * * * * * * * * * * * | | John My | Issued: August 13, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1126_Aug18 Page 1 of 8 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Accreditation No.: SCS 0108 Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1126_Aug18 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 2.03 mho/m ± 6 % | | Head TSL
temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.3 ± 6 % | 2.20 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.4 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.3 Ω - 8.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.6 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 44.7 Ω - 5.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.7 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | | |----------------------------------|-----------| | Licotrical Belay (one direction) | 1.154 ns | | | 1.134 115 | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 22, 2015 | Certificate No: D2600V2-1126_Aug18 ## **DASY5 Validation Report for Head TSL** Date: 13.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 37.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.7, 7.7, 7.7) @ 2600 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.1 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.25 W/kg Maximum value of \overline{SAR} (measured) = 23.5 W/kg 0 dB = 23.5 W/kg = 13.71 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 13.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.81, 7.81, 7.81) @ 2600 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.2 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 22.4 W/kg 0 dB = 22.4 W/kg = 13.50 dBW/kg ## Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D5GHzV2-1057_Jan18 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1057 Calibration procedure(s) QA CAL-22,v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: January 16, 2018 1-25-2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. BU 06 (2019 All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|---------------------------------|-----------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-1B | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Atlenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-17 (No. EX3-3503_Dec17) | Dec-18 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | |---------------------------|----------------|-----------------------------------|------------------------| | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (In house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | | | | Calibrated by: Name Leif Klysner Function Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 18, 2018 Sionature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1057_Jan18 Page 1 of 20 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of
the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.2 ± 6 % | 4.55 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.91 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1057_Jan18 # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 4.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 5.06 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W /kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.3 ± 6 % | 5.41 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.36 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.4 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.2 ± 6 % | 5.48 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.64 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.13 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.1 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.6 ± 6 % | 5.94 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 79.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.3 ± 6 % | 6.15 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.72 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.2 ± 6 % | 6.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | |
---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.68 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.13 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.1 W/kg ± 19.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 50.0 Ω - 5.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.2 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 54.7 Ω - 2.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.2 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 52.7 Ω + 0.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.5 dB | ### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 49.3 Ω - 6.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | ### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 48.4 Ω - 3.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.4 dB | ### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 55.3 Ω - 1.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.6 dB | ### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 52.6 Ω + 1.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.2 dB | ### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 51.8 Ω - 0.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 34.9 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.203 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 27, 2006 | # Appendix (Additional assessments outside the scope of SCS 0108) # **Measurement Conditions (f=5200 MHz)** DASY system configuration, as far as not given on page 1 and 3. | Phantom SAM Head Phantom For usage with cSAR3DV | 2-R/L | |---|-------| |---|-------| # SAR result with SAM Head (Top) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.6 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.9 % (k=2) | ### SAR result with SAM Head (Mouth) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.6 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.9 % (k=2) | # SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.6 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.9 % (k=2) | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.7 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 1.76 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 17.7 W/kg ± 19.9 % (k=2) | # Measurement Conditions (f=5800 MHz) DASY system configuration, as far as not given on page 1 and 3. | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |---------|------------------|-----------------------------| |---------|------------------|-----------------------------| # SAR result with SAM Head (Top) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 86.3 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.9 % (k=2) | ### SAR result with SAM Head (Mouth) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.88 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 88.9 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 19.9 % (k=2) | # SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.4 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.5 W/kg ± 19.9 % (k=2) | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.68 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.8 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 1.89 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 18.9 W/kg ± 19.9 % (k=2) | ### **DASY5 Validation Report for Head TSL** Date: 11.01.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.55$ S/m; $\varepsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.9$ S/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.06$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601 modified; Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52
52.10.0(1446); SEMCAD X 14.6.10(7417) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.54 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 17.7 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.77 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 19.7 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.93 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 18.9 W/kg 0 dB = 18.9 W/kg = 12.76 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 10.01.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.41 \text{ S/m}$; $\varepsilon_r = 47.3$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5250 MHz; $\sigma = 5.48 \text{ S/m}$; $\varepsilon_r = 47.2$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 5.94 \text{ S/m}$; $\varepsilon_r = 46.6$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5750 MHz; $\sigma = 6.15 \text{ S/m}$; $\varepsilon_r = 46.3$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5800 MHz; $\sigma = 6.22 \text{ S/m}$; $\varepsilon_r = 46.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** - Probe: EX3DV4 SN3503; ConvF(5.35, 5.35, 5.35); Calibrated: 30.12.2017, ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017, ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.05 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg Maximum value of SAR (measured) = 17.1 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.53 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 17.9 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.09 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 34.0 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.5 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.45 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.9 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.14 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.13 W/kg 0 dB = 18.9 W/kg = 12.76 dBW/kg # Impedance Measurement Plot for Body TSL ### **DASY5 Validation Report for SAM Head** Date: 16.01.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.59 S/m; ϵ r = 36.5; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.28 S/m; ϵ r = 35.4; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### **DASY52 Configuration:** - Probe: EX3DV4 SN3503; ConvF(5.75, 5.75, 5.75); Calibrated: 30.12.2017, ConvF(4.96, 4.96, 4.96); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 26.10.2017 - Phantom: SAM Head - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # SAM Head/Top - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.99 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 19.7 W/kg # SAM Head/Top - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.00 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 8.62 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 21.9 W/kg # SAM Head/Mouth - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.79 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 20.7 W/kg # SAM Head/Mouth - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.69 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 34.9 W/kg SAR(1 g) = 8.88 W/kg; SAR(10 g) = 2.44 W/kg Maximum value of SAR (measured) = 23.0 W/kg # SAM Head/Neck - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.48 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 19.3 W/kg # SAM Head/Neck - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.90 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 33.4 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 21.8 W/kg # SAM Head/Ear - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.68 V/m; Power Drift = 0.03 dB D 1 CAD (1 1 1) 16 2 W/I Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 5.16 W/kg; SAR(10 g) = 1.76 W/kg Maximum value of SAR (measured) = 11.1 W/kg # SAM Head/Ear - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.96 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 21.2 W/kg SAR(1 g) = 5.68 W/kg; SAR(10 g) = 1.89 W/kg Maximum value of SAR (measured) = 13.8 W/kg 0 dB = 13.8 W/kg = 11.40 dBW/kg ### PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D5GHzV2 – SN: 1057 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 1/16/2019 Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 2/8/2018 | Annual | 2/8/2019 | US39170122 | | Agilent | N5182A | MXG Vector Signal Generator | 4/18/2018 | Annual | 4/18/2019 | MY47420800 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1339018 | | Anritsu | ML2495A | Power Meter | 10/21/2018 | Annual | 10/21/2019 | 941001 | | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Biennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018 | Annual | 6/4/2019 | MY53401181 | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Seekonk | NC-100 | Torque Wrench | 7/11/2018 | Annual | 7/11/2019 | N/A | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 10/3/2018 | Annual | 10/3/2019 | 1558 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/18/2018 | Annual | 6/18/2019 | 1334 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2018 | Annual | 9/11/2019 | 1091 | | SPEAG | EX3DV4 | SAR Probe | 8/23/2018 | Annual | 8/23/2019 | 7308 | | SPEAG | EX3DV4 | SAR Probe | 6/25/2018 | Annual | 6/25/2019 | 7409 | ### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior
Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1057 | 01/16/2019 | rage 1014 | ### DIPOLE CALIBRATION EXTENSION Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Frequency
(MHz) | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 17.0
dBm | Measured
Head SAR
(1g) W/kg @
17.0 dBm | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 17.0
dBm | (40a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |--------------------|---------------------|-------------------|---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 5250 | 1/16/2018 | 1/16/2019 | 1.203 | 3.96 | 3.63 | -8.33% | 1.14 | 1.04 | -8.77% | 50 | 47.6 | 2.4 | -5.5 | -6.7 | 1.2 | -25.2 | -22.8 | 9.60% | PASS | | 5600 | 1/16/2018 | 1/16/2019 | 1.203 | 4.205 | 3.84 | -8.68% | 1.2 | 1.09 | -9.17% | 54.7 | 52.5 | 2.2 | -2.1 | 1.6 | 3.7 | -26.2 | -30.6 | -16.80% | PASS | | 5750 | 1/16/2018 | 1/16/2019 | 1.203 | 4.025 | 3.76 | -6.58% | 1.15 | 1.07 | -6.96% | 52.7 | 54.4 | 1.7 | 0 | 0.1 | 0.1 | -31.5 | -27.5 | 12.70% | PASS | | Frequency
(MHz) | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 17.0
dBm | Measured
Body SAR
(1g) W/kg @
17.0 dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 17.0
dBm | Measured
Body SAR
(10g) W/kg @
17.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 5250 | 1/16/2018 | 1/16/2019 | 1.203 | 3.795 | 3.73 | -1.71% | 1.06 | 1.03 | -2.37% | 48.4 | 45.9 | 2.5 | -3.9 | -4 | 0.1 | -27.4 | -24.5 | 10.50% | PASS | | 5600 | 1/16/2018 | 1/16/2019 | 1.203 | 3.995 | 4.06 | 1.63% | 1.12 | 1.12 | 0.45% | 55.3 | 51 | 4.3 | -1.6 | 2.8 | 4.4 | -25.6 | -30.7 | -20.00% | PASS | | 5750 | 1/16/2018 | 1/16/2019 | 1.203 | 3.835 | 3.65 | -4.82% | 1.06 | 1.02 | -3.77% | 52.6 | 52.9 | 0.3 | 1.1 | 0.6 | 0.5 | -31.2 | -30.7 | 1.60% | PASS | ### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1057 | 01/16/2019 | rage 3 or 4 | ### Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1057 | 01/16/2019 | Page 4 of 4 | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the eignatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D5GHzV2-1191_Sep16 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1191 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: September 21, 2016 BNV WOON 3-6 GHz 09-28-2016 Extended PMV 9/20/2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Арт-17 | | Power sensor NRP-Z91 | SN: 103244 | 08-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Altenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Reference Probe EX3DV4 | SN: 3503 | 30-Jun-16 (No. EX3-3503_Jun16) | Jun-17 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | | l | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (No. 217-02223) | In house check: Oct-16 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | in house check: Oct-16 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sid 4/4 | | | | | and large | | Approved by: | Katja Pokovic | Technical Manager | | | | | | | Issued: September 22, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1191_Sep16 Page 1 of 13 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura S Swisa Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: T\$L tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. **Measurement Conditions** DASY system configuration,
as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22,0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 4.59 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | lan del 30 esta | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k≕2) | Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | - | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5,07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 4.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8,45 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.8 ± 6 % | 5,08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | \$4.500 mile mile. | | # SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 W/kg ± 19.5 % (k=2) | Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5,36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.4 ± 6 % | 5,52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | JA Ar on the | ### SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.74 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 77.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.17 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.6 W/kg ± 19.5 % (k=2) | Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | The following persons and the first state of fi | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.8 ± 6 % | 6.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 10.10.00.10 | dat ya yak wal | ### SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.96 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 79.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.24 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.2 W/kg ± 19.5 % (k=2) | Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | To locality by | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.5 ± 6 % | 6,21 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | мьтя | | # SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.65 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 55.7 Ω - 4.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 58.3 Ω - 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.8 dB | ### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 58.1 Ω + 4.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.2 dB | ### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 56.1 Ω - 3.7]Ω | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | ###
Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 58.9 Ω - 1.7]Ω | |--------------------------------------|-----------------| | Return Loss | - 21.7 dB | ## Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 59.5 Ω + 6.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 19.4 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.204 ns | |----------------------------------|----------| | Electrical Delay (one direction) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 28, 2003 | Certificate No: D5GHzV2-1191_Sep16 ### **DASY5 Validation Report for Head TSL** Date: 21,09.2016 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.59$ S/m; $\varepsilon_r = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.93$ S/m; $\varepsilon_r = 34$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\varepsilon_r = 33.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 ~ SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85); Calibrated: 30.06.2016; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.49 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 18.2 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.34 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 20.0 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid; dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.15 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 19.3 W/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 20.09.2016 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.52$ S/m; $\epsilon_r = 47.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 6$ S/m; $\epsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.21$ S/m; $\epsilon_r = 46.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.49 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 17.7 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.85 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 18.8 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.21 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.5 W/kg ### Impedance Measurement Plot for Body TSL # PCTEST # PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D5GHzV2 - SN: 1191 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 9/19/2017 Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Biennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Bienniai | 5/2/2019 | 170330156 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3d8) | CBT | N/A | CBT | 9406 | | Keysight | 7720 | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017 | Annual | 6/1/2018 | MY53401181 | | Agilent | 8753ES | S-Parameter Network Analyzer | 10/26/2016 | Annual | 10/26/2017 | US39170118 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | C8T | N/A | CBT | N/A | | SPEAG | DAK-3,S | Dielectric Assessment KIt | 5/10/2017 | Annual | 5/10/2018 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 1/13/2017 | Annual | 1/13/2018 | 3589 | | SPEAG | EX3DV4 | SAR Probe | 2/13/2017 | Annual | 2/13/2018 | 3914 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 1/16/2017 | Annual | 1/16/2018 | 1466 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/9/2017 | Annual | 2/9/2018 | 665 | | Anritsu | MA2411B | Pulse Power Sensor | 2/10/2017 | Annual | 2/10/2018 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 2/10/2017 | Annual | 2/10/2018 | 1339018 | | Anritsu | ML2495A | Power Meter | 10/16/2015 | Biennial | 10/16/2017 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 2/28/2017 | Annual | 2/28/2018 | MY47420800 | | Seekonk | NC-100 | Torque Wrench | 11/6/2015 | Bienniai | 11/6/2017 | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Narda | 4014C-6 | 4 - 8 GHz SMA 6 dB Directional Coupler | CBT | N/A | CBT | N/A | ### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BAODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 201 | | | | | ı | |------------------|--------------|-------------|---| | Object: | Date Issued: | Page 1 of 4 | | | D5GHzV2 SN: 1191 | 09/19/2017 | Page 1 of 4 | ĺ | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Frequency
(MHz) | Calibration Date | Extension Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Head (1g)
W/kg @ 17.0
dBm | Measured Head
SAR (1a) W/kg | Deviation 1g (%) | Certificate SAR
Target Head
(10g) W/kg @
17.0 dBm | Measured Head
SAR (10g) W/kg
@ 17.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary |
Difference
(Ohm) Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |--------------------|------------------|----------------|---|---|--------------------------------|------------------|--|---|----------------------|--|---|--------------------------|---|--|-------------------------------|---|--------------------------------------|---------------|-----------| | 5250 | 9/21/2016 | 9/19/2017 | 1.204 | 3.95 | 3.70 | -6.21% | 1.13 | 1.05 | -7.08% | 55.7 | 53.4 | 2.3 | -4.3 | -6.4 | 2.1 | -23.4 | -26.9 | -15.00% | PASS | | 5600 | 9/21/2016 | 9/19/2017 | 1.204 | 4.18 | 4.03 | -3.59% | 1.19 | 1.13 | -5.04% | 58.3 | 55.6 | 2.7 | -3.2 | -1.2 | 2.0 | -21.8 | -26.1 | -19.80% | PASS | | 5750 | 9/21/2016 | 9/19/2017 | 1.204 | 3.96 | 3.94 | -0.38% | 1.12 | 1.10 | -1.79% | 58.1 | 57.4 | 0.7 | 4.8 | 3.2 | 1.6 | -21.2 | -21.0 | 0.90% | PASS | | | Frequency
(MHz) | Calibration Date | Extension Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Body (1g)
W/kg @ 17.0
dBm | Measured Body
SAR (1g) W/kg
@ 17.0 dBm | Deviation to (%) | Certificate SAR
Target Body
(10g) W/kg @
17.0 dBm | Measured Body
SAR (10g) W/kg
@ 17.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm) Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | | |---|--------------------|------------------|----------------|---|---|--|------------------|--|---|----------------------|--|---|--------------------------|---|--|-------------------------------|---|--------------------------------------|---------------|------| | Г | 5250 | 9/21/2016 | 9/19/2017 | 1.204 | 3.85 | 3.80 | -1.30% | 1.08 | 1.06 | -1.85% | 56.1 | 54.0 | 2.1 | -3.7 | -3.3 | 0.4 | -23.4 | -26.0 | -11.10% | PASS | | | 5600 | 9/21/2016 | 9/19/2017 | 1.204 | 3.96 | 4.06 | 2.53% | 1.11 | 1.13 | 1.80% | 58.9 | 56.5 | 2.4 | -1.7 | 0.5 | 2.2 | -21.7 | -24.5 | -12.80% | PASS | | | 5750 | 9/21/2016 | 9/19/2017 | 1.204 | 3.81 | 3.66 | -3.81% | 1.06 | 1.02 | -3.77% | 59.5 | 58.0 | 1.5 | 6.9 | 5.2 | 1.7 | -19.4 | -21.1 | -8.70% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1191 | 09/19/2017 | rage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL CH1 Markers 2:-26.108 dB 5.60000 GHz 3:-21.016 dB 5.75000 GHz | Object: | Date Issued: | Page 3 of 4 | |------------------|--------------|-------------| | D5GHzV2 SN: 1191 | 09/19/2017 | l ago o o | ### Impedance & Return-Loss Measurement Plot for Body TSL CH1 Markers 2:-24.481 dB 5.60000 GHz 3:-21.092 dB 5.75000 GHz | Object: | Date Issued: | D | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1191 | 09/19/2017 | Page 4 of 4 | ## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290,6652 / Fax +1,410.290.6654 http://www.pctest.com ## **Certification of Calibration** Object D5GHzV2 - SN: 1191 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 9/11/2018 Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Blennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | Amplifier Research | 15\$166 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3d8) | CBT | N/A | CBT | 9406 | | Keysight | 772D | Dual Directional Coupler | СВТ | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018 | Annual | 6/4/2019 | MY53401181 | | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 8/30/2018 | Annual | 8/30/2019 | MY40003841 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/15/2018 | Annual | 5/15/2019 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 6/25/2018 | Annual | 6/25/2019 | 7409 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/18/2018 | Annual | 6/18/2019 | 1334 | | SPEAG | EX3DV4 | SAR Probe | 4/18/2018 | Annual | 4/18/2019 | 7357 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/11/2018 | Annual | 4/11/2019 | 1407 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1207364 | | Anritsu | MA24118 | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1339018 | | Anritsu | ML2495A | Power Meter | 10/22/2017 | Annuai | 10/22/2018 | 1328004 | | Agilent | N5182A | MXG Vector Signal Generator | 4/18/2018 | Annua! | 4/18/2019 | MY47420800 | | Seekonk | NC-100 | Torque Wrench | 7/11/2018 | Annual | 7/11/2019 | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Narda | 4014C-6 | 4 - 8 GHz SMA 6 dB Directional Coupler | CBT | N/A | СВТ | N/A | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BAODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 306 | | Object: | Date issued: | Page 1 of 4 | |------------------|--------------|-------------| | D5GHzV2 SN: 1191 | 09/11/2018 | rage rui4 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Frequency
(MHz) | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 17.0
dBm | Measured
Head SAR (1g)
W/kg @ 17.0
dBm | | Certificate
SAR Target
Head (10g)
W/kg @ 17.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |--------------------|---------------------|--------------------------|---|--|---|--------|---|--------------------------------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|----------------------|----------------| | 5250 | 9/21/2016 | 9/11/2018 | 1.204 | 3.945 | 3.9 | -1.14% | 1.13 | 1.11 | -1.77% | 55.7 | 54.9 | 0.8 | -4.3 | -7.7 | 3.4 | -23.4 | -21.3 | 9.10% | PASS | | 5600 | 9/21/2016 | 9/11/2018 | 1.204 | 4.18 | 4.19 | 0.24% | 1.19 | 1.18 | -0.84% | 58.3 | 54.6 | 3.7 | -3.2 | -6.2 | 3 | -21.8 | -22.7 | -4.30% | PASS | | 5750 | 9/21/2016 | 9/11/2018 | 1.204 | 3.955 | 3.82 | -3.41% | 1.12 | 1.08 | -3.57% | 58.1 | 58.7 | 0.6 | 4.8 | 7.4 | 2.6 | -21.2 | -19.5 | 7.80% | PASS | | | | | Certificate | Certificate
SAR Target | Measured | | Certificate
SAR Target | Measured | | Certificate | Measured | | Certificate | Measured | Difference | Certificate | Measured | | | | Frequency
(MHz) | Calibration
Date | Extension Date
| Electrical
Delay (ns) | Body (1g)
W/kg @ 17.0
dBm | Body SAR (1g)
W/kg @ 17.0
dBm | | Rody (10a) | Body SAR
(10g) W/kg @
17.0 dBm | Deviation 10g
(%) | Impedance
Body (Ohm)
Real | Impedance
Body (Ohm)
Real | Ohm) Real | Impedance
Body (Ohm)
Imaginary | Impedance
Body (Ohm)
Imaginary | (Ohm)
Imaginary | Return Loss
Body (dB) | Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | | Date 9/21/2016 | Extension Date 9/11/2018 | Electrical | Body (1g)
W/kg @ 17.0 | W/kg @ 17.0 | | Body (10g)
W/kg @ 17.0 | (10g) W/kg @ | | Body (Ohm) | Body (Ohm) | | Body (Ohm) | Body (Ohm) | | | | Deviation (%) -2.40% | PASS/FAIL PASS | | (MHz) | Date | | Electrical
Delay (ns) | Body (1g)
W/kg @ 17.0
dBm | W/kg @ 17.0
dBm | (%) | Body (10g)
W/kg @ 17.0
dBm | (10g) W/kg @
17.0 dBm | (%) | Body (Ohm)
Real | Body (Ohm)
Real | (Ohm) Real | Body (Ohm)
Imaginary | Body (Ohm)
Imaginary | Imaginary | Body (dB) | Body (dB) | | | | (MHz) | Date | | Electrical
Delay (ns) | Body (1g)
W/kg @ 17.0
dBm | W/kg @ 17.0
dBm | (%) | Body (10g)
W/kg @ 17.0
dBm | (10g) W/kg @
17.0 dBm | (%) | Body (Ohm)
Real | Body (Ohm)
Real | (Ohm) Real | Body (Ohm)
Imaginary | Body (Ohm)
Imaginary | Imaginary | Body (dB) | Body (dB) | | , | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1191 | 09/11/2018 | Fage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1191 | 09/11/2018 | Page 3 of 4 | #### Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | | |------------------|--------------|-------------|--| | D5GHzV2 SN: 1191 | 09/11/2018 | Page 4 01 4 | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: ES3-3287_Oct18 ## **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3287 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes BNV 10-30-201 Calibration date: October 22, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-17 (No. ES3-3013_Dec17) | Dec-18 | | DAE4 | SN: 660 | 21-Dec-17 (No. DAE4-660_Dec17) | Dec-18 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 23, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization φ φ rotation around probe axis Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). October 22, 2018 # Probe ES3DV3 SN:3287 Manufactured: June 7, 2010 Calibrated: October 22, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.88 | 0.99 | 1.01 | ± 10.1 % | | DCP (mV) ^B | 106.5 | 104.5 | 106.2 | | #### **Modulation Calibration Parameters** | מוט | Communication System Name | | A
dB | B
dB√uV | С | D
dB | VR
mV | Unc ^{l:}
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|----------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 170.5 | ±3.3 % | | | | Y | 0.0 | 0.0 | 1.0 | | 183.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 185.7 | | Note: For details on UID parameters see Appendix. #### **Sensor Model Parameters** | | C1 | C2 | α | T1 | T2 | T3 | T4 | T5 | T6 | |---|-------|-------|-------|--------|--------|-------|-------|-------|-------| | | fF | fF | V-1 | ms.V⁻² | ms.V⁻¹ | ms | V-2 | V-1 | | | X | 63.21 | 438.0 | 33.52 | 29.02 | 2.824 | 5.044 | 1.538 | 0.382 | 1.009 | | Y | 66.95 | 483.3 | 35.70 | 29.79 | 3.474 | 5.100 | 0.294 | 0.696 | 1.011 | | Z | 55.14 | 387.3 | 34.16 | 28.13 | 2.433 | 5.100 | 1.594 | 0.322 | 1.010 | The reported uncertainty of
measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 6.76 | 6.76 | 6.76 | 0.28 | 1.78 | ± 12.0 % | | 835 | 41.5 | 0.90 | 6.61 | 6.61 | 6.61 | 0.60 | 1.20 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.48 | 5.48 | 5.48 | 0.53 | 1.28 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.24 | 5.24 | 5.24 | 0.41 | 1.52 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 4.82 | 4.82 | 4.82 | 0.42 | 1.57 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.63 | 4.63 | 4.63 | 0.55 | 1.39 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.38 | 4.38 | 4.38 | 0.58 | 1.43 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: ES3-3287_Oct18 F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 6.43 | 6.43 | 6.43 | 0.72 | 1.15 | ± 12.0 % | | 835 | 55.2 | 0.97 | 6.34 | 6.34 | 6.34 | 0.52 | 1.32 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 4.98 | 4.98 | 4.98 | 0.28 | 2.12 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.83 | 4.83 | 4.83 | 0.43 | 1.57 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 4.55 | 4.55 | 4.55 | 0.62 | 1.36 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.29 | 4.29 | 4.29 | 0.72 | 1.17 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.19 | 4.19 | 4.19 | 0.50 | 1.20 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Page 6 of 39 validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) October 22, 2018 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 93.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | **Appendix: Modulation Calibration Parameters** | ÜID | ix: Modulation Calibration Paran Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
Unc ^E
(k≃2) | |---------------|--|--------|-----------------|-----------------|----------------|---------|----------------|----------------------------------| | 0 | CW | Х | 0.00 | 0.00 | 1.00 | 0.00 | 170.5 | ± 3.3 % | | | | Υ | 0.00 | 0.00 | 1.00 | | 183.9 | | | | | Z | 0.00 | 0.00 | 1.00 | | 185.7 | | | 10010-
CAA | SAR Validation (Square, 100ms, 10ms) | × | 7.53 | 77.06 | 17.83 | 10.00 | 25.0 | ± 9.6 % | | | | Υ | 8.14 | 78.38 | 19.04 | | 25.0 | | | | | Z | 9.25 | 80.89 | 19.28 | | 25.0 | | | 10011-
CAB | UMTS-FDD (WCDMA) | Х | 1.43 | 73.85 | 18.87 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.97 | 66.02 | 14.16 | | 150.0 | | | 10012- | IEEE 000 44h W/Ei 2 4 CUz /DCCC 4 | Z
X | 1.09
1.37 | 68.86
66.92 | 15.96
17.13 | 0.41 | 150.0
150.0 | ± 9.6 % | | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps) | | | | | U.4 I | 150.0 | £ 9.0 /6 | | | | Y | 1.26 | 64.41 | 15.18
16.10 | | 150.0 | | | 10013- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Z
X | 1.30
5.15 | 65.60
67.38 | 17.44 | 1,46 | 150.0 | ± 9.6 % | | CAB | OFDM, 6 Mbps) | Y | 5.15 | 67.06 | 17.44 | 07,1 | 150.0 | ± 0.0 /0 | | | | | 5.18 | 67.06 | 17.28 | | 150.0 | | | 10021-
DAC | GSM-FDD (TDMA, GMSK) | Z
X | 14.53 | 88.52 | 23.56 | 9.39 | 50.0 | ± 9.6 % | | | | Υ | 14.96 | 89.86 | 24.90 | | 50.0 | | | | | Ζ | 31.90 | 102.69 | 28.16 | | 50.0 | | | 10023-
DAC | GPRS-FDD (TDMA, GMSK, TN 0) | Х | 13.53 | 87.25 | 23.18 | 9.57 | 50.0 | ± 9.6 % | | | | Υ | 14.02 | 88.59 | 24.52 | | 50.0 | , | | | | Z | 26.42 | 99.51 | 27.28 | | 50.0 | | | 10024-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | Х | 52.08 | 107.25 | 27.36 | 6.56 | 60.0 | ± 9.6 % | | | | Υ | 41.48 | 106.06 | 28.00 | | 60.0 | | | | | Z | 100.00 | 118.06 | 30.27 | | 60.0 | | | 10025-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | X | 16.26 | 99.58 | 37.07 | 12.57 | 50.0 | ± 9.6 % | | | | Y | 13.58 | 93.24
110.76 | 34.70
41.97 | | 50.0
50.0 | | | 10026-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | Z
X | 21.87
18.41 | 99.97 | 33.81 | 9.56 | 60.0 | ± 9.6 % | | DAG | | Y | 15.35 | 95.05 | 32.27 | | 60.0 | <u> </u> | | | | Z | 21.72 | 105.96 | 36.44 | | 60.0 | | | 10027-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | X | 100.00 | 115.09 | 28.07 | 4.80 | 80.0 | ± 9.6 % | | | | Y | 100.00 | 117.60 | 29.52 | | 80.0 | | | | | Z | 100.00 | 116.87 | 28.79 | | 80.0 | | | 10028-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | Х | 100.00 | 115.09 | 27.27 | 3.55 | 100.0 | ± 9.6 % | | | | Y | 100.00 | 116.90 | 28.32 | | 100.0 | | | | | Z | 100.00 | 116.94 | 28.01 | | 100.0 | | | 10029-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | X | 13.44 | 93.53 | 30.58 | 7.80 | 80.0 | ± 9.6 % | | | | Y | 11.59 | 89.61 | 29.29 | | 80.0
80.0 | <u> </u> | | 10030-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Z
X | 14.19
100.00 | 96.32
114.89 | 32.08
28.31 | 5.30 | 70.0 | ± 9.6 % | | O/M | | Υ | 92.82 | 116.56 | 29.65 | | 70.0 | | | | | Z | 100.00 | 116.45 | 28.94 | | 70.0 | | | 10031-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | X | 100.00 | 116.79 | 26.49 | 1.88 | 100.0 | ± 9.6 % | | | | Υ | 100.00 | 115.79 | 26.19 | | 100.0 | | | | | Z | 100.00 | 117.41 | 26.65 | | 100.0 | | | 10032-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Х | 100.00 | 123.13 | 28.06 | 1.17 | 100.0 | ± 9.6 % | |---------------|---|--------|---------------|----------------|----------------|---------------------------------------|----------------|---------| | 0, 0, | | Y | 100.00 | 116.53 | 25.36 | | 100.0 | | | | | Z | 100.00 | 121.10 | 27.07 | | 100.0 | | | 10033-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | X | 15.49 | 93.49 | 25.39 | 5.30 | 70.0 | ± 9.6 % | | | | Y | 12.09 | 89.66 | 24.64 | | 70.0 | | | | | Z | 22.85 | 100.72 | 27.71 | | 70.0 | | | 10034-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK,
DH3) | Х | 11.69 | 94.03 | 24.43 | 1.88 | 100.0 | ± 9.6 % | | | | Υ | 5.21 | 81.43 | 20.33 | | 100.0 | 1 | | | | Z | 10.45 | 92.04 | 23.50 | | 100.0 | | | 10035-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Х | 7.19 | 89.07 | 22.83 | 1.17 | 100.0 | ± 9.6 % | | | | Υ | 3.19 | 76.15 | 18.09 | | 100.0 | | | | | Z | 5.32 | 84.13 | 20.72 | | 100.0 | | | 10036-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Х | 18.47 | 96.50 | 26.38 | 5.30 | 70.0 | ± 9.6 % | | | | Υ | 13.77 | 92.00 | 25.46 | | 70.0 | | | 40057 | 1 | Z | 29.42 | 105.03 | 29.00 | | 70.0 | | | 10037-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Х | 11,12 | 93.30 | 24.16 | 1.88 | 100.0 | ±9.6% | | | | Y | 5.06 | 81.04 | 20.15 | | 100.0 | | | | | Ζ | 9.78 | 91.13 | 23.19 | | 100.0 | | | 10038-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Х | 7.70 | 90.38 | 23.33 | 1.17 | 100.0 | ± 9.6 % | | | | Υ | 3.27 | 76.73 | 18,38 | | 100.0 | | | 45555 | | Ζ | 5.57 | 85.06 | 21.13 | | 100.0 | | | 10039-
CAB | CDMA2000 (1xRTT, RC1) | Х | 3.68 | 82.65 | 21.02 | 0.00 | 150.0 | ±9.6% | | | | Υ | 1.70 | 69.59 | 15.11 | | 150.0 | | | | | Z | 2,11 | 74.03 | 16.84 | | 150.0 | | | 10042-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Halfrate) | Х | 23.70 | 95.06 | 24.07 | 7.78 | 50.0 | ± 9.6 % | | | | Υ | 21.98 | 95.27 | 24.98 | | 50.0 | | | | | Ζ | 100.00 | 116.88 | 29.97 | | 50.0 | | | 10044-
CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | Х | 0.00 | 115.10 | 1.28 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.01 | 122.01 | 1.58 | | 150.0 | | | | | Ζ | 0.00 | 110.42 | 5.98 | | 150.0 | | | 10048-
CAA | DECT (TDD, TDMA/FDM, GFSK, Full
Slot, 24) | Х | 9.90 | 79.84 | 22.32 | 13.80 | 25.0 | ± 9.6 % | | | | Υ | 10.52 | 80.91 | 23.58 | | 25.0 | | | | | Z | 12.94 | 86.06 | 24.76 | | 25.0 | | | 10049-
CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | X | 11.07 | 83.29 | 22.21 | 10.79 | 40.0 | ± 9.6 % | | | | Υ | 11.66 | 84.62 | 23.55 | | 40.0 | | | 10050 | LIMTO TOD /TO CODAM / CO. | Z | 15.99 | 90.77 | 24.97 | | 40.0 | | | 10056-
CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | X | 11.47 | 84.45 | 23.20 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 11.19 | 84.08 | 23.66 | | 50.0 | | | 10058- | EDGE EDD (TDMA CDG)(This continue | Z | 14.67 | 89.92 | 25.31 | | 50.0 | | | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | X | 10.29 | 88.76 | 28.24 | 6.55 | 100.0 | ± 9.6 % | | | | Y | 9.12 | 85.50 | 27.09 | · · · · · · · · · · · · · · · · · · · | 100.0 | | | 10059-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | Z
X | 10.20
1.61 | 89.78
69.65 | 29.04
18.33 | 0.61 | 100.0
110.0 | ± 9.6 % | | | | Y | 1.43 | 66.43 | 16.16 | | 110.0 | | | | | Z | 1.49 | 68.00 | 17.26 | | 110.0 | | | 10060-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | X | 100.00 | 131.01 | 33.54 | 1.30 | 110.0 | ± 9.6 % | | | | Υ | 22.84 | 107.12 | 27.36 | | 110.0 | | | | | Z | 100.00 | 130.89 | 33.42 | | | | | | 1 | £ | 100.00 | เบบ.อฮ | JJ.4Z | | 110.0 | L | | 10061-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | Х | 18.52 | 105.45 | 29.38 | 2.04 | 110.0 | ± 9.6 % | |---------------|---|---|-------|--------|-------|-----------------|-------|---------| | | | Y | 6.96 | 88.43 | 24.11 | ··············· | 110.0 | | | | A | Ż | 15.38 | 103.23 | 28.94 | | 110.0 | | | 10062-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | X | 4.90 | 67.27 | 16.85 | 0.49 | 100.0 | ± 9.6 % | | | | Y | 4.89 | 66.79 | 16.55 | | 100.0 | | | | | Z | 4.81 | 67.12 | 16.71 | | 100.0 | | | 10063-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps) | X | 4.93 | 67.42 | 16.97 | 0.72 | 100.0 | ± 9.6 % | | | | Y | 4.94 | 66.96 | 16.70 | | 100.0 | | | | | Z | 4.85 | 67.28 | 16.85 | | 100.0 | | | 10064-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | X | 5.27 | 67.73 | 17.21 | 0.86 | 100.0 | ±9.6 % | | | | Y | 5.30 | 67.34 | 16.98 | | 100.0 | | | | | Z | 5.17 | 67.59 | 17.11 | | 100.0 | | | 10065-
CAC | IEEE 802.11a/h WIFi 5 GHz (OFDM, 18 Mbps) | X | 5.17 | 67.74 | 17.34 | 1.21 | 100.0 | ± 9.6 % | | | | Υ | 5.20 | 67.39 | 17.15 | | 100.0 | | | | | Z | 5.08 | 67.64 | 17.28 | | 100.0 | | | 10066-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | Х | 5.22 | 67.85 | 17.55 | 1.46 | 100.0 | ± 9.6 % | | | | Υ | 5.26 | 67.54 | 17.39 | | 100.0 | | | | | Z | 5.14 | 67.77 | 17.52 | | 100.0 | | | 10067-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | Х | 5.52 | 67.92 | 17.94 | 2.04 | 100.0 | ± 9.6 % | | | | Y | 5.59 | 67.70 | 17.86 | | 100.0 | | | | | Z | 5.46 | 67.96 | 17.98 | | 100.0 | | | 10068-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | Х | 5.67 | 68.31 | 18.30 | 2.55 | 100.0 | ± 9.6 % | | | | Υ | 5.76 | 68.13 | 18.25 | | 100.0 | | | | | Z | 5.59 | 68.29 | 18.34 | | 100.0 | | | 10069-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | X | 5.74 | 68.18 | 18.44 | 2.67 | 100.0 | ± 9.6 % | | | | Y | 5.83 | 68.02 | 18.41 | | 100.0 | | | | | Z | 5.67 | 68.25 | 18.53 | | 100.0 | | | 10071-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 9 Mbps) | X | 5.29 | 67.59 | 17.79 | 1.99 | 100.0 | ± 9.6 % | | | | Y | 5.34 | 67.32 | 17.67 | | 100.0 | | | | | Z | 5.24 | 67.60 | 17.81 | | 100.0 | | | 10072-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 12 Mbps) | X | 5.36 | 68.17 | 18.10 | 2.30 | 100.0 | ± 9.6 % | | | | Y | 5.42 | 67.91 | 18.00 | | 100.0 | | | | | Z | 5.30 | 68.17 | 18.14 | | 100.0 | T | | 10073-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 18 Mbps) | Х | 5.49 | 68.49 | 18.48 | 2.83 | 100.0 | ± 9.6 % | | | | Y | 5.57 | 68.29 | 18.43 | | 100.0 | | | | | Z | 5.44 | 68.53 | 18.57 | | 100.0 | | | 10074-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 24 Mbps) | X | 5,52 | 68.57 | 18.73 | 3.30 | 100.0 | ± 9.6 % | | | | Y | 5.62 | 68.40 | 18.71 | | 100.0 | | | | | Z | 5.48 | 68.62 | 18.83 | | 100.0 | | | 10075-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 36 Mbps) | Х | 5.69 | 69.08 | 19.21 | 3.82 | 90.0 | ± 9.6 % | | | | Υ | 5.81 | 68.98 | 19.24 | | 90.0 | | | | | Z | 5.63 | 69.10 | 19.33 | | 90.0 | | | 10076-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 48 Mbps) | X | 5.69 | 68.85 | 19.30 | 4.15 | 90.0 | ± 9.6 % | | | | Y | 5.82 | 68.76 | 19.35 | | 90.0 | | | | | Z | 5.65 | 68,92 | 19.46 | 1 | 90.0 | | | 10077-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 54 Mbps) | Х | 5.73 | 68.94 | 19.41 | 4.30 | 90.0 | ± 9.6 % | | | | Y | 5.86 | 68.86 | 19.45 | | 90.0 | | | | | Z | 5.70 | 69.02 | 19.57 | 1 | 90.0 | | | 10081-
CAB | CDMA2000 (1xRTT, RC3) | X | 1.50 | 74.73 | 17.78 | 0.00 | 150.0 | ± 9.6 % | |---------------------------------------|---|---|--------|--------|-------|------|-------|----------| | | | Υ | 0.85 | 64.97 | 12.38 | | 150.0 | | | · · · · · · · · · · · · · · · · · · · | | Z | 0.93 | 67.53 | 13.57 | | 150.0 | <u> </u> | | 10082-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Fullrate) | X | 2.13 | 63.53 | 8.53 | 4.77 | 80.0 | ± 9.6 % | | | | Y | 2.34 | 64.23 | 9.30 | | 80.0 | | | | | Z | 2.05 | 63.65 | 8.54 | | 80.0 | | | 10090-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | Х | 49.50 | 106.58 | 27.22 | 6.56 | 60.0 | ± 9.6 % | | · | | Υ | 40.33 | 105.69 | 27.94 | | 60.0 | | | 7.0.0. | | Z | 100.00 | 118.15 | 30.33 | | 60.0 | | | 10097-
CAB | UMTS-FDD (HSDPA) | X | 2.07 | 70.20 | 17.39 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.76 | 66.51 | 15.04 | | 150.0 | | | 40000 | LINTO FEED AND THE | Z | 1.86 | 68.23 | 16.00 | | 150.0 | | | 10098-
CAB | UMTS-FDD (HSUPA, Subtest 2) | X | 2.03 | 70.21 | 17.38 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.72 | 66.45 | 14.99 | | 150.0 | | | 10000 | FDOE FDD /TDLL | Z | 1.83 | 68.21 | 15.97 | | 150.0 | | | 10099-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | X | 18.31 | 99.80 | 33.74 | 9.56 | 60.0 | ± 9.6 % | | | | Υ | 15.30 | 94.94 | 32.23 | ļ | 60.0 | | | 40400 | LTE EDD (OO ED)(A 1000(DD 00 | Z | 21.61 | 105.78 | 36.38 | | 60.0 | | | 10100-
CAE | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, QPSK) | Х | 3.71 | 73.39 | 18.12 | 0.00 | 150.0 | ±9.6% | | | | Y | 3.14 | 69.82 | 16.14 | | 150.0 | | | 40404 | LTE EDD (OC EDILL) | Z | 3.27 | 71.18 | 16.96 | | 150.0 | | | 10101-
CAE | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM) | X | 3.51 | 69.02 | 16.73 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.32 | 67.43 | 15.69 | | 150.0 | | | | | Z | 3.32 | 68.05 | 16.10 | | 150.0 | | | 10102-
CAE | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | Х | 3.59 | 68.86 | 16.77 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.42 | 67.38 | 15.79 | | 150.0 | | | | | Z | 3.42 | 67.96 | 16.18 | | 150.0 | | | 10103-
CAG | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, QPSK) | X | 8.68 | 77.91 | 20.86 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.39 | 76.97 | 20.64 | | 65.0 | | | | | Z | 8.88 | 79.01 | 21.52 | | 65.0 | | | 10104-
CAG | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM) | X | 8.68 | 76.81 | 21.30 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.50 | 76.03 | 21.10 | | 65.0 | | | 40405 | | Z | 8.59 | 77.26 | 21.68 | | 65.0 | | | 10105-
CAG | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | X | 8.09 | 75.44 | 21.00 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 7.65 | 73.94 | 20.48 | | 65.0 | | | 40400 | LITE EDD (OO EDMA (OCC) ED 15 | Z | 7.67 | 75.03 | 21.01 | | 65.0 | | | 10108-
CAG | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, QPSK) | Х | 3.25 | 72.47 | 17.95 | 0.00 | 150.0 | ± 9.6 % | | ··· | | Υ | 2.79 | 69.04 | 15.96 | | 150.0 | | | 40400 | LITE FIRE (CO FINAL COLUMN | Z | 2.87 | 70.38 | 16.80 | | 150.0 | | | 10109-
CAG | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM) | X | 3.18 | 68.93 | 16.75 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.99 | 67.17 | 15.59 | | 150.0 | | | 10110 | LTC EDD (OO EDMA 1000) TO THE | Z | 2.98 | 67.88 | 16.03 | | 150.0 | | | 10110-
CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | Х | 2.67 | 71.57 | 17.72 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.28 | 68.03 | 15.59 | | 150.0 | | | 10144 | LTE EDD (OO ED) (A COCK ET EL | Z | 2.34 | 69.49 | 16.47 | | 150.0 | | | 10111-
CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | X | 2.93 | 69.90 | 17.29 | 0.00 | 150.0 | ± 9.6 %
| | | | Υ | 2.67 | 67.50 | 15.78 | | 150.0 | | | | | Z | 2.69 | 68.60 | 16.34 | | | | | 10112-
CAG | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM) | Х | 3.29 | 68,76 | 16.73 | 0.00 | 150.0 | ± 9.6 % | |-----------------------|--|---|------|-------|-------|------|-------|---------| | <i>5</i> , (<i>5</i> | 1 TELEGRAPH OF SEPTIFF | Y | 3.11 | 67.13 | 15.65 | | 150.0 | | | | | ż | 3.10 | 67.82 | 16.07 | | 150.0 | | | 10113-
CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | X | 3.07 | 69.85 | 17.32 | 0.00 | 150.0 | ± 9.6 % | | <u> </u> | | Y | 2.83 | 67.62 | 15.92 | | 150.0 | | | | | Z | 2.84 | 68.68 | 16.45 | | 150.0 | | | 10114-
CAC | IEEE 802.11n (HT Greenfield, 13.5
Mbps, BPSK) | X | 5.26 | 67.69 | 16.67 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.23 | 67.13 | 16.29 | | 150.0 | | | | | Z | 5.17 | 67.44 | 16.47 | | 150.0 | | | 10115-
CAC | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | Х | 5.63 | 67.96 | 16.80 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.62 | 67.49 | 16.48 | | 150.0 | | | | | Ζ | 5.52 | 67.74 | 16.63 | | 150.0 | | | 10116-
CAC | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | Х | 5.39 | 67.95 | 16.72 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.36 | 67.40 | 16.35 | | 150.0 | | | | | Z | 5.29 | 67.69 | 16.52 | | 150.0 | | | 10117-
CAC | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | X | 5.27 | 67.71 | 16.70 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.24 | 67.16 | 16.33 | | 150.0 | | | | | Z | 5.16 | 67.39 | 16.47 | | 150.0 | | | 10118-
CAC | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | X | 5.69 | 68.10 | 16.87 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.66 | 67.55 | 16.52 | | 150.0 | | | | | Z | 5.60 | 67.91 | 16.73 | | 150.0 | | | 10119-
CAC | IEEE 802,11n (HT Mixed, 135 Mbps, 64-QAM) | Х | 5.36 | 67.90 | 16.71 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.33 | 67.36 | 16.35 | | 150.0 | | | | | Z | 5.26 | 67.63 | 16.50 | | 150.0 | | | 10140-
CAE | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM) | Х | 3.65 | 68.85 | 16.68 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.47 | 67.39 | 15.72 | | 150.0 | | | | | Z | 3.46 | 67.97 | 16.10 | • | 150.0 | | | 10141-
CAE | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM) | Х | 3.76 | 68.83 | 16.80 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.60 | 67.45 | 15.88 | | 150.0 | | | | | Z | 3.58 | 68.02 | 16.25 | | 150.0 | | | 10142-
CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | X | 2.48 | 71.91 | 17.76 | 0.00 | 150.0 | ± 9.6 % | | ,,,,, | | Y | 2.05 | 67.79 | 15.33 | | 150.0 | | | | | Z | 2.12 | 69.52 | 16.24 | | 150.0 | | | 10143-
CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | X | 2.90 | 71.18 | 17.49 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.52 | 67.93 | 15.59 | | 150.0 | | | | | Z | 2.57 | 69.41 | 16.20 | | 150.0 | | | 10144-
CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | X | 2.62 | 68.68 | 15.85 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.38 | 66.30 | 14.35 | | 150.0 | | | | | Z | 2.36 | 67.27 | 14.69 | | 150.0 | | | 10145-
CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK) | X | 2.00 | 71.99 | 16.45 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.42 | 65.89 | 13.07 | | 150.0 | | | | | Z | 1.41 | 66.95 | 13.17 | 1 | 150.0 | | | 10146-
CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, 16-QAM) | X | 5.79 | 80.59 | 18.98 | 0,00 | 150.0 | ± 9.6 % | | | | Y | 3.05 | 71.20 | 15.41 | | 150.0 | | | | | Z | 3.43 | 73.13 | 15.30 | | 150.0 | | | 10147-
CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM) | X | 9.98 | 88.43 | 21.82 | 0.00 | 150.0 | ± 9.6 % | | | , | Y | 3.72 | 74.13 | 16.84 | | 150.0 | | | | | | | | | | | | | 10149-
CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | X | 3.19 | 69.00 | 16.80 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|--------------|----------------|----------------|-------|----------------|---------| | | | Y | 3.00 | 67.22 | 15.63 | | 150.0 | | | | | Z | 2.99 | 67.94 | 16.08 | | 150.0 | | | 10150-
CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | Х | 3.30 | 68.82 | 16.78 | 0.00 | 150.0 | ±9.6% | | | | Y | 3.12 | 67.17 | 15.69 | | 150.0 | | | | | Z | 3.11 | 67.87 | 16.11 | | 150.0 | | | 10151-
CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | Х | 9.20 | 80.06 | 21.79 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.68 | 78.68 | 21.42 | | 65.0 | | | | | Z | 9.50 | 81.45 | 22.55 | | 65.0 | Į | | 10152-
CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | X | 8.32 | 76.99 | 21.17 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 8.10 | 76.11 | 20.95 | | 65.0 | | | 40450 | LTC TDD (OO EDAM, FOR ED. OO MILL | Z | 8.24 | 77.53 | 21.54 | | 65.0 | | | 10153-
CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | Х | 8.68 | 77.73 | 21.81 | 3.98 | 65.0 | ± 9.6 % | | ········· | | Y | 8.45 | 76.81 | 21.57 | | 65.0 | | | 40454 | LTE EDD (OO EDW) 500 CD (O CO) | Z | 8.63 | 78.31 | 22.20 | | 65.0 | | | 10154-
CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | X | 2.76 | 72.22 | 18.09 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.34 | 68.47 | 15.87 | | 150.0 | | | 40455 | LTE FOR (OO FOLIA 500) PR 40 AND | Z | 2.39 | 69.94 | 16.75 | | 150.0 | | | 10155-
CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | Х | 2.93 | 69.90 | 17.30 | 0.00 | 150,0 | ± 9.6 % | | | | Y | 2.67 | 67.50 | 15.78 | | 150.0 | | | 10156- | LTE EDD (OC EDMA CON DD CAN) | Z | 2.69 | 68.61 | 16.35 | | 150.0 | | | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | X | 2.40 | 72.73 | 18.02 | 0.00 | 150.0 | ±9.6% | | | | Υ | 1.91 | 67.88 | 15.23 | | 150.0 | | | 40457 | LIE FOR (OR FRAME FOR | Z | 1.98 | 69.77 | 16.17 | | 150.0 | | | 10157-
CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | Х | 2,54 | 69.89 | 16.32 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2,20 | 66.71 | 14.41 | | 150.0 | | | 40450 | | Z | 2.21 | 67.97 | 14.84 | | 150.0 | | | 10158-
CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | × | 3.08 | 69.91 | 17.37 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.83 | 67.66 | 15.96 | | 150.0 | | | 10150 | | Ζ | 2.85 | 68.73 | 16.49 | | 150.0 | | | 10159-
CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | Х | 2.68 | 70.46 | 16.65 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.30 | 67.13 | 14.70 | | 150.0 | | | 40400 | LTE EDD (OO EDAM FOR ED AND ED | Z | 2.33 | 68.43 | 15.13 | | 150.0 | | | 10160-
CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz,
QPSK) | X | 3.08 | 70.59 | 17.38 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.80 | 68.13 | 15.84 | | 150.0 | | | 10161 | LTE EDD (OC EDMA FOX DD 4540) | Z | 2.83 | 69.23 | 16.52 | | 150.0 | | | 10161-
CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | X | 3.19 | 68.74 | 16.75 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.01 | 67.04 | 15.62 | | 150.0 | | | 10162- | LITE EDD (SO EDMA FOR DD 45 AC) | Z | 3.00 | 67.79 | 16.05 | | 150.0 | | | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | X | 3.29 | 68.74 | 16.78 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.12 | 67.09 | 15.70 | ····· | 150.0 | | | 10166-
CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | Z | 3.11
4.20 | 67.88
71.91 | 16.13
20.30 | 3.01 | 150.0
150.0 | ± 9.6 % | | ~ . 11 | | Y | 3.97 | 69.88 | 10.00 | | 450.0 | | | | | Z | 4.01 | 71.48 | 19.20 | | 150.0 | | | 10167- | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, | X | 5.82 | | 20.04 | 2 04 | 150.0 | 1000 | | CAF | 16-QAM) | | | 76.43 | 21.33 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 5.06 | 72.83 | 19.70 | | 150.0 | | | | | Z | 5.46 | 75.92 | 21.03 | | 150.0 | | October 22, 2018 | 10168-
CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | Х | 6.57 | 79.03 | 22,72 | 3.01 | 150.0 | ± 9.6 % | |---|--|-----|--------|---------|--------|------|-------|---------| | | , | Y | 5.52 | 74.71 | 20.84 | | 150.0 | | | | | Z | 6.17 | 78.53 | 22.43 | | 150.0 | | | 10169-
CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | X | 4.18 | 75.15 | 21,66 | 3.01 | 150.0 | ± 9.6 % | | <u> </u> | 3. 5.7 | Y | 3.68 | 71.43 | 19.79 | | 150.0 | | | | | Z | 3.71 | 73.29 | 20.84 | | 150.0 | | | 10170-
CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | X | 8.28 | 87.06 | 25.72 | 3.01 | 150.0 | ± 9.6 % | | O/ (L. | 10 00 (111) | Y | 5.41 | 77.71 | 22.06 | | 150.0 | | | | | ż | 6.71 | 83.81 | 24.55 | | 150.0 | | | 10171-
AAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | X | 5.78 | 79.38 | 21.89 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 4.38 | 73.23 | 19.30 | | 150.0 | | | | | Z | 4.93 | 77.24 | 21.04 | | 150.0 | | | 10172-
CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | Х | 34.48 | 110.68 | 33.22 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 19.27 | 99.23 | 30.20 | | 65.0 | | | | | Z | 64.25 | 125.69 | 37.96 | | 65.0 | | | 10173-
CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | X | 43.93 | 109.49 | 31.07 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 20.84 | 96.83 | 28.02 | | 65.0 | | | | | Z | 100.00 | 126.58 | 36.03 | | 65.0 | | | 10174-
CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | Х | 30.93 | 102.12 | 28.52 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 17.32 | 92.53 | 26.25 | | 65.0 | | | | | Z | 61.98 | 116.33 | 32.90 | | 65.0 | | | 10175-
CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | Х | 4.10 | 74.63 | 21.33 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 3.62 | 71.04 | 19.52 | | 150.0 | | | | | Z | 3.65 | 72.87 | 20.55 | | 150.0 | | | 10176-
CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | X | 8.30 | 87.09 | 25.74 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 5.42 | 77.74 | 22.07 | | 150.0 | | | | | Ż | 6.72 | 83.85 | 24.57 | | 150.0 | | | 10177-
CAI | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | X | 4.15 | 74.88 | 21.47 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 3.66 | 71.24 | 19.64 | | 150.0 | | | | | Z | 3.69 | 73.07 | 20.66 | | 150.0 | | | 10178-
CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | X | 8.06 | 86.52 | 25.50 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 5.33 | 77.40 | 21.91 | | 150.0 | | | | | Ż | 6.59 | 83.44 | 24.39 | | 150.0 | | | 10179-
CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | Х | 6.83 | 82.82 | 23.58 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 4.83 | 75.24 | 20.50 | | 150.0 | | | | | Z | 5.71 | 80.26 | 22.61 | | 150.0 | | | 10180-
CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | X | 5.73 | 79.20 | 21.80
 3.01 | 150.0 | ± 9.6 % | | Cont | | Y | 4.36 | 73.12 | 19.23 | | 150.0 | | | | · | Z | 4.90 | 77.11 | 20.97 | | 150.0 | | | 10181-
CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | Х | 4.14 | 74.86 | 21.46 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.65 | 71.22 | 19.63 | | 150.0 | ļ | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Z | 3.68 | 73.05 | 20.65 | | 150.0 | | | 10182-
CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | X | 8.05 | 86.48 | 25.49 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 5.32 | 77.37 | 21.89 | | 150.0 | | | | | Z | 6.57 | 83.40 | 24.38 | | 150.0 | | | 10183-
AAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | Х | 5.72 | 79.16 | 21.78 | 3.01 | 150.0 | ± 9.6 % | | , 10 112 | 51 50 (11) | Y | 4.35 | 73.09 | 19.22 | _ | 150.0 | | | | * | 1 T | 4.30 | 1 (0.00 | J.Z.Z. | | 100.0 | 1 | | 10186- LTE-FDD QAM) 10187- LTE-FDD QPSK) 10188- LTE-FDD 16-QAM) 10189- LTE-FDD 64-QAM) 10193- LTE-FDD 64-QAM) 10194- LEEE 802. GAC BPSK) 10195- LEEE 802. GAC 64-QAM) 10196- LEEE 802. GAC GA-QAM) 10197- LEEE 802. GAC BPSK) | DD (SC-FDMA, 1 RB, 3 MHz, | Х | 4.16 | 74.92 | 21.48 | 3.01 | 150.0 | ± 9.6 % | |---|--|----------|--------------|----------------|----------------|------|----------------|---------| | 10186- LTE-FDD QAM) 10187- LTE-FDD QPSK) 10188- LTE-FDD 16-QAM) 10189- LTE-FDD 64-QAM) 10193- LTE-FDD 64-QAM) 10194- LEEE 802. CAC BPSK) 10195- LEEE 802. G4-QAM) 10196- LEEE 802. G4-QAM) 10197- LEEE 802. G4-QAM) 10198- LEEE 802. G4-QAM) 10198- LEEE 802. G4-QAM) 10198- LEEE 802. GAC BPSK) | | Y | 3.67 | 71.26 | 19.65 | | 150.0 | 1 | | 10186- LTE-FDD QAM) 10187- LTE-FDD QPSK) 10188- LTE-FDD 16-QAM) 10189- LTE-FDD 64-QAM) 10193- LTE-FDD 64-QAM) 10193- LTE-FDD 64-QAM) 10194- LEEE 802. CAC BPSK) 10195- LEEE 802. G4-QAM) 10196- LEEE 802. G4-QAM) 10197- LEEE 802. G4-QAM) 10198- LEEE 802. G4-QAM) 10198- LEEE 802. GAC BPSK) | | Z | 3.70 | 73.10 | 20.68 | | 150.0 | | | 10187- LTE-FDD QPSK) 10188- LTE-FDD 16-QAM) 10189- LTE-FDD 64-QAM) 10193- LEEE 802. CAC BPSK) 10194- LEEE 802. CAC 16-QAM) 10195- LEEE 802. CAC 64-QAM) 10196- LEEE 802. CAC BPSK) 10197- LEEE 802. CAC BPSK) | DD (SC-FDMA, 1 RB, 3 MHz, 16- | X | 8.10 | 86.60 | 25.54 | 3.01 | 150.0 | ± 9.6 % | | 10187- LTE-FDD QPSK) 10188- LTE-FDD 16-QAM) 10189- LTE-FDD 64-QAM) 10193- LEEE 802. CAC BPSK) 10194- LEEE 802. CAC 16-QAM) 10195- LEEE 802. CAC 64-QAM) 10196- LEEE 802. CAC BPSK) 10197- LEEE 802. CAC BPSK) | | Y | 5.35 | 77.45 | 21.93 | | 150.0 | | | 10187- LTE-FDD QPSK) 10188- LTE-FDD 16-QAM) 10189- LTE-FDD 64-QAM) 10193- LEEE 802. CAC BPSK) 10194- LEEE 802. CAC 16-QAM) 10195- LEEE 802. CAC 64-QAM) 10196- LEEE 802. CAC BPSK) 10197- LEEE 802. CAC BPSK) | | Z | 6.62 | 83.51 | 24.42 | | 150.0 | | | 10188- LTE-FDD 16-QAM) 10189- LTE-FDD 64-QAM) 10193- LEEE 802 BPSK) 10194- LEEE 802 16-QAM) 10195- LEEE 802 BPSK) 10196- LEEE 802 BPSK) 10196- LEEE 802 BPSK) 10197- LEEE 802 BPSK) 10197- LEEE 802 BPSK) 10198- LEEE 802 BPSK) 10198- LEEE 802 BPSK) | DD (SC-FDMA, 1 RB, 3 MHz, 64- | X | 5.76 | 79.27 | 21.83 | 3.01 | 150.0 | ±96% | | 10188- LTE-FDD 16-QAM) 10189- LTE-FDD 64-QAM) 10193- LEEE 802 BPSK) 10194- LEEE 802 16-QAM) 10195- LEEE 802 BPSK) 10196- LEEE 802 BPSK) 10196- LEEE 802 BPSK) 10197- LEEE 802 BPSK) 10197- LEEE 802 BPSK) 10198- LEEE 802 BPSK) 10198- LEEE 802 BPSK) | | Y | 4.38 | 73.16 | 19.26 | | 150.0 | | | 10188- LTE-FDD 16-QAM) 10189- LTE-FDD 64-QAM) 10193- LEEE 802 BPSK) 10194- LEEE 802 16-QAM) 10195- LEEE 802 BPSK) 10196- LEEE 802 BPSK) 10196- LEEE 802 BPSK) 10197- LEEE 802 BPSK) 10197- LEEE 802 BPSK) 10198- LEEE 802 BPSK) 10198- LEEE 802 BPSK) | DD (SC-FDMA, 1 RB, 1.4 MHz, | Z | 4.92 | 77.18 | 21.00 | 0.04 | 150.0 | | | 10189- LTE-FDD 64-QAM) 10193- IEEE 802. CAC BPSK) 10194- IEEE 802. CAC 16-QAM) 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | (SC-FDIVIA, 1 RB, 1.4 WINZ, | ^
 Y | 4.17 | 74.96 | 21.54 | 3.01 | 150.0 | ± 9.6 % | | 10189- LTE-FDD 64-QAM) 10193- IEEE 802. CAC BPSK) 10194- IEEE 802. CAC 16-QAM) 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | | Z | 3.67 | 71.29 | 19.69 | | 150.0 | | | 10189- LTE-FDD 64-QAM) 10193- IEEE 802. CAC BPSK) 10194- IEEE 802. CAC 16-QAM) 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | DD (SC-FDMA, 1 RB, 1.4 MHz, | X | 3.71
8.67 | 73.16
87.99 | 20.74
26.14 | 2.04 | 150.0 | 1000 | | 10193- IEEE 802. CAC BPSK) 10194- IEEE 802. CAC 16-QAM) 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | | ^
 Y | 5.56 | 78.25 | 22,35 | 3.01 | 150.0 | ± 9.6 % | | 10193- IEEE 802. CAC BPSK) 10194- IEEE 802. CAC 16-QAM) 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | | Z | 6.98 | | | | 150.0 | | | 10193- IEEE 802. CAC BPSK) 10194- IEEE 802. CAC 16-QAM) 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | DD (SC-FDMA, 1 RB, 1.4 MHz, | X | 5.99 | 84.62
80.05 | 24.93 | 3.01 | 150.0 | 1000 | | 10194- IEEE 802. CAC 16-QAM) 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | | Y | | | 22.22 | 3.01 | 150.0 | ± 9.6 % | | 10194- IEEE 802. CAC 16-QAM) 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | | | 4.49 | 73.64 | 19.55 | ļ | 150.0 | | | 10194- IEEE 802. CAC 16-QAM) 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | 02.11n (HT Greenfield, 6.5 Mbps, | Z
X | 5.09
4.70 | 77.84
67.14 | 21.35
16.49 | 0.00 | 150.0
150.0 | 1000 | | 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | oz. Titi (TT Greenileid, 6.5 Mups, | ^
 Y | | 66.50 | | 0.00 | | ± 9.6 % | | 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | | Z | 4.65 | | 16.06 | | 150.0 | | | 10195- IEEE 802. CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | 02.11n (HT Greenfield, 39 Mbps, | X | 4.58 | 66.86 | 16.22 | 0.00 | 150.0 | 1000 | | CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | | | 4.90 | 67.52 | 16.60 | 0.00 | 150.0 | ± 9.6 % | | 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | | Y | 4.86 | 66.88 | 16.17 | | 150.0 | | | CAC 64-QAM) 10196- IEEE 802. CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | 00 44 - (UT O C - L L OF LR | Z | 4.77 | 67.20 | 16.34 | | 150.0 | | | CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | 02.11n (HT Greenfield, 65 Mbps,
/l) | X | 4.94 | 67.52 | 16.60 | 0.00 | 150.0 | ± 9.6 % | | 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) 10220- IEEE 802. | | Y | 4.90 | 66.89 | 16.18 | | 150.0 | | | CAC BPSK) 10197- IEEE 802. CAC QAM) 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) | 20 44 - (UTA) - 1 0 5 M | Z | 4.81 | 67.23 | 16.35 | | 150.0 | | | 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) 10220- IEEE 802. | 02.11n (HT Mixed, 6.5 Mbps, | X | 4.72 | 67.25 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) 10220- IEEE 802. | | Y | 4.68 | 66.61 | 16.10 | | 150.0 | | | 10198- IEEE 802. CAC QAM) 10219- IEEE 802. CAC BPSK) 10220- IEEE 802. | 20 44 - //ITA# 1 00 MI | Z | 4.60 | 66.94 | 16.25 | | 150.0 | | | 10219- IEEE 802.
CAC BPSK) | 02.11n (HT Mixed, 39 Mbps, 16- | Х | 4.91 | 67.54 | 16.61 | 0.00 | 150.0 | ± 9.6 % | | 10219- IEEE 802.
CAC BPSK) | | Y | 4.87 | 66.90 | 16,18 | | 150.0 | | | 10219- IEEE 802.
CAC BPSK) | 22 44n (UT Mixed CE Mhns C4 | Z | 4.78 | 67.23 | 16.35 | | 150.0 | | | CAC BPSK) 10220- IEEE 802. | 02.11n (HT Mixed, 65 Mbps, 64- | X | 4.94 | 67.54 | 16.61 | 0.00 | 150.0 | ± 9.6 % | | CAC BPSK) 10220- IEEE 802. | | Y | 4.90 | 66.90 | 16.19 | | 150.0 | | | 10220- IEEE 802. | 02.11n (HT Mixed, 7.2 Mbps, | X | 4.81
4.67 | 67.24
67.27 | 16.37
16.50 | 0.00 | 150.0
150.0 | ± 9.6 % | | | | \ \ \ | 4.60 | 66.60 | 40.00 | | 450.0 | | | | | Y | 4.63
4.54 | 66.62 | 16.06 | | 150.0 | | | | 02.11n (HT Mixed, 43.3 Mbps, 16- | X | 4.54 | 66.96 | 16.22 | 0.00 | 150.0 | 1000 | | | | | | 67.53 | 16.61 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.87 | 66.90 | 16.18 | | 150.0 | | | 10221- IEEE 802.
CAC QAM) | 02.11n (HT Mixed, 72.2 Mbps, 64- | X | 4.78
4.95 | 67.21
67.46 | 16.35
16.60 | 0.00 | 150.0
150.0 | ± 9.6 % | | scriii) | | Y | 4.91 | 66.85 | 16.18 | | 150.0 | | | | | Ż | 4.82 | 67.17 | 16.35 | | 150.0 | | | 10222- IEEE 802.
CAC BPSK) | 02.11n (HT Mixed, 15 Mbps, | X | 5.25 | 67.74 | 16.71 | 0.00 | 150.0 | ± 9.6 % | | 12.019 | | Y | 5.22 | 67.19 | 16.33 | | 150.0 | | | | | Z | 5.14 | 67.40 | 16.33 | | 150.0 | | | 10223- | IEEE 802.11n (HT Mixed, 90 Mbps, 16- | Х | 5.62 | 68.04 | 16.87 | 0.00 | 150.0 | ± 9.6 % | |---------------------------------------|---|-----|--------|--------|-------|--------------|----------------
--| | CAC | QAM) | | | | | | 450.0 | | | | | Y | 5.61 | 67.57 | 16.55 | | 150.0
150.0 | | | 40004 | IEEE OOO 44 - ALT BASS & 450 BASS - C4 | Z | 5.46 | 67.62 | 16.59 | | | +0.69/ | | 10224-
CAC | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | Х | 5.30 | 67.86 | 16.69 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.27 | 67.29 | 16.31 | | 150.0 | | | | | Ζ | 5.18 | 67.50 | 16.44 | | 150.0 | | | 10225-
CAB | UMTS-FDD (HSPA+) | Х | 3.00 | 67.11 | 16.18 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.89 | 65.79 | 15,26 | | 150.0 | | | | | Ζ | 2.86 | 66.46 | 15.54 | | 150.0 | | | 10226-
CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | Х | 47.57 | 111.04 | 31.57 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 21.77 | 97.71 | 28.37 | | 65.0 | | | | | Z | 100.00 | 126.78 | 36.17 | | 65.0 | | | 10227-
CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | Х | 33.21 | 103.47 | 29.00 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 18.61 | 93.88 | 26.76 | | 65.0 | | | | | Z | 72.01 | 119.09 | 33.69 | | 65.0 | | | 10228-
CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | Х | 43.41 | 115.45 | 34.63 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 21.18 | 101.54 | 31.02 | | 65.0 | | | | | Z | 73.36 | 128.78 | 38.85 | | 65.0 | | | 10229-
CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | Х | 43.98 | 109.51 | 31.08 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 20.89 | 96.85 | 28.04 | | 65.0 | | | | | Z | 100.00 | 126.58 | 36.04 | | 65.0 | | | 10230-
CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | X | 31.28 | 102.35 | 28.60 | 6.02 | 65.0 | ± 9.6 % | | 0710 | | Y | 17.95 | 93.18 | 26.47 | | 65.0 | | | | | Ż | 65.65 | 117.34 | 33.17 | | 65.0 | | | 10231-
CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | X | 40.51 | 113.99 | 34.16 | 6.02 | 65.0 | ± 9.6 % | | OAO | GI OIT) | Y | 20.32 | 100.64 | 30.68 | | 65.0 | | | | | Ż | 66.72 | 126.73 | 38.25 | <u> </u> | 65.0 | <u> </u> | | 10232-
CAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | X | 43.98 | 109.51 | 31.08 | 6.02 | 65.0 | ± 9.6 % | | UNI | QAIV) | Y | 20.87 | 96.85 | 28.04 | | 65.0 | | | | | T Z | 100.00 | 126.58 | 36.04 | | 65.0 | | | 10233-
CAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | X | 31.31 | 102.37 | 28.61 | 6.02 | 65.0 | ± 9.6 % | | <u>OAI</u> | Q/AWI) | Y | 17.95 | 93.19 | 26.47 | | 65.0 | | | | | Ż | 65.78 | 117.38 | 33.18 | | 65.0 | | | 10234-
CAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | X | 37.61 | 112.37 | 33.61 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 19.46 | 99.66 | 30.29 | | 65.0 | | | | | Z | 60.59 | 124.57 | 37.59 | | 65.0 | | | 10235-
CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | X | 44.16 | 109.59 | 31.10 | 6.02 | 65.0 | ± 9.6 % | | . | 1.5 30 | Y | 20.90 | 96.88 | 28.05 | | 65.0 | | | 4 | | Z | 100.00 | 126.59 | 36.05 | | 65.0 | | | 10236-
CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | X | 31.57 | 102.49 | 28.64 | 6.02 | 65.0 | ±9.6 % | | J/ 11 | - Striker | Y | 18.06 | 93.27 | 26.50 | | 65.0 | | | , , , , , , , , , , , , , , , , , , , | | T Z | 66.68 | 117.58 | 33.22 | | 65.0 | | | 10237-
CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | X | 40.98 | 114.23 | 34.22 | 6.02 | 65.0 | ± 9.6 % | | 11 | | Y | 20.43 | 100.76 | 30.72 | | 65.0 | | | | | Ż | 67.89 | 127.10 | 38.35 | | 65.0 | | | 40000 | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, | X | 44.02 | 109.54 | 31.08 | 6.02 | 65.0 | ± 9.6 % | | 10238-
CAE | 16-QAM) | | 1 | | | | | | | CAF | 16-QAM) | Y | 20.87 | 96.85 | 28.04 | | 65.0 | | | 10239-
CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | Х | 31.34 | 102.40 | 28.62 | 6.02 | 65.0 | ± 9.6 % | |---------------|--|--------|---------------|----------------|----------------|----------|--------------|---------| | | | Y | 17.95 | 93.19 | 26.48 | | 65.0 | | | | | Z | 65.90 | 117.43 | 33.19 | | 65.0 | | | 10240-
CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | X | 40.84 | 114.17 | 34.21 | 6,02 | 65.0 | ± 9.6 % | | | | Υ | 20.37 | 100.72 | 30.70 | | 65.0 | | | | | Z | 67.60 | 127.02 | 38.33 | | 65.0 | | | 10241-
CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | Х | 13.50 | 87.98 | 27.59 | 6.98 | 65.0 | ± 9.6 % | | | | Υ | 11.90 | 84.56 | 26.53 | | 65.0 | | | | | Z | 14.12 | 90.28 | 28.72 | | 65.0 | | | 10242-
CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | × | 13.27 | 87.58 | 27.38 | 6.98 | 65.0 | ± 9.6 % | | | | Y | 11,12 | 83.03 | 25.85 | | 65.0 | | | 10010 | | Z | 12.87 | 88.25 | 27.90 | | 65.0 | | | 10243-
CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | Х | 9.24 | 81.69 | 25.97 | 6,98 | 65.0 | ± 9.6 % | | | | Υ | 9.29 | 80.98 | 25.85 | | 65.0 | | | 1001: | | Z | 9.97 | 84.60 | 27.47 | | 65.0 | | | 10244-
CAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | X | 10.07 | 81.06 | 21.15 | 3.98 | 65.0 | ±9.6% | | | | Υ | 9.37 | 79.84 | 21.15 | | 65.0 | | | | | Z | 10.40 | 82.17 | 21.43 | | 65.0 | | | 10245-
CAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | Х | 9.92 | 80.58 | 20.93 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 9.29 | 79.47 | 20.97 | | 65.0 | | | 10010 | | Z | 10.13 | 81.50 | 21.13 | | 65.0 | | | 10246-
CAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | X | 9.36 | 82.64 | 21.70 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.42 | 80.73 | 21.28 | | 65.0 | | | | | Z | 9.87 | 84.16 | 22.17 | | 65.0 | | | 10247-
CAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | Х | 7.85 | 77.75 | 20.44 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 7.56 | 76.79 | 20.29 | | 65.0 | | | | | Z | 7.78 | 78.21 | 20.53 | | 65.0 | | | 10248-
CAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | Х | 7.84 | 77.28 | 20.24 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 7.59 | 76.41 | 20.13 | | 65.0 | | | | | Z | 7.72 | 77.63 | 20.29 | | 65.0 | | | 10249-
CAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | Х | 10.16 | 84.10 | 22.78 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 9.02 | 81.83 | 22.19 | | 65.0 | | | | | Ζ | 11.03 | 86.34 | 23.62 | | 65.0 | | | 10250-
CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | Х | 8.66 | 79,41 | 22.21 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.28 | 78.20 | 21.90 | | 65.0 | | | 40054 | LITE TRD (OO EDIM FOR EDIM | Z | 8.69 | 80.22 | 22.63 | | 65.0 | | | 10251-
CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | Х | 8.19 | 77.31 | 21.11 | 3.98 | 65.0 | ± 9.6 % | | ····· | | Y | 7.93 | 76.33 | 20.88 | | 65.0 | | | 10050 | LTE TOD (OC FOLIA FOR FOR | Z | 8.16 | 77.97 | 21.45 | <u>.</u> | 65.0 | | | 10252-
CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | Х | 9.91 | 83.04 | 22.96 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 9.02 | 81.03 | 22.39 | | 65.0 | - | | 10253- | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, | Z
X | 10.55
8.10 | 85.09
76.42 | 23.89
20.99 | 3.98 | 65.0
65.0 | ± 9.6 % | | CAF | 16-QAM) | | | | | | | | | | | Υ | 7.91 | 75.57 | 20.78 | | 65.0 | | | 100-1 | | Z | 8.03 | 76.94 | 21.33 | | 65.0 | | | 10254-
CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | Х | 8.47 | 77.16 | 21.59 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 8.27 | 76.28 | 21.37 | | 65.0 | | | | | Ζ | 8.42 | 77.71 | 21.94 | | 65.0 | | | 10255-
CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | X | 8.92 | 79.74 | 21.91 | 3.98 | 65.0 | ± 9.6 % | |---------------|--|---|-------|-------|-------|----------|------|--------------| | | | Υ | 8.44 | 78.38 | 21.54 | | 65.0 | | | | | Z | 9.16 | 81.05 | 22.63 | | 65.0 | | | 10256-
CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 16-QAM) | Х | 8.96 | 78.82 | 19.56 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.66 | 78.38 | 19.92 | | 65.0 | | | | | Z | 8.87 | 79.14 | 19.45 | | 65.0 | | | 10257-
CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM) | X | 8.76 | 78.15 | 19.23 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.57 | 77.86 | 19.65 | | 65.0 | | | | | Z | 8.54 | 78.21 | 19.01 | | 65.0 | | | 10258-
CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK) | X | 8.23 | 80.27 | 20.30 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 7.69 | 79.06 | 20.18 | | 65.0 | | | | | Z | 8.13 | 80.56 | 20.22 | | 65.0 | | | 10259-
CAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | X | 8.16 | 78.29 | 21.04 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 7.83 | 77.23 | 20.83 | | 65.0 | | | 40000 | | Z | 8.14 | 78.91 | 21.27 | | 65.0 | | | 10260-
CAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | X | 8.18 | 78.05 | 20.97 | 3.98 | 65.0 | ± 9.6 % | | _ | | Υ | 7.89 | 77.07 | 20.79 | | 65.0 | | | | | Z | 8.12 | 78.59 | 21.15 | | 65.0 | | | 10261-
CAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | X | 9.70 | 83.10 | 22.69 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 8.75 | 81.03 | 22.13 | | 65.0 | | | 10000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Z | 10.33 | 85.06 | 23.50 | 0.00 | 65.0 | 1000 | | 10262-
CAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | X | 8.65 | 79.37 | 22.18 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 8.27 | 78.16 | 21.87 | | 65.0 | | | | | Z | 8.68 | 80.17 | 22.59 | | 65.0 | | | 10263-
CAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | × | 8.18 | 77.31 | 21.11 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 7.93 | 76.34 | 20.88 | | 65.0 | | | | | Z | 8.15 | 77.96 | 21.45 | | 65.0 | | | 10264-
CAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | X | 9.85 | 82.90 | 22.89 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.97 | 80.91 | 22.33 | | 65.0 | | | | | Z | 10.47 | 84.92 | 23.82 | | 65.0 | | | 10265-
CAF | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM) | X | 8.32 | 77.00 | 21.17 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.10 | 76.11 | 20.95 | | 65.0 | | | | | Z | 8.24 | 77.53 | 21.55 | | 65.0 | 1 | | 10266-
CAF | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM) | X | 8.68 | 77.72 | 21.80 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.45 | 76.80 | 21.57 | | 65.0 | | | | | Z | 8.63 | 78.31 | 22.20 | <u> </u> | 65.0 | | | 10267-
CAF | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, QPSK) | X | 9.19 | 80.02 | 21.78 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 8.67 | 78.65 | 21.41 | ļ | 65.0 | | | | | Z | 9.48 | 81.42 | 22.54 | | 65.0 | | | 10268-
CAF | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM) | X | 8.76 | 76.52 | 21.32 | 3.98 | 65.0 | ± 9.6 % | | - | | Y | 8.60 | 75.79 | 21.15 | | 65.0 | | | | | Z | 8.66 | 76.94 | 21.68 | <u> </u> | 65.0 | | |
10269-
CAF | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM) | X | 8.68 | 76.12 | 21.24 | 3.98 | 65.0 | ±9.6% | | | | Υ | 8.54 | 75.43 | 21.08 | | 65.0 | <u> </u> | | | | Z | 8.58 | 76.51 | 21.57 | | 65.0 | | | 10270-
CAF | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, QPSK) | X | 8.76 | 77.59 | 20.98 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 8.48 | 76.66 | 20.76 | | 65.0 | | | | | Z | 8.82 | 78.43 | 21.53 | | 65.0 | | | 10274-
CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | Х | 2.75 | 67.54 | 16.13 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---------------|--------------|----------------|----------------|----------|---------------|---------| | | | Υ | 2.59 | 65.84 | 14.97 | | 150.0 | 1 | | | | Z | 2.62 | 66.79 | 15.44 | | 150.0 | | | 10275-
CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | X | 1.98 | 71.72 | 17.77 | 0.00 | 150.0 | ±9.6% | | | | Υ | 1.57 | 66.85 | 14.80 | | 150.0 | | | | | Z | 1.68 | 68.85 | 15.99 | | 150.0 | | | 10277-
CAA | PHS (QPSK) | Х | 5,52 | 68.98 | 13.68 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 6.18 | 70.61 | 15.13 | | 50.0 | | | | | Z | 5.33 | 69.04 | 13.51 | | 50.0 | | | 10278-
CAA | PHS (QPSK, BW 884MHz, Rolloff 0.5) | X | 8.68 | 78.27 | 19.91 | 9.03 | 50.0 | ±9.6 % | | | | Υ | 9.24 | 79.43 | 21.04 | | 50.0 | | | 10070 | | Z | 9.06 | 79.61 | 20.36 | | 50.0 | | | 10279-
CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38) | Х | 8.84 | 78.47 | 20.00 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 9.40 | 79.62 | 21.12 | | 50.0 | | | 40000 | ODM40000 BO1 5055 5 115 | Z | 9.21 | 79.79 | 20.45 | | 50.0 | | | 10290-
AAB | CDMA2000, RC1, SO55, Full Rate | X | 2,53 | 76.75 | 18.53 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.47 | 67.51 | 13.90 | | 150.0 | | | 40004 | 001110000 000 | Z | 1.65 | 70.41 | 15.02 | | 150.0 | | | 10291-
AAB | CDMA2000, RC3, SO55, Full Rate | Х | 1.44 | 74.15 | 17.52 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.84 | 64.78 | 12.27 | <u> </u> | 150.0 | | | 40000 | 001110000 000 0000 00110 | Z | 0.91 | 67.24 | 13.41 | | 150.0 | | | 10292-
AAB | CDMA2000, RC3, SO32, Full Rate | X | 2.94 | 86.43 | 22.66 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.94 | 67.21 | 13.88 | | 150.0 | | | 10000 | | Z | 1.25 | 72.55 | 16.26 | | 150.0 | | | 10293-
AAB | CDMA2000, RC3, SO3, Full Rate | Х | 8.52 | 104.26 | 28.75 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.19 | 70.50 | 15.89 | | 150.0 | | | | | Z | 2.08 | 80,22 | 19.81 | | 150.0 | | | 10295-
AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | Х | 9.77 | 81.63 | 23.08 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 9.82 | 81.44 | 23.46 | | 50.0 | | | | | Z | 11.19 | 84.96 | 24.41 | | 50.0 | | | 10297-
AAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | Х | 3.27 | 72.60 | 18.02 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.80 | 69.13 | 16.02 | | 150.0 | | | | | Z | 2.88 | 70.48 | 16.86 | | 150.0 | | | 10298-
AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | X | 2.28 | 73.12 | 17.57 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.68 | 67.21 | 14.31 | | 150.0 | | | 10000 | LTE EDD (OO ED) | Z | 1.73 | 69.06 | 15.02 | | 150.0 | | | 10299-
AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | Х | 5.83 | 80.69 | 19.80 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.42 | 72.22 | 16.49 | | 150.0 | | | 40200 | LITE EDD (OO EDM) FOR DE CARRE | Z | 4.30 | 76.07 | 17.39 | | 150.0 | | | 10300-
AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | X | 3.42 | 71.78 | 15.52 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.69 | 67.85 | 13.82 | | 150.0 | | | 10301-
AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | Z | 2.73
5.57 | 68.87
67.67 | 13.61
18.57 | 4.17 | 150.0
80.0 | ± 9.6 % | | , , , , | TOWARZ, QLON, FUOU) | Υ | 5.70 | 67.00 | 10.57 | | 00.0 | | | | | Z | 5.78
5.72 | 67.86 | 18.57 | | 80.0 | | | 10302- | IEEE 802.16e WiMAX (29:18, 5ms, | $\frac{2}{X}$ | 6.16 | 68.56 | 18.87 | 4.00 | 80.0 | 1000 | | AAA | 10MHz, QPSK, PUSC, 3 CTRL symbols) | | | 68.78 | 19.58 | 4.96 | 80.0 | ± 9.6 % | | | | Y | 6.30 | 68.51 | 19.30 | | 80.0 | | | | | Z | 6.18 | 69.12 | 19.60 | | 80.0 | | | 10303- | IEEE 802.16e WIMAX (31:15, 5ms, | Х | 6.02 | 68.90 | 19.67 | 4.96 | 80.0 | ± 9.6 % | |---------------|---|-------------|-------|-------|-------|-----------|-------|---------| | AAA | 10MHz, 64QAM, PUSC) | ├ ., | | 00.0- | 40.00 | | | | | | | Y | 6.17 | 68.65 | 19.39 | | 80.0 | | | 40004 | IEEE 000 40 - W/MAN / /00 40 - E | Z | 6.04 | 69.21 | 19.66 | 4 4 | 80.0 | . 0.00 | | 10304-
AAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | Х | 5.66 | 68.19 | 18.86 | 4.17 | 80.0 | ± 9.6 % | | | | Y | 5.77 | 67.85 | 18.54 | | 80.0 | | | | | Z | 5.66 | 68.44 | 18.81 | | 80.0 | | | 10305-
AAA | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols) | Х | 7.03 | 75.37 | 23.25 | 6.02 | 50.0 | ± 9.6 % | | | | Υ | 9.48 | 82.40 | 26.40 | | 50.0 | | | | | Z | 9.45 | 83.47 | 26.75 | | 50.0 | | | 10306-
AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) | X | 6.41 | 71.60 | 21.68 | 6.02 | 50.0 | ± 9.6 % | | | | Y | 6.61 | 71.33 | 21.32 | · | 50.0 | | | 40007 | | Z | 6.53 | 72.26 | 21.74 | | 50.0 | | | 10307-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) | Х | 6.53 | 72.42 | 21.88 | 6.02 | 50.0 | ± 9.6 % | | | | Υ | 6.71 | 72.00 | 21.44 | | 50.0 | | | | | Z | 6.64 | 73.01 | 21.90 | | 50.0 | | | 10308-
AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | X | 6.58 | 72.85 | 22.10 | 6.02 | 50.0 | ± 9.6 % | | | | Y | 7.88 | 77.20 | 24.23 | | 50.0 | | | | | Z | 6.72 | 73.52 | 22.14 | | 50.0 | | | 10309-
AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) | X | 6.53 | 71.94 | 21.86 | 6.02 | 50.0 | ± 9.6 % | | | | Y | 6.73 | 71.62 | 21.48 | | 50.0 | | | | | Z | 6.64 | 72.61 | 21.93 | | 50.0 | | | 10310-
AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols) | Х | 6.43 | 71.87 | 21.71 | 6.02 | 50.0 | ± 9.6 % | | | | Y | 6.62 | 71.53 | 21.32 | | 50.0 | | | | | Z | 6.55 | 72.54 | 21.77 | | 50.0 | | | 10311-
AAD | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, QPSK) | Х | 3.66 | 71.76 | 17.57 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.14 | 68.49 | 15.73 | | 150.0 | | | | | Z | 3.24 | 69.73 | 16.49 | | 150.0 | | | 10313-
AAA | IDEN 1:3 | Х | 6.89 | 76.52 | 17.70 | 6.99 | 70.0 | ± 9.6 % | | | | Υ | 6.61 | 75.87 | 17.81 | | 70.0 | | | | | Z | 7.80 | 79.06 | 18.82 | | 70.0 | | | 10314-
AAA | iDEN 1:6 | X | 8.95 | 82.07 | 22.06 | 10.00 | 30.0 | ± 9.6 % | | | | Υ | 7.91 | 79.82 | 21.63 | | 30.0 | | | | | Z | 10.67 | 86.11 | 23.72 | | 30.0 | | | 10315-
AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) | Х | 1.22 | 66.52 | 17.02 | 0.17 | 150.0 | ± 9.6 % | | | | Υ | 1.11 | 63.83 | 14.85 | | 150.0 | | | | | Z | 1.15 | 65.06 | 15.82 | | 150.0 | | | 10316-
AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-
OFDM, 6 Mbps, 96pc duty cycle) | X | 4.79 | 67.26 | 16.63 | 0.17 | 150.0 | ± 9.6 % | | | | Y | 4.77 | 66.71 | 16.27 | 1 | 150.0 | | | 4.0.5 | | Z | 4.69 | 67.06 | 16.44 | | 150.0 | 1000 | | 10317-
AAC | IEEE 802.11a WiFi 5 GHz (OFDM, 6
Mbps, 96pc duty cycle) | Х | 4.79 | 67.26 | 16.63 | 0.17 | 150.0 | ± 9.6 % | | | | Y | 4.77 | 66.71 | 16.27 | | 150.0 | | | | <u> </u> | Z | 4.69 | 67.06 | 16.44 | | 150.0 | | | 10400-
AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle) | × | 4.91 | 67.58 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.87 | 66.94 | 16.16 | | 150.0 | | | | | Z | 4.77 | 67.27 | 16.35 | ļ <u></u> | 150.0 | | | 10401-
AAD | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle) | Х | 5.51 | 67.53 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.48 | 67.02 | 16.26 | | 150.0 | | | | | Z | 5.43 | 67.39 | 16.46 | | 150.0 | | | 10402-
AAD | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle) | Х | 5.82 | 68,12 | 16.73 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|--------|--------|-------|------|-------|-------------| | | | Y | 5.79 | 67.61 | 16.40 | | 150.0 | | | | | Z | 5.71 | 67.82 | 16.52 | | 150.0 | - | | 10403-
AAB | CDMA2000 (1xEV-DO, Rev. 0) | Х | 2.53 | 76.75 | 18.53 | 0.00 | 115.0 | ± 9.6 % | | | | Υ | 1.47 | 67.51 | 13.90 | | 115.0 | W. Carlotte | | | | Z | 1.65 | 70.41 | 15.02 | | 115.0 | | | 10404-
AAB | CDMA2000 (1xEV-DO, Rev. A) | Х | 2.53 | 76.75 | 18.53 | 0.00 | 115.0 | ±9.6 % | | | | Υ | 1.47 | 67.51 | 13.90 | | 115.0 | | | 40100 | | Z | 1.65 | 70.41 | 15.02 | | 115.0 | | | 10406-
AAB | CDMA2000, RC3, SO32, SCH0, Full
Rate | X | 100.00 | 121.33 | 30.70 | 0.00 | 100.0 | ± 9.6 % | | | | Υ | 17.68 | 98.28 | 25.62 | | 100.0 | | | 40440 | | Z | 100.00 | 119.36 | 29.52 | | 100.0 | | | 10410-
AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4) | × | 100,00 | 117.12 | 29.14 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 100.00 | 119.43 | 30.56 | | 80.0 | | | 40445 | | Z | 100.00 | 119.33 | 29.99 | | 80.0 | | | 10415-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps, 99pc duty cycle) | X | 1.05 | 64.70 | 16.09 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.96 | 62.34 | 13.96 | | 150.0 | | | 40440 | | Z | 1.00 | 63.43 | 14.88 | | 150.0 | | | 10416-
AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-
OFDM, 6 Mbps, 99pc duty cycle) | Х | 4.70 | 67.17 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.65 | 66.53 | 16.09 | | 150.0 | | | 40447 | | Z | 4.59 | 66.90 | 16.28 | | 150.0 | | | 10417-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 99pc duty cycle) | X | 4.70 | 67.17 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.65 | 66.53 | 16.09 | | 150.0 | | | 40440 | | Z | 4.59 | 66.90 | 16.28 | | 150.0 | | | 10418-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 99pc duty cycle, Long
preambule) | X | 4.69 | 67.33 | 16.54 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.64 | 66.65 | 16.08 | | 150.0 | | | | | Z | 4.57 | 67.05 | 16.29 | | 150.0 | | | 10419-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 99pc duty cycle, Short
preambule) | X | 4.71 |
67.28 | 16.55 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.66 | 66.62 | 16.10 | | 150.0 | | | | | Z | 4.60 | 67.00 | 16.30 | | 150.0 | | | 10422-
AAB | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | Х | 4.83 | 67.27 | 16.55 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.79 | 66.64 | 16.13 | | 150.0 | | | | | Z | 4.72 | 67.01 | 16.31 | | 150.0 | | | 10423-
AAB | IEEE 802.11n (HT Greenfield, 43.3
Mbps, 16-QAM) | Х | 5.04 | 67.66 | 16.69 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.01 | 67.04 | 16.28 | | 150.0 | | | 40400 | | Z | 4.90 | 67.36 | 16.44 | | 150.0 | | | 10424-
AAB | IEEE 802.11n (HT Greenfield, 72.2
Mbps, 64-QAM) | X | 4.95 | 67.60 | 16.66 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.91 | 66.97 | 16.23 | | 150.0 | 1 | | 40.405 | JEEG DOO 44 - WIT C | Z | 4.82 | 67.30 | 16.41 | | 150.0 | | | 10425-
AAB | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | X | 5.50 | 67.84 | 16.74 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.49 | 67.38 | 16.43 | | 150.0 | | | 10100 | IEEE 000 44- /UE 0 C 11 00 1" | Z | 5.41 | 67.63 | 16.57 | | 150.0 | | | 10426-
AAB | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | X | 5.52 | 67.88 | 16.76 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.51 | 67.41 | 16.44 | | 150.0 | | | | | Z | 5.41 | 67.63 | 16.57 | | 150.0 | <u> </u> | | 10427-
AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | Х | 5.54 | 67.91 | 16.77 | 0.00 | 150.0 | ± 9.6 % | |---|--|-------------|--------|--------|-------|----------|-------|----------| | 770 | VT-W/3(VI) | Υ | 5.52 | 67.43 | 16.44 | | 150.0 | | | | | Z | 5.42 | 67.62 | 16.56 | | 150.0 | | | 10430- | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | X | 4.52 | 71.31 | 18.76 | 0.00 | 150.0 | ± 9.6 % | | AAD | LTE-FDD (OFDINA, 5 MILZ, E-TWI 5.1) | | | | | 0.00 | | ± 9.0 /6 | | | | Y | 4.32 | 69.77 | 17.85 | | 150.0 | | | | | Z | 4.28 | 70.66 | 18.14 | | 150.0 | | | 10431-
AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | Х | 4,46 | 67.83 | 16.68 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.39 | 67.02 | 16.13 | | 150.0 | | | | | Z | 4.30 | 67.47 | 16.32 | | 150.0 | | | 10432-
AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | × | 4.74 | 67.68 | 16.66 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.69 | 66.98 | 16.18 | | 150.0 | | | | | Z | 4.59 | 67.35 | 16.37 | | 150.0 | | | 10433-
AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | Х | 4.97 | 67.65 | 16.69 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.93 | 67.02 | 16.26 | | 150.0 | | | | | Z | 4.83 | 67.34 | 16.43 | | 150.0 | | | 10434-
AAA | W-CDMA (BS Test Model 1, 64 DPCH) | Х | 4.66 | 72.23 | 18.86 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4,38 | 70.37 | 17.81 | | 150.0 | | | | | Z | 4.38 | 71.47 | 18.13 | | 150.0 | | | 10435-
AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 116.95 | 29.06 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 100.00 | 119.28 | 30.50 | | 80.0 | | | | | Z | 100.00 | 119.16 | 29.91 | | 80.0 | | | 10447-
AAD | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1,
Clipping 44%) | Х | 3.81 | 68.11 | 16.36 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.69 | 66.93 | 15.60 | | 150.0 | | | | | Z | 3.61 | 67.54 | 15.77 | | 150.0 | | | 10448-
AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1,
Clippin 44%) | X | 4.28 | 67.62 | 16.54 | 0.00 | 150.0 | ± 9.6 % | | 7010 | Oliophi 1770 | Y | 4.20 | 66.78 | 15.97 | | 150.0 | | | | | Ż | 4.13 | 67.25 | 16.18 | | 150.0 | | | 10449-
AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1,
Cliping 44%) | X | 4.52 | 67.52 | 16.57 | 0.00 | 150.0 | ± 9.6 % | | 7010 | Onping 1170 | Y | 4.46 | 66.78 | 16.07 | <u> </u> | 150.0 | - | | | | Z | 4.39 | 67.18 | 16.27 | <u> </u> | 150.0 | | | 10450-
AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1,
Clipping 44%) | X | 4.69 | 67.43 | 16.56 | 0.00 | 150.0 | ± 9.6 % | | 7010 | Outpoint 1170/ | İΥ | 4.64 | 66.74 | 16.10 | | 150.0 | | | ······································ | | Ż | 4.58 | 67.10 | 16.28 | | 150.0 | | | 10451-
AAA | W-CDMA (BS Test Model 1, 64 DPCH,
Clipping 44%) | X | 3.77 | 68.52 | 16.20 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.62 | 67.16 | 15.35 | | 150.0 | | | | | Ż | 3.52 | 67.79 | 15.46 | 1 | 150.0 | <u> </u> | | 10456-
AAB | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle) | X | 6,36 | 68.45 | 16.90 | 0.00 | 150.0 | ± 9.6 % | | | | TY | 6.35 | 68.04 | 16.63 | | 150.0 | | | | | Ż | 6.26 | 68.19 | 16.72 | | 150.0 | | | 10457-
AAA | UMTS-FDD (DC-HSDPA) | X | 3.87 | 65.81 | 16.29 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.82 | 65.17 | 15.81 | | 150.0 | | | | | Ż | 3.80 | 65.53 | 16.00 | | 150.0 | | | 10458-
AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | X | 4.22 | 71,17 | 18.26 | 0.00 | 150.0 | ± 9.6 % | | , | 3 | Y | 3.94 | 69.22 | 17.15 | | 150.0 | - | | | | Ż | 4.01 | 70.71 | 17.59 | 1 | 150.0 | 1 | | | • | | | | 18.33 | 0.00 | 150.0 | ± 9.6 % | | 10459- | CDMA2000 (1xEV-DO, Rev. B, 3 | X | 5.26 | 68.17 | 10.55 | 0.00 | 100.0 | 1 20.0 % | | 10459-
AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | X | 5.26 | 67.29 | 17.83 | 0.00 | 150.0 | 20.0 % | | 10460-
AAA | UMTS-FDD (WCDMA, AMR) | Х | 1.33 | 76.50 | 20.68 | 0.00 | 150.0 | ± 9.6 % | |----------------------------|--|---|--------|--------|-------|------|-------|---------| | | | Υ | 0.81 | 66.18 | 14.61 | | 150.0 | | | | | Z | 0.95 | 69.86 | 16.92 | | 150.0 | | | 10461-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 120.53 | 30.78 | 3.29 | 80.0 | ± 9.6 % | | | | Y | 100.00 | 120.99 | 31.37 | | 80.0 | | | | | Z | 100.00 | 124.03 | 32.20 | | 80.0 | | | 104 6 2-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 105.89 | 23.78 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 68.65 | 104.80 | 24.72 | | 80.0 | | | 40400 | LTE TOD (OO EDIM A DD (AAA)) | Z | 100.00 | 107.80 | 24.46 | | 80.0 | | | 10463-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 34.22 | 92.48 | 19.99 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 20.78 | 89.39 | 20.30 | | 80.0 | | | 10464- | LTE TOD (CC FOMA 4 DD O MU) | Z | 100.00 | 104.65 | 22.95 | | 80.0 | | | AAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 118.59 | 29.74 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 100.00 | 119.30 | 30.44 | | 80.0 | | | 10465- | LTE TDD (SC CDMA 4 DD CARL 40 | Z | 100.00 | 122.02 | 31.12 | | 80.0 | | | 10465-
AAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 105.43 | 23.55 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 36.42 | 97.15 | 22.76 | | 80.0 | | | 10166 | LIFE TOD (OO FDAMA A DD O MILE OA | Z | 100.00 | 107.28 | 24.20 | | 80.0 | | | 10466-
AAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | X | 17.89 | 85.74 | 18.15 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 13.99 | 84.78 | 18.93 | | 80.0 | | | 10107 | LTE TOD (OO FOMA 4 DD 5 MI) | Z | 100.00 | 104.18 | 22.73 | | 80.0 | | | 10467-
AAE | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 118.79 | 29.83 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 100.00 | 119.47 | 30.52 | | 80.0 | | | 40400 | LTE TOP (OR EDIM A DO THE | Z | 100.00 | 122.25 | 31.22 | | 80.0 | | | 10468-
AAE | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 105.55 | 23.61 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 42.04 | 98.90 | 23.22 | | 80.0 | | | 40400 | LTE TOP (00 FD) | Z | 100.00 | 107.44 | 24.27 | | 80.0 | | | 10469-
AAE | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | × | 18,42 | 86.04 | 18.22 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 14.20 | 84.95 | 18.97 | | 80.0 | | | 40.170 | | Z | 100.00 | 104.18 | 22.73 | | 80.0 | | | 10470-
AAE | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 118.81 | 29.83 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 100.00 | 119.49 | 30.52 | | 80.0 | | | 40474 | LTE TER (00 FELL) | Z | 100.00 | 122.27 | 31.22 | | 80.0 | | | 10471-
AAE | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 105.50 | 23.58 | 3,23 | 80.0 | ± 9.6 % | | | | Y | 42.06 | 98.87 | 23.20 | | 80.0 | | | 10472- | LTE TDD (CC EDMA 4 DD 40 ML) 04 | Z | 100.00 | 107.39 | 24.25 | | 80.0 | | | AAE | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 18.24 | 85.92 | 18.18 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 14.18 | 84.92 | 18.95 | | 80.0 | | | 10473- | LITE TOD (SC FDMA 4 DD 45 MI) | Z | 100.00 | 104.13 | 22.70 | | 80.0 | | | 10473-
AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 118.78 | 29.81 | 3.23 | 80.0 | ±9.6 % | | | | Y | 100.00 | 119.47 | 30.51 | | 80.0 | | | 10474 | LITE TOD (OC COMA 4 DD 45 ML) | Z | 100.00 | 122.24 | 31.21 | | 80.0 | | | 10474-
AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 105.51 | 23.58 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 41.44 | 98.71 | 23.16 | | 80.0 | | | 10475 | LITE TOD (OO SDIA 4 DD 47 47 | Z | 100.00 | 107.39 | 24.25 | | 80.0 | | | 10475-
AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | × | 18.00 | 85.79 | 18.14 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 14.03 | 84.82 | 18.92 | | 80.0 | | | | | Ζ | 100.00 | 104.14 | 22.70 | | 80.0 | | | 10477- | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- | Х | 100.00 | 105.36 | 23.51 | 3.23 | 80.0 | ± 9.6 % | |---------------
--|----|--------|--------|-------|---------|--------|---------| | AAF | QAM, UL Subframe=2,3,4,7,8,9) | | 07.47 | 07.45 | 00.00 | | 90.0 | | | | | Y | 37.47 | 97.45 | 22.82 | | 80.0 | | | 10470 | LITE TOD (CC FDMA 4 DB 20 MUz 64 | | 100.00 | 107.23 | 24.17 | 2 22 | 80.0 | 1069/ | | 10478-
AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 17.45 | 85.46 | 18.04 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 13.87 | 84.66 | 18.87 | | 80.0 | | | | | Z | 100.00 | 104.09 | 22.68 | | 80.0 | | | 10479-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 19.39 | 97.98 | 26.98 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 9.97 | 87.11 | 23.93 | | 80.0 | | | | | Z | 31.86 | 106.57 | 29.32 | | 80.0 | | | 10480-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 21.21 | 93.58 | 24.05 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 10.89 | 84.18 | 21.64 | | 80.0 | | | | | Z | 36.29 | 101.38 | 25.98 | | 80.0 | | | 10481-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 17.21 | 89.86 | 22.63 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 9.94 | 82.29 | 20.73 | | 80.0 | | | | Wadania and a salah sala | Z | 25.83 | 95.66 | 24.06 | | 80.0 | | | 10482-
AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 7.29 | 82.03 | 20.94 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 4.92 | 75.71 | 18.70 | | 80.0 | | | | | Z | 6.76 | 81.31 | 20.47 | | 80.0 | | | 10483-
AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 10.85 | 84.57 | 21.63 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 7.87 | 79.68 | 20.28 | | 80.0 | | | | *************************************** | Z | 11.75 | 85.89 | 21.77 | | 80.0 | | | 10484-
AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 9.90 | 83.05 | 21.15 | 2.23 | 80.0 | ± 9.6 % | | , , , , _ | 0 : 40 : 111; 02 040 14110 2 0; 17, 19; 07 | Y | 7.49 | 78.74 | 19.95 | | 80.0 | | | | | Z | 10.27 | 83.81 | 21.11 | | 80.0 | | | 10485-
AAE | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 7.24 | 82.21 | 21.64 | 2.23 | 80.0 | ± 9.6 % | | 7014 | Qr Ort, OE Oubitaino E,o, 1,1,0,07 | İΥ | 5.20 | 76.44 | 19.53 | | 80.0 | | | | | Ż | 6.79 | 81.80 | 21.44 | | 80.0 | | | 10486-
AAE | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.34 | 74.77 | 18.72 | 2.23 | 80.0 | ± 9.6 % | | 7 5 1 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Υ | 4.58 | 71.87 | 17.58 | | 80.0 | | | · | | Ż | 5.06 | 74.40 | 18.37 | | 80.0 | | | 10487-
AAE | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.26 | 74.21 | 18.50 | 2.23 | 80.0 | ± 9.6 % | | 701 | 0 1 30 444, 02 045H4H10 2,0,11,10,0) | Y | 4.59 | 71.54 | 17.46 | | 80.0 | | | | | Z | 4.97 | 73.79 | 18.13 | | 80.0 | | | 10488-
AAE | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 6.65 | 79.53 | 21.12 | 2.23 | 80.0 | ± 9.6 % | | · - •— | -, | Y | 5.36 | 75.42 | 19.52 | | 80.0 | | | | | Z | 6.19 | 79.05 | 21.03 | | 80.0 | | | 10489-
AAE | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.18 | 73.29 | 18.99 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.74 | 71.24 | 18.12 | | 80.0 | | | | | Ż | 4.94 | 73.02 | 18.87 | | 80.0 | | | 10490-
AAE | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.20 | 72.84 | 18.84 | 2.23 | 80.0 | ± 9.6 % | | ļ | | Y | 4.81 | 70.96 | 18.04 | | 80.0 | | | | | Z | 4.98 | 72.63 | 18.73 | | 80.0 | | | 10491-
AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 6.09 | 76.27 | 20.02 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 5.32 | 73.47 | 18.88 | | 80.0 | | | | | Ż | 5.74 | 75.88 | 19.98 | 1 | 80.0 | | | 10492-
AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.29 | 71.86 | 18.63 | 2.23 | 80.0 | ± 9.6 % | | | spring of Constitution appring 1040) | Y | 5.01 | 70.36 | 17.98 | 1 | 80.0 | 1 | | | | 1 | | | | | 1 00.0 | | ES3DV3-SN:3287 | 10493-
AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.33 | 71.59 | 18.55 | 2.23 | 80.0 | ± 9.6 % | |----------------|--|----------------|------|-------------|-------|------|----------|----------| | | | Υ | 5.07 | 70.18 | 17.93 | | 80.0 | | | | | Ż | 5,12 | 71.37 | 18.48 | | 80.0 | | | 10494-
AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 7.00 | 78.56 | 20.67 | 2,23 | 80.0 | ± 9.6 % | | | | 7 | 5.85 | 75.11 | 19.32 | | 80.0 | | | | | Z | 6.51 | 77.97 | 20.58 | | 80.0 | | | 10495-
AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.43 | 72.52 | 18.88 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.10 | 70.90 | 18.18 | | 80.0 | | | | | Z | 5.18 | 72.18 | 18.80 | | 80.0 | | | 10496-
AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | × | 5.43 | 71.99 | 18.72 | 2.23 | 80.0 | ± 9.6 % | | · | | Υ | 5.15 | 70.54 | 18.08 | | 80.0 | | | | | Z | 5.20 | 71.70 | 18.65 | | 80.0 | | | 10497-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 5.92 | 78.88 | 19.20 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 4.08 | 73.19 | 17.18 | | 80.0 | | | | | Z | 5.11 | 76.97 | 18.12 | | 80.0 | | | 10498-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 4.00 | 70.80 | 15.33 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 3.45 | 68.39 | 14.47 | | 80.0 | | | | | Z | 3.24 | 68.34 | 13.80 | | 80.0 | | | 10499-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | Х | 3.89 | 70.09 | 14.92 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.42 | 67.98 | 14.18 | | 80.0 | | | | | Z | 3.10 | 67.51 | 13.31 | | 80.0 | | | 10500-
_AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 6.64 | 80.28 | 21.17 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 5.11 | 75.52 | 19.37 | | 80.0 | <u> </u> | | | | Ζ | 6.26 | 79.98 | 21.06 | | 80.0 | | | 10501-
AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.23 | 73.99 | 18.74 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.64 | 71.50 | 17.74 | | 80.0 | | | | | Z | 4.99 | 73.73 | 18.51 | | 80.0 | | | 10502-
AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.24 | 73.65 | 18.58 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 4.68 | 71.29 | 17.63 | | 80.0 | | | | | Z | 5.01 | 73.41 | 18.34 | | 80.0 | | | 10503-
AAE | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 6.55 | 79.28 | 21.02 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 5.29 | 75.23 | 19.44 | | 80.0 | | | 40504 | LITE TOP (OC POME) | Z | 6.10 | 78.82 | 20.93 | | 80.0 | | | 10504-
AAE | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.15 | 73.20 | 18.93 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.72 | 71.16 | 18.07 | | 80.0 | | | 40E0E | LTE TOD (OO FOLAL 1000) | Z | 4.91 | 72.93 | 18.81 | | 80.0 | | | 10505-
AAE | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.17 | 72.74 | 18.78 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.79 | 70.88 | 17.99 | | 80.0 | | | 10500 | LITE TOD (CO FDM: 4000) DB (C | Z | 4.95 | 72,53 | 18.68 | | 80.0 | | | 10506-
AAE | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 6.92 | 78.38 | 20.59 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 5.80 | 74.97 | 19.25 | | 80.0 | | | 10507 | LTE TDD (00 FDM4 4000) 55 46 | Z | 6.45 | 77.80 | 20.51 | | 80.0 | | | 10507-
AAE | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.40 | 72.45 | 18.84 | 2.23 | 80.0 | ± 9.6 % | | | | | | | | | 4 | | | | | Y | 5.08 | 70.84 | 18.14 | | 80.0 | } | | 10508-
AAE | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM, UL | Х | 5.41 | 71.92 | 18.67 | 2.23 | 80.0 | ± 9.6 % | |---------------
---|--------|--------------|----------------|----------------|--------------|----------------|----------| | | Subframe=2,3,4,7,8,9) | , | E 40 | 70.47 | 40.04 | | 000 | | | | | Y | 5.13 | 70.47 | 18.04 | | 80.0 | | | 10509- | LTE-TDD (SC-FDMA, 100% RB, 15 | Z
X | 5.18
6.58 | 71.63
75.63 | 18.60
19.59 | 2.23 | 80.0
80.0 | +0.6.9/ | | AAE | MHz, QPSK, UL Subframe=2,3,4,7,8,9) | | | | | 2.23 | | ± 9.6 % | | | | Z | 5.87
6.22 | 73.25
75.16 | 18.62
19.53 | | 80.0 | | | 10510- | LTE-TDD (SC-FDMA, 100% RB, 15 | X | 5.77 | 71.69 | 18.60 | 2.23 | 80.0
80.0 | ± 9.6 % | | AAE | MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | ^ | 5,11 | 71.09 | 10.00 | 2.23 | 60.0 | I 9.0 76 | | | | Υ | 5.53 | 70.43 | 18.05 | | 80.0 | | | *** | | Z | 5.54 | 71.36 | 18.54 | | 80.0 | | | 10511-
AAE | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.76 | 71.27 | 18.48 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.55 | 70.11 | 17.98 | | 80.0 | | | | | Z | 5.55 | 70.97 | 18,43 | | 80.0 | | | 10512-
AAF | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 7.41 | 78.14 | 20.36 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 6.29 | 75.00 | 19.14 | | 80.0 | | | | | Z | 6.91 | 77.49 | 20.25 | | 80.0 | | | 10513-
AAF | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | Х | 5.76 | 72.30 | 18.82 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.46 | 70.89 | 18.20 | | 80.0 | | | | | Z | 5.50 | 71.88 | 18.73 | | 80.0 | | | 10514-
AAF | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.67 | 71.64 | 18.62 | 2.23 | 80.0 | ±9.6% | | | | Υ | 5.42 | 70.37 | 18.07 | | 80.0 | | | | | Z | 5.44 | 71.27 | 18.55 | | 80.0 | | | 10515-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps, 99pc duty cycle) | X | 1.02 | 65,05 | 16.27 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.92 | 62.47 | 13.97 | | 150.0 | | | | | Z | 0.96 | 63.65 | 14.96 | | 150.0 | | | 10516-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) | X | 2.27 | 97.97 | 29.12 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.48 | 66.91 | 14.54 | <u> </u> | 150.0 | - | | 40547 | JEEE 000 445 WIELO 4 OLE /D000 44 | Z | 0.71 | 74.58 | 19.09 | 0.00 | 150.0 | 1000 | | 10517-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11
Mbps, 99pc duty cycle) | X | 0.95 | 69.11 | 18.10 | 0.00 | 150.0
150.0 | ± 9.6 % | | | | Z | 0.76
0.83 | 63.96
66.01 | 15.81 | | 150.0 | | | 10518-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps, 99pc duty cycle) | X | 4.70 | 67.26 | 16.52 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.65 | 66.61 | 16.07 | | 150.0 | | | | | Z | 4.58 | 66.98 | 16.26 | | 150.0 | | | 10519-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12
Mbps, 99pc duty cycle) | Х | 4.92 | 67.55 | 16.65 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.88 | 66.92 | 16.23 | | 150.0 | | | 40500 | 1EEE 000 44.7 WEELS OLD (CEDA) (C | Z | 4.78 | 67.24 | 16.39 | 0.00 | 150.0 | 1.000 | | 10520-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18
Mbps, 99pc duty cycle) | X | 4.77 | 67,56 | 16.60 | 0.00 | 150.0
150.0 | ± 9.6 % | | | | Y | 4.73
4.63 | 66.89
67.21 | 16.14
16.32 | | 150.0 | | | 10521-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24
Mbps, 99pc duty cycle) | X | 4.71 | 67.58 | 16.60 | 0.00 | 150.0 | ± 9.6 % | | - | | Y | 4.66 | 66.89 | 16.12 | <u> </u> | 150.0 | | | | | Z | 4.57 | 67.22 | 16.30 | | 150.0 | | | 10522-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) | X | 4.75 | 67.52 | 16.61 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.70 | 66.83 | 16.14 | | 150.0 | | | | | Z | 4.62 | 67.26 | 16.37 | | 150.0 | | ES3DV3-- SN:3287 | 10523-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48
Mbps, 99pc duty cycle) | Х | 4.62 | 67.46 | 16.49 | 0.00 | 150.0 | ± 9.6 % | |---------------|---|--------|--------------|----------------|----------------|----------|----------------|---------| | | inopo, cope daty cycle) | Y | 4.57 | 66.74 | 16.00 | | 150.0 | | | | | Ż | 4.50 | 67.13 | 16.21 | | 150.0 | | | 10524-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54
Mbps, 99pc duty cycle) | X | 4.70 | 67.49 | 16.61 | 0.00 | 150.0 | ± 9.6 % | | | | TY | 4.65 | 66.81 | 16.14 | | 150.0 | | | | | Z | 4.57 | 67.19 | 16.34 | | 150.0 | | | 10525-
AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) | Х | 4.66 | 66.53 | 16.20 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.60 | 65.83 | 15.72 | | 150.0 | | | | | Z | 4.54 | 66.22 | 15.93 | | 150.0 | | | 10526-
AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle) | X | 4.87 | 66.95 | 16.34 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.81 | 66,24 | 15.87 | | 150.0 | | | | | Z | 4.73 | 66.61 | 16.08 | | 150.0 | | | 10527-
AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle) | Х | 4.78 | 66.94 | 16.31 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.72 | 66.21 | 15.82 | | 150.0 | | | | | Z | 4.64 | 66.58 | 16.02 | | 150.0 | | | 10528-
AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) | Х | 4.80 | 66.96 | 16.34 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.74 | 66.23 | 15.85 | | 150.0 | | | | | Z | 4.66 | 66.60 | 16.06 | | 150.0 | | | 10529-
AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) | X | 4.80 | 66.96 | 16.34 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.74 | 66.23 | 15.85 | | 150.0 | | | | | Z | 4.66 | 66.60 | 16.06 | | 150.0 | | | 10531-
AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle) | X | 4.82 | 67.12 | 16.37 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.76 | 66.38 | 15.88 | | 150.0 | | | | | Z | 4.66 | 66.73 | 16.08 | | 150.0 | | | 10532-
AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle) | Х | 4.67 | 67.01 | 16.33 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.60 | 66.25 | 15.82 | | 150.0 | | | | | Z | 4.52 | 66.59 | 16.02 | | 150.0 | | | 10533-
AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle) | Х | 4.82 | 66.98 | 16.32 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.75 | 66.24 | 15.83 | | 150.0 | | | | | Z | 4.67 | 66.63 | 16.04 | | 150.0 | | | 10534-
AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle) | Х | 5.30 | 67.05 | 16.34 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.26 | 66.45 | 15.95 | | 150.0 | | | | | Z | 5.18 | 66.72 | 16.10 | 1 0 1110 | 150.0 | | | 10535-
AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) | Х | 5.37 | 67.19 | 16.39 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.33 | 66.59 | 16.00 | | 150.0 | | | 10-0- | | Z | 5.25 | 66.87 | 16.17 | | 150.0 | | | 10536-
AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) | Х | 5.25 | 67.20 | 16.39 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.19 | 66.57 | 15.97 | | 150.0 | | | 10505 | TEE 000 (4 AUE 110 AUE | Z | 5.12 | 66.85 | 16.14 | | 150.0 | | | 10537-
AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) | X | 5.31 | 67.16 | 16.37 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.26 | 66.55 | 15.97 | | 150.0 | | | 10538- | IEEE 802.11ac WiFi (40MHz, MCS4, | Z
X | 5.18
5.42 | 66.81
67.22 | 16.12
16.43 | 0.00 | 150.0
150.0 | ± 9.6 % | | AAB | 99pc duty cycle) | +.,- | E 00 | 00.05 | 40.00 | | 450.0 | | | | | Y | 5.38 | 66.65 | 16.06 | | 150.0 | | | 10540- | IEEE 802.11ac WiFi (40MHz, MCS6, | Z | 5.28 | 66.86 | 16.19 | 0.00 | 150.0 | | | AAB | 99pc duty cycle) | | 5.32 | 67.17 | 16.43 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.28 | 66.57 | 16.03 | | 150.0 | | | | | Z | 5.20 | 66.84 | 16.19 | <u> </u> | 150.0 | | ES3DV3- SN:3287 October 22, 2018 | 10541-
AAB | IEEE 802.11ac WiFi (40MHz, MCS7, | X | 5.31 | 67.10 | 16.39 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---------------|--------------|----------------|----------------|-------------------------------------|----------------|---| | AAD | 99pc duty cycle) | + + + | 5.26 | 66.51 | 16.00 | | 150.0 | | | | | $\frac{1}{z}$ | 5.20 | 66.72 | 16.00 | | 150.0 | | | 10542-
AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle) | X | 5.45 | 67.10 | 16.40 | 0.00 | 150.0 | ± 9.6 % | | , , , , | cope daty cycley | TY | 5.41 | 66.53 | 16.03 | | 150.0 | | | | • | 1 ż | 5.33 | 66.78 | 16.17 | | 150.0 | | | 10543-
AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle) | X | 5.54 | 67.11 | 16.42 | 0.00 | 150.0 | ± 9.6 % | | <u> </u> | | Y | 5.50 | 66.55 | 16.05 | | 150.0 | | | | | Z | 5.41 | 66.81 | 16.20 | ··································· | 150.0 | *************************************** | | 10544-
AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle) | X | 5.58 | 67.14 | 16.31 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.53 | 66.57 | 15.94 | | 150.0 | | | | | Z | 5.48 | 66.82 | 16.09 | | 150.0 | | | 10545-
AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle) | X | 5.78 | 67.52 | 16.44 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.75 | 66.98 | 16.08 | | 150.0 | | | | | Z | 5.68 | 67.24 | 16.24 | | 150.0 | | | 10546-
AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle) | Х | 5.68 | 67.44 | 16.42 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.63 | 66.87 | 16.05 | | 150.0 | | | | | Z | 5,56 | 67.08 | 16.18 | | 150.0 | | | 10547-
AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle) | Х | 5.77 | 67.50 | 16.44 | 0.00 | 150.0 | ± 9.6 % | | W | | Y | 5.72 | 66.94 | 16.07 | | 150.0 | | | | | Z | 5.64 | 67.14 | 16.20 | | 150.0 | | | 10548-
AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle) | Х | 6.03 | 68.45 | 16.88 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 6.07 | 68.12 | 16.63 | | 150.0 | | | | | Z | 5.92 | 68.14 | 16.67 | | 150.0 | | | 10550-
AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle) | Х | 5.70 | 67.38 | 16.39 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.65 | 66.81 | 16.02 | | 150.0 | | | | | Z | 5.58 | 67.05 | 16.17 | | 150.0 | | | 10551-
AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle) | X | 5.71 | 67.48 | 16.40 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.68 | 66.94 | 16.05 | | 150.0 | | | | | Z | 5.59 | 67.11 | 16.16 | | 150.0 | | | 10552-
AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc
duty cycle) | Х | 5.61 | 67.24 | 16.31 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.57 | 66.68 | 15.94 | | 150.0 | | | | | Z | 5.50 | 66.90 | 16.07 | | 150.0 | | | 10553-
AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle) | X | 5.71 | 67.29 | 16.35 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.66 | 66.72 | 15.98 | | 150.0 | | | | | Z | 5.59 | 66.95 | 16.12 | | 150.0 | | | 10554-
AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle) | Х | 5.97 | 67.50 | 16.39 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.93 | 66.97 | 16.05 | | 150.0 | | | 40 | | Z | 5.88 | 67.19 | 16.18 | 0.00 | 150.0 | + , , , , , , , | | 10555-
AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle) | X | 6.13 | 67.85 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.09 | 67.34 | 16.20 | 1 | 150.0 | | | 10556-
AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle) | X | 6.02
6.13 | 67.50
67.85 | 16.31
16.53 | 0.00 | 150.0
150.0 | ± 9.6 % | | 7770 | Jopo duty Gyole) | Y | 6.09 | 67.32 | 16.19 | | 150.0 | | | | | <u>'</u> | 6.04 | 67.54 | 16.32 | | 150.0 | | | 10557-
AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle) | X | 6.12 | 67.82 | 16.54 | 0.00 | 150.0 | ± 9.6 % | | ,,,, | - cope daty cycloj | Y | 6.09 | 07.04 | 16.21 | 1 | 150.0 | + | | | | 1 Y | 1 609 | 67.31 | 1 1621 | 1 | 1 100.0 | | | 10560- IEEE 802.11a 99pc duty cyc 10561- AAC 99pc duty cyc 10562- IEEE 802.11a 99pc duty cyc 10563- AAC 99pc duty cyc 10563- AAC 99pc duty cyc 10564- AAA OFDM, 9 Mbj 10565- AAA OFDM, 12 Mi 10566- IEEE 802.11a OFDM, 18 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- IEEE 802.11a AAA OFDM, 36 Mi 10571- IEEE 802.11a AAA OFDM, 36 Mi 10571- IEEE 802.11a AAA OFDM, 36 Mi 10572- AAA OFDM, 54 Mi 10573- IEEE 802.11b AAA OFDM, 54 Mi 10573- IEEE 802.11b AAA OFDM, 54 Mi | | | | | | | | | |--|---|----------------|--------|--------|-------|------|----------------|----------| | 10561- IEEE 802.11a 99pc duty cycle 10562- IEEE 802.11a 99pc duty cycle 10563- AAC 99pc duty cycle 10564- AAC 99pc duty cycle 10565- AAA OFDM, 9 Mbj 10566- AAA OFDM, 12 Mi 10567- IEEE 802.11a OFDM, 18 Mi 10568- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- IEEE 802.11a OFDM, 36 Mi 10571- IEEE 802.11a OFDM, 48 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11b AAA OFDM, 54 Mi 10571- IEEE 802.11b AAA OFDM, 54 Mi | 02.11ac WiFi (160MHz, MCS4,
uty cycle) | X | 6.18 | 68.01 | 16.64 | 0.00 | 150.0 | ± 9.6 % | | 10561- IEEE 802.11a 99pc duty cycles 10562- IEEE 802.11a 99pc duty cycles 10563- AAC 99pc duty cycles 10564- AAA IEEE 802.11a 9pc duty cycles 10565- AAA OFDM, 9 Mbj 10566- AAA OFDM, 18 Mt 10567- AAA OFDM, 24 Mt 10568- AAA OFDM, 36 Mt 10569- AAA OFDM, 36 Mt 10570- AAA OFDM, 36 Mt 10571- IEEE 802.11a AAA OFDM, 36 Mt 10570- AAA OFDM, 36 Mt 10570- AAA OFDM, 54 Mt 10571- AAA OFDM, 54 Mt 10571- AAA OFDM, 54 Mt 10572- AAA IEEE 802.11b AAA OFDM, 54 Mt 10573- IEEE 802.11b AAA 802.1 | - | Υ | 6.16 | 67.51 | 16.32 | | 150.0 | 1 | | AAC 99pc duty cyc 10561- IEEE 802.11a 99pc duty cyc 10562- IEEE 802.11a 99pc duty cyc 10563- AAC 99pc duty cyc 10564- AAA OFDM, 9 Mbj 10566- AAA OFDM, 12 Mi 10567- IEEE 802.11a AAA OFDM, 24 Mi 10568- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- IEEE 802.11a AAA OFDM, 36 Mi 10571- IEEE 802.11a AAA OFDM, 36 Mi 10570- AAA OFDM, 36 Mi 10570- AAA OFDM, 36 Mi 10570- AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10573- IEEE 802.11b AAA Mbps, 90pc d | | Z | 6.06 | 67.65 | 16.41 | | 150.0 | | | 10561- IEEE 802.11a 99pc duty cycle 10562- AAC 99pc duty cycle 10563- AAC 99pc duty cycle 10564- AAC 99pc duty cycle 10565- AAA OFDM, 9 Mbj 10566- AAA OFDM, 12 Mi 10567- AAA OFDM, 18 Mi 10568- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- AAA OFDM, 48 Mi 10571- IEEE 802.11a AAA OFDM, 48 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10572- AAA IEEE 802.11b AAA OFDM, 54 Mi | 02.11ac WiFi (160MHz, MCS6,
uty cycle) | X | 6.18 | 67.85 | 16.60 | 0.00 | 150.0 | ± 9.6 % | | AAC 99pc duty cyc 10562- IEEE 802.11a 99pc duty cyc 10563- AAC 99pc duty cyc 10564- AAA OFDM, 9 Mbj 10566- AAA OFDM, 12 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- IEEE 802.11a AAA OFDM, 36 Mi 10571- IEEE 802.11a AAA OFDM, 48 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA IEEE 802.11a AAA OFDM, 54 Mi 10571- IEEE 802.11a AAA | | Y | 6.14 | 67.33 | 16.27 | | 150.0 | | | 10562- AAC 99pc duty cyc 10563- AAC 99pc duty cyc 10563- AAC 99pc duty cyc 10564- AAA OFDM, 9 Mbj 10566- AAA OFDM, 12 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- AAA OFDM, 48 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10571- AAA Mbps, 90pc d | | Z | 6.06 | 67.49 | 16.37 | ļ | 150.0 | | | 10562- AAC 99pc duty cyc 10563- AAC 99pc duty cyc 10563- AAC 99pc duty cyc 10564- AAA OFDM, 9 Mbj 10566- AAA OFDM, 12 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- AAA OFDM, 48 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10571- AAA Mbps, 90pc d | 02.11ac WiFi (160MHz, MCS7, | 1 x | 6.09 | 67.79 | 16.61 | 0.00 | 150.0 | ± 9.6 % | | AAC 99pc duty cyc 10563- | | Y | 6.05 | 67.28 | 16.28 | 0.00 | 150.0 | 2 3.0 70 | | AAC 99pc duty cyc 10563- IEEE 802.11a 99pc duty cyc 10564- JEEE 802.11a AAA OFDM, 9 Mbj 10565- JEEE 802.11a AAA OFDM, 18 Mb 10566- JEEE 802.11a AAA OFDM, 18 Mb 10567- JEEE 802.11a AAA OFDM, 36 Mb 10568- JEEE 802.11a AAA OFDM, 36 Mb 10570- JEEE 802.11a AAA OFDM, 48 Mb 10571- JEEE 802.11a AAA OFDM, 54 Mb 10571- JEEE 802.11b AAA OFDM, 54 Mb 10571- JEEE 802.11b AAA Mbps, 90pc d 10573- JEEE 802.11b | | Ż | 5.98 | 67.45 | 16.39 | | 150.0 | | | 10563- IEEE 802.11g AAA OFDM, 9 Mbj 10565- AAA OFDM, 12 Mi 10566- AAA OFDM, 18 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- IEEE 802.11g AAA OFDM, 36 Mi 10571- IEEE 802.11g AAA OFDM, 36 Mi 10570- IEEE 802.11g AAA OFDM, 36 Mi 10571- IEEE 802.11g AAA OFDM, 54 Mi 10571- IEEE 802.11g AAA OFDM, 54 Mi 10571- IEEE 802.11g AAA OFDM, 54 Mi | 02.11ac WiFi (160MHz, MCS8, | X | 6.24 | 68.26 | 16.85 | 0.00 | 150.0 | ± 9.6 % | | 10564- AAA OFDM, 9 Mbj 10565- AAA OFDM, 12 Mi 10566- AAA OFDM, 18 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 48 Mi 10570- AAA OFDM, 48 Mi 10571- AAA OFDM, 54 Mi 10571- AAA OFDM, 54 Mi 10572- AAA IEEE 802.11g AAA OFDM, 36 Mi 10573- IEEE 802.11g AAA OFDM, 54 Mi 10573- IEEE 802.11g AAA OFDM, 54 Mi 10573- IEEE 802.11g AAA OFDM, 54 Mi | ity cycle) | Y | 6.23 | 67.81 | 16.55 | | 450.0 | | | 10564- AAA IEEE 802.11g OFDM, 9 Mbj 10565- AAA OFDM, 12 Mi 10566- AAA OFDM, 18 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 48 Mi 10570- AAA OFDM, 48 Mi 10571- AAA OFDM, 54 Mi 10571- AAA IEEE 802.11g AAA OFDM, 54 Mi 10571- AAA IEEE 802.11g AAA OFDM, 54 Mi 10573- IEEE 802.11t AAA | | Z | 6.12 | 67.89 | 16.61 | | 150.0
150.0 | | | 10564- AAA IEEE 802.11g OFDM, 9 Mbj 10565- AAA OFDM, 12 Mi 10566- AAA OFDM, 18 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 48 Mi 10570- AAA OFDM, 48 Mi 10571- AAA OFDM, 54 Mi 10571- AAA IEEE 802.11g AAA OFDM, 54 Mi 10571- AAA IEEE 802.11g AAA OFDM, 54 Mi 10573- IEEE 802.11t AAA | 02.11ac WiFi (160MHz, MCS9, | X | 6.53 | 68.65 | 16.98 | 0.00 | 150.0 | 1000 | | 10565- AAA OFDM, 9 Mbj 10565- AAA OFDM, 12 Mi 10566- AAA OFDM, 18 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- AAA OFDM, 48 Mi
10571- AAA OFDM, 54 Mi 10571- AAA Mbps, 90pc d 10572- AAA Mbps, 90pc d | ity cycle) | | | | | 0.00 | | ± 9.6 % | | 10565- AAA OFDM, 9 Mbj 10565- AAA OFDM, 12 Mi 10566- AAA OFDM, 18 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- AAA OFDM, 48 Mi 10571- AAA OFDM, 54 Mi 10571- AAA Mbps, 90pc d 10572- AAA Mbps, 90pc d | | Y | 6.51 | 68.18 | 16.68 | | 150.0 | | | 10565- AAA OFDM, 9 Mbj 10565- AAA OFDM, 12 Mi 10566- AAA OFDM, 18 Mi 10567- AAA OFDM, 24 Mi 10568- AAA OFDM, 36 Mi 10569- AAA OFDM, 36 Mi 10570- AAA OFDM, 48 Mi 10571- AAA OFDM, 54 Mi 10571- AAA Mbps, 90pc d 10572- AAA Mbps, 90pc d | 20.44 - MUELO 4.011 / 7.000 | Z | 6.46 | 68.48 | 16.85 | | 150.0 | | | 10566- IEEE 802.116 AAA OFDM, 12 Mi 10566- IEEE 802.116 OFDM, 18 Mi 10567- IEEE 802.116 AAA OFDM, 36 Mi 10569- IEEE 802.116 AAA OFDM, 48 Mi 10570- IEEE 802.116 AAA OFDM, 54 Mi 10571- IEEE 802.116 AAA Mbps, 90pc d 10572- IEEE 802.116 AAA Mbps, 90pc d | 02.11g WiFi 2.4 GHz (DSSS-
9 Mbps, 99pc duty cycle) | Х | 5.03 | 67.33 | 16.65 | 0.46 | 150.0 | ± 9.6 % | | 10566- IEEE 802.116 AAA OFDM, 12 Mi 10566- IEEE 802.116 OFDM, 18 Mi 10567- IEEE 802.116 AAA OFDM, 36 Mi 10569- IEEE 802.116 AAA OFDM, 48 Mi 10570- IEEE 802.116 AAA OFDM, 54 Mi 10571- IEEE 802.116 AAA Mbps, 90pc d 10572- IEEE 802.116 AAA Mbps, 90pc d | | Υ | 5.00 | 66.77 | 16.28 | | 150.0 | | | 10566- IEEE 802.116 AAA OFDM, 12 Mi 10566- IEEE 802.116 OFDM, 18 Mi 10567- IEEE 802.116 AAA OFDM, 36 Mi 10569- IEEE 802.116 AAA OFDM, 48 Mi 10570- IEEE 802.116 AAA OFDM, 54 Mi 10571- IEEE 802.116 AAA Mbps, 90pc d 10572- IEEE 802.116 AAA Mbps, 90pc d | | Z | 4.92 | 67.10 | 16.44 | | 150.0 | | | 10567- IEEE 802.11g AAA OFDM, 24 Mit 10568- IEEE 802.11g AAA OFDM, 36 Mit 10569- IEEE 802.11g AAA OFDM, 48 Mit 10570- IEEE 802.11g AAA OFDM, 54 Mit 10571- IEEE 802.11t AAA Mbps, 90pc d 10572- IEEE 802.11t AAA Mbps, 90pc d | 02.11g WiFi 2.4 GHz (DSSS-
12 Mbps, 99pc duty cycle) | Х | 5.29 | 67.82 | 16.98 | 0.46 | 150.0 | ± 9.6 % | | 10567- IEEE 802.11g AAA OFDM, 24 Mis 10568- IEEE 802.11g AAA OFDM, 36 Mis 10569- IEEE 802.11g AAA OFDM, 48 Mis 10570- IEEE 802.11g AAA OFDM, 54 Mis 10571- IEEE 802.11g AAA Mbps, 90pc d 10572- IEEE 802.11t AAA Mbps, 90pc d | | Υ | 5.27 | 67.28 | 16.62 | | 150.0 | | | 10567- IEEE 802.11g AAA OFDM, 24 Mit 10568- IEEE 802.11g AAA OFDM, 36 Mit 10569- IEEE 802.11g AAA OFDM, 48 Mit 10570- IEEE 802.11g AAA OFDM, 54 Mit 10571- IEEE 802.11t AAA Mbps, 90pc d 10572- IEEE 802.11t AAA Mbps, 90pc d | | Z | 5.16 | 67.55 | 16.76 | | 150.0 | | | 10567- IEEE 802.11g AAA OFDM, 24 Mit 10568- IEEE 802.11g AAA OFDM, 36 Mit 10569- IEEE 802.11g AAA OFDM, 48 Mit 10570- IEEE 802.11g AAA OFDM, 54 Mit 10571- IEEE 802.11t AAA Mbps, 90pc d 10572- IEEE 802.11t AAA Mbps, 90pc d | 02.11g WiFi 2.4 GHz (DSSS-
18 Mbps, 99pc duty cycle) | Х | 5.13 | 67.71 | 16.82 | 0.46 | 150.0 | ± 9.6 % | | 10568- IEEE 802.11c AAA OFDM, 36 Mi 10569- IEEE 802.11c AAA OFDM, 48 Mi 10570- IEEE 802.11c AAA OFDM, 54 Mi 10571- IEEE 802.11c AAA Mbps, 90pc d 10572- AAA Mbps, 90pc d | | Y | 5.10 | 67.14 | 16.44 | | 150.0 | | | 10568- IEEE 802.11c AAA OFDM, 36 Mi 10569- IEEE 802.11c AAA OFDM, 48 Mi 10570- IEEE 802.11c AAA OFDM, 54 Mi 10571- IEEE 802.11c AAA Mbps, 90pc d 10572- AAA Mbps, 90pc d | | Z | 5.00 | 67.42 | 16.59 | | 150.0 | | | 10568- IEEE 802.11g AAA OFDM, 36 Mi 10569- IEEE 802.11g AAA OFDM, 48 Mi 10570- IEEE 802.11g AAA OFDM, 54 Mi 10571- IEEE 802.11b AAA Mbps, 90pc d 10572- IEEE 802.11b AAA Mbps, 90pc d | 02.11g WiFi 2.4 GHz (DSSS-
24 Mbps, 99pc duty cycle) | X | 5.16 | 68.12 | 17.17 | 0.46 | 150.0 | ± 9.6 % | | 10569- IEEE 802.11c AAA OFDM, 36 Mi 10570- IEEE 802.11c AAA OFDM, 54 Mi 10571- IEEE 802.11c AAA Mbps, 90pc d 10572- IEEE 802.11c AAA Mbps, 90pc d | | Y | 5.12 | 67.51 | 16.77 | | 150.0 | | | 10569- IEEE 802.11c AAA OFDM, 36 Mi 10570- IEEE 802.11c AAA OFDM, 54 Mi 10571- IEEE 802.11c AAA Mbps, 90pc d 10572- IEEE 802.11c AAA Mbps, 90pc d | | Z | 5.02 | 67.79 | 16.92 | | 150.0 | | | 10569- IEEE 802.11g OFDM, 48 Mb 10570- IEEE 802.11g OFDM, 54 Mb 10571- IEEE 802.11b AAA Mbps, 90pc d 10572- IEEE 802.11b AAA Mbps, 90pc d | 02.11g WiFi 2.4 GHz (DSSS-
36 Mbps, 99pc duty cycle) | X | 5.03 | 67.41 | 16.55 | 0.46 | 150.0 | ± 9.6 % | | 10570- IEEE 802.11tg AAA OFDM, 48 Mit 10570- IEEE 802.11tg AAA Mbps, 90pc d 10572- IEEE 802.11tg AAA Mbps, 90pc d 10573- IEEE 802.11tg | * | Y | 5.01 | 66.85 | 16.18 | | 150.0 | | | AAA OFDM, 48 Mi 10570- IEEE 802.11g AAA OFDM, 54 Mi 10571- IEEE 802.11t AAA Mbps, 90pc d 10572- IEEE 802.11t AAA Mbps, 90pc d | | Ż | 4.92 | 67.21 | 16.38 | | 150.0 | | | 10570- IEEE 802.11c AAA OFDM, 54 Mb 10571- IEEE 802.11c AAA Mbps, 90pc d 10572- IEEE 802.11c AAA Mbps, 90pc d |)2.11g WiFi 2.4 GHz (DSSS-
48 Mbps, 99pc duty cycle) | X | 5.10 | 68.15 | 17.20 | 0.46 | 150.0 | ± 9.6 % | | 10571- IEEE 802.11th AAA Mbps, 90pc d 10572- IEEE 802.11th AAA Mbps, 90pc d 10573- IEEE 802.11th | | Υ | 5.06 | 67.52 | 16.78 | | 150.0 | | | 10571- IEEE 802.11th AAA Mbps, 90pc d 10572- IEEE 802.11th AAA Mbps, 90pc d 10573- IEEE 802.11th | | Z | 4.97 | 67.85 | 16.96 | | 150.0 | | | 10571- IEEE 802.11b
AAA Mbps, 90pc d
10572- IEEE 802.11b
AAA Mbps, 90pc d | 02.11g WiFi 2.4 GHz (DSSS-
54 Mbps, 99pc duty cycle) | Х | 5.14 | 67.95 | 17.12 | 0.46 | 150.0 | ± 9.6 % | | 10572- IEEE 802.11b
AAA Mbps, 90pc d | | Y | 5.10 | 67.36 | 16.72 | | 150.0 | | | 10572- IEEE 802.11b
Mbps, 90pc d
Mbps, 90pc d | | Z | 5.01 | 67.70 | 16.91 | | 150.0 | | | 10572- IEEE 802.11b
AAA Mbps, 90pc d
10573- IEEE 802.11b | 02.11b WiFi 2.4 GHz (DSSS, 1
00pc duty cycle) | X | 1.44 | 68.10 | 17.64 | 0.46 | 130.0 | ± 9.6 % | | AAA Mbps, 90pc d | | Y | 1.29 | 65.22 | 15.55 | | 130.0 | | | AAA Mbps, 90pc d | | Z | 1.34 | 66.59 | 16.56 | | 130.0 | | | 10573- IEEE 802.11b | 02.11b WiFi 2.4 GHz (DSSS, 2
t0pc duty cycle) | X | 1.48 | 69.02 | 18.14 | 0.46 | 130.0 | ± 9.6 % | | 10573- IEEE 802.11b
AAA Mbps, 90pc d | | Υ | 1.31 | 65.80 | 15.88 | | 130.0 | | | 10573- IEEE 802.11b
AAA Mbps, 90pc d | | Z | 1.37 | 67.32 | 16.97 | | 130.0 | | | | 02.11b WiFi 2.4 GHz (DSSS, 5.5
0pc duty cycle) | X | 100,00 | 147.85 | 39.47 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 2.24 | 82.28 | 20.72 | | 130.0 | | | 2 | | Z | 17.41 | 116.36 | 31.42 | | 130.0 | | | | 02.11b WiFi 2.4 GHz (DSSS, 11
0pc duty cycle) | X | 2.28 | 80.74 | 23.27 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 1.50 | 71.42 | 18.45 | | 130.0 | | | | | Z | 1.74 | 75.30 | 20.61 | | 130.0 | | | 10575- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Х | 4.83 | 67.17 | 16.72 | 0.46 | 130.0 | ± 9.6 % | |---------------|---|---------------------|--------------|----------------|----------------|------|----------------|----------| | AAA | OFDM, 6 Mbps, 90pc duty cycle) | ^ | 4.00 | 07.17 | 10.72 | 0.40 | 130.0 | 1.0.0 /6 | | | | Υ | 4.82 | 66.65 | 16.39 | | 130.0 | | | | | Z | 4.74 | 66.99 | 16.56 | | 130.0 | | | 10576-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 9 Mbps, 90pc duty cycle) | Х | 4.86 | 67.33 | 16.79 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.85 | 66.81 | 16.45 | | 130.0 | | | | | Z | 4.77 | 67.14 | 16.61 | | 130.0 | | | 10577-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 12 Mbps, 90pc duty cycle) | X | 5.10 | 67.66 | 16.96 | 0.46 | 130.0 | ± 9.6 % | | | <u> </u> | Y | 5.09 | 67.16 | 16.64 | | 130.0 | | | 10578-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 18 Mbps, 90pc duty cycle) | X | 4.98
5.00 | 67.44
67.86 | 16.78
17.08 | 0.46 | 130.0
130.0 | ± 9.6 % | | 7 4 4 7 | o, bill, to insper sopo dary systor | Y | 4.98 | 67.32 | 16.73 | | 130.0 | | | | | Z | 4.88 | 67.61 | 16.88 | | 130.0 | | | 10579-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 24 Mbps, 90pc duty cycle) | Х | 4.77 | 67.23 | 16.44 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.76 | 66.70 | 16.10 | | 130.0 | | | | | Z | 4.66 | 66.98 | 16.25 | | 130,0 | | | 10580-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 36 Mbps, 90pc duty cycle) | X | 4.81 | 67.17 | 16.42 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.81 | 66.65 | 16.08 | | 130.0 | | | 10581- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Z | 4.70
4.91 | 66.98
67.97 | 16.26
17.05 | 0.46 | 130.0
130.0 | +000 | | AAA | OFDM, 48 Mbps, 90pc duty cycle) | ^
 _Y | 4.89 | 67.40 | 16.68 | 0.46 | 130.0 | ± 9.6 % | | | | Z | 4.78 | 67.68 | 16.84 | | 130.0 | | | 10582-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 54 Mbps, 90pc duty cycle) | X | 4.72 | 66.95 | 16.22 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.72 | 66.45 | 15.89 | | 130.0 | | | | | Z | 4.61 | 66.75 | 16.05 | | 130.0 | | | 10583-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 90pc duty cycle) | Х | 4.83 | 67.17 | 16.72 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.82 | 66.65 | 16.39 | | 130.0 | | | | | Z | 4.74 | 66.99 | 16.56 | | 130.0 | | | 10584-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps, 90pc duty cycle) | X | 4.86 | 67.33 | 16.79 | 0.46 | 130.0 | ± 9.6 % | | | | _ < | 4.85 | 66.81 | 16.45 | | 130.0 | - | | | | Z | 4.77 | 67.14 | 16.61 | | 130.0 | | | 10585-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12
Mbps, 90pc duty cycle) | X | 5.10 | 67.66 | 16.96 | 0.46 | 130.0 | ±9.6 % | | | | Y | 5.09
4.98 | 67.16
67.44 | 16.64
16.78 | | 130.0
130.0 | | | 10586-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18
Mbps, 90pc duty cycle) | X | 5.00 | 67.86 | 17.08 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.98 | 67.32 | 16.73 | | 130.0 | | | | | Z | 4.88 | 67.61 | 16.88 | | 130.0 | | | 10587-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24
Mbps, 90pc duty cycle) | Х | 4.77 | 67.23 | 16.44 | 0.46 | 130.0 | ±9.6 % | | | | Y | 4.76 | 66.70 | 16.10 | | 130.0 | | | 10E00 | TEEE 002 44a/b W/F; E OU - (OFDM 20 | Z | 4.66 | 66.98 | 16.25 | 0.46 | 130.0 | ± 9.6 % | | 10588-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36
Mbps, 90pc duty cycle) | X | 4.81 | 67.17 | 16.42
16.08 | 0.46 | 130.0 | I 9.0 % | | | | Z | 4.81
4.70 | 66.98 | 16.08 | | 130.0 | | | 10589-
AAB | IEEE
802.11a/h WiFi 5 GHz (OFDM, 48
Mbps, 90pc duty cycle) | X | 4.91 | 67.97 | 17.05 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.89 | 67.40 | 16.68 | | 130.0 | | | | | Z | 4.78 | 67.68 | 16.84 | | 130.0 | | | 10590-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54
Mbps, 90pc duty cycle) | X | 4.72 | 66.95 | 16.22 | 0.46 | 130.0 | ±9.6 % | | | | Υ | 4.72 | 66.45 | 15.89 | | 130.0 | | | | | Z | 4.61 | 66.75 | 16.05 | | 130.0 | | ES3DV3- SN:3287 October 22, 2018 | 10591- | IEEE 802.11n (HT Mixed, 20MHz, | X | 4.98 | 67.21 | 16.80 | 0.46 | 130.0 | ± 9.6 % | |---------------|---|----|------|-------|-------|---|-------|---------| | AAB | MCS0, 90pc duty cycle) | | | | | | | | | | | Y | 4.97 | 66.72 | 16.49 | | 130.0 | | | 40500 | IEEE 000 44- (NT Min- I COMMI- | Z | 4.89 | 67.03 | 16.64 | 0.40 | 130.0 | | | 10592-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle) | Х | 5.16 | 67.56 | 16.92 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.15 | 67.07 | 16.61 | | 130.0 | | | | | Z | 5.05 | 67.37 | 16.77 | | 130.0 | | | 10593-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle) | Х | 5.09 | 67.52 | 16.84 | 0.46 | 130.0 | ±9.6 % | | | | Y | 5.09 | 67.03 | 16.52 | | 130.0 | | | 40504 | | Z | 4.98 | 67.31 | 16.67 | | 130.0 | | | 10594-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle) | Х | 5.14 | 67.66 | 16.97 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.13 | 67.17 | 16.66 | | 130.0 | | | 40505 | IEEE 000 44 (UTAK LOOMU | Z | 5.03 | 67.46 | 16.81 | | 130.0 | | | 10595-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duly cycle) | X | 5.12 | 67.64 | 16.89 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.12 | 67.15 | 16.57 | , | 130.0 | | | 40500 | | Z | 5.00 | 67.42 | 16.71 | | 130.0 | | | 10596-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle) | X | 5.06 | 67.64 | 16.89 | 0.46 | 130.0 | ± 9.6 % | | ··- | | Υ | 5.05 | 67.13 | 16.56 | | 130.0 | | | ··· | | Z | 4.94 | 67.43 | 16.72 | | 130.0 | | | 10597-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle) | Х | 5.01 | 67.59 | 16.80 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.00 | 67.08 | 16.47 | | 130.0 | | | | | Z | 4.89 | 67.36 | 16.62 | | 130.0 | | | 10598-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle) | X | 5.00 | 67.87 | 17.08 | 0.46 | 130.0 | ±9.6% | | | | Υ | 4.98 | 67.33 | 16.73 | | 130.0 | - | | | | Z | 4.87 | 67.59 | 16.87 | | 130.0 | | | 10599-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle) | X | 5.63 | 67.75 | 16.95 | 0.46 | 130.0 | ±9.6% | | | | Y | 5.64 | 67.37 | 16.71 | | 130.0 | | | *** | | Z | 5.54 | 67.56 | 16.82 | | 130.0 | | | 10600-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle) | X | 5.83 | 68.33 | 17.20 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.90 | 68.12 | 17.06 | | 130.0 | | | | | Z | 5.71 | 68.07 | 17.05 | | 130.0 | | | 10601-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle) | X | 5.69 | 67.99 | 17.05 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.72 | 67.66 | 16.84 | | 130.0 | | | | | Z | 5.58 | 67.77 | 16.91 | | 130.0 | | | 10602-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle) | X | 5.78 | 67.98 | 16.97 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.82 | 67.70 | 16.78 | | 130.0 | | | | | Z | 5.67 | 67.76 | 16.83 | | 130.0 | | | 10603-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle) | X | 5.89 | 68.37 | 17.29 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.93 | 68.09 | 17.10 | *************************************** | 130.0 | | | | | Z | 5.76 | 68.08 | 17.11 | | 130.0 | | | 10604-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle) | Х | 5.64 | 67.73 | 16.96 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.66 | 67.36 | 16.73 | | 130.0 | | | | | Z | 5.55 | 67.52 | 16.82 | | 130.0 | | | 10605-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle) | Х | 5.74 | 67.99 | 17.09 | 0.46 | 130.0 | ±9.6% | | | | TY | 5.77 | 67.65 | 16.87 | | 130.0 | | | | | Z | 5.66 | 67.85 | 16.99 | - | 130.0 | | | 10606-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle) | Х | 5.53 | 67.51 | 16.73 | 0.46 | 130.0 | ± 9.6 % | | | | 1 | | 67.14 | 16.49 | | | | | | | Υ | 5.54 | 0/14 |]h 49 | { | 130.0 | 1 | | 10607-
AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle) | X | 4.82 | 66.53 | 16.43 | 0.46 | 130.0 | ± 9.6 % | |---------------|---|---|------|-------|-----------|----------|---------|---------| | | | Y | 4.79 | 65.97 | 16.07 | | 130.0 | | | | | Ζ | 4.72 | 66.33 | 16.26 | | 130.0 | | | 10608-
AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle) | Х | 5.04 | 66.97 | 16.59 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.01 | 66.40 | 16.23 | | 130.0 | | | | | Z | 4.92 | 66.75 | 16.42 | | 130.0 | | | 10609-
AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle) | X | 4.93 | 66.86 | 16.46 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.90 | 66.28 | 16.10 | | 130.0 | | | | | Z | 4.81 | 66.62 | 16.28 | | 130.0 | | | 10610-
AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle) | X | 4.98 | 67.02 | 16.62 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.96 | 66.44 | 16.25 | | 130.0 | | | | | Z | 4.86 | 66.77 | 16.43 | | 130.0 | | | 10611-
AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle) | X | 4.90 | 66.85 | 16.48 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.88 | 66.29 | 16.12 | | 130.0 | | | | | Z | 4.78 | 66.60 | 16.29 | | 130.0 | | | 10612-
AAB | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle) | X | 4.92 | 67.00 | 16.52 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.90 | 66.42 | 16.15 | | 130.0 | | | | | Z | 4.80 | 66.76 | 16.34 | | 130.0 | | | 10613-
AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle) | Х | 4.94 | 66.93 | 16.43 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.91 | 66.35 | 16.06 | | 130.0 | | | | | Z | 4.81 | 66.67 | 16.24 | | 130.0 | | | 10614-
AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle) | Х | 4.87 | 67.14 | 16.68 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.84 | 66.54 | 16.29 | | 130.0 | | | • | | Z | 4.74 | 66.84 | 16.45 | | 130.0 | | | 10615-
AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle) | X | 4.90 | 66.65 | 16.25 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4,88 | 66.09 | 15.90 | | 130.0 | | | | | Z | 4.79 | 66.44 | 16.08 | | 130.0 | | | 10616-
AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle) | × | 5.46 | 67.05 | 16.59 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.45 | 66.60 | 16.30 | | 130.0 | | | | | Z | 5.36 | 66.82 | 16.44 | | 130.0 | | | 10617-
AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle) | X | 5.52 | 67.16 | 16.60 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.52 | 66.71 | 16.32 | | 130.0 | | | | | Z | 5.42 | 66,95 | 16.47 | | 130.0 | | | 10618-
AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle) | X | 5.42 | 67.26 | 16.68 | 0.46 | 130.0 | ±9.6 % | | | · · | Y | 5.41 | 66.77 | 16.37 | | 130.0 | | | | | Z | 5.32 | 67.01 | 16.51 | | 130.0 | | | 10619-
AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle) | Х | 5.44 | 67.06 | 16.51 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.43 | 66.58 | 16.21 | | 130.0 | | | | | Z | 5.34 | 66.85 | 16.37 | | 130.0 | | | 10620-
AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle) | X | 5.56 | 67.16 | 16.61 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.56 | 66.73 | 16.34 | _ | 130.0 | | | | | Z | 5.44 | 66.90 | 16.45 | | 130.0 | | | 10621-
AAB | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle) | X | 5.53 | 67.24 | 16.76 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.52 | 66.78 | 16.47 | | 130.0 | | | | | Z | 5.42 | 66.97 | 16.59 | | 130.0 | | | 10622-
AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle) | Х | 5.53 | 67.34 | 16.81 | 0.46 | 130.0 | ± 9.6 % | | | | | | | 1 1 2 - 2 | T | 1 100 0 | "] | | | | Υ | 5.52 | 66.87 | 16.51 | <u> </u> | 130.0 | | ES3DV3-SN:3287 October 22, 2018 | 10623- | IEEE 802.11ac WiFi (40MHz, MCS7, | X | 5.42 | 66.95 | 16.50 | 0.46 | 130.0 | ± 9.6 % | |---|--|--------|--------------|----------------|----------------|---|----------------|---------| | AAB | 90pc duty cycle) | Y | 5.42 | 66.54 | 46.00 | | 120.0 | | | | | Z | 5.42 | 66.51 | 16.22 | | 130.0 | | | 10624-
AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle) | X | 5.60 | 66.68
67.07 | 16.33
16.62 | 0.46 | 130.0
130.0 | ± 9,6 % | | 7012 | Cope day dyeloj | Y | 5.60 | 66.64 | 16.35 | | 130.0 | | | | | Ż | 5.51 | 66.87 | 16.48 | | 130.0 | | | 10625-
AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle) | X | 5.97 | 68.00 | 17.12 | 0.46 | 130.0 | ± 9.6 % | | *************************************** | | Y | 6.00 | 67.65 | 16.90 | | 130.0 | | | | | Z | 5.91 | 67.94 | 17.06 | | 130.0 | | | 10626-
AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) | X | 5.71 | 67.08 | 16.51 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.70 | 66.63 | 16.24 | | 130.0 | | | | | Z | 5.64 | 66.86 | 16.37 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 130.0 | | | 10627-
AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle) | Х | 5.96 | 67.58 | 16.71 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.96 | 67.18 | 16.47 | | 130.0 | | | | | Z | 5.89 | 67.42 | 16.61 | | 130.0 | | | 10628-
AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle) | X | 5.78 | 67.26 | 16.49 | 0.46 | 130.0 | ± 9.6 % | | ···· | | Y | 5.78 | 66.83 | 16.23 | *************************************** | 130.0 | | | 40000 | | Z | 5.69 | 67.01 | 16.35 | | 130.0 | | | 10629-
AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle) | Х | 5.87 | 67.32 | 16.51 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.88 | 66.93 | 16.27 | | 130.0 | | | 40000 | 1555 000 44 UNE (00141 11004 | Z | 5.78 | 67.09 | 16.38 | | 130.0 | | | 10630-
AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle) | Х | 6.37 | 68.98 | 17.34 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.50 | 68.90 | 17.25 | | 130.0 | | | | | Z | 6.28 | 68.77 | 17.22 | | 130.0 | | | 10631-
AAB | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty
cycle) | X | 6.28 | 68.81 | 17.44 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 6.32 | 68.50 | 17.24 | *** | 130.0 | | | | | Z | 6.15 | 68.46 | 17.24 | | 130.0 | | | 10632-
AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle) | Х | 5.95 | 67.71 | 16.91 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.94 | 67.27 | 16.65 | | 130.0 | | | | | Z | 5.85 | 67.45 | 16.76 | | 130.0 | | | 10633-
AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle) | X | 5.89 | 67.53 | 16.65 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.90 | 67.16 | 16.42 | | 130.0 | | | | | Z | 5.76 | 67.17 | 16.45 | | 130.0 | | | 10634-
AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle) | X | 5.86 | 67.52 | 16.71 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.87 | 67.11 | 16,46 | | 130.0 | | | 4000= | | Z | 5.74 | 67.18 | 16.52 | | 130.0 | | | 10635-
AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle) | X | 5.74 | 66.83 | 16.11 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.74 | 66.43 | 15.86 | | 130.0 | | | 40000 | IEEE 000 44 - INEE (100) II 1100 - | Z | 5.63 | 66.58 | 15.96 | | 130.0 | | | 10636-
AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle) | X | 6.11 | 67.45 | 16.59 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.11 | 67.04 | 16.35 | | 130.0 | | | 10637-
AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle) | Z
X | 6.05
6.29 | 67.24
67.85 | 16.46
16.76 | 0.46 | 130.0
130.0 | ± 9.6 % | | | oopo daty cycle) | Y | 6.30 | 67.47 | 16.54 | | 130.0 | | | | | Z | 6.21 | 67.62 | 16.63 | | 130.0 | | | 10638- | IEEE 802.11ac WiFi (160MHz, MCS2, | X | 6.28 | 67.80 | 16.72 | 0.46 | 130.0 | ± 9.6 % | | AAC | 90pc duty cycle) | | | | | 0.40 | | I 5.0 % | | | | Y | 6.28 | 67.40 | 16.49 | | 130.0 | | | ***** | | Z | 6.21 | 67.59 | 16.60 | | 130.0 | | | 10639-
AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle) | X | 6.29 | 67.84 | 16.79 | 0.46 | 130.0 | ± 9.6 % | |---------------|--|-----------|---------------|----------------|----------------|----------|--------------|---------| | | | Y | 6.29 | 67.45 | 16.56 | | 130.0 | | | | | Z | 6.20 | 67.57 | 16.63 | <u> </u> | 130.0 | | | 10640-
AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle) | Х | 6.31 | 67.90 | 16.76 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.33 | 67.56 | 16.55 | | 130.0 | | | 10011 | 1 | Z | 6.21 | 67.63 | 16.61 | | 130.0 | | | 10641-
AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle) | X | 6.30 | 67.63 | 16.64 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.31 | 67.25 | 16.42 | | 130.0 | | | 10642- | IEEE 000 44 WIEI (400 MIL 140 00 | Z | 6.23 | 67.43 | 16.53 | | 130.0 | | | AAC AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle) | Х | 6.38 | 68.00 | 16.99 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.38 | 67.59 | 16.75 | | 130.0 | | | 10643- | JEEE 902 44cc M/CE /400ML - MOOZ | Z | 6.28 | 67.72 | 16.83 | | 130.0 | | | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle) | X | 6.20 | 67.66 | 16.73 | 0.46 | 130.0 | ±9.6 % | | | | Y | 6.21 | 67.28 | 16.50 | | 130.0 | | | 10644- | IEEE 900 440- WIE: (4005#1 - 14065 | Z | 6.12 | 67.42 | 16.59 | | 130.0 | | | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle) | X | 6.43 | 68.34 | 17.09 | 0.46 | 130.0 | ± 9.6 % | | | | <u> Y</u> | 6.47 | 68.05 | 16.91 | | 130.0 | | | 10645- | JEEE 000 44. MEE! (400 HILL MOOR | Z | 6.32 | 68.03 | 16.92 | | 130.0 | | | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle) | X | 6.73 | 68.76 | 17.24 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.75 | 68.40 | 17.03 | | 130.0 | | | 10646- | LTE TOD (OC FOMA 4 DD 5 MIL | Z | 6.77 | 68.92 | 17.31 | | 130.0 | | | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) | Х | 30.32 | 110.51 | 35.84 | 9.30 | 60.0 | ± 9.6 % | | | | Y | 21,24 | 102.23 | 33.62 | | 60.0 | | | 40047 | | Z | 57.15 | 128.16 | 41.75 | | 60.0 | | | 10647-
AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) | Х | 31.53 | 112.13 | 36.44 | 9.30 | 60.0 | ±9.6 % | | | | Y | 21.67 | 103.39 | 34.10 | | 60.0 | | | 40040 | | Z | 60.26 | 130.33 | 42.49 | | 60.0 | | | 10648-
AAA | CDMA2000 (1x Advanced) | X | 1.02 | 68.95 | 14.63 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.73 | 63.24 | 10.94 | | 150.0 | | | | | Z | 0.74 | 64.50 | 11.46 | | 150.0 | | | 10652-
AAD | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1,
Clipping 44%) | Х | 4.61 | 69.49 | 17.77 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.42 | 68.17 | 17.13 | | 80.0 | | | 40050 | | Z | 4.44 | 69.19 | 17.56 | | 80.0 | | | 10653-
AAD | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1,
Clipping 44%) | Х | 5.02 | 68.51 | 17.69 | 2.23 | 0.08 | ± 9.6 % | | | | Υ | 4,91 | 67.60 | 17.24 | | 80.0 | | | 10654- | LITE TOD (OFDIA) AS ALL SERVICES | Z | 4.88 | 68.24 | 17.54 | | 80.0 | | | AAD | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1,
Clipping 44%) | Х | 4.94 | 68.17 | 17.67 | 2.23 | 80.0 | ± 9.6 % | | | | | 4.84 | 67.30 | 17.24 | | 80.0 | | | 10655 | LTE TOD (OFDIA) COARL ETIES | Z | 4.81 | 67.88 | 17.53 | | 80.0 | | | 10655-
AAE | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1,
Clipping 44%) | Х | 4.99 | 68.20 | 17.71 | 2.23 | 80.0 | ±9.6 % | | | | Y | 4.89 | 67.36 | 17.28 | | 80.0 | | | 10658-
AAA | Pulse Waveform (200Hz, 10%) | Z
X | 4.87
10.67 | 67.89
82.28 | 17.57
21.32 | 10.00 | 80.0
50.0 | ± 9.6 % | | 100 | | Υ | 11 11 | 00.00 | 00.70 | | | | | | | | 11.44 | 83.93 | 22.76 | | 50.0 | | | 10659- | Pulse Waveform (200Hz, 20%) | Z | 15.38 | 89.40 | 23.97 | | 50.0 | | | AAA | i disc vvavcionni (20072, 20%) | X | 21.33 | 93.47 | 23.49 | 6.99 | 60,0 | ± 9.6 % | | | | Y | 21.39 | 94.92 | 24.80 | | 60.0 | | | | | Z _] | 100.00 | 116.73 | 29.85 | | 60.0 | | October 22, 2018 | 10660-
AAA | Pulse Waveform (200Hz, 40%) | X | 100.00 | 113.01 | 26.63 | 3.98 | 80.0 | ± 9.6 % | |---------------|---|---|--------|--------|-------|---|-------|---------| | | | Y | 100.00 | 115.25 | 27.91 | | 80.0 | | | | | Z | 100.00 | 114.49 | 27.21 | | 80.0 | | | 10661-
AAA | Pulse Waveform (200Hz, 60%) | X | 100.00 | 114.40 | 25.85 | 2.22 | 100.0 | ± 9.6 % | | | | Y | 100.00 | 114.52 | 26.06 | | 100.0 | | | | | Z | 100.00 | 115.33 | 26.15 | | 100.0 | | | 10662-
AAA | Pulse Waveform (200Hz, 80%) | Х | 100,00 | 122.98 | 27.56 | 0.97 | 120.0 | ± 9.6 % | | | *************************************** | Y | 100.00 | 113.64 | 23.74 | | 120.0 | | | | | Z | 100.00 | 119.02 | 25.78 | *************************************** | 120.0 | | | 10670-
AAA | Bluetooth Low Energy | X | 100.00 | 114.95 | 26.37 | 2.19 | 100.0 | ± 9.6 % | | | | Y | 100.00 | 115.10 | 26.57 | | 100.0 | | | | | Z | 100.00 | 115.80 | 26.64 | | 100.0 | | ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ES3DV3-SN:3287 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: ES3-3319_Mar18 ## CALIBRATION CERTIFICATE Object ES3DV3 - SN:3319 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes BN 03/30/2018 Calibration date: March 13, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |--|-----------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-17 (No. ES3-3013_Dec17) | Dec-18 | | DAE4 | SN: 660 | 21-Dec-17 (No. DAE4-660_Dec17) | Dec-18 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C SN: US3642U01700 | | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 15, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z
diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ES3-3319_Mar18 Page 2 of 39 # Probe ES3DV3 SN:3319 Manufactured: Calibrated: January 10, 2012 March 13, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) March 13, 2018 ES3DV3-- SN:3319 ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 1.08 | 1.05 | 1.12 | ± 10.1 % | | DCP (mV) ^B | 104.0 | 103.0 | 104.0 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | dB
dB | VR
mV | Unc [≒]
(k=2) | |-----|---------------------------|---|---------|------------|-----|----------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 197.9 | ±3.8 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 198.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 200.6 | | Note: For details on UID parameters see Appendix. #### **Sensor Model Parameters** | | C1 | C2 | α | T1 | T2 | Т3 | T4 | T 5 | T6 | |---|-------|-------|-----------------|--------|--------------------|------|-------|------------------------|-------| | | fF | fF | V ⁻¹ | ms.V⁻² | ms.V ^{~1} | ms | V-2 | V ⁻¹ | | | X | 60.52 | 430.8 | 35.08 | 29.64 | 3.011 | 5.10 | 0.615 | 0.538 | 1.010 | | Υ | 55.79 | 400.8 | 35.48 | 29.01 | 2.492 | 5.10 | 0.600 | 0.518 | 1.009 | | Z | 63.98 | 455.3 | 34.93 | 29.72 | 3.442 | 5.10 | 0.679 | 0.571 | 1.011 | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 6.70 | 6.70 | 6.70 | 0.80 | 1.21 | ± 12.0 % | | 835 | 41.5 | 0.90 | 6.44 | 6.44 | 6.44 | 0.80 | 1.17 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.49 | 5.49 | 5.49 | 0.65 | 1.43 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.29 | 5.29 | 5.29 | 0.76 | 1.30 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 5.06 | 5.06 | 5.06 | 0.72 | 1.29 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.71 | 4,71 | 4.71 | 0.77 | 1.30 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.55 | 4.55 | 4.55 | 0.80 | 1.31 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target fissue parameters. the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 6.32 | 6.32 | 6.32 | 0.65 | 1.26 | ± 12.0 % | | 835 | 55.2 | 0,97 | 6.20 | 6.20 | 6.20 | 0.80 | 1.14 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 5.05 | 5.05 | 5.05 | 0.76 | 1.27 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.84 | 4.84 | 4.84 | 0.55 | 1.56 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 4.63 | 4.63 | 4.63 | 0.80 | 1.30 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.51 | 4.51 | 4.51 | 0.80 | 1.25 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.33 | 4.33 | 4.33 | 0.80 | 1.20 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. March 13, 2018 ES3DV3-SN:3319 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) ## Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Tot Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Tot ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 60.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | Certificate No: ES3-3319_Mar18 Page 11 of 39 **Appendix: Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
Unc ^E
(k=2) | |---|--|----------|-----------------|------------------|----------------|---------|---------------|--| | 0 | CW | Х | 0.00 | 0.00 | 1.00 | 0.00 | 197.9 | ± 3.8 % | | | | Υ | 0.00 | 0.00 | 1.00 | 0.00 | 198.2 | | | | | Z | 0.00 | 0.00 | 1.00 | | 200.6 | | | 10010-
CAA | SAR Validation (Square, 100ms, 10ms) | Х | 9.56 | 81.28 | 19.98 | 10.00 | 25.0 | ±9.6 % | | *************************************** | - Harbara Harb | Y | 8.09 | 78.70 | 18.35 | | 25.0 | | | | | Z | 8.70 | 79.52 | 19.57 | | 25.0 | | | 10011-
CAB | UMTS-FDD (WCDMA) | Х | 1.34 | 72.37 | 18.08 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.99 | 67.12 | 14.82 | | 150.0 | | | 40040 | | Z | 1.12 | 68.87 | 16.00 | | 150.0 | | | 10012-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | × | 1.37 | 66.58 | 17.00 | 0.41 | 150.0 | ± 9.6 % | | | | Y | 1.25 | 64.92 | 15.59 | | 150.0 | | | 10013- | IEEE 902 44 - WIELD 4 CH - (DOOS | Z | 1.32 | 65.58 | 16.11 | | 150.0 | | | 10013-
CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps) | X | 5.18 | 67.48 | 17.64 | 1.46 | 150.0 | ± 9.6 % | | | | Y | 5.08 | 67.20 | 17.36 | | 150.0 | | | 10021- | GSM-FDD (TDMA, GMSK) | Z | 5.20 | 67.32 | 17.47 | | 150.0 | | | 10021-
DAC | GSW-FDD (TDWA, GWSK) | X | 20.40 | 95.52 | 26.57 | 9.39 | 50.0 | ± 9.6 % | | - Without - | | Y | 29.46 | 101.11 | 27.60 | | 50.0 | | | 10023- | GPRS-FDD (TDMA, GMSK, TN 0) | Z
X | 14.66 | 89.52 | 24.83 | 0.53 | 50.0 | | | DAC | GFRS-FDD (TDIMA, GIMSK, TN 0) | | 18.37 | 93.61 | 26.02 | 9.57 | 50.0 | ± 9.6 % | | | | Y | 24.41 | 97.95 | 26.72 | | 50.0 | | | 10024-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | Z
X | 13.84
100.00 | 88.39
119.56 | 24.49
31.31 | 6.56 | 50.0
60.0 | ± 9.6 % | | | | Y | 100.00 | 117.39 | 29.93 | | 60.0 | | | | | Ż | 47.21 | 108.31 | 28.71 | | 60.0 | | | 10025-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | X | 21.09 | 108.48 | 41.18 | 12.57 | 50.0 | ± 9.6 % | | | | Υ | 17.11 | 102.80 | 38.82 | | 50.0 | | | | | Z | 18.44 | 103.12 | 38.97 | | 50.0 | | | 10026-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | Х | 21.59 | 105.09 | 36.25 | 9.56 | 60.0 | ±9.6% | | ······ | | Υ | 18.95 | 102.20 | 35.03 | | 60.0 | | | 40007 | | Z | 18.49 | 100.22 | 34.38 | | 60.0 | | | 10027-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | X | 100.00 | 118,49 | 29.83 | 4.80 | 80.0 | ± 9.6 % | | | | <u> </u> | 100.00 | 115.83 | 28.28 | | 80.0 | | | 10028-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | X | 100.00 | 118.30
118.84 | 29.89
29.14 | 3.55 | 80.0
100.0 | ± 9.6 % | | 57.0 | | Y | 100.00 | 115.36 | 27.25 | | 100.0 | | | | | Z | 100.00 | 118.10 | 28.92 | | 100.0 | | | 10029-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | X | 15.08 | 97.16 | 32.49 | 7.80 | 80.0 | ± 9.6 % | | | | Y | 12.90 | 93.80 | 31.06 | 1 | 80.0 | | | | | Ż | 13.60 | 93.82 | 31.09 | | 80.0 | | | 10030-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Х | 100.00 | 118.11 | 30.01 | 5.30 | 70.0 | ± 9.6 % | | | | Υ | 100.00 | 115.58 | 28.50 | | 70.0 | | | | | Z | 100.00 | 118.16 | 30.20 | | 70.0 | | | 10031-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Х | 100.00 | 121.01 | 28.44 | 1.88 | 100.0 | ± 9.6 % | | | | Υ | 100.00 | 114.03 | 25.11 | | 100.0 | | | | | Z | 100.00 | 118.73 | 27.54 | | 100.0 | | | 10032-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Х | 100.00 | 127.26 | 29.88 | 1.17 | 100.0 | ± 9.6 % | |--|---|------------------|---|---|---|-------|---|---------| | ······································ | | Υ | 100.00 | 114.89 | 24.38 | | 100.0 | | | | | Z | 100.00 | 122.11 | 27.79 | | 100.0 | | | 10033-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | X | 21.21 | 99.84 | 27.91 | 5.30 | 70.0 | ± 9.6 % | | | | Υ | 19.09 | 97.43 | 26.61 | | 70.0 | | | | | Ζ | 13.98 | 92.26 | 25.56 | | 70.0 | | | 10034-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Х | 14.93 | 98.23 | 25.94 | 1.88 | 100.0 | ± 9.6 % | | | | Υ | 7.46 | 86.71 | 21.62 | | 100.0 | | | | | Z | 7.45 | 87.10 | 22.42 | | 100.0 | | | 10035-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | X | 7.98 | 90.77 | 23.49 | 1.17 | 100.0 | ± 9.6 % | | | | Y | 3.97 | 79.58 | 18.90 | | 100.0 | | | 10000 | /=== 000 // = = = 0 // = = = 0 // = = = 0 // = = = 0 // = = = 0 // = = = 0 // = = = 0 // = = = 0 // = = 0 // = = 0 // = = 0 // = = 0 // = = 0 // = = 0 // = = 0 // = = 0 // = = 0 // = = 0
// = = 0 // = = 0 // = = 0 // = = 0 // = = 0 // = = 0 // = = 0 // = 0 // = 0 // = = 0 // = 0 // = 0 // = = 0 // = 0 // = = 0 // = 0 // = = 0 // | Z | 4.48 | 81.52 | 20.27 | | 100.0 | | | 10036-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | X | 26,12 | 103.52 | 29.04 | 5.30 | 70.0 | ± 9.6 % | | | | Υ | 24.16 | 101.42 | 27.84 | ··· | 70.0 | | | 40027 | IEEE 900 45 4 Division 45 40 DDOK DUO | Z | 15.99 | 94.67 | 26.38 | 4.00 | 70.0 | 1000 | | 10037-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | X | 14.25 | 97.55 | 25.70 | 1.88 | 100.0 | ± 9.6 % | | | | Y | 7.04 | 85.92 | 21.32 | ···· | 100.0 | | | 10038- | JEEE 000 45 4 Divisto de 40 DDOM DUE | Z | 7.24 | 86.72 | 22.25 | 4 4 7 | 100.0 | | | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | X | 8.53 | 92.07 | 23.99 | 1.17 | 100.0 | ± 9.6 % | | | | Y | 4.13 | 80.37 | 19.27 | | 100.0 | | | 40000 | ODMACCOC (A. DTT. DOA) | Z | 4.65 | 82.31 | 20.62 | | 100.0 | | | 10039-
CAB | CDMA2000 (1xRTT, RC1) | Х | 2.96 | 79.09 | 19.43 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.75 | 71.10 | 15.36 | | 150.0 | | | 40040 | IO EL /IO /OO EDD /TDI// JEDI/ | Z | 2.10 | 73.23 | 16.92 | | 150.0 | | | 10042-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Halfrate) | Х | 53.77 | 109.05 | 28.70 | 7.78 | 50.0 | ± 9.6 % | | | | Υ | 79.10 | 112.95 | 28.86 | | 50.0 | | | | 10.045-14.514.514 | Z | 23.46 | 96.42 | 25.41 | | 50.0 | | | 10044-
CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | Х | 0.00 | 123.18 | 1.26 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.02 | 127.84 | 0.07 | | 150.0 | | | | | Z | 0.00 | 110.77 | 4.52 | | 150.0 | | | 10048-
CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | Х | 11.41 | 83.11 | 24.20 | 13.80 | 25.0 | ± 9.6 % | | | | Υ | 12.66 | 85.48 | 24.49 | | 25.0 | | | | | Z | 10.45 | 80.79 | 23.56 | | 25.0 | | | 10049-
CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | X | 13.41 | 87.55 | 24.40 | 10.79 | 40.0 | ± 9.6 % | | | | Υ | 15.25 | 89.77 | 24.55 | | 40.0 | | | | | | | | | ı | 40.0 | | | | | Z | 11.61 | 84.53 | 23.55 | | | | | 10056-
CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | X | 13.37 | 87.98 | 25.03 | 9.03 | 50.0 | ± 9.6 % | | | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | X | 13.37
13.72 | 87.98
88.51 | 25.03
24.74 | 9.03 | 50.0
50.0 | ±9.6 % | | CAA | | X
Y
Z | 13.37
13.72
11.72 | 87.98
88.51
85.02 | 25.03
24.74
24.05 | | 50.0
50.0
50.0 | | | | UMTS-TDD (TD-SCDMA, 1.28 Mcps) EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | X
Y
Z
X | 13.37
13.72
11.72
11.14 | 87.98
88.51
85.02
91.28 | 25.03
24.74
24.05
29.72 | 9.03 | 50.0
50.0
50.0
100.0 | ± 9.6 % | | 10058- | | Y
Z
X | 13.37
13.72
11.72
11.14
9.52 | 87.98
88.51
85.02
91.28
87.98 | 25.03
24.74
24.05
29.72
28.26 | | 50.0
50.0
50.0
100.0 | | | 10058-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 | X
Y
Z
X | 13.37
13.72
11.72
11.14 | 87.98
88.51
85.02
91.28 | 25.03
24.74
24.05
29.72 | | 50.0
50.0
50.0
100.0 | | | 10058-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | X Y Z X Y Z X | 13.37
13.72
11.72
11.14
9.52
10.41
1.60 | 87.98
88.51
85.02
91.28
87.98
88.91
69.38 | 25.03
24.74
24.05
29.72
28.26
28.62
18.31 | 6.55 | 50.0
50.0
50.0
100.0
100.0
100.0
110.0 | ± 9.6 % | | 10058-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 | X Y Z X Y Z X | 13.37
13.72
11.72
11.14
9.52
10.41
1.60
1.43 | 87.98
88.51
85.02
91.28
87.98
88.91
69.38
67.15 | 25.03
24.74
24.05
29.72
28.26
28.62
18.31
16.67 | 6.55 | 50.0
50.0
50.0
100.0
100.0
110.0
110.0 | ± 9.6 % | | 10058-
DAC
10059-
CAB | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 | X Y Z X Y Z X | 13.37
13.72
11.72
11.14
9.52
10.41
1.60 | 87.98
88.51
85.02
91.28
87.98
88.91
69.38 | 25.03
24.74
24.05
29.72
28.26
28.62
18.31 | 6.55 | 50.0
50.0
50.0
100.0
100.0
100.0
110.0 | ± 9.6 % | | 10058-
DAC
10059-
CAB | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | X Y Z X Y Z X | 13.37
13.72
11.72
11.14
9.52
10.41
1.60
1.43
1.53 | 87.98
88.51
85.02
91.28
87.98
88.91
69.38
67.15
67.97 | 25.03
24.74
24.05
29.72
28.26
28.62
18.31
16.67
17.25 | 6.55 | 50.0
50.0
50.0
100.0
100.0
110.0
110.0
110.0 | ± 9.6 % | | Y 11.26 97.49 27.04 110.0 110.0 10062 EEE 802.11ah WiFi 6 GHz (OFDM, 6 X 4.90 67.24 16.94 0.49 100.0 ± 9.6 % 100.0 10063 EEE 802.11ah WiFi 6 GHz (OFDM, 9 X 4.90 67.24 16.94 0.49 100.0 10063 10063 EEE 802.11ah WiFi 6 GHz (OFDM, 9 X 4.95 67.42 17.09 0.72 100.0 ± 9.6 % 10064 | 10061-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | Х | 24.68 | 111.64 | 31.63 | 2.04 | 110.0 | ± 9.6 % |
--|---|---|-----|---|-------------|--|--|-------|---------| | Tell | | | V | 11 26 | 97.40 | 27.04 | | 1100 | | | 10062- | | | | | | | | | | | CAC | 10062- | IEEE 802 11a/h WiEi 5 GHz (OEDM 6 | | | | | 0.40 | | 106% | | CAC | | | | | | | 0.49 | | E9.0 % | | 10083 | | | | | | | | | | | CAC Mbps Y 4.84 67.10 16.77 100.0 | 10062 | IEEE 800 44 - /- MIEE E OU L (OEDM O | | | | ······································ | | | | | DIOSH- LEEE 802.11a/h WiFi 5 GHz (OFDM, 12 X 5.28 67.75 17.35 0.86 100.0 ± 9.6 % | | | | | | | 0.72 | | ± 9.6 % | | 10064- IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 X 5.28 67.75 17.35 0.86 100.0 ± 9.6 % | | | | | | | | | | | CAC Mbps Y S.16 67.43 17.04 100.0 | 40004 | IFFE COO (1 P. NAME) - CO. (1 | | | | | | | | | TOOSS-CAC Mbps Too | + + | , , , | | | | | 0.86 | | ± 9.6 % | | 10066- IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 X 5.19 | | | | | | | | | | | CAC Mbps | | | | | | | | | | | 10068- | | | | | | | 1.21 | 100.0 | ± 9.6 % | | 10066- IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 X 5.25 67.95 17.76 1.46 100.0 ± 9.6 % | | | | 5.07 | 67.47 | 17.22 | | 100.0 | | | 10066- IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 X 5.25 67.95 17.76 1.46 100.0 ± 9.6 % | | | | 5.21 | 67.65 | | | | | | TO067- | | | X | 5.25 | | | 1.46 | | ± 9.6 % | | TO067- | | | | 5.12 | 67.61 | 17.44 | | 100.0 | | | 10067- IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 X 5.57 68.10 18.21 2.04 100.0 ± 9.6 % | | | | | | | | | | | Tools | | | Х | 5.57 | 68.10 | | 2.04 | 100.0 | ± 9.6 % | | Tools | | | Y | 5.44 | 67.80 | 17.92 | | 100.0 | | | 10068- IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 X 5.73 68.50 18.60 2.55 100.0 ± 9.6 % Mbps | | | Z | | | | | | | | Y 5.58 68.13 18.28 100.0 1 | | | | | | | 2.55 | | ±9.6% | | Tell | | | Y | 5.58 | 68.13 | 18 28 | | 100.0 | | | The color of | | | | | | | | | | | Y 5.66 68.09 18.46 100.0 10071- | | | X | | | | 2.67 | | ± 9.6 % | | Too | | | | 5 66 | 68.09 | 18.46 | | 100.0 | | | Teel Royal Tee | | | | | · | | | | | | Y 5.22 67.44 17.75 100.0 | | | X | | | | 1.99 | | ± 9.6 % | | Table Tabl | | (2000) | V | 5 22 | 67.44 | 17 75 | <u> </u> | 100.0 | | | 10072- | | | | | | | | | | | Y 5.29 68.00 18.07 100.0 | | | | *************************************** | | | 2.30 | | ± 9.6 % | | Tourname | | 1 | Y | 5.29 | 68.00 | 18.07 | | 100.0 | | | Too73- Lee Society Too | | | | | | | | | | | Y 5.42 68.36 18.50 100.0 10074- CAB (DSSS/OFDM, 24 Mbps) Z 5.60 68.62 18.66 100.0 Y 5.46 68.84 19.10 3.30 100.0 ±9.6 % (DSSS/OFDM, 24 Mbps) Y 5.46 68.84 19.10 3.30 100.0 ±9.6 % 10075- CAB (DSSS/OFDM, 36 Mbps) Z 5.65 68.74 18.95 100.0 10 | | | | | | | 2.83 | | ± 9.6 % | | Z 5.60 68.62 18.66 100.0 | | , | Υ | 5.42 | 68.36 | 18.50 | | 100.0 | | | 10074- IEEE 802.11g WiFi 2.4 GHz | | | | | | | | | | | Y 5.46 68.44 18.75 100.0 10075- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) X 5.79 69.40 19.63 3.82 90.0 ± 9.6 % Y 5.61 68.91 19.24 90.0 Z 5.85 69.35 19.51 90.0 10076- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) X 5.80 69.20 19.75 4.15 90.0 Y 5.64 68.73 19.37 90.0 Z 5.86 69.15 19.63 90.0 10077- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) X 5.84 69.30 19.86 4.30 90.0 ± 9.6 % Y 5.68 68.82 19.47 90.0 | | | | | | | 3.30 | | ± 9.6 % | | Tour | *************************************** | | Υ | 5.46 | 68.44 | 18 75 | | 100.0 | | | 10075- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) X 5.79 69.40 19.63 3.82 90.0 ± 9.6 % Y 5.61 68.91 19.24 90.0 90.0 19.63 90.0 19.63 19.63 90.0 19.63 19.63 90.0 19.63 19.63 90.0 19.63 | | | | | | | | | | | Y 5.61 68.91 19.24 90.0 Z 5.85 69.35 19.51 90.0 10076- CAB (DSSS/OFDM, 48 Mbps) Y 5.64 68.73 19.37 90.0 Z 5.86 69.15 19.63 90.0 10077- CAB (DSSS/OFDM, 54 Mbps) Y 5.68 68.82 19.47 90.0 | | | | | | | 3.82 | | ± 9.6 % | | Z 5.85 69.35 19.51 90.0 10076- IEEE 802.11g WiFi 2.4 GHz X 5.80 69.20 19.75 4.15 90.0 ± 9.6 % CAB (DSSS/OFDM, 48 Mbps) Y 5.64 68.73 19.37 90.0 Z 5.86 69.15 19.63 90.0 10077- IEEE 802.11g WiFi 2.4 GHz X 5.84 69.30 19.86 4.30 90.0 ± 9.6 % CAB (DSSS/OFDM, 54 Mbps) Y 5.68 68.82 19.47 90.0 | | | Υ | 5,61 | 68.91 | 19 24 | | 90.0 | | | 10076- IEEE 802.11g WiFi 2.4 GHz | | | | | | | | | | | Y 5.64 68.73 19.37 90.0 Z 5.86 69.15 19.63 90.0 10077-
IEEE 802.11g WiFi 2.4 GHz X 5.84 69.30 19.86 4.30 90.0 ± 9.6 % (DSSS/OFDM, 54 Mbps) Y 5.68 68.82 19.47 90.0 | | | | | | | 4.15 | | ± 9.6 % | | Z 5.86 69.15 19.63 90.0 10077- IEEE 802.11g WiFi 2.4 GHz X 5.84 69.30 19.86 4.30 90.0 ± 9.6 % CAB (DSSS/OFDM, 54 Mbps) Y 5.68 68.82 19.47 90.0 | | | Y | 5.64 | 68 73 | 19.37 | | 90.0 | | | 10077- IEEE 802.11g WiFi 2.4 GHz X 5.84 69.30 19.86 4.30 90.0 ± 9.6 % (DSSS/OFDM, 54 Mbps) Y 5.68 68.82 19.47 90.0 | *************************************** | | | | | | | | | | Y 5.68 68.82 19.47 90.0 | | | | | | | 4.30 | | ± 9.6 % | | | J/ 1.D | (DOOOTOT DW, O4 Wibpa) | - V | E 60 | 68 83 | 10.47 | | 00.0 | | | | | | Z | 5.90 | 69.25 | 19.47 | | 90.0 | | | 10081-
CAB | CDMA2000 (1xRTT, RC3) | Х | 1.29 | 72.14 | 16.36 | 0.00 | 150.0 | ± 9.6 % | |---------------|---|--------------|----------------|-----------------|----------------|----------|----------------|---| | | | Y | 0.81 | 65.51 | 12.24 | | 150.0 | | | | | Ż | 0.99 | 67.68 | 14.05 | | 150.0 | | | 10082-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Fullrate) | Х | 2.36 | 64.73 | 9.48 | 4.77 | 80.0 | ± 9.6 % | | | | Υ | 1.97 | 63.15 | 8.18 | | 80.0 | | | | | Z | 2.45 | 64.78 | 9.67 | | 80.0 | | | 10090-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | X | 100.00 | 119.65 | 31.37 | 6.56 | 60.0 | ± 9.6 % | | | | Y | 100.00 | 117.49 | 29.99 | | 60.0 | | | 40007 | LIMTO EDD (HODDA) | Z | 45.52 | 107.81 | 28.61 | | 60.0 | | | 10097-
CAB | UMTS-FDD (HSDPA) | X | 2.00 | 69.44 | 16.95 | 0.00 | 150.0 | ± 9.6 % | | | *************************************** | | 1.78 | 67.32 | 15.42 | | 150.0 | | | 10098- | UMTS-FDD (HSUPA, Subtest 2) | Z | 1.87 | 67.93 | 15.97 | 0.00 | 150.0 | 1000 | | CAB | OWIS-FDD (HSOPA, Subject 2) | X | 1.97 | 69.46 | 16,95 | 0.00 | 150.0 | ± 9.6 % | | | | | 1.74 | 67.28 | 15.38 | | 150.0 | | | 10099- | EDGE-FDD (TDMA, 8PSK, TN 0-4) | Z | 1.84
21.45 | 67.91 | 15.95 | 0.50 | 150.0 | ±0.60/ | | DAC | LDGL I DD (IDIVIA, OFOK, 114 U-4) | X | | 104.88 | 36.18 | 9.56 | 60.0 | ± 9.6 % | | | | Z | 18.89
18.39 | | 34.98 | | 60.0 | | | 10100- | LTE-FDD (SC-FDMA, 100% RB, 20 | | 3,55 | 100.05
72.46 | 34.32
17.74 | 0.00 | 60.0
150.0 | ± 9.6 % | | CAD | MHz, QPSK) | Ŷ | 3.14 | 70.29 | 16.48 | 0.00 | | 19.0% | | V | | Z | 3.35 | 70.29 | 16.48 | | 150.0
150.0 | | | 10101-
CAD | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM) | X | 3.45 | 68.62 | 16.57 | 0.00 | 150.0 | ± 9.6 % | | UND | IVITIZ, TO-QAIVI) | Υ | 3.26 | 67.61 | 15.85 | | 150.0 | | | | | Z | 3,39 | 68.08 | 16.14 | | 150.0 | | | 10102-
CAD | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | X | 3.54 | 68.46 | 16.61 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.37 | 67.56 | 15.95 | | 150.0 | *************************************** | | | | Z | 3.49 | 67.97 | 16.20 | | 150.0 | | | 10103-
CAD | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, QPSK) | X | 8.98 | 78.82 | 21.57 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 8.50 | 78.15 | 21.17 | | 65.0 | | | | | Z | 8.60 | 77.58 | 20.95 | | 65.0 | | | 10104-
CAD | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM) | Х | 8.85 | 77.44 | 21.89 | 3.98 | 65,0 | ± 9.6 % | | | | Υ | 8.45 | 76.83 | 21.49 | | 65.0 | | | | | Z | 8.72 | 76.72 | 21.48 | | 65.0 | | | 10105-
CAD | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | X | 8.33 | 76.23 | 21.66 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 7.79 | 75.22 | 21.09 | | 65.0 | | | 40400 | LITE EDD (OO ED) (A 1000' ED 10 | Z | 7.71 | 74.28 | 20.69 | | 65.0 | | | 10108-
CAE | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, QPSK) | X | 3.11 | 71.64 | 17.59 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.75 | 69.54 | 16.32 | | 150.0 | | | 10100 | LTE EDD (90 EDMA 4000/ DD 40 | Z | 2.95 | 70.37 | 16.78 | | 150.0 | | | 10109-
CAE | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM) | X | 3.12 | 68.50 | 16.56 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.92 | 67.41 | 15.75 | | 150.0 | | | 10110-
CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | X | 3.06
2.56 | 67.87
70.84 | 16.07
17.38 | 0.00 | 150.0
150.0 | ± 9.6 % | | | | Y | 2.24 | 68.61 | 15.94 | | 150.0 | | | | | Z | 2.42 | 69.44 | 16.48 | <u> </u> | 150.0 | | | 10111-
CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | X | 2.84 | 69.29 | 16.96 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.62 | 68.02 | 15.99 | | 150.0 | | | | | | | | | | | | | 10112-
CAE | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM) | Х | 3.23 | 68.35 | 16.55 | 0.00 | 150.0 | ± 9.6 % | |---------------------------------------|--|--------|--------------|----------------|----------------|------|----------------|---------| | | | Υ | 3.05 | 67.38 | 15.81 | | 150.0 | | | | | Z | 3.18 | 67.77 | 16.10 | | 150.0 | | | 10113-
CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | X | 2.98 | 69.28 | 17.01 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.77 | 68.14 | 16.13 | | 150.0 | ····· | | | | Z | 2.90 | 68.40 | 16.43 | | 150.0 | | | 10114-
CAC | IEEE 802.11n (HT Greenfield, 13.5
Mbps, BPSK) | Х | 5.25 | 67.55 | 16.67 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.16 | 67.27 | 16.41 | | 150.0 | | | | | Ζ | 5.23 | 67.36 | 16.47 | | 150.0 | | | 10115-
CAC | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | Х | 5.62 | 67.87 | 16.84 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.53 | 67.61 | 16.59 | | 150.0 | | | | | Z | 5.61 | 67.68 | 16.64 | | 150.0 | | | 10116-
CAC | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | Х | 5.38 | 67.84 | 16.74 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.28 | 67.54 | 16.47 | | 150.0 | | | | | Z | 5.37 | 67.64 | 16.53 | | 150.0 | | | 10117-
CAC | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | Х | 5.26 | 67.57 | 16.70 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.15 | 67.22 | 16.40 | | 150.0 | | | | | Z | 5.24 | 67.39 | 16.51 | | 150.0 | | | 10118-
CAC | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | Х | 5.70 | 68.05 | 16.94 | 0.00 | 150.0 | ±9.6 % | | | | Υ | 5.61 | 67.82 | 16.70 | | 150.0 | | | | | Ζ | 5.67 | 67.81 | 16.71 | | 150.0 | | | 10119-
CAC | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | Х | 5.36 | 67.79 | 16.73 | 0.00 | 150.0 | ±9.6 % | | | | Υ | 5.26 | 67.48 | 16.45 | | 150.0 | | | | | Z | 5.34 | 67.59 | 16.52 | | 150.0 | | | 10140-
CAD | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM) | Х | 3.59 | 68.46 | 16.53 | 0.00 | 150.0 | ±9.6% | | | | Y | 3.41 | 67.56 | 15.87 | | 150.0 | | | | | Z | 3.54 | 67.97 | 16.13 | | 150.0 | | | 10141-
CAD | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM) | Х | 3.70 | 68.46 | 16.65 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.53 | 67.64 | 16.03 | | 150.0 | | | | | Z | 3.65 | 67.99 | 16.26 | | 150.0 | | | 10142-
CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | Х | 2.36 | 71.08 | 17.31 | 0.00 | 150.0 | ±9.6% | | | | Υ | 2.01 | 68.49 | 15.62 | | 150.0 | | | | | Z | 2.20 | 69.37 | 16.30 | | 150.0 | | | 10143-
CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | Х | 2.76 | 70.34 | 17.00 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.47 | 68.62 | 15.73 | | 150.0 | | | | | Z | 2.62 | 69.02 | 16.23 | | 150.0 | | | 10144-
CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | × | 2.54 | 68.16 | 15.50 | 0.00 | 150.0 | ±9.6% | | · · · · · · · · · · · · · · · · · · · | | Υ | 2.28 | 66.60 | 14.27 | | 150.0 | | | | | Ζ | 2.46 | 67.23 | 14.93 | | 150.0 | | | 10145-
CAE | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK) | Х | 1.75 | 69.86 | 15.18 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.29 | 65.55 | 12.27 | | 150.0 | | | 10146- | LTE-FDD (SC-FDMA, 100% RB, 1.4 | Z
X | 1.55
4.07 | 67.61
76.05 | 14.05
17.30 | 0.00 | 150.0
150.0 | ± 9.6 % | | CAE | MHz, 16-QAM) | , | 0.50 | 00.00 | 40.00 | | 450.0 | | | | | Y | 2.52 | 69.20 | 13.62 | | 150.0 | | | 10147- | LTE EDD (QC EDMA 4000/ DD 4.4 | Z | 3.50 | 73.50 | 16.33 | 0.00 | 150.0 | | | CAE | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM) | X | 5.72 | 80.95 | 19.32 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.13 | 72.10 | 15.05 | | 150.0 | | | | | Z | 4.43 | 76.91 | 17.88 | | 150.0 | | | 10149-
CAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | Х | 3.13 | 68.56 | 16.60 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|------|-------|-------|------|-------|---------| | | | Y | 2.93 | 67.47 | 15.80 | | 150.0 | | | | | Z | 3.07 | 67.93 | 16.12 | | 150.0 | | | 10150-
CAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | Х | 3.24 | 68.40 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.05 | 67.43 | 15.85 | | 150.0 | | | | | Z | 3.18 | 67.82 | 16.13 | | 150.0 | | | 10151-
CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | Х | 9.59 | 81.21 | 22.61 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 9.21 | 80.79 | 22.27 | | 65.0 | | | | | Z | 9.05 | 79.62 | 21.87 | | 65.0 | | | 10152-
CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | Х | 8.53 | 77,77 | 21.82 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.07 | 77,03 | 21.32 | | 65.0 | | | | | Z | 8.36 | 76.93 | 21.37 | | 65.0 | | | 10153-
CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | X | 8.87 | 78.41 | 22.41 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.48 | 77.88 | 22.02 | | 65.0 | | | | | Z | 8.68 | 77.54 | 21.94 | | 65.0 | | | 10154-
CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | X | 2.63 | 71.34 | 17.67 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.29 | 69.04 | 16.21 | | 150.0 | | | | | Z | 2.48 | 69.88 | 16.75 | | 150.0 | | | 10155-
CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | Х | 2.84 | 69.30 | 16.97 | 0.00 | 150.0 | ±9.6 % | | | | Υ | 2.62 | 68.03 | 16.00 | | 150.0 | | | | | Z | 2.75 | 68.36 | 16.34 | | 150.0 | | | 10156-
CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | Х | 2.26 | 71.67 | 17.44 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.86 | 68.59 | 15.46 | | 150.0 | | | | | Z | 2.07 | 69.64 | 16.29 | | 150.0 | | | 10157-
CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | Х | 2.42 | 69.16 | 15.83 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.11 | 67.12 | 14.31 | | 150.0 | | | | | Ζ | 2.30 | 67.87 | 15.10 | | 150.0 | | | 10158-
CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | Х | 2.99 | 69.33 | 17.05 | 0.00 |
150.0 | ± 9.6 % | | | | Υ | 2.78 | 68.20 | 16.17 | | 150.0 | | | | | Z | 2.90 | 68.44 | 16.46 | 1 | 150.0 | | | 10159-
CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | Х | 2.55 | 69.60 | 16.11 | 0,00 | 150.0 | ± 9.6 % | | | | Υ | 2.22 | 67.56 | 14.60 | | 150.0 | | | | | Z | 2.41 | 68.28 | 15.37 | | 150.0 | | | 10160-
CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | X | 3,02 | 70.16 | 17.19 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.77 | 68.66 | 16.17 | | 150.0 | | | | | Z | 2.91 | 69.14 | 16.50 | | 150.0 | | | 10161-
CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | X | 3.13 | 68.32 | 16.54 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.95 | 67.34 | 15.78 | | 150.0 | | | | | Z | 3.07 | 67.70 | 16.08 | | 150.0 | | | 10162-
CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | X | 3.23 | 68.35 | 16.60 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.06 | 67.45 | 15.88 | | 150.0 | | | | | Z | 3.18 | 67.74 | 16.14 | | 150.0 | | | 10166-
CAE | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | X | 4.02 | 71.10 | 20.08 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.79 | 70.19 | 19.37 | | 150.0 | | | | | Ζ | 4.03 | 70.69 | 19.72 | | 150.0 | | | 10167-
CAE | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | Х | 5.24 | 74.71 | 20.79 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 4.82 | 73.39 | 19.92 | | 150.0 | | | | | Z | 5.25 | 74.14 | 20.39 | | 150.0 | | | 10168-
CAE | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | Х | 5.76 | 76.76 | 21.96 | 3.01 | 150.0 | ± 9.6 % | |---|--|--------|---|----------------|----------------|------|----------------|---------| | | | Y | 5.36 | 75.66 | 21.24 | | 150.0 | | | | | Z | 5.73 | 75.99 | 21.47 | | 150.0 | | | 10169-
CAD | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | X | 3.69 | 72,72 | 20.82 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.33 | 70.78 | 19.63 | - | 150.0 | | | | | Z | 3.78 | 72.61 | 20.53 | | 150.0 | | | 10170-
CAD | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | Х | 5.76 | 80.54 | 23.62 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 4.94 | 77.74 | 22,22 | | 150.0 | | | | | Z | 5.83 | 79.90 | 23.09 | | 150.0 | | | 10171-
AAD | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | Х | 4.61 | 75.69 | 20.76 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.94 | 72.92 | 19.25 | | 150.0 | | | | | Z | 4.70 | 75.28 | 20.35 | | 150.0 | | | 10172-
CAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | Х | 36.99 | 114.19 | 35.08 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 22.97 | 105.21 | 32.24 | | 65.0 | | | | | Z | 26,68 | 106.36 | 32.56 | | 65.0 | | | 10173-
CAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | Х | 41.01 | 110.69 | 32.32 | 6.02 | 65.0 | ± 9.6 % | | *************************************** | | Υ | 35.83 | 108.35 | 31.36 | | 65.0 | | | 1045: | | Z | 28.00 | 102.66 | 29.85 | | 65.0 | | | 10174-
CAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | X | 30.73 | 104.07 | 29.95 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 27.27 | 102.14 | 29.08 | | 65.0 | | | | | Z | 22.20 | 97.35 | 27.81 | | 65.0 | | | 10175-
CAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | Х | 3.64 | 72.35 | 20.56 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3,28 | 70.42 | 19.36 | | 150.0 | | | | | Z | 3.72 | 72.25 | 20.28 | | 150.0 | | | 10176-
CAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | Х | 5.77 | 80.56 | 23.63 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 4.95 | 77.76 | 22.23 | | 150.0 | | | | | Z | 5.84 | 79.92 | 23.10 | | 150.0 | | | 10177-
CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | Х | 3.67 | 72.53 | 20.66 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 3.31 | 70.60 | 19.46 | | 150.0 | | | | | Z | 3.76 | 72.42 | 20.38 | **** | 150.0 | | | 10178-
CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | Х | 5.68 | 80.23 | 23.47 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 4.88 | 77.46 | 22.08 | | 150.0 | | | | | Ζ | 5.74 | 79.60 | 22.95 | | 150.0 | | | 10179-
CAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | Х | 5.14 | 77.96 | 22.04 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 4.38 | 75.13 | 20.57 | | 150.0 | | | **** | | Ζ | 5.21 | 77.41 | 21.56 | | 150.0 | | | 10180-
CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | Х | 4.59 | 75.59 | 20.70 | 3.01 | 150.0 | ± 9.6 % | | | 44.4 | Υ | 3.92 | 72.83 | 19.19 | | 150.0 | | | | | Ζ | 4.68 | 75.18 | 20.29 | | 150.0 | | | 10181-
CAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | Х | 3.66 | 72.51 | 20.66 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.30 | 70.58 | 19.46 | | 150.0 | | | 10182- | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, | Z
X | 3.75
5.67 | 72.41
80.21 | 20.37
23.46 | 3.01 | 150.0
150.0 | ± 9.6 % | | CAD | 16-QAM) | | *************************************** | | | | | | | ·-·· | | Υ | 4.87 | 77.43 | 22.07 | | 150.0 | | | ···· | | Ζ | 5.73 | 79.57 | 22.94 | | 150.0 | | | 10183-
AAC | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | Х | 4.58 | 75.56 | 20.68 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.92 | 72.80 | 19.18 | | 150.0 | | | | | | 4.67 | 75.15 | 20.27 | | 150.0 | | | 10184-
CAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | X | 3.68 | 72.56 | 20.68 | 3.01 | 150.0 | ± 9.6 % | |---------------|---|---|------|-------|-------|--------------|-------|---| | | | Y | 3.32 | 70.63 | 19.48 | | 150.0 | *************************************** | | | · · · · · · · · · · · · · · · · · · · | ż | 3.77 | 72.45 | 20.39 | | 150.0 | | | 10185-
CAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | Х | 5.70 | 80.29 | 23.50 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 4.90 | 77.51 | 22.11 | | 150.0 | | | | | Z | 5.76 | 79.65 | 22.97 | | 150.0 | | | 10186-
AAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | Х | 4.61 | 75.64 | 20.72 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.94 | 72.88 | 19.21 | ~ | 150.0 | | | | | Z | 4.69 | 75.23 | 20.31 | | 150.0 | | | 10187-
CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | Х | 3.69 | 72.61 | 20.73 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.33 | 70.68 | 19.54 | | 150.0 | | | | | Ζ | 3.77 | 72.50 | 20.44 | | 150.0 | | | 10188-
CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | X | 5.93 | 81.11 | 23.91 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 5.09 | 78.33 | 22.53 | | 150.0 | | | | | Z | 5.99 | 80.44 | 23.37 | | 150.0 | | | 10189-
AAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | X | 4.73 | 76.16 | 21.02 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 4.04 | 73.37 | 19.51 | | 150.0 | | | | | Z | 4.82 | 75.73 | 20.60 | | 150.0 | | | 10193-
CAC | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | Х | 4.67 | 66.99 | 16.47 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.56 | 66,66 | 16.13 | | 150.0 | | | | | Z | 4.66 | 66.78 | 16.26 | | 150.0 | | | 10194-
CAC | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | Х | 4.87 | 67.36 | 16.58 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.75 | 67.00 | 16.25 | | 150.0 | | | | | Z | 4.87 | 67.15 | 16.37 | | 150.0 | | | 10195-
CAC | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | X | 4.91 | 67.37 | 16.59 | 0.00 | 150.0 | ±9.6 % | | | | Υ | 4.79 | 67.03 | 16.27 | | 150.0 | | | | | Ζ | 4.91 | 67.16 | 16.38 | | 150.0 | | | 10196-
CAC | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | Х | 4.69 | 67.10 | 16.51 | 0,00 | 150.0 | ± 9.6 % | | | | Υ | 4.58 | 66.74 | 16.16 | | 150.0 | | | | | Ζ | 4.69 | 66.88 | 16.30 | | 150.0 | | | 10197-
CAC | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | X | 4,89 | 67.38 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.77 | 67.03 | 16.26 | | 150.0 | | | | | Z | 4.88 | 67.17 | 16.38 | | 150.0 | | | 10198-
CAC | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | X | 4.92 | 67.39 | 16.60 | 0.00 | 150.0 | ±9.6% | | | | Υ | 4.80 | 67.05 | 16.28 | | 150.0 | | | | | Z | 4.91 | 67.18 | 16.39 | | 150.0 | | | 10219-
CAC | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | Х | 4.64 | 67.11 | 16.47 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.53 | 66.75 | 16.12 | | 150.0 | | | | | Z | 4.64 | 66.90 | 16.26 | | 150.0 | | | 10220-
CAC | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | × | 4.88 | 67.37 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.76 | 67.01 | 16.26 | | 150.0 | | | | | Z | 4.88 | 67.17 | 16.38 | | 150.0 | | | 10221-
CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | Х | 4.92 | 67.32 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.80 | 66.98 | 16.27 | | 150.0 | | | | | Z | 4.92 | 67.11 | 16.38 | | 150.0 | | | 10222-
CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | X | 5,23 | 67.59 | 16.70 | 0.00 | 150.0 | ±9.6 % | | | | Y | 5.12 | 67.23 | 16.39 | | 150.0 | 1 | | | | | | | | | 100.0 | 1 | | 10000 | IEEE 000 44- (UTAK LOO LM | 1 | · | · • | | | | | |---------------|---|---|-------|--------|-------|------|-------|---------| | 10223-
CAC | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | Х | 5.61 | 67.92 | 16.89 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.46 | 67.48 | 16.54 | | 150.0 | | | 40004 | | Z | 5.61 | 67.78 | 16.72 | | 150.0 | | | 10224-
CAC | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | X | 5.28 | 67.68 | 16.67 | 0.00 | 150.0 | ±9.6 % | | | | Υ | 5.17 | 67.32 | 16.37 | | 150.0 | | | 4000= | | Z | 5.27 | 67.52 | 16.48 | | 150.0 | | | 10225-
CAB | UMTS-FDD (HSPA+) | X | 2.96 | 66.82 | 16.01 | 0.00 | 150.0 | ±9.6% | | | | Υ | 2.82 | 66.09 | 15.31 | | 150.0 | | | 40000 | | Z | 2.93 | 66.33 | 15.63 | | 150.0 | | | 10226-
CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | Х | 43.59 | 111.94 | 32.75 | 6.02 | 65.0 | ± 9.6 % | | **** | | Υ | 38.77 | 109.92 | 31.88 | | 65.0 | | | 4000= | | Z | 29.30 | 103.58 | 30.20 | · | 65.0 | | | 10227-
CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | Х | 32.72 | 105.33 | 30.40 | 6.02 | 65.0 | ±9.6% | | | | Υ | 30.31 | 104.10 | 29.73 | | 65.0 | | | 10000 | | Ζ | 23.58 | 98.50 | 28.23 | | 65.0 | | | 10228-
CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | Х | 45.04 | 118.57 | 36.38 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 33.63 | 112.96 | 34.54 | | 65.0 | | | 4000 | | Ζ | 30.07 | 109.15 | 33.47 | | 65.0 | | | 10229-
CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | Х | 40.99 | 110.67 | 32.33 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 35.91 | 108.38 | 31.38 | | 65.0 | | | | | Z | 28.02 | 102.65 | 29.86 | | 65.0 | | |
10230-
CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | Х | 31.17 | 104.37 | 30.06 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 28.46 | 102.90 | 29.31 | | 65.0 | | | | | Ζ | 22.72 | 97.78 | 27.95 | | 65.0 | | | 10231-
CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | Х | 42.43 | 117.25 | 35.96 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 31.37 | 111.47 | 34.05 | | 65.0 | | | | | Z | 28.77 | 108.18 | 33.13 | | 65.0 | | | 10232-
CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | Х | 40.99 | 110.68 | 32.33 | 6.02 | 65.0 | ±9.6 % | | | | Υ | 35.90 | 108.38 | 31.38 | | 65.0 | | | | | Z | 28.01 | 102.65 | 29.86 | | 65.0 | | | 10233-
CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | Х | 31.21 | 104.41 | 30.07 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 28.46 | 102.91 | 29.32 | | 65.0 | | | | | Z | 22.74 | 97.80 | 27.96 | | 65.0 | | | 10234-
CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | Х | 39.80 | 115.77 | 35.45 | 6.02 | 65.0 | ±9.6 % | | | | Υ | 29.32 | 109.94 | 33.51 | | 65.0 | | | | | Ζ | 27.42 | 107.07 | 32.71 | | 65.0 | | | 10235-
CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | Х | 41.16 | 110.77 | 32.35 | 6.02 | 65.0 | ±9.6% | | | | Υ | 36.04 | 108.46 | 31.40 | | 65.0 | | | | | Ζ | 28.08 | 102.71 | 29.87 | | 65.0 | | | 10236-
CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | Х | 31.50 | 104.54 | 30.10 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 28.73 | 103.05 | 29.35 | | 65.0 | | | | | Ζ | 22.90 | 97.90 | 27.98 | | 65.0 | | | 10237-
CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | Х | 42.99 | 117.54 | 36.03 | 6.02 | 65.0 | ±9.6 % | | deleter | | Υ | 31.67 | 111.68 | 34.11 | | 65.0 | | | · | | Z | 29.03 | 108.38 | 33.18 | | 65.0 | | | 10238-
CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | Х | 41.04 | 110.71 | 32.33 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 35.91 | 108.40 | 31.38 | | 65.0 | | | | | Z | 28.02 | 102.67 | 29.86 | | 65.0 | | | 10239- | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, | Х | 31.24 | 104.44 | 30.08 | 6.02 | 65.0 | ± 9.6 % | |---------------|--|---|-------|--------|-------|-------------|------|----------| | CAD | 64-QAM) | | | | | 0.02 | , | 1 3.0 70 | | | | Υ | 28.46 | 102.92 | 29.32 | | 65.0 | | | | | Z | 22.74 | 97.82 | 27.96 | | 65.0 | | | 10240-
CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | Х | 42.83 | 117.47 | 36.01 | 6.02 | 65.0 | ± 9.6 % | | | | Υ | 31.56 | 111.62 | 34.09 | | 65.0 | | | | | Z | 28.94 | 108.32 | 33.17 | | 65.0 | | | 10241-
CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | Х | 13.21 | 88.13 | 28.12 | 6.98 | 65.0 | ± 9.6 % | | | | Y | 12.19 | 86.75 | 27.34 | | 65.0 | | | | | Z | 12.93 | 86.92 | 27.56 | | 65.0 | | | 10242-
CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | Х | 11.82 | 85.64 | 27.08 | 6.98 | 65.0 | ± 9.6 % | | | | Υ | 11.88 | 86.18 | 27.05 | | 65.0 | | | | | Ζ | 11.71 | 84.70 | 26.62 | _,,,,,, | 65.0 | | | 10243-
CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | Х | 9.69 | 83.18 | 27.04 | 6.98 | 65.0 | ± 9.6 % | | | | Υ | 8.48 | 80.58 | 25.71 | | 65.0 | | | | | Z | 9.71 | 82.55 | 26.66 | | 65.0 | | | 10244-
CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | Х | 10.16 | 81.71 | 21.73 | 3.98 | 65.0 | ±9.6 % | | | | Υ | 9.31 | 80.28 | 20.70 | | 65.0 | | | | | Z | 9.66 | 80.44 | 21.31 | | 65.0 | | | 10245-
CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | X | 9.99 | 81.19 | 21.49 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 9.12 | 79.71 | 20.44 | | 65.0 | | | | | Z | 9.56 | 80.04 | 21.12 | | 65.0 | | | 10246-
CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | Х | 10.26 | 84.67 | 22.74 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 9.22 | 82.91 | 21.64 | | 65.0 | | | | | Z | 9.02 | 82.03 | 21.79 | | 65.0 | | | 10247-
CAD | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | Х | 8.13 | 78.66 | 21.05 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 7.56 | 77,60 | 20.25 | | 65.0 | | | | | Z | 7.81 | 77.51 | 20.59 | | 65.0 | | | 10248-
CAD | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | Х | 8.10 | 78.15 | 20.84 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 7.50 | 77.03 | 20.01 | | 65.0 | | | | *************************************** | Z | 7.84 | 77.14 | 20.44 | | 65.0 | | | 10249-
CAD | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | Х | 11.10 | 86,20 | 23.88 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 10.38 | 85.15 | 23.14 | | 65.0 | | | w | | Z | 9.69 | 83.27 | 22.77 | | 65.0 | | | 10250-
CAD | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | X | 8.90 | 80.26 | 22.85 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.50 | 79.72 | 22.41 | | 65.0 | | | | | Z | 8.55 | 78.98 | 22.26 | | 65.0 | | | 10251-
CAD | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | X | 8.43 | 78.18 | 21.77 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 7.97 | 77.44 | 21.21 | T | 65.0 | | | | | Z | 8.21 | 77.20 | 21.30 | | 65.0 | | | 10252-
CAD | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | Х | 10.55 | 84.69 | 23.95 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 10.10 | 84.18 | 23.52 | 1 | 65.0 | | | | | Z | 9.56 | 82.30 | 22.95 | | 65.0 | | | 10253-
CAD | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | Х | 8.29 | 77.16 | 21.61 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 7.87 | 76.45 | 21.11 | 1 | 65.0 | | | | | Z | 8.15 | 76.38 | 21.20 | | 65.0 | | | 10254-
CAD | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | X | 8.65 | 77.83 | 22.17 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 8.27 | 77.28 | 21.75 | 1 | 65.0 | <u> </u> | | | | Ż | 8.49 | 77.01 | 21.74 | | 65.0 | | | 10255- | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, | Х | 9.28 | 80.86 | 22.71 | 3.98 | 65.0 | ± 9.6 % | |---------------|--|---|--------------|----------------|----------------|------|--------------|---------| | CAD | QPSK) | Y | 8.89 | 00.40 | 00.05 | | 05.5 | | | | | Z | 8.89
8.80 | 80.40
79.34 | 22.35 | | 65.0 | | | 10256- | LTE-TDD (SC-FDMA, 100% RB, 1.4 | X | 9.13 | 79.62 | 21.99
20.18 | 3.98 | 65.0
65,0 | ± 9.6 % | | CAA | MHz, 16-QAM) | | | | | 3.90 | | 19.0% | | | | Y | 7.96 | 77.38 | 18.74 | | 65.0 | | | 10257- | LTE TOP (OO FOLIA 4000) DE 44 | Z | 8.84 | 78.74 | 19.97 | | 65.0 | | | CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM) | X | 8.90 | 78.86 | 19.81 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 7.73 | 76.58 | 18.34 | | 65.0 | | | 10258- | LTE-TDD (SC-FDMA, 100% RB, 1.4 | Z | 8.71 | 78.17 | 19.67 | | 65.0 | | | CAA | MHz, QPSK) | X | 8.90 | 81.94 | 21.19 | 3.98 | 65.0 | ± 9.6 % | | ***** | | Y | 7.60 | 79.37 | 19.69 | | 65.0 | | | 10259- | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, | Z | 8.10 | 80.01 | 20.54 | 2.00 | 65.0 | | | CAB | 16-QAM) | Х | 8.43 | 79.20 | 21.67 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 7.92 | 78.34 | 21.01 | | 65.0 | | | 10060 | LITE TOD (OC EDMA 4000/ DD 040) | Z | 8.11 | 78.01 | 21.17 | | 65.0 | | | 10260-
CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | Х | 8.43 | 78.91 | 21.57 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 7.92 | 78.05 | 20.91 | | 65.0 | | | 40004 | LTS TRO (00 501) | Z | 8.14 | 77.80 | 21.11 | | 65.0 | | | 10261-
CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | Х | 10.44 | 84.93 | 23.72 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 9.81 | 84.03 | 23.07 | | 65.0 | | | 40000 | LET TOO GO FOLIA 4000/ DD -14/4 | Z | 9.35 | 82.40 | 22.71 | | 65.0 | | | 10262-
CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | Х | 8.89 | 80.23 | 22.82 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.49 | 79.67 | 22.37 | | 65.0 | | | | | Z | 8.55 | 78.95 | 22.23 | | 65.0 | | | 10263-
CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | Х | 8.43 | 78.18 | 21.77 | 3.98 | 65.0 | ± 9.6 % | | - | | Υ | 7.96 | 77.43 | 21.21 | | 65,0 | | | | | Ζ | 8.21 | 77.20 | 21.30 | | 65.0 | | | 10264-
CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | X | 10.49 | 84.56 | 23.88 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 10.02 | 84.01 | 23.44 | | 65.0 | | | | | Ζ | 9.51 | 82.19 | 22.89 | | 65.0 | | | 10265-
CAD | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM) | X | 8.52 | 77.77 | 21.82 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.07 | 77.03 | 21.32 | | 65.0 | | | | | Z | 8.36 | 76.93 | 21.38 | | 65.0 | | | 10266-
CAD | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM) | Х | 8.87 | 78.41 | 22.40 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.48 | 77.88 | 22.01 | | 65.0 | | | 4000= | | Z | 8.68 | 77.54 | 21.94 | | 65.0 | | | 10267-
CAD | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, QPSK) | X | 9.58 | 81.18 | 22.60 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 9.19 | 80.75 | 22.26 | | 65.0 | | | 40000 | LATE TOP (OR EPIA) | Z | 9.04 | 79.59 | 21.85 | | 65.0 | | | 10268-
CAD | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM) | Х | 8.91 | 77.09 | 21.88 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.54 | 76.56 | 21.51 | | 65.0 | | | 40000 | LTE TOP (OA EPARE) | Z | 8.80 | 76.43 | 21.50 | | 65.0 | | | 10269-
CAD | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM) | Х | 8.82 | 76.67 | 21.78 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.46 | 76.15 | 21.41 | | 65.0 | | | 40070 | LIFE TOP (OO ===== | Z | 8.73 | 76.06 | 21.42 | | 65.0 | | | 10270-
CAD | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, QPSK) | Х | 8.97 | 78.33 | 21.62 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 8.64 | 77.97 | 21.34 | | 65.0 | | | | | Z | 8.71 | 77.32 | 21.10 | | 65.0 | T | | 10274-
CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | Х | 2.72 | 67.23 | 15.95 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|-------|-------|-------|------|---|---------| | | | Υ | 2.57 | 66.31 | 15.13 | | 150.0 | | | | | Z | 2.65 | 66.56 | 15.46 | | 150.0 | | | 10275-
CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | Х | 1.89 | 70.77 | 17.26 | 0.00 | 150.0 | ± 9.6 % | | • | | Υ | 1.58 | 67.67 | 15.25 | | 150.0 | | | | | Z | 1.72 | 68.75 | 16.01 | | 150.0 | | | 10277-
CAA | PHS (QPSK) | X | 6.00 | 70.47 | 14.76 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 5.21 | 68.57 | 13.21 | | 50.0 | | | | | Z | 6.28 | 70.88 | 15.27 | | 50.0 | | | 10278-
CAA | PHS (QPSK, BW 884MHz, Rolloff 0.5) | Х | 9.55 | 80.33 | 21.17 | 9.03 | 50.0 | ± 9.6 % | | | | Υ | 8.72 | 78.79 | 19.97 | | 50.0
 | | | | Z | 9.29 | 79.51 | 21.06 | | 50.0 | | | 10279-
CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38) | Х | 9.72 | 80.54 | 21.26 | 9.03 | 50.0 | ± 9.6 % | | | | Υ | 8.86 | 78.97 | 20.05 | | | | | | | Z | 9.46 | 79.72 | 21.15 | | 50.0 | | | 10290-
AAB | CDMA2000, RC1, SO55, Full Rate | Х | 2.18 | 74.40 | 17.31 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.44 | 68.27 | 13.81 | | 150.0 | | | | | Ζ | 1.72 | 70.30 | 15.40 | | 150.0 | | | 10291-
AAB | CDMA2000, RC3, SO55, Full Rate | Х | 1.24 | 71.68 | 16.15 | 0,00 | 150.0 | ± 9.6 % | | | | Y | 0.80 | 65.30 | 12.12 | | 150.0 | | | | | Z | 0.97 | 67,39 | 13.90 | | 150.0 | | | 10292-
AAB | CDMA2000, RC3, SO32, Full Rate | Х | 2.10 | 80.68 | 20.23 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.98 | 68.86 | 14,25 | | 150.0 | | | | | Z | 1.23 | 71.77 | 16.34 | | 150.0 | | | 10293-
AAB | CDMA2000, RC3, SO3, Full Rate | Х | 4.35 | 92.52 | 24.81 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.43 | 74.29 | 17.12 | | 150.0 | | | | | Z | 1.75 | 77.17 | 19.08 | | 150.0 | | | 10295-
AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | Х | 11.19 | 84.61 | 24.64 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 11.12 | 84.62 | 24.20 | | 50.0 | | | | | Z | 10.33 | 82.52 | 23.91 | | 50.0 | | | 10297-
AAC | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | Х | 3.13 | 71.75 | 17.66 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.77 | 69.64 | 16.38 | | 150.0 | | | | | Z | 2.96 | 70.46 | 16.84 | | 50.0
50.0
50.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0
150.0 | | | 10298-
AAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | Х | 2.07 | 71.56 | 16.68 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.59 | 67.63 | 14.15 | | | | | | | Z | 1.84 | 69.13 | 15.41 | | 150.0 | | | 10299-
AAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | X | 4.44 | 77.05 | 18.50 | 0.00 | 150.0 | ±9.6% | | | | Y | 3.17 | 71.89 | 15.69 | | 150.0 | | | | | Z | 3.89 | 74.52 | 17.46 | | 150.0 | | | 10300-
AAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | Х | 2.98 | 70.18 | 14.87 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.33 | 66.80 | 12.64 | | 150.0 | | | | | Z | 2.88 | 69,22 | 14.45 | | 150.0 | | | 10301-
AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | Х | 5.88 | 68.71 | 19.12 | 4.17 | 80.0 | ± 9.6 % | | | | Y | 5.67 | 68.35 | 18.79 | | 80.0 | | | | | Z | 5.96 | 68.70 | 19.05 | | 80.0 | | | 10302-
AAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols) | Х | 6.49 | 69.93 | 20.23 | 4.96 | 80.0 | ± 9.6 % | | - | | Y | 6.06 | 68.48 | 19.24 | | 80.0 | | | | | Ż | 6.58 | 69.96 | 20.17 | | 80.0 | | | 10303- | IEEE 802.16e WIMAX (31:15, 5ms, | Х | 6.38 | 70.18 | 20.37 | 4.96 | 80.0 | ±9.6 % | |---------------|---|--------|--------------|----------------|----------------|-------|----------------|---------| | AAA | 10MHz, 64QAM, PUSC) | 1,1 | F 00 | 00 50 | <u> </u> | | | | | | | Y | 5.90 | 68.52 | 19.27 | | 80.0 | E | | 10304- | IEEE 802.16e WIMAX (29:18, 5ms, | Z
X | 6.49
5.94 | 70.27
69.20 | 20.35
19.41 | 4.17 | 80.0
80.0 | ± 9.6 % | | AAA | 10MHz, 64QAM, PUSC) | - , | F F F | 07.04 | 10.10 | | | | | | | Y | 5.55 | 67.84 | 18.48 | | 80.0 | | | 10305- | IEEE 802.16e WIMAX (31:15, 10ms, | X | 6.02
8.63 | 69.19
79.84 | 19.33
25.16 | 0.00 | 80.0 | 1000 | | AAA | 10MHz, 64QAM, PUSC, 15 symbols) Y 8.50 | | | | 6.02 | 50.0 | ± 9.6 % | | | ***** | | Z | 9.07 | 80.74 | 25.49 | | 50.0 | 1 | | 10306-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) | X | 7.19 | 80.51
74.26 | 25.38
22.98 | 6.02 | 50.0
50.0 | ±9.6% | | | | Y | 6.24 | 70.98 | 21.03 | | 50.0 | | | | | Ζ | 7.44 | 74.65 | 23.11 | | 50.0 | | | 10307-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) | Х | 7.43 | 75.32 | 23.26 | 6.02 | 50.0 | ± 9.6 % | | | | Y | 7.08 | 75.34 | 23.24 | | 50.0 | | | | | Z | 7.71 | 75.76 | 23.39 | | 50.0 | | | 10308-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | Х | 7.56 | 75.95 | 23.55 | 6.02 | 50.0 | ± 9.6 % | | | | Υ | 7.22 | 76.07 | 23.58 | | 50.0 | | | 40000 | | Z | 7.85 | 76.40 | 23.68 | | 50.0 | | | 10309-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) | X | 7.34 | 74.67 | 23.20 | 6.02 | 50.0 | ± 9.6 % | | | | Y | 6.34 | 71.28 | 21.21 | | 50.0 | | | 10310-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols) | Z
X | 7.59
7.26 | 75.05
74.63 | 23.31
23.05 | 6.02 | 50.0
50.0 | ± 9.6 % | | 70.01 | TOWN 12, QF 3N, AIVIC 2X3, TO SYMBOIS) | Y | 6.24 | 71.19 | 21.04 | | 50.0 | | | | | ż | 7.51 | 75.03 | 23.17 | | 50.0 | | | 10311-
AAC | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, QPSK) | X | 3.50 | 70.87 | 17.20 | 0.00 | 150.0 | ±9.6% | | **** | | TY | 3.12 | 68.92 | 16.05 | | 150.0 | | | | | Z | 3.32 | 69.72 | 16.47 | - | 150.0 | | | 10313-
AAA | IDEN 1:3 | Х | 8.27 | 79.76 | 19.38 | 6.99 | 70.0 | ±9.6% | | | | Υ | 7.09 | 77.48 | 18.12 | | 70.0 | | | | | Z | 7.27 | 77.42 | 18.52 | | 70.0 | | | 10314-
AAA | IDEN 1:6 | Х | 10.52 | 85.41 | 23.73 | 10.00 | 30.0 | ±9.6% | | ·M | | Υ | 9.80 | 84.47 | 23.05 | | 30.0 | | | 40045 | | Z | 8.56 | 81.26 | 22,24 | | 30.0 | | | 10315-
AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps, 96pc duty cycle) | Х | 1.21 | 66.04 | 16.76 | 0.17 | 150.0 | ± 9.6 % | | | | Y | 1.11 | 64.36 | 15.28 | | 150.0 | | | 10316-
AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-
OFDM, 6 Mbps, 96pc duty cycle) | X | 1.16
4.78 | 64.99
67.20 | 15.81
16.69 | 0.17 | 150.0
150.0 | ± 9.6 % | | 7 15 The | ST DINI, O MIDPO, SOPO GREY CYCIE) | T 🗸 | 4.67 | 66.87 | 16.36 | | 150.0 | | | | | Ż | 4.78 | 67.00 | 16.48 | | 150.0 | | | 10317-
AAC | IEEE 802.11a WiFi 5 GHz (OFDM, 6
Mbps, 96pc duty cycle) | X | 4.78 | 67.20 | 16.69 | 0.17 | 150.0 | ± 9.6 % | | | | Υ | 4.67 | 66.87 | 16.36 | | 150.0 | | | | | Z | 4.78 | 67.00 | 16.48 | | 150.0 | | | 10400-
AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle) | Х | 4.88 | 67.44 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.75 | 67.07 | 16.25 | | 150.0 | | | 10 | | Ζ | 4.88 | 67.23 | 16.38 | | 150.0 | | | 10401-
AAD | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle) | Х | 5.52 | 67.51 | 16.67 | 0.00 | 150.0 | ±9.6% | | | | Υ | 5.43 | 67.26 | 16.42 | | 150.0 | | | | | Z | 5.50 | 67.29 | 16.46 | ļ | 150.0 | | | 10402- | IEEE 802.11ac WiFi (80MHz, 64-QAM, | Х | 5.81 | 67.99 | 16.74 | 0.00 | 150.0 | ± 9.6 % | |---|--|---|--------|--------|-------|----------|-------|---------| | AAD | 99pc duty cycle) | | | | | | | | | | | Υ | 5.71 | 67.67 | 16.46 | | 150.0 | | | | | Z | 5.80 | 67.83 | 16.56 | | 150.0 | | | 10403-
AAB | CDMA2000 (1xEV-DO, Rev. 0) | Х | 2.18 | 74.40 | 17.31 | 0.00 | 115.0 | ± 9.6 % | | | | Υ | 1.44 | 68.27 | 13.81 | | 115.0 | | | | | Ζ | 1.72 | 70.30 | 15.40 | | 115.0 | | | 10404-
AAB | CDMA2000 (1xEV-DO, Rev. A) | Х | 2.18 | 74.40 | 17.31 | 0.00 | 115.0 | ± 9.6 % | | ···· | | Υ | 1.44 | 68.27 | 13.81 | | 115.0 | | | | | Z | 1.72 | 70.30 | 15.40 | | 115.0 | | | 10406-
AAB | CDMA2000, RC3, SO32, SCH0, Full
Rate | X | 100.00 | 125.34 | 32.57 | 0.00 | 100.0 | ± 9.6 % | | | | Υ | 100.00 | 122.30 | 30.90 | | 100.0 | | | *************************************** | | Z | 100.00 | 123.59 | 31.86 | | 100.0 | | | 10410-
AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4) | X | 100.00 | 121.08 | 31.14 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 100.00 | 119.39 | 30.03 | | 80.0 | | | | | Z | 100.00 | 119.84 | 30.69 | | 80.0 | | | 10415-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps, 99pc duty cycle) | Х | 1.04 | 64.21 | 15.75 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.96 | 62.81 | 14.37 | | 150.0 | | | | | Z | 1.00 | 63.31 | 14.86 | | 150.0 | | | 10416-
AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-
OFDM, 6 Mbps, 99pc duty cycle) | X | 4.68 | 67.03 | 16.52 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.57 | 66.70 | 16.19 | | 150.0 | | | | | Z | 4.67 | 66.81 | 16.30 | | 150.0 | | | 10417-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 99pc duty cycle) | Х | 4.68 | 67.03 | 16.52 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.57 | 66.70 | 16.19 | | 150.0 | | | | | Z | 4.67 | 66.81 | 16.30 | | 150.0 | | | 10418-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 99pc duty cycle, Long
preambule) | X | 4.66 | 67.18 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.55 | 66.84 | 16.19 | | 150.0 | | | | | Z | 4.65 | 66.94 | 16.30 | | 150.0 | | | 10419-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 99pc duty cycle, Short
preambule) | X | 4.69 | 67.13 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.58 | 66.80 | 16.20 | | 150.0 | | | | | Z | 4.68 | 66.91 | 16.31 | | 150.0 | | | 10422-
AAB | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | Х | 4.81 | 67.13 | 16.54 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.70 | 66.81 | 16.22 | | 150.0 | | | | | Z | 4.80 | 66.92 | 16.33 | | 150.0 | | | 10423-
AAB | IEEE 802.11n (HT Greenfield, 43.3
Mbps, 16-QAM) | X | 5.01 | 67.51 | 16.68 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.89 | 67.16 | 16.35 | | 150.0 | | | | | Z | 5.01 | 67.31 | 16.47 | | 150.0 | | | 10424-
AAB | IEEE 802.11n (HT Greenfield, 72.2
Mbps, 64-QAM) | Х | 4.92 | 67.45 | 16.65 | 0.00 | 150.0 | ±9.6 % | | | | Υ | 4.80 | 67.10 | 16.32 | <u> </u> | 150.0 | | | | | Z | 4.92 | 67.24 | 16.43 | | 150.0 | | | 10425-
AAB | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | X | 5.50 | 67.77 | 16.79 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.41 | 67.50 | 16.53 | | 150.0 | | | | | Z | 5.49 | 67.58 | 16.59 | | 150.0 | | | 10426-
AAB | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | X | 5.51 | 67.80 | 16.80 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5,41 | 67.51 | 16.53 | | 150.0 | | | | 1 | Z | 5.50 | 67.62 | 16.60 | | 150.0 | 1 | | 10427-
AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | X | 5.53 | 67.79 |
16.79 | 0.00 | 150.0 | ± 9.6 % | |----------------|--|--|--------|--------|-------|---------------------------------------|-------|---------| | <u> </u> | | Y | 5.42 | 67.48 | 16.51 | | 450.0 | | | | | Z | 5.52 | 67.63 | | | 150.0 | | | 10430- | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | X | 4.38 | 70.70 | 16.61 | 0.00 | 150.0 | | | AAB | 2.2.1 33 (0.1 500, 1, 5 100, 12, 2-110, 5.1) | | | | 18.40 | 0.00 | 150.0 | ± 9.6 % | | | *** | Y | 4.25 | 70.46 | 18.05 | | 150.0 | | | 40424 | LTC CDD (OCD) | Z | 4.31 | 70.02 | 17.98 | | 150.0 | | | 10431-
AAB | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | Х | 4.42 | 67.67 | 16.62 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.27 | 67.23 | 16.20 | | 150.0 | | | 40400 | | Z | 4.41 | 67.37 | 16.37 | | 150.0 | | | 10432-
AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | Х | 4.70 | 67.52 | 16.63 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.57 | 67.13 | 16.26 | | 150.0 | | | 40400 | | Z | 4.70 | 67.28 | 16.40 | | 150.0 | | | 10433-
AAB | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | PDD (OFDMA, 20 MHz, E-TM 3.1) X 4.94 67.50 16. Y 4.82 67.14 16. Z 4.94 67.29 16. | 16.67 | 0.00 | 150.0 | ± 9.6 % | | | | | | | 4.82 | | 16.34 | | 150.0 | | | 4045 | | | | | 16.46 | | 150.0 | | | 10434-
_AAA | W-CDMA (BS Test Model 1, 64 DPCH) | | 4.49 | 71.52 | 18.43 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.34 | 71.22 | 18.01 | | 150.0 | | | | | Ζ | 4.39 | 70.68 | 17.96 | | 150.0 | | | 10435-
AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 120.92 | 31.06 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 100.00 | 119.22 | 29.95 | , , , , , , , , , , , , , , , , , , , | 80.0 | | | | | Z | 100.00 | 119.70 | 30.62 | | 80.0 | | | 10447-
AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1,
Clipping 44%) | Х | 3.75 | 67.86 | 16.21 | 0.00 | 150.0 | ±9.6 % | | | | Υ | 3.56 | 67.20 | 15.57 | | 150.0 | | | | | Ζ | 3.73 | 67.41 | 15.90 | | 150.0 | | | 10448-
AAB | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | Х | 4.24 | 67.45 | 16,49 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.10 | 67.00 | 16.05 | | 150.0 | | | | | Z | 4.22 | 67.14 | 16.23 | | 150.0 | | | 10449-
AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | Х | 4.49 | 67.35 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.37 | 66.95 | 16.16 | ····· | 150.0 | | | | | Z | 4,48 | 67.09 | 16.30 | | 150.0 | | | 10450-
AAB | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1,
Clipping 44%) | X | 4.67 | 67.26 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.56 | 66.89 | 16.18 | | 150.0 | | | | | Z | 4.66 | 67.04 | 16.31 | | 150.0 | | | 10451-
AAA | W-CDMA (BS Test Model 1, 64 DPCH,
Clipping 44%) | Х | 3.69 | 68.21 | 15.98 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.47 | 67.39 | 15.23 | | 150.0 | | | | | Z | 3.66 | 67.69 | 15.67 | | 150.0 | | | 10456-
AAB | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle) | Х | 6.36 | 68.35 | 16.93 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.27 | 68.07 | 16.69 | | 150.0 | | | | | Z | 6.35 | 68.21 | 16.77 | | 150.0 | | | 10457-
AAA | UMTS-FDD (DC-HSDPA) | Х | 3.86 | 65.66 | 16.26 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.78 | 65.32 | 15.90 | | 150.0 | | | | | Z | 3.84 | 65.45 | 16.04 | | 150.0 | | | 10458-
AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | Х | 4.10 | 70.68 | 17.90 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.95 | 70.36 | 17.40 | ****** | 150.0 | | | | | Z | 3.98 | 69.73 | 17.40 | | 150.0 | | | 10459-
AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | Х | 5.16 | 67.87 | 18.15 | 0.00 | 150.0 | ± 9.6 % | | | | \vdash | | | | | 1 | | | | | Υ | 5.08 | 67.96 | 18.01 | | 150.0 | | | 10460-
AAA | UMTS-FDD (WCDMA, AMR) | Χ | 1.21 | 74.36 | 19.56 | 0.00 | 150.0 | ± 9.6 % | |---|---|---|------------------|------------------|----------------|----------|-------|---------| | | | Υ | 0.84 | 67.73 | 15.53 | | 150.0 | | | | | Z | 0.96 | 69.69 | 16.87 | | 150.0 | | | 10461-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 124.72 | 32,88 | 3.29 | 80.0 | ± 9.6 % | | | | Υ | 100.00 | 122.71 | 31.63 | | 80.0 | | | | | Z | 100.00 | 122.27 | 31.89 | | 80.0 | | | 10462-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 110.81 | 26.22 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 100.00 | 107.68 | 24.48 | | 80.0 | | | | | Z | 100.00 | 109.58 | 25.81 | | 80.0 | | | 10463-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 108.02 | 24.88 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 17.57 | 87.04 | 18.79 | | 80.0 | | | 10101 | 1 TE TOD (00 FOMA 4 DD 0 MI) | Z | 57.71 | 101.03 | 23.21 | 0.00 | 80.0 | 1000 | | 10464-
AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 122.99 | 31.92 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 100.00 | 120.66 | 30.52 | | 80.0 | | | 10465 | LITE TOD (CO EDMA 4 DD CARLE 40 | Z | 100.00
100.00 | 120.59 | 30.96
26.00 | 2.00 | 80.0 | 1060/ | | 10465-
AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | X | | 110.36 | ! | 3.23 | 80.0 | ± 9.6 % | | | | Y | 69.93 | 103.37 | 23.39 | | 80.0 | | | 40400 | LITE TOD (CO FDMA 4 DD O MILE CA | Z | 100.00 | 109.17 | 25.60 | 2.22 | 80.0 | 1000 | | 10466-
AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 107.59 | 24.67 | 3.23 | 80.0 | ±9.6% | | | | Y | 10.32 | 81.39 | 17.12 | | 80.0 | | | 40467 | LTE TOD (CO FDMA 4 DD 5 MU- | Z | 32.56 | 94.43 | 21.51 | 2 22 | 80.0 | +0.60/ | | 10467-
AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 123.18 | 32.01 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 100.00 | 120.88 | 30.62 | | 80.0 | | | 40400 | LTE TOO (OO FOMA A DD FAMIL AC | Z | 100.00 | 120.77 | 31.04 | 0.00 | 80.0 | I | | 10468-
AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 110.50 | 26.06 | 3.23 | 80.0 | ± 9.6 % | | *************************************** | | Y | 95.55 | 106.84 | 24.20 | | 80.0 | | | 10100 | 1 TE TOO (00 EDIM 4 DD EAN) 04 | Z | 100.00 | 109.30 | 25.66 | 0.00 | 80.0 | | | 10469-
AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 107.60 | 24.67 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 10.51 | 81.58 | 17.17 | <u> </u> | 80.0 | | | 10.170 | 1 T T T T T T T T T T T T T T T T T T T | Z | 33.51 | 94.76 | 21.58 | | 80.0 | | | 10470-
AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 123.21 | 32,02 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 100.00 | 120.90 | 30.62 | | 80.0 | | | 10471-
AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 120.79
110.46 | 31.05
26.04 | 3.23 | 80.0 | ± 9.6 % | | | and the contraction and the contraction | Y | 94.56 | 106.68 | 24.14 | | 80.0 | | | | | Ż | 100.00 | 109.26 | 25.63 | | 80.0 | 1 | | 10472-
AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 107.56 | 24.64 | 3.23 | 80.0 | ± 9.6 % | | | 7 | Y | 10.43 | 81.48 | 17.13 | | 80.0 | 1 | | | | Z | 33.64 | 94.78 | 21.58 | | 80.0 | | | 10473-
AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 123.19 | 32.00 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 100.00 | 120.87 | 30.61 | | 80.0 | | | *************************************** | | Z | 100.00 | 120.77 | 31.03 | | 80.0 | | | 10474-
AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 110.47 | 26.04 | 3.23 | 80.0 | ±9.6 % | | | | Υ | 92.06 | 106.40 | 24.08 | | 80.0 | | | | | Z | 100.00 | 109.26 | 25.64 | | 80.0 | | | 10475-
AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 107.57 | 24.65 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 10.30 | 81.37 | 17.09 | | 80.0 | | | | | Z | 33.12 | 94.61 | 21.54 | | 80.0 | | | 10477-
AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 110.32 | 25.97 | 3.23 | 80.0 | ± 9.6 % | |---------------|---|---|--------|--------|-------|------|------|---------| | | | Υ | 73.47 | 103.85 | 23.47 | | 80.0 | | | | | Z | 100.00 | 109.13 | 25.57 | | 80.0 | | | 10478-
AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 107.52 | 24.63 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 10.13 | 81.17 | 17.03 | | 80.0 | | | | | Z | 32.56 | 94.40 | 21.47 | | 80.0 | | | 10479-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 23.24 | 102.02 | 28,60 | 3.23 | 80.0 | ± 9.6 % | | | A | Υ | 17.72 | 96.96 | 26.53 | | 80.0 | | | 40400 | | Z | 12.62 | 91.31 | 25.32 | | 80.0 | | | 10480-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 23.79 | 96.38 | 25.31 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 16.50 | 90.35 | 22.90 | | 80.0 | | | 40404 | TE TDD (00 EDAM) | Z | 13.56 | 87.65 | 22.71 | | 80.0 | | | 10481-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 19.64 | 92.74 | 23.93 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 13.10 | 86.39 | 21.35 | | 80.0 | | | 10482- | LTE TOD (OO FOMA FOO) OF A STATE | Z | 12.05 | 85.29 | 21.66 | | 80.0 | | | 10482-
AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 8.49 | 84.69 | 22.05 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 5.66 | 78.52 | 19.36 | | 80.0 | | | 40400 | LTE TOD (OO FOMA FOR TO OAK) | Z | 6.07 | 79.11 | 20.05 | | 80.0 | | | 10483-
AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 11.70 | 86.22 | 22.45 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 8.73 | 81.47 | 20.24 | | 80.0 | | | 10484- | LITE TOD (CC FDMA 500/ PD 0 MIL | Z | 8.71 | 81.39 | 20.85 | | 80.0 | | | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 10.50 | 84.41 | 21.86 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 7.92 | 79.90 | 19.71 | | 80.0 | |
 40405 | 1.75.700.500.500.500.500.500.500.500.500. | Z | 8.18 | 80.26 | 20.46 | | 80.0 | | | 10485-
AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 8.12 | 84,44 | 22.68 | 2.23 | 80.0 | ±9.6% | | | | Y | 5.95 | 79.56 | 20.54 | | 80.0 | | | 40400 | | Z | 6.24 | 79.61 | 20.83 | | 80.0 | | | 10486-
AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.60 | 75.72 | 19.25 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 4.71 | 73.16 | 17.81 | | 80.0 | | | | | Z | 5.00 | 73.46 | 18.29 | | 80.0 | | | 10487-
AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.48 | 75.06 | 18.99 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 4.65 | 72.64 | 17.60 | | 80.0 | | | 40400 | 1.75.700 (0.0.700) | Z | 4.96 | 73.01 | 18.11 | | 80.0 | | | 10488-
AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 7.06 | 88.08 | 21.92 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.70 | 77.55 | 20.40 | | 80.0 | | | 10400 | LTE TOD (OO FDMA SON DD 40 MI) | Z | 6.08 | 77.77 | 20.57 | | 80,0 | ļ | | 10489-
AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.31 | 73.88 | 19.45 | 2.23 | 80.0 | ± 9.6 % | | | - A Marining Principal | Y | 4.75 | 72.25 | 18.50 | | 80.0 | | | 10490- | LTC TDD (DO CDMA 500) DD 40.00 | Z | 5.02 | 72,44 | 18.71 | | 80.0 | | | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.32 | 73.40 | 19.28 | 2.23 | 80.0 | ±9.6% | | | | Y | 4.80 | 71.92 | 18.39 | | 80.0 | ļ | | 10491- | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, | Z | 5.07 | 72.08 | 18.60 | 0.00 | 80.0 | | | AAC | QPSK, UL Subframe=2,3,4,7,8,9) | | 6.29 | 77.08 | 20.62 | 2.23 | 80.0 | ±9.6 % | | | | Y | 5.44 | 74.84 | 19.51 | | 80.0 | | | 10/102 | LITE TOD (CC EDMA 50% DD 45 AV) | Z | 5.78 | 75.12 | 19.66 | 0.00 | 80.0 | | | 10492-
AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.38 | 72.26 | 19.03 | 2.23 | 80.0 | ± 9.6 % | | | | ~ | 4.95 | 71.03 | 18.29 | | 80.0 | | | | | Z | 5.22 | 71.29 | 18.47 | | 80.0 | _ | | 10493- | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, | X | 5.41 | 71.97 | 18.93 | 2.23 | 80.0 | ± 9.6 % | |---------------|--|---|------|-------|----------------|------|------|---------| | AAC | 64-QAM, UL Subframe=2,3,4,7,8,9) | Y | 4.00 | | | | 00.0 | | | | | Z | 4.99 | 70.82 | 18.22 | | 80.0 | | | 10404 | LTE TOD (SC CDMA FOW DD 20 MLH | | 5.27 | 71.06 | 18.40
21.31 | 2.22 | 80.0 | +069/ | | 10494-
AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 7.26 | 79.46 | | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 6.08 | 76.70 | 20.04 | | 80.0 | | | | | Z | 6.47 | 77.03 | 20.19 | | 80.0 | | | 10495-
AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.52 | 72.92 | 19.28 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 5.04 | 71.57 | 18.51 | | 80.0 | | | | | Z | 5.33 | 71.88 | 18.69 | | 80.0 | | | 10496-
AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.51 | 72.36 | 19.10 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.07 | 71.15 | 18.38 | | 80.0 | | | | | Z | 5.35 | 71.43 | 18.55 | | 80.0 | | | 10497-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 6.84 | 81,16 | 20.14 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 4.18 | 74.07 | 16.91 | | 80.0 | | | | | Z | 4.97 | 76.21 | 18.38 | | 80.0 | | | 10498-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | Х | 4,23 | 71.63 | 15.72 | 2.23 | 80.0 | ±9.6 % | | | | Y | 2.88 | 66.72 | 12.99 | | 80.0 | | | | | Z | 3.81 | 69,89 | 15.10 | | 80.0 | 1 | | 10499-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | Х | 4.07 | 70.79 | 15.25 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 2.78 | 66.03 | 12.55 | | 80.0 | | | | | Ζ | 3.73 | 69.33 | 14.75 | | 80.0 | | | 10500-
AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 7.25 | 82.07 | 22.09 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.64 | 78.16 | 20.30 | | 80.0 | | | | | Z | 5.95 | 78.24 | 20.53 | | 80.0 | | | 10501-
AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.43 | 74.78 | 19.24 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.72 | 72.72 | 18.04 | | 80.0 | | | | | Z | 4.99 | 72.91 | 18.39 | | 80.0 | | | 10502-
AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.43 | 74.40 | 19.05 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 4.75 | 72.45 | 17.89 | | 80.0 | | | | | Z | 5.01 | 72.63 | 18.25 | | 80.0 | | | 10503-
AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 6.96 | 80.64 | 21.82 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.62 | 77.31 | 20.29 | | 80.0 | | | | | Z | 6.00 | 77.58 | 20.48 | | 80.0 | | | 10504-
AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 5.28 | 73.79 | 19.40 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 4.72 | 72.15 | 18.44 | | 80.0 | | | | | Z | 5.00 | 72.37 | 18.67 | | 80.0 | | | 10505-
AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.30 | 73.31 | 19.23 | 2,23 | 80.0 | ± 9.6 % | | | | Υ | 4.78 | 71.81 | 18.34 | | 80.0 | | | | | Z | 5.05 | 72.00 | 18.55 | | 80.0 | | | 10506-
AAC | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 7.19 | 79,29 | 21.23 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 6.02 | 76.53 | 19.97 | | 80.0 | | | | | Z | 6.42 | 76.89 | 20.13 | | 80.0 | | | 10507-
AAC | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.49 | 72.85 | 19.25 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.02 | 71.50 | 18.47 | | 80.0 | | | | | Z | 5.31 | 71.82 | 18.66 | 1 | 80.0 | | | 10508-
AAC | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM, UL | Х | 5.49 | 72.29 | 19.06 | 2.23 | 80.0 | ± 9.6 % | |---|---|--------------|--------------|----------------|----------------|----------|----------------|---------| | | Subframe=2,3,4,7,8,9) | | F 0F | 74.05 | 40.01 | | | | | | | Y | 5.05 | 71.07 | 18.34 | | 80.0 | | | 10509- | LTE-TDD (SC-FDMA, 100% RB, 15 | Z
X | 5.33
6.71 | 71.37 | 18.52 | 0.00 | 80.0 | | | AAC | MHz, QPSK, UL Subframe=2,3,4,7,8,9) | | | 76.12 | 20.06 | 2.23 | 80.0 | ± 9.6 % | | *************************************** | | Y | 5.94 | 74.25 | 19.13 | | 80.0 | | | 10510- | LTE-TDD (SC-FDMA, 100% RB, 15 | Z | 6.28 | 74.57 | 19.27 | | 80.0 | | | AAC | MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.84 | 71.95 | 18.94 | 2.23 | 80.0 | ±9.6 % | | | | Υ | 5.42 | 70.86 | 18.30 | | 80.0 | | | 40-11 | | Z | 5.71 | 71.20 | 18.47 | | 80.0 | | | 10511-
AAC | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | Х | 5.82 | 71.51 | 18.81 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.44 | 70.51 | 18.21 | | 80.0 | | | | | Z | 5.71 | 70.83 | 18.37 | | 80.0 | | | 10512-
AAC | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 7.61 | 78.80 | 20.90 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 6.48 | 76.29 | 19.75 | | 80.0 | | | | | Z | 6.88 | 76.71 | 19.92 | | 80.0 | | | 10513-
AAC | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | Х | 5.82 | 72.58 | 19.18 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 5.36 | 71.33 | 18.47 | | 80.0 | | | | | Z | 5.67 | 71.74 | 18.66 | | 80.0 | | | 10514-
AAC | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.73 | 71.89 | 18.96 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 5.32 | 70.77 | 18.31 | | 80.0 | | | | | Z | 5.61 | 71.15 | 18.49 | | 80.0 | | | 10515-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps, 99pc duty cycle) | Х | 1.00 | 64.53 | 15.90 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.92 | 62.98 | 14.41 | | 150.0 | | | 40540 | | Z | 0.96 | 63.54 | 14.94 | | 150.0 | | | 10516-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) | X | 1.68 | 91.06 | 26.34 | 0.00 | 150.0 | ± 9.6 % | | ····· | | Y | 0.55 | 69.99 | 16.34 | | 150.0 | | | 40547 | 1555 000 441 W/5/ 0 4 011 /5 000 4 | Z | 0.73 | 74.56 | 19.01 | | 150.0 | | | 10517-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11
Mbps, 99pc duty cycle) | X | 0.92 | 68.12 | 17.45 | 0.00 | 150.0 | ±9.6% | | | | Y | 0.77 | 64.83 | 14.89 | | 150.0 | | | 10518- | IEEE 000 44 - IL MIEE E OLI - (OEDM O | Z | 0.84 | 65.95 | 15.79 | | 150.0 | | | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps, 99pc duty cycle) | X | 4.67 | 67.12 | 16.50 | 0.00 | 150.0 | ±9.6% | | | | Y | 4.56 | 66.77 | 16.17 | | 150.0 | | | 10519- | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 | Z | 4.66 | 66.89 | 16.28 | 0.00 | 150.0 | 1000 | | AAB | Mbps, 99pc duty cycle) | X | 4.89 | 67.40 | 16.64 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.77 | 67.04 | 16.30 | <u> </u> | 150.0 | | | 10520- | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 | Z | 4.89
4.74 | 67.19 | 16.43 | 0.00 | 150.0 | +0.6.0/ | | AAB | Mbps, 99pc duty cycle) | ^
 ^ | 4.74 | 67.39 | 16.57 | 0.00 | 150.0 | ± 9.6 % | | | | Z | 4.61 | 67.01
67.17 | 16.22 | | 150.0 | | | 10521-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24
Mbps, 99pc duty cycle) | X | 4.67 | 67.41 | 16.35
16.56 | 0.00 | 150.0
150.0 | ± 9.6 % | | | | Y | 4.55 | 67.00 | 16.20 | | 150.0 | | | | | Ż | 4.67 | 67.18 | 16.34 | | 150.0 | | | 10522-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) | X | 4.72 | 67.39 | 16.60 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.60 | 67.04 | 16.27 | | 150.0 | | | | | Z | 4.71 | 67.14 | 16.36 | | 150.0 | | | 10523-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) | X | 4.59 | 67.29 | 16.46 | 0.00 | 150.0 | ± 9.6 % | |---|--|----------------|--------------|----------------|----------------|-------|----------------|--------------| | | po, copo daty dydio/ | Y | 4.47 | 66.91 | 16.11 | | 150.0 | | | | | z | 4.58 | 67.04 | 16.22 | | 150.0 | | | 10524-
AAB
| IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) | X | 4.67 | 67.35 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.55 | 66.98 | 16.24 | | 150.0 | | | | | Ζ | 4.67 | 67.11 | 16.36 | | 150.0 | | | 10525-
AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) | X | 4.63 | 66.37 | 16.17 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.52 | 66.01 | 15.83 | | 150.0 | | | | | Z | 4.62 | 66.13 | 15.94 | | 150.0 | | | 10526-
AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle) | X | 4.83 | 66.78 | 16.32 | 0.00 | 150.0 | ±9,6 % | | | | Y | 4.70 | 66.40 | 15.97 | | 150.0 | | | | | Z | 4.82 | 66.54 | 16.09 | **** | 150.0 | ^ | | 10527-
AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle) | X | 4.75 | 66.76 | 16.27 | 0.00 | 150.0 | ±9.6 % | | | | Υ | 4.62 | 66.36 | 15.92 | | 150.0 | | | 10555 | A DOT THE CO. O. O. A. | Z | 4.74 | 66.51 | 16.04 | | 150.0 | | | 10528-
AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) | X | 4.77 | 66.78 | 16.31 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.64 | 66.38 | 15.95 | | 150.0 | | | 40500 | LEEE COO 44 MIE! (CO. III. | Z | 4.76 | 66.54 | 16.08 | | 150.0 | | | 10529-
AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) | X | 4.77 | 66.78 | 16.31 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.64 | 66.38 | 15.95 | | 150.0 | | | 10531-
AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle) | Z
X | 4.76
4.78 | 66.54
66.93 | 16.08
16.34 | 0.00 | 150.0
150.0 | ± 9.6 % | | AAD | oope daty cycle) | Y | 4.64 | 66.50 | 15.97 | | 150.0 | | | | | Ż | 4.77 | 66.69 | 16.10 | | 150.0 | | | 10532-
AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle) | X | 4.63 | 66.80 | 16.29 | 0.00 | 150.0 | ± 9.6 % | | *************************************** | | Y | 4.49 | 66.35 | 15.90 | | 150.0 | | | | | Z | 4.62 | 66.56 | 16.05 | | 150.0 | | | 10533-
AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle) | Х | 4.78 | 66.80 | 16.29 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.65 | 66.41 | 15.94 | | 150.0 | | | | | Z | 4.77 | 66.55 | 16.05 | | 150.0 | | | 10534-
AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle) | X | 5.28 | 66.88 | 16.33 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.17 | 66.53 | 16.03 | | 150.0 | | | | | Z | 5.27 | 66.70 | 16.13 | | 150.0 | | | 10535-
AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) | Х | 5.35 | 67.03 | 16.39 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.24 | 66.69 | 16.10 | | 150.0 | | | | | Z | 5.34 | 66.84 | 16.18 | | 150.0 | | | 10536-
AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) | X | 5.22 | 67.03 | 16.37 | 0.00 | 150.0 | ± 9.6 % | | | | < | 5.10 | 66.65 | 16.06 | | 150.0 | | | | | Z | 5.21 | 66.83 | 16.16 | | 150.0 | | | 10537-
AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) | X | 5,29 | 67.00 | 16.36 | 0.00 | 150.0 | ± 9.6 % | | | | \ | 5.17 | 66.63 | 16.05 | | 150.0 | | | 10538-
AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) | X | 5.27
5.40 | 66.80
67.06 | 16.15
16.43 | 0.00 | 150.0
150.0 | ± 9.6 % | | ヘヘレ | Japo duty cycle) | _ | 5.27 | 66.69 | 16.12 | | 150.0 | - | | | | Z | 5.39 | | 16.12 | ····· | 150.0 | | | 10540-
AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) | X | 5.30 | 66.88
67.01 | 16.42 | 0.00 | 150.0 | ± 9.6 % | | יעטי | oopo daty cycle) | Y | 5.19 | 66.66 | 16.12 | | 150.0 | | | | | | | | | | | | | 10541-
AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle) | Х | 5.28 | 66.90 | 16.36 | 0.00 | 150.0 | ± 9.6 % | |---|--|----------|--------------|----------------|----------------|------|----------------|---------| | | | Y | 5.16 | 66.53 | 16.05 | | 150.0 | | | | | Z | 5.27 | 66.74 | 16.17 | | 150.0 | | | 10542-
AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle) | X | 5.43 | 66.95 | 16.40 | 0,00 | 150.0 | ±9.6% | | | | Y | 5.32 | 66.61 | 16.11 | | 150.0 | | | | | Z | 5.42 | 66.77 | 16.20 | | 150.0 | | | 10543-
AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle) | Х | 5.51 | 66.95 | 16.41 | 0.00 | 150.0 | ± 9.6 % | | *************************************** | | Y | 5.40 | 66.65 | 16.14 | | 150.0 | | | 40544 | | Z | 5.51 | 66.78 | 16.22 | | 150.0 | | | 10544-
AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle) | X | 5.56 | 66.97 | 16.30 | 0.00 | 150.0 | ±9.6 % | | | | Y | 5.46 | 66.64 | 16.02 | | 150.0 | | | 10545- | IEEE 902 44cc WiEi (90Mi In MOO4 | Z | 5.54 | 66.80 | 16.11 | | 150.0 | | | AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle) | X | 5.78 | 67.41 | 16.46 | 0.00 | 150.0 | ±9.6% | | | | Y | 5.68 | 67.09 | 16,19 | | 150.0 | | | 10546- | JEEE 902 41co Wiet / 20MU - MCCC | Z | 5.76 | 67.21 | 16.25 | 0.00 | 150.0 | | | AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle) | X | 5.66 | 67.27 | 16.41 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.55 | 66.90 | 16.11 | | 150.0 | | | 10547- | IEEE 802.11ac WiFi (80MHz, MCS3, | Z | 5.65 | 67.10 | 16.22 | 0.00 | 150.0 | | | AAB | 99pc duty cycle) | X | 5.75 | 67.34 | 16.43 | 0.00 | 150.0 | ±9.6% | | | | Y | 5.64 | 66.99 | 16.14 | | 150.0 | | | 10548- | IEEE 902 1100 W/FF / POMULE MACCA | Z | 5.73 | 67.16 | 16.24 | 0.00 | 150.0 | | | AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle) | Х | 6.10 | 68.57 | 17.02 | 0.00 | 150.0 | ±9.6 % | | | | Y | 5.97 | 68.15 | 16.70 | | 150.0 | | | 40550 | IEEE 000 44 WIEI (OOM) - MOOO | Z | 6.06 | 68.30 | 16.78 | | 150.0 | | | 10550-
AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle) | Х | 5.68 | 67.21 | 16.39 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.57 | 66.88 | 16.11 | | 150.0 | | | 40554 | FEE OOG 44 HUEL 400 MILL 100 F | Z | 5.66 | 67.04 | 16.20 | | 150.0 | *** | | 10551-
AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle) | Х | 5.70 | 67.30 | 16.39 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.58 | 66.93 | 16.09 | | 150.0 | | | 10550 | | Z | 5.68 | 67.15 | 16.21 | | 150.0 | | | 10552-
AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle) | X | 5.59 | 67.05 | 16.28 | 0.00 | 150.0 | ±9.6 % | | | | Y | 5.48 | 66.70 | 15.99 | | 150.0 | | | 40550 | LEEE COO 44 MIET (COMMITTEE COO 14 | <u>Z</u> | 5.58 | 66.90 | 16.10 | | 150.0 | | | 10553-
AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle) | Х | 5.69 | 67.10 | 16.33 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.57 | 66.76 | 16.05 | | 150.0 | | | 10551 | IFFE 902 44 WiF: (400MH- MOOO | <u> </u> | 5.67 | 66.95 | 16.15 | 0.00 | 150.0 | | | 10554-
AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle) | X | 5.97 | 67.34 | 16.39 | 0.00 | 150.0 | ±9.6% | | ~~~~~ | | Y | 5.87 | 67.02 | 16.12 | | 150.0 | | | 10555 | JEEE 900 44ee Wiel (400MH- MOO4 | Z | 5.94 | 67.19 | 16.21 | 0.00 | 150.0 | | | 10555-
AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle) | Х | 6.12 | 67.69 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.01 | 67.35 | 16.26 | | 150.0 | | | 10556-
AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle) | Z | 6.10
6.13 | 67.54
67.71 | 16.36
16.53 | 0.00 | 150.0
150.0 | ± 9.6 % | | , , , , , | oopo daty Gyolo/ | Y | 6.03 | 67.38 | 16.27 | | 150.0 | | | | | Z | 6.11 | 67.54 | 16.35 | | 150.0 | | | | 1 | | | U .U+ | 10.00 | 1 | 1 100.0 | L | | 10557-
AAC | IEEE 802.11ac WiFi (160MHz, MCS3, | X | 6.12 | 67.66 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | 10557-
AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle) | | | | | 0.00 | 150.0
150.0 | ± 9.6 % | | 10558-
AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle) | X | 6.18 | 67.86 | 16.65 | 0.00 | 150.0 | ± 9.6 % | |--------------------------|---|---|--------|--------|-------|------|-------|---------| | | | Y | 6.06 | 67.49 | 16.36 | | 150.0 | | | | | Ż | 6.16 | 67.71 | 16.47 | | 150.0 | | | 10560-
AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle) | X | 6.16 | 67.67 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.05 | 67.32 | 16.31 | | 150.0 | | | | | Z | 6.15 | 67.54 | 16.42 | | 150.0 | | | 10561-
AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle) | Х | 6.08 | 67.64 | 16.61 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.97 | 67.29 | 16.33 | | 150.0 | | | | | Z | 6.06 | 67.49 | 16.44 | | 150.0 | | | 10562-
AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle) | Х | 6.25 | 68.16 | 16.88 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.13 | 67.77 | 16.57 | | 150.0 | | | | | Z | 6.23 | 68.01 | 16.70 | | 150.0 | | | 10563-
AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle) | X | 6.60 | 68.73 | 17.10 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 6.50 | 68.45 | 16.86 | | 150.0 | | | | | Z | 6.53 | 68.43 | 16.86 | | 150.0 | | | 10564-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 9 Mbps, 99pc duty cycle) | Х | 5.01 | 67.24 | 16.68 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.90 | 66.90 | 16.36 | | 150.0 | | | | | Z | 5.01 | 67.05 | 16.49 | | 150.0 | | | 10565-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 12 Mbps, 99pc duty cycle) | X | 5.27 | 67.70 | 16.99 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 5.15 | 67.37 | 16.68 | | 150.0 | | | | | Z | 5.27 | 67.52 | 16.80 | | 150.0 | | | 10566-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 18 Mbps, 99pc duty cycle) | X | 5.11 | 67.60 | 16.84 | 0.46 | 150.0 | ± 9.6 % | | | | Υ | 4.98 | 67.23 | 16.50 | | 150.0 | | | | | Z | 5.11 | 67.41 | 16.64 | | 150.0 | | | 10567-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 24 Mbps, 99pc duty cycle) | X | 5.13 | 67.96 | 17.16 | 0.46 | 150.0 | ± 9.6 % | | ************************ | | Υ | 5.01 | 67.61 | 16.84 | | 150.0 | | | | | Z | 5.13 | 67.75 | 16.95 | | 150.0 | | | 10568-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 36 Mbps, 99pc duty cycle) | X | 5.02 | 67.36 | 16.62 | 0.46 | 150.0 | ± 9.6 % | | ~~~ | | Υ | 4.90 | 67.01 | 16.28 | | 150.0 | | | | | Z | 5.02 | 67.16 | 16.41 | | 150.0 | | | 10569-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 48 Mbps, 99pc duty cycle) | Х | 5.07 | 67.97 | 17.18 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.96 | 67.67 | 16.89 | | 150.0 | | | V | | Z | 5.06 | 67.76 | 16.96 | | 150.0 | | |
10570-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 54 Mbps, 99pc duty cycle) | X | 5.11 | 67.83 | 17.12 | 0.46 | 150.0 | ± 9.6 % | | | · | Υ | 5.00 | 67.52 | 16.83 | | 150.0 | | | | | Z | 5.11 | 67.61 | 16.91 | | 150.0 | | | 10571-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) | Х | 1.43 | 67.78 | 17.55 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 1.29 | 65.83 | 16.01 | | 130.0 | | | | | Z | 1.37 | 66.57 | 16.56 | | 130.0 | | | 10572-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps, 90pc duty cycle) | X | 1.47 | 68.62 | 18.01 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 1.32 | 66.50 | 16.39 | | 130.0 | | | | | Z | 1.40 | 67.26 | 16.95 | | 130.0 | | | 10573-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) | X | 100.00 | 147.77 | 39.50 | 0.46 | 130.0 | ±9.6 % | | | | Υ | 5.11 | 95.86 | 25,26 | | 130.0 | | | | | Z | 11.46 | 108.94 | 29.46 | | 130.0 | | | 10574-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11
Mbps, 90pc duty cycle) | X | 2.11 | 79.07 | 22.64 | 0.46 | 130.0 | ±9.6 % | | | | Υ | 1.59 | 73.49 | 19.59 | | 130.0 | | | | | Z | 1.75 | 74.78 | 20.34 | T | 130.0 | | | 10575- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Х | 4.84 | 67.12 | 16.79 | 0.46 | 130,0 | ± 9.6 % | |---------------|---|---|------|-------|-------|------|-------|---------| | AAA | OFDM, 6 Mbps, 90pc duty cycle) | | | | | | | | | | | Y | 4.72 | 66.80 | 16.47 | | 130.0 | | | 10576- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Z | 4.83 | 66.93 | 16.59 | | 130.0 | | | AAA | OFDM, 9 Mbps, 90pc duty cycle) | Х | 4.86 | 67.28 | 16.85 | 0.46 | 130.0 | ±9.6% | | | | Y | 4.75 | 66.95 | 16.53 | | 130.0 | | | 10577- | IEEE 000 44- Wift o 4 GU (D000 | Z | 4.86 | 67.08 | 16,65 | | 130.0 | | | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 12 Mbps, 90pc duty cycle) | X | 5.09 | 67.60 | 17.02 | 0.46 | 130.0 | ±9,6% | | | | Y | 4.97 | 67.26 | 16.71 | | 130.0 | | | 10578- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Z | 5.10 | 67.41 | 16.83 | | 130.0 | | | AAA | OFDM, 18 Mbps, 90pc duty cycle) | X | 4.99 | 67.77 | 17.12 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.86 | 67.43 | 16,80 | | 130.0 | | | 10579- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Z | 4.99 | 67.57 | 16.91 | | 130.0 | | | AAA | OFDM, 24 Mbps, 90pc duty cycle) | X | 4.77 | 67.19 | 16.53 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.64 | 66.77 | 16.15 | | 130.0 | ······· | | 10580- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Z | 4.78 | 67.01 | 16.33 | 6.45 | 130.0 | | | 10580-
AAA | OFDM, 36 Mbps, 90pc duty cycle) | X | 4.81 | 67.17 | 16.53 | 0.46 | 130.0 | ±9.6% | | | | Y | 4.68 | 66.78 | 16.16 | | 130.0 | | | 10581- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Z | 4.82 | 66.97 | 16.32 | | 130.0 | | | AAA | OFDM, 48 Mbps, 90pc duty cycle) | X | 4.90 | 67.87 | 17.09 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.77 | 67.49 | 16.75 | | 130.0 | | | 10582- | 1555 000 44× W551 0 4 GU - (5000 | Z | 4.90 | 67.66 | 16,87 | | 130.0 | | | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 54 Mbps, 90pc duty cycle) | Х | 4.73 | 66.96 | 16.34 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.59 | 66.53 | 15.94 | | 130.0 | | | 40500 | | Z | 4.73 | 66.78 | 16.14 | | 130.0 | | | 10583-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 90pc duty cycle) | X | 4.84 | 67.12 | 16.79 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.72 | 66.80 | 16.47 | | 130.0 | | | 40004 | | Z | 4.83 | 66.93 | 16.59 | | 130.0 | | | 10584-
AAB | IEEE 802.11a/n WiFi 5 GHz (OFDM, 9
Mbps, 90pc duty cycle) | Х | 4.86 | 67.28 | 16.85 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.75 | 66.95 | 16.53 | | 130.0 | | | | | Z | 4.86 | 67.08 | 16.65 | | 130.0 | | | 10585-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12
Mbps, 90pc duty cycle) | X | 5.09 | 67.60 | 17.02 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.97 | 67.26 | 16.71 | | 130.0 | | | | | Z | 5.10 | 67.41 | 16.83 | | 130.0 | | | 10586-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) | X | 4.99 | 67.77 | 17.12 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.86 | 67.43 | 16.80 | | 130.0 | | | 10505 | | Z | 4.99 | 67.57 | 16.91 | | 130.0 | | | 10587-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24
Mbps, 90pc duty cycle) | X | 4.77 | 67.19 | 16.53 | 0.46 | 130.0 | ±9.6% | | | | Υ | 4.64 | 66.77 | 16.15 | | 130.0 | | | 10 | | Z | 4.78 | 67.01 | 16.33 | | 130.0 | | | 10588-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36
Mbps, 90pc duty cycle) | Х | 4.81 | 67.17 | 16.53 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.68 | 66.78 | 16.16 | | 130.0 | | | 40500 | IEEE 000 44 # MIEEE COL (CERTICAL) | Z | 4.82 | 66.97 | 16.32 | | 130.0 | | | 10589-
AAB | IEEE 802.11a/n WiFi 5 GHz (OFDM, 48
Mbps, 90pc duty cycle) | X | 4.90 | 67.87 | 17.09 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.77 | 67.49 | 16.75 | | 130.0 | | | 40500 | HEEF OOD 44 - IL MIELE ON LOTTE - | Z | 4.90 | 67.66 | 16.87 | | 130.0 | | | 10590-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54
Mbps, 90pc duty cycle) | Х | 4.73 | 66.96 | 16.34 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.59 | 66.53 | 15.94 | | 130.0 | | | | | Z | 4.73 | 66.78 | 16.14 | | 130.0 | | | 10591-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle) | X | 4.98 | 67.15 | 16.87 | 0.46 | 130.0 | ± 9,6 % | |---|--|---|------|-------|-------|------|-------|----------| | | 551 5595 441, 53010/ | Y | 4.87 | 66.85 | 16.57 | | 130.0 | | | | | Z | 4.98 | 66.97 | 16.68 | | 130.0 | | | 10592-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle) | Х | 5.15 | 67.50 | 16.99 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.04 | 67.19 | 16.69 | | 130.0 | | | | | Z | 5.16 | 67.32 | 16.80 | | 130.0 | | | 10593-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle) | X | 5.09 | 67.46 | 16.91 | 0.46 | 130.0 | ± 9.6 % | | *************************************** | | Y | 4.96 | 67.12 | 16.59 | | 130.0 | | | | | Z | 5.09 | 67.29 | 16.72 | | 130.0 | | | 10594-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle) | Х | 5.14 | 67.60 | 17.04 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.02 | 67.28 | 16.73 | | 130.0 | | | | | Z | 5.14 | 67.42 | 16.84 | | 130.0 | | | 10595-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle) | X | 5.11 | 67.58 | 16.95 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.99 | 67.24 | 16.64 | | 130.0 | | | | | Z | 5.12 | 67.40 | 16.76 | | 130.0 | | | 10596-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle) | Х | 5.05 | 67.59 | 16.96 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 4.93 | 67.24 | 16.64 | | 130.0 | | | | | Z | 5.06 | 67.40 | 16.76 | | 130.0 | | | 10597-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle) | X | 5.00 | 67.53 | 16.87 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.88 | 67.16 | 16.53 | | 130.0 | | | | | Z | 5.01 | 67.35 | 16.68 | | 130.0 | | | 10598-
AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle) | X | 4.98 | 67.77 | 17.12 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.86 | 67.40 | 16.79 | | 130.0 | | | | | Z | 4.99 | 67.58 | 16.92 | | 130.0 | | | 10599-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle) | Х | 5.65 | 67.74 | 17.05 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.54 | 67.42 | 16.77 | | 130.0 | | | | | Z | 5.65 | 67.58 | 16.87 | | 130.0 | | | 10600-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle) | X | 5.86 | 68.37 | 17.35 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.74 | 68.03 | 17.05 | | 130.0 | | | | | Z | 5.87 | 68.25 | 17.19 | | 130.0 | | | 10601-
AAB | IEEE 802.11n (HT Mixed, 40MHz,
MCS2, 90pc duty cycle) | X | 5.71 | 67.99 | 17.17 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.59 | 67.67 | 16.88 | | 130.0 | | | | | Z | 5.71 | 67.84 | 16.99 | | 130.0 | | | 10602-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle) | Х | 5.80 | 67.99 | 17.09 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.68 | 67.66 | 16.80 | | 130.0 | | | | | Z | 5.80 | 67.87 | 16.93 | | 130.0 | | | 10603-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle) | X | 5,88 | 68.27 | 17.35 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.76 | 67.95 | 17.07 | | 130.0 | | | | | Z | 5.91 | 68.22 | 17.22 | | 130.0 | | | 10604-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle) | Х | 5.65 | 67.69 | 17.05 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.55 | 67.38 | 16.78 | | 130.0 | | | | | Z | 5.65 | 67.55 | 16.88 | | 130.0 | | | 10605-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle) | X | 5.77 | 68.03 | 17.23 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.67 | 67.75 | 16.97 | | 130.0 | | | | | Z | 5.76 | 67.86 | 17.04 | | 130.0 | | | 10606-
AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle) | X | 5.54 | 67.48 | 16.82 | 0.46 | 130.0 | ±9.6% | | | | Y | 5.42 | 67.14 | 16.52 | | 130.0 | | | | | Z | 5.54 | 67.37 | 16.67 | 1 | 130.0 | <u> </u> | | 10607-
AAB | IEEE 802.11ac WiFi (20MHz, MCS0, | Х | 4.81 | 66.46 | 16.48 | 0.46 | 130.0 | ± 9.6 % | |---------------|---|----------|------|-------|-------|--------|-------|---------| | AAB | 90pc duty cycle) | | | | | | | | | | | Y | 4.70 | 66.13 | 16.17 | ****** | 130.0 | | | 10608- | IEEE 802.11ac WiFi (20MHz, MCS1, | Z | 4.81 | 66.25 | 16.27 | 0.40 | 130.0 | | | AAB | 90pc duty cycle) | | 5.03 | 66.90 | 16.65 | 0.46 | 130.0 | ±9.6% | | ******** | | Y | 4.90 | 66.55 | 16.34 | | 130.0 | | | 10609- | IEEE 900 44 co WIE: (00ML - NOO) | Z | 5.02 | 66.68 | 16.44 | | 130.0 | | | AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle) | Х | 4.92 | 66.79 | 16.52 | 0.46 | 130.0 | ± 9.6 % | | | | <u> </u> | 4.79 | 66.41 | 16.18 | | 130.0 | | | 10610- | IEEE 802.11ac WiFi (20MHz, MCS3, | Z | 4.92 | 66.57 | 16.31 | | 130.0 | | | AAB | 90pc duty cycle) | | 4.97 | 66.94 | 16.67 | 0.46 | 130.0 | ± 9.6 % | | | | <u> </u> | 4.84 | 66.57 | 16.34 | | 130.0 | | | 10611- | IEEE 802.11ac WiFi (20MHz, MCS4, | Z | 4.97 | 66.72 | 16.46 | 0.40 | 130.0 | | | AAB | 90pc duty cycle) | | 4.89 | 66.78 | 16.54 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.76 | 66.39 | 16.20 | **** | 130.0 | | | 10612- | IEEE 802.11ac
WiFI (20MHz, MCS5, | Z | 4.89 | 66.57 | 16.33 | | 130.0 | | | 10612-
AAB | 90pc duty cycle) | X | 4.92 | 66.95 | 16.59 | 0.46 | 130.0 | ±9.6% | | -m- | | Y | 4.78 | 66.55 | 16.24 | | 130.0 | | | 10613- | IEEE 802.11ac WiFi (20MHz, MCS6, | Z | 4.91 | 66.73 | 16.37 | 6.1- | 130.0 | | | AAB | 90pc duty cycle) | X | 4.93 | 66.87 | 16.50 | 0.46 | 130.0 | ±9.6% | | | | Y | 4.79 | 66.46 | 16.14 | | 130.0 | | | 10614- | JEET 902 (4 ca MITI /20MILL MOO7 | Z | 4.93 | 66.66 | 16.28 | | 130.0 | | | AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle) | Х | 4.85 | 67.03 | 16.71 | 0.46 | 130.0 | ± 9.6 % | | | 1 | Y | 4.72 | 66.63 | 16.36 | | 130.0 | | | 40045 | IEEE COO da MIEL COO MICHAEL | Z | 4.85 | 66.82 | 16.49 | | 130.0 | | | 10615-
AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle) | Х | 4.90 | 66.61 | 16.33 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.76 | 66.22 | 15.98 | | 130.0 | | | 40040 | IEEE COOK | Z | 4.90 | 66.40 | 16.12 | | 130.0 | | | 10616-
AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle) | X | 5.47 | 66.98 | 16.66 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.36 | 66.66 | 16.38 | | 130.0 | | | | | Z | 5.46 | 66.82 | 16.47 | | 130.0 | | | 10617-
AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle) | X | 5.52 | 67.09 | 16.68 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.42 | 66.80 | 16.41 | | 130.0 | | | | | Z | 5.52 | 66.93 | 16.49 | | 130.0 | | | 10618-
AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle) | X | 5.42 | 67.18 | 16,74 | 0.46 | 130.0 | ±9.6 % | | | | Y | 5.31 | 66.84 | 16.45 | | 130.0 | | | 100:- | | Z | 5.41 | 67.00 | 16.54 | | 130.0 | | | 10619-
AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle) | X | 5.45 | 67.00 | 16.59 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.34 | 66.68 | 16.31 | | 130.0 | | | | | Z | 5.44 | 66.82 | 16.40 | | 130.0 | | | 10620-
AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle) | Х | 5.56 | 67.11 | 16.69 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.44 | 66.75 | 16.39 | | 130.0 | | | | | Z | 5.56 | 66.95 | 16.51 | | 130.0 | | | 10621-
AAB | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle) | X | 5.53 | 67.13 | 16.81 | 0.46 | 130.0 | ±9.6 % | | | | Υ | 5.42 | 66.81 | 16.54 | | 130.0 | | | | 4 | Z | 5,53 | 66.98 | 16.63 | | 130.0 | | | 10622-
AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle) | Х | 5.53 | 67.27 | 16.87 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5,43 | 66.97 | 16.61 | | 130.0 | | | | | Z | 5.52 | 67.09 | 16.67 | | 130.0 | | | 10623-
AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle) | X | 5.42 | 66.86 | 16.56 | 0.46 | 130.0 | ± 9.6 % | |---------------|--|----------|--------------|------------------|----------------|----------|----------------|--------------| | , , , , | oopo daty oyoto) | TY | 5.30 | 66,51 | 16.26 | | 130.0 | | | | | Z | 5.42 | 66.73 | 16.39 | | 130.0 | | | 10624-
AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle) | X | 5.61 | 67.03 | 16.70 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.50 | 66.72 | 16.43 | | 130.0 | | | | | Z | 5.60 | 66.86 | 16.51 | | 130.0 | | | 10625-
AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle) | Х | 6.05 | 68.19 | 17.33 | 0,46 | 130.0 | ± 9.6 % | | | | Y | 5.94 | 67.90 | 17.07 | | 130.0 | | | ***** | | Z | 6.01 | 67.90 | 17.08 | | 130.0 | | | 10626-
AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) | X | 5.72 | 66.99 | 16.57 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.63 | 66.69 | 16.31 | | 130.0 | | | | | Z | 5.71 | 66.84 | 16.40 | | 130.0 | | | 10627-
AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle) | X | 5.99 | 67.59 | 16.82 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5,90 | 67.32 | 16.58 | | 130.0 | | | 40000 | | Z | 5.97 | 67.39 | 16.62 | 0.40 | 130.0 | | | 10628-
AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle) | X | 5.80 | 67.20 | 16.57 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.69 | 66.85 | 16.29 | | 130.0 | | | 40000 | JEEE 000 44 - MIE: (0014) - MOCO | Z | 5.79 | 67.05 | 16.40 | 0.40 | 130.0 | 1000 | | 10629-
AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle) | Х | 5.88 | 67.25 | 16.59 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.77 | 66,92 | 16.31 | | 130.0
130.0 | | | 10630-
AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle) | X | 5.87
6.51 | 67.12 ′
69.31 | 16.43
17.62 | 0.46 | 130.0 | ± 9.6 % | | AAD | sope duty cycle) | Y | 6.37 | 68,86 | 17.28 | | 130.0 | <u> </u> | | | | Z | 6.46 | 69.04 | 17.39 | ļ | 130.0 | | | 10631-
AAB | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle) | X | 6.31 | 68.81 | 17.54 | 0.46 | 130.0 | ± 9.6 % | | 7010 | - Jose daty dydio/ | TY | 6.17 | 68.39 | 17.24 | İ | 130.0 | | | ,.,.,. | | Ż | 6.30 | 68.62 | 17.35 | | 130.0 | | | 10632-
AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle) | X | 5.95 | 67.61 | 16.96 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.85 | 67.34 | 16.73 | | 130.0 | | | | , | Z | 5.94 | 67.45 | 16.78 | | 130.0 | | | 10633-
AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle) | X | 5.89 | 67.42 | 16.71 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.75 | 67.01 | 16.39 | | 130.0 | | | | | Z | 5.89 | 67.32 | 16.56 | | 130.0 | | | 10634-
AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle) | Х | 5.85 | 67.37 | 16.74 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.73 | 67.02 | 16.46 | ļ | 130.0 | | | | | Z | 5.86 | 67.27 | 16.59 | | 130.0 | | | 10635-
AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle) | X | 5,75 | 66.78 | 16.20 | 0.46 | 130.0 | ± 9.6 % | | | | <u> </u> | 5.62 | 66.39 | 15.89 | 1 | 130.0 | | | 10000 | | Z | 5.75 | 66.67 | 16.05 | <u> </u> | 130.0 | 1 | | 10636-
AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle) | X | 6.13 | 67.38 | 16.66 | 0.46 | 130.0 | ±9.6 % | | | | Y | 6.05 | 67.09 | 16.42 | - | 130.0 | | | 10637-
AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle) | Z
X | 6.12
6.31 | 67.24
67.79 | 16.50
16.85 | 0.46 | 130.0
130.0 | ± 9.6 % | | ,,,,, | Jobo daty Oyoloj | Y | 6.21 | 67.50 | 16.60 | | 130.0 | 1 | | | <u> </u> | Ż | 6.29 | 67.65 | 16.68 | | 130.0 | | | 10638-
AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle) | X | 6.31 | 67.76 | 16.81 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.21 | 67.47 | 16.56 | | 130.0 | | | | | Z | 6.29 | 67.60 | 16.64 | | 130.0 | 1 | | 10639-
AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle) | Х | 6.30 | 67.76 | 16.86 | 0.46 | 130.0 | ± 9.6 % | |---------------|--|------------|---------------|----------------|----------------|---|--------------|--------------| | | | Y | 6.20 | 67.43 | 16.59 | | 130.0 | | | | | Z | 6.29 | 67.63 | 16.70 | | 130.0 | | | 10640-
AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle) | X | 6.34 | 67.87 | 16.86 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.22 | 67.50 | 16.57 | | 130.0 | | | 40044 | | Z | 6.33 | 67.75 | 16.70 | | 130.0 | | | 10641-
AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle) | X | 6.33 | 67.58 | 16.73 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.23 | 67.29 | 16.48 | | 130.0 | | | 10642- | IEEE 802.11ac WiFi (160MHz, MCS6, | Z | 6.31 | 67.45 | 16.57 | <u> </u> | 130.0 | | | AAC | 90pc duty cycle) | X | 6.39 | 67.88 | 17.04 | 0.46 | 130.0 | ± 9.6 % | | ***** | 4,4,4 | Z | 6.28 | 67.58 | 16.79 | | 130.0 | | | 10643- | IEEE 802.11ac WiFi (160MHz, MCS7, | | 6.38 | 67.76 | 16.88 | | 130.0 | | | AAC | 90pc duty cycle) | X | 6.22 | 67.60 | 16.81 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.12 | 67.28 | 16.54 | | 130.0 | , | | 10644- | IEEE 802.11ac WiFi (160MHz, MCS8, | Z
X | 6.21 | 67.48 | 16.65 | | 130.0 | | | AAC | 90pc duty cycle) | | 6.47 | 68.34 | 17.21 | 0.46 | 130.0 | ±9.6 % | | | | Y | 6.34 | 67.93 | 16.89 | | 130.0 | | | 10645- | IEEE 802.11ac WiFi (160MHz, MCS9, | Z | 6.46 | 68.22 | 17.05 | | 130.0 | | | AAC | 90pc duty cycle) | X | 6.86 | 69.01 | 17.48 | 0.46 | 130.0 | ± 9.6 % | | | | <u>Y</u> | 6.84 | 68.95 | 17.35 | | 130.0 | | | 10646- | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, | Z | 6.77 | 68.66 | 17.21 | | 130.0 | | | AAD | QPSK, UL Subframe=2,7) | Х | 39.97 | 118.78 | 39.16 | 9.30 | 60.0 | ± 9.6 % | | | | <u> </u> | 36.64 | 117.33 | 38.51 | | 60.0 | | | 10647- | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, | Z | 28.19 | 109.42 | 36.13 | | 60.0 | | | AAC | QPSK, UL Subframe=2,7) | X | 43.22 | 121.45 | 40.07 | 9.30 | 60.0 | ± 9.6 % | | | | Y | 37.61 | 118.78 | 39.06 | | 60.0 | | | 10648- | CDMA2000 (4A.) | Z | 29.77 | 111.44 | 36.87 | ******* | 60.0 | | | AAA | CDMA2000 (1x Advanced) | X | 0.92 | 67.44 | 13.60 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.67 | 63.31 | 10.51 | | 150.0 | | | 10050 | LTE TOD (OFDMA EAGL) | Z | 0.80 | 64.88 | 12.09 | | 150.0 | | | 10652-
AAB | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1,
Clipping 44%) | X | 4.65 | 69.66 | 17.99 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.35 | 68.72 | 17.32 | | 80.0 | | | 40050 | LTE TOP (OFPIA) (OLUM | <u> Z</u> | 4.56 | 68.93 | 17.55 | | 80.0 | | | 10653-
AAB | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | × | 5.05 | 68.61 | 17.89 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 4.81 | 67.90 | 17.37 | | 80.0 | | | 10654- | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1. | Z | 5.01 | 68.17 | 17.57 | | 80.0 | | | AAB | Clipping 44%) | X | 4.97 | 68.24 | 17.87 | 2.23 | 80.0 | ± 9.6 % | | | | <u>Y</u> | 4.75 | 67.55 | 17.37 | | 80.0 | | | 10655- | LITE TOD (OEDMA COMUL E TAGE! | Z | 4.94 | 67.85 | 17.56 | | 80.0 | | | AAB | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1,
Clipping 44%) | X | 5.03 | 68.27 | 17.91 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.81 | 67.56 | 17.41 | | 0.08 | | | 10658-
AAA | Pulse Waveform (200Hz, 10%) | X | 4.99
13.25 | 67.90
86.83 | 17.61
23.62 | 10.00 | 80.0
50.0 | ± 9.6 % | | | | Y | 14.38 | 00.00 | 22.44 | | FC 0 | | | | | Z | 11.47 | 88.09 | 23.44 | *************************************** | 50.0 | | | 10659- | Pulse Waveform (200Hz, 20%) | X | | 83.98 | 22.82 | 6.00 | 50.0 | 1000 | | AAA | . 3.55 11410101111 (2001 12, 2070) | | 55.89 | 109.63 | 28.77 | 6.99 | 60.0 | ± 9.6 % | | | | Y | 73.21 | 111.71 | 28.47 | | 60.0 | |
 | <u> </u> | Z | 23.49 | 96.54 | 25.38 | | 60.0 | | | 10660-
AAA | Pulse Waveform (200Hz, 40%) | X | 100.00 | 116.44 | 28.38 | 3.98 | 80.0 | ± 9.6 % | |---------------|-----------------------------|---|--------|--------|-------|------|-------|---------| | | | Υ | 100.00 | 113.18 | 26.58 | | 80.0 | | | | | Z | 100.00 | 116.19 | 28.39 | | 80.0 | | | 10661-
AAA | Pulse Waveform (200Hz, 60%) | Х | 100.00 | 118,35 | 27.71 | 2.22 | 100.0 | ± 9.6 % | | | | Y | 100.00 | 112.59 | 24.89 | | 100.0 | | | | | Z | 100.00 | 116.83 | 27.13 | | 100.0 | | | 10662-
AAA | Pulse Waveform (200Hz, 80%) | X | 100.00 | 126.67 | 29.16 | 0.97 | 120.0 | ± 9.6 % | | | | Y | 100.00 | 111.31 | 22.51 | | 120.0 | | | | | Z | 100.00 | 120.40 | 26.63 | | 120.0 | | ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client PC Test Certificate No: ES3-3332_Aug(18 | Object | CERTIFICATE ES3DV3 - SN:3332 | |---|---| | | | | Calibration procedure(s) | QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for desimetric E-field probes | | Calibration date: | August 22, 2018 09 -06 | | This calibration certificate doc
The measurements and the un | uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate. | | | ducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. | | Calibration Equipment used (N | | | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-17 (No. ES3-3013_Dec17) | Dec-18 | | DAE4 | SN: 660 | 21-Dec-17 (No. DAE4-660_Dec17) | Dec-18 | | Secondary Standards | _ ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | |----------------|---------------|-----------------------|-------------------------| | Calibrated by: | Michael Weber | Laboratory Technician | H. H. L. S | | Approved by: | Katja Roković | Technical Manager | MUG | | | | | Issued: August 24, 2018 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: ES3-3332_Aug18