

UNI-TREND TECHNOLOGY (CHINA) CO.,LTD.

TEST REPORT

SCOPE OF WORK EMC TESTING–UTi384H

REPORT NUMBER 220923108GZU-001

ISSUE DATE

[REVISED DATE]

-----]

25-November-2022

PAGES 97

DOCUMENT CONTROL NUMBER FCC ISED WIFI-b © 2021 INTERTEK

Room 02, & 101/E201/E301/ E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China Telephone: +86 20 8213 9688 Facsimile: +86 20 3205 7538 www.intertek.com.cn

Applicant Name &	:	UNI-TREND TECHNOLOGY (CHINA) CO.,LTD.
Address		No 6, Gong Ye Bei 1 st Road, Songshan Lake National High-Tech
		Industrial Development Zone, Dongguan, Guangdong Province, China
Manufacturing Site	:	Same as applicant
Intertek Report No:		220923108GZU-001
FCC ID:		2APMK-3841713H

Test standards 47 CFR PART 15 Subpart C: 2020 section 15.247 Sample Description

Product	:	Professional Thermal Imager
Model No.	:	UTi384H
Electrical Rating	:	Powered by 3.7V rechargeable Li-ion battery
Serial No.	:	Not Labeled
Date Received	:	23 September 2022
Date Test	:	10 October 2022-25 November 2022
Conducted		

Prepared and Checked By

Approved By:

Richard Liu

Richard Liu Engineer

en, Lm

Dean Liu Project Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou,

Guangdong, China

Version: 20 September 2021

FCC ISED WIFI-b

TEST REPORT

CONTENT

CONT	ENT
1.0	TEST RESULT SUMMARY4
2.0	GENERAL DESCRIPTION
2.1 2.2 2.3 2.4 3.0	PRODUCT DESCRIPTION
	STSTEW TEST CONFIGURATION
3.1 3.2 3.3 3.4 3.5 3.6	JUSTIFICATION6EUT EXERCISING SOFTWARE.7SPECIAL ACCESSORIES7MEASUREMENT UNCERTAINTY8EQUIPMENT MODIFICATION8SUPPORT EQUIPMENT LIST AND DESCRIPTION9
4.0	MEASUREMENT RESULTS
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	ANTENNA REQUIREMENT106 DB BANDWIDTH (DTS BANDWIDTH)11DUTY CYCLE19MAXIMUM AVERAGE CONDUCTED OUTPUT POWER23PEAK POWER SPECTRAL DENSITY25OUT OF BAND CONDUCTED EMISSIONS33OUT OF BAND RADIATED EMISSIONS46RADIATED EMISSIONS IN RESTRICTED BANDS46BAND EDGES REQUIREMENT89CONDUCTED EMISSION TEST94
5.0	TEST EQUIPMENT LIST

1.0 TEST RESULT SUMMARY

Test Item	Test Requirement	Test Method	Result	
Antenna Requirement	FCC PART 15 C section 15.247 (c) and Section 15.203	FCC PART 15 C section 15.247 (c) and Section 15.203	PASS	
6 dB Bandwidth (DTS bandwidth)	FCC PART 15 C section 15.247 (a)(2)	ANSI C63.10: Clause 11.8	PASS	
Duty Cycle	FCC KDB 558074 D01 15.247 Meas Guidance v05r02, Clause 6	ANSI C63.10: Clause 11.6	PASS	
Maximum Average Conducted Output Power	FCC PART 15 C clause 5.247(b)(3)	ANSI C63.10: Clause 11.9.2.3.1	PASS	
Peak Power Spectral Density	FCC PART 15 C section 15.247(e)	ANSI C63.10: Clause 11.10.2	PASS	
Out of Band Conducted Emissions	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.11	PASS	
Out of Band Radiated Emission	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.11, 6.4, 6.5 and 6.6	N/A	
Radiated Emissions in Restricted Bands	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.12.1, 6.4, 6.5 and 6.6	PASS	
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205	ANSI C63.10: Clause 11.11 and 11.13	PASS	
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2	PASS	
Remark: N/A: not applicable. Refer to the relative section for the details. EUT: In this whole report EUT means Equipment Under Test. Tx: In this whole report Tx (or tx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver. RF: In this whole report RF means Radio Frequency. ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report				

2.0 General Description

2.1 **Product Description**

Operating Frequency:	2412 MHz to 2462 MHz for 802.11b/g/n(HT20) 2422 MHz to 2452 MHz for 802.11n(HT40)
Type of Modulation:	802.11b: DSSS(CCK/QPSK/BPSK)
	802.11g: OFDM(BPSK/QPSK/16QAM/64QAM)
	802.11n: MIMO OFDM (BPSK/QPSK/16QAM/64QAM)
Transmit Data Rate:	802.11b :1/2/5.5/11 Mbps
	802.11g :6/9/12/18/24/36/48/54 Mbps
	802.11n(HT20): 6.5/13/19.5/26/39/52/58.5/65 Mbps/72.2Mbps
	802.11n(HT40): 13.5/27/40.5/54/81/108/121.5/135/150 Mbps
Number of Channels	11 Channels for 802.11b/g/n(HT20)
	7 Channels for 802.11n(HT40)
Channel Separation:	5 MHz
Antenna Type	The wire antenna that uses a unique coupling to the intentional radiator
Function:	Professional Thermal Imager with 2.4 GHz WIFI
EUT Power Supply:	DC 3.7V battery
Power cord:	

EUT channels and frequencies list:

For 802.11b/g/n(HT20): test frequencies are lowest channel 1: 2412 MHz, middle channel 6: 2437 MHz and highest channel 11: 2462 MHz.

For 802.11n(HT40): test frequencies are lowest channel 3: 2422 MHz, middle channel 6: 2437 MHz and highest channel 9: 2452 MHz.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	

TEST REPORT

2.2 Related Submittal(s) Grants

This is an application for certification of: DTS- Part 15 Digital Transmission Systems (WIFI transmitter portion)

Remaining portions are subject to the following procedures:1. Receiver portion of WIFI: exempt from technical requirement of this Part.2. The USB function: FCC SDOC requirement.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans and final tests were performed in the semi-anechoic chamber to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise.

2.4 Test Facility

All tests were performed at: Intertek Testing Services Shenzhen Ltd. Guangzhou Branch Room102/104, No 203, KeZhu Road, Science City, GETDD Guangzhou, China Except Conducted Emissions was performed at: Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China

A2LA Certificate Number 0078.10

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch is accredited by A2LA and Listed in FCC website. FCC accredited test labs may perform both Certification testing under Parts 15 and 18 and Declaration of Conformity testing.

3.0 System Test Configuration

3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, AC power line was manipulated to produce worst case emissions. It was powered by AC 120V/60Hz supply.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. The spurious emissions more than 20 dB below the permissible value are not reported.

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Frequency range of radiated emission measurements

Lowest frequency generated in the device	Upper frequency range of measurement	
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower	
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to	
30 GHz	100 GHz, whichever is lower 5th harmonic of highest fundamental frequency or to	
At or above 30 GHz	200 GHz, whichever is lower, unless otherwise specified	

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which device	Number of	Location in frequency
operates	frequencies	range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

3.2 EUT Exercising Software

Description	Manufacturer	Model No.	SN/Version	Supplied by
For normal operation	НР	Compaq 6710b	SN:CNU8240LF9	Intertek
For fixing frequency		Teraterm	Version:4.9	Applicant

3.3 Special Accessories

No special accessories used.

3.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
	20 dB Bandwidth	
1	6dB Bandwidth	2.3%
	99% Bandwidth	
2	Carrier Frequencies Separated	2.3%
3	Dwell Time	1.2%
4	Maximum Peak Conducted Output Power	1.5dB
5	Peak Power Spectral Density	1.5dB
6	Out of Band Conducted Emissions	1.5dB
7	Band edges measurement	1.5dB
		4.7 dB (25 MHz-1 GHz)
8	Radiated Emissions	4.8 dB (1 GHz-18 GHz)
0		5.21dB (18GZH-26GHz)
9	Conducted Emissions at Mains Terminals	2.58dB
10	Temperature	0.5 °C
11	Humidity	0.4 %
12	Time	1.2%

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty is calculated in accordance with ETSI TR 100 028-2001. The measurement uncertainty is given with a confidence of 95%, k=2.

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance – Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value

3.5 Equipment Modification

Any modifications installed previous to testing by UNI-TREND TECHNOLOGY (CHINA) CO.,LTD. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Guangzhou Branch.

TEST REPORT

3.6 Support Equipment List and Description

This product was tested with corresponding support equipment as below:

Support Equipment

Description	Manufacturer	Model No.	SN/Version	Supplied by
NoteBook	НР	Compaq 6710b	SN:CNU8240LF9	Intertek
Control board	Applicant		Version:2.6	Applicant
Adapter		S065TV200325	1948Z	Intertek

Cable

Description	Model No.	Connector type	Cable length/type	Supplied by
Antenna cable	RF-01	SMA	0.2 m(shielded)	Intertek
USB extension cord	USB-01	USB	1.0 m(shielded)	WIK

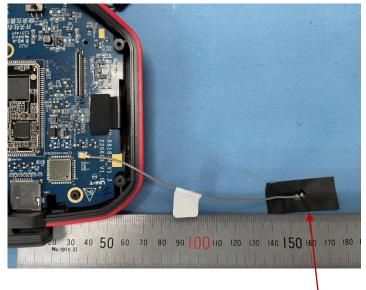
TEST REPORT

4.0 Measurement Results

4.1 Antenna Requirement

Standard requirement:

15.203 requirement:

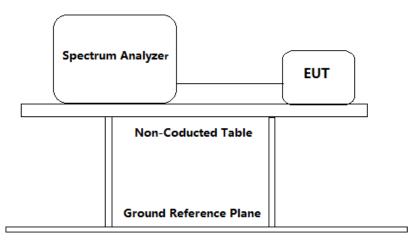

For intentional device. According to 15.203 an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna

The antenna is an integral antenna and no consideration of replacement. The best case gain of the antenna is 1.87 dBi as declared by applicant.



4.2 6 dB Bandwidth (DTS bandwidth)

Test Requirement:	FCC Part 15 C section 15.247 (a)(2)Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5MHz, and 5725- 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10: Clause 11.8
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =1 dB, with a 10dB attenuator) from the antenna port to the spectrum.
- 2. Set the spectrum analyzer:
 - a) Set RBW = 100 kHz
 - b) Set the VBW \geq [3 × RBW]
 - c) Detector = peak.
 - d) Trace mode = max hold.
 - e) Sweep = auto couple
 - f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
 h) Span=2*BW~5*BW

3. Repeat until all the test status is investigated.

TEST REPORT

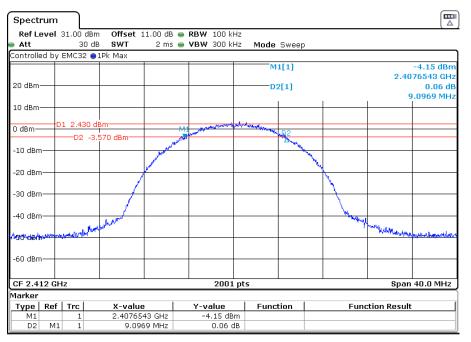
4. Report the worst case.

Used Test Equipment List

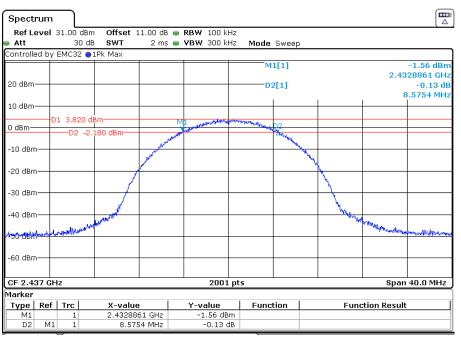
Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

6 dB bandwidth

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured 6dB bandwidth (MHz)	Limit	Result
1	2412		1 Mbps	9.10		Pass
6	2437	802.11b	1 Mbps	8.58		Pass
11	2462		1 Mbps	9.32		Pass
1	2412		6 Mbps	16.50		Pass
6	2437	802.11g	6 Mbps	16.32		Pass
11	2462		6 Mbps	16.44		Pass
1	2412	802.11n	6.5 Mbps	16.85	≥500KHz	Pass
6	2437	(HT20)	6.5 Mbps	16.90		Pass
11	2462		6.5 Mbps	17.48		Pass
3	2422	802.11n	13.5 Mbps	34.50		Pass
6	2437	(HT40)	13.5 Mbps	34.62		Pass
9	2452		13.5 Mbps	34.04	<u> </u>	Pass



Result plot as follows:


6dB bandwidth:

802.11b mode with 1Mbps data rate

Channel 1: 2.412GHz

Channel 6: 2.437GHz:

TEST REPORT

Channel 11: 2.462GHz:

					\$
Spectrum	Spectrum 2	Spectrum 3	Spectru	ım 4 🛛 🗶	
Ref Level 31.0(Att		.00 dB 👄 RBW 100 kł 4.8 μs 👄 VBW 300 kł		-т	
Controlled by EMC	32 🔵 1Pk Max	1 1			
			M1[1]		0.85 dBm 2.4574269 GHz
20 dBm			D2[1]		0.26 dB
					9.3198 MHz
10 dBm	570 dBm				
	2 0.670 dBm	M1	D2		
	2 0.070 000	A Martin Contraction	and the second s		
-10 dBm		John Martin and Martin	~	₩	
	y y			N.	
-20 dBm				1	
-30 dBm					
-30 0011					
-40 dBm	man				4~
				· · · · ·	manhamman
-50 dBm					
-60 dBm					
oo abiii					
CF 2.462 GHz		691	pts		Span 40.0 MHz
Marker			•		i
Type Ref Tro		Y-value	Function	Func	tion Result
	1 2.4574269 1 9.3198				
	1 9.3198	MHZ 0,26 0			

Channel 1: 2.412GHz:

							
Spectrum		Spectrum 2	X	Spectrum 3	Speci	trum 4 🛛 🗴	
Ref Level Att		dBm Offset OdB SWT		 RBW 100 kH; VBW 300 kH; 		FFT	(-)
Controlled by	у ЕМСЗ	2 😑 1Pk Max	,				
20 dBm					D2[1]		-1.19 dB 16.4978 MHz -10.56 dBm 2.4037800 GHz
10 dBm							
0 dBm							
-10 dBm		230 dBm 2 -11.230 dBm	the film	happerlachory	and and the approximately and the	www.uhlan	
-20 dBm		1					
-30 dBm		- Connect					
-40 dBm	لسليم	um (,	municonner
-60 dBm							
CF 2.412 G	Hz			691 p	ts		Span 40.0 MHz
Marker							
Type Ref	F Trc	X-valu	e	<u>Y-value</u> -10.56 dBm	Function	Fun	ction Result
D2 M			78 GHZ 78 MHZ	-10.56 dBm -1.19 dB			

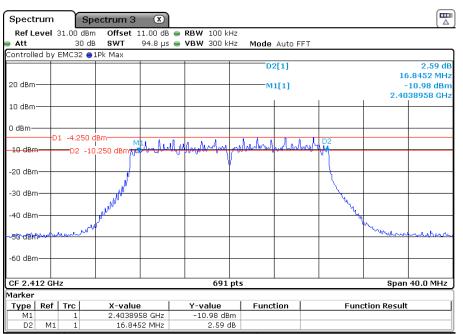
TEST REPORT

Channel 6: 2.437GHz:

					R			
Spectrum	Spectrum 2 🛞	Spectrum 3	Spectrur	n 4 🛛 🗴	Ē			
Ref Level 31.00		 RBW 100 kHz VBW 300 kHz 	Mode Auto FF	г				
Controlled by EMC:	32 🔵 1 Pk Max							
20 dBm			M1[1]		-8.81 dBm 2.4288958 GHz 1.38 dB			
10 dBm					16.3242 MHz			
0 dBm	470 dBm		ð 8 1. ð	102				
- 10 dBm D	2 -9.470 dBm	the part who for the	<u>NAMI NAVAN</u>	<u>, Mgc</u>				
-20 dBm								
-30 dBm	www			- Very				
-40 UBIII	nu da			<u> </u>	mounder			
-60 dBm								
CF 2.437 GHz								
Marker Type Ref Trc	X-value	Y-value	Function	Fund	tion Result			
Type Ref Trc M1 1 1 D2 M1 1	. 2.4288958 GHz	-8.81 dBm 1.38 dB	runcuon	Func				

Channel 11: 2.462GHz:

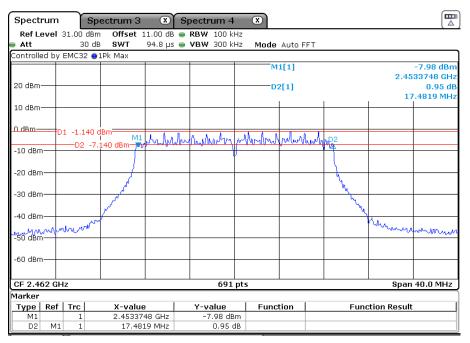
Spectrum	n S p	pectrum 2	X	Spectru	m 3	⊂ X ĭ s	pectrun	n4 🙁		
Ref Level	31.00 dBr	m Offset 1	1.00 dB	● RBW :	100 kHz					
Att	30 d		94.8 µs	e VBW 3	300 kHz	Mode	Auto FFT			
Controlled by	у ЕМСЗ2 🧲	1Pk Max								
						D	2[1]			4.87 dB
20 dBm										.4399 MHz
20 ubiii						IVI.	1[1]			10.19 dBm 37221 GHz
10 dBm									1	UTZZI UTZ
10 0.0										
0 dBm										
	D1 -2.010	dBm .010 dBm	As has	WI who	Mr. M	Andreas	mmsha	.₩2		
-10 dBm-	D2 -8	.010 dBm	an han a	1-1-1-20000	<u> </u>		0.00.00000	<u> </u>		
		1 1			ľ			- 11		
-20 dBm		<u> </u>								
		. w						Nu.		
-30 dBm		- Way						- ^{- 76} 6,		
		July 1						"Under		
-40 dBm		n l								
-So dBm	marren	1							mune	mound
-50 aBm										
-60 dBm										
-00 0811										
05.0.460.0					601 mt	_			0	40.0 MU-
CF 2.462 G	HZ				691 pt	5			span	40.0 MHz
Marker Type Ref	Trc	X-value	. 1	Y-val		Fund	tion	E	ction Result	1
M1	1	2.45372			19 dBm	Func	uon	Fun	LIGH RESUL	
D2 M			99 MHz		1.87 dB					
	2.6									


B

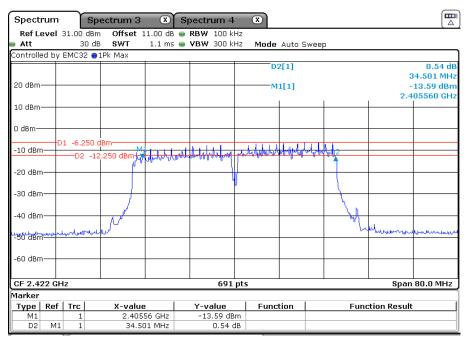
TEST REPORT

802.11n(HT20) mode with 6.5Mbps data rate

Channel 1: 2.412GHz:

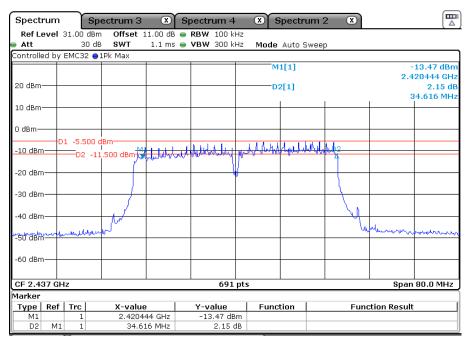

Channel 6: 2.437GHz:

Spectr	um		Spe	ctrum 3	X	Spe	ctrum 4	1	×					
Ref Le	evel		dBm 0 dB						Mada	Auto F				
	● Att 30 dB SWT 94.8 µs ● VBW 300 kHz Mode Auto FFT Controlled by EMC32 ●1Pk Max													
		2		i iii				\top	D	2[1]			1	-0.10 dB 5.9030 MHz
20 dBm-								+	M	1[1]				-8.33 dBm 87221 GHz
10 dBm-			+					+						
0 dBm—		1 -2.5	60 dB	m				+						
-10 dBm	_	D2	-8.56	i0 dBm	Marter	ylande	Martin	fred	halso	whw	Lowlo	R ²		
-20 dBm			-					-						
-30 dBm	_			NVVVV				-						
-40 dBm			word	<u>"</u> М				+				<u>\</u>	b July and	
~ . aq,asu	un h	mun	· · · ·					+						non
-60 dBm			+			+		+						
CF 2.43	37 GH	łz					691	l pts					l Spar	40.0 MHz
Marker														
Туре	Ref	Trc		X-value		١	r-value		Function			Fund	tion Result	t
M1 D2	M1	1		2.428722 16.90	21 GHz 3 MHz		-8.33 d -0.10							


TEST REPORT

Channel 11: 2.462GHz:

802.11n(HT40) mode with 13.5Mbps data rate

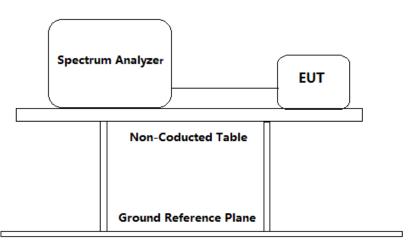

Channel 3: 2.422GHz:

TEST REPORT

Channel 6: 2.437GHz:

Channel 9: 2.452GHz:

Spectrum	Sp	ectrum 3	X	Spectrum 4	x s	pectri	um 2 🛛 🕱		
Ref Level Att	31.00 dBr 30 dI			 RBW 100 kH VBW 300 kH 		Auto S	weep		
Controlled by	EMC32 🔵	1Pk Max							
					D	2[1]		3	0.39 dB 4.038 MHz
20 dBm					M	1[1]			11.56 dBm 35907 GHz
10 dBm									
0 dBm	1 -4.610	dBm							
-10 dBm		0.610 dBm	1 John Marker	-14 Autor Autor	pmhddidd	4 pipping	www.		
-20 dBm									
-30 dBm							<u> </u>		
-40 dBm		hour					<u> </u>	1	
-50 dBm	mount	un					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	whenton	Munner
-60 dBm									
CF 2.452 GHz 691 pts Span 80.0 MHz									
Marker									
Type Ref		X-value		Y-value	Func	tion	Fun	ction Result	
M1 D2 M1	1	2.43590 34.03	17 GHz 8 MHz	-11.56 dBi 0.39 d					


TEST REPORT

4.3 Duty Cycle

Test Requirement:	FCC KDB 558074 D01 15.247 Meas Guidance v05r02, Clause 6
Test Method:	ANSI C63.10: Clause 11.6
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was

(were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =1dB, with a 10dB attenuator) from the antenna port to the spectrum.
- 2. Set the spectrum analyser:
 - a) Set the center frequency of the instrument to the center frequency of the transmission. Set the VBW \geq [3 x RBW]
 - b) Set RBW ≥OBW if possible; otherwise, set RBW to the largest available value. Span = Zero span
 - c) Set VBW \geq RBW. Set detector = peak or average. Trace mode = Free run
- 3. Report the worst case.

Used Test Equipment List

Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

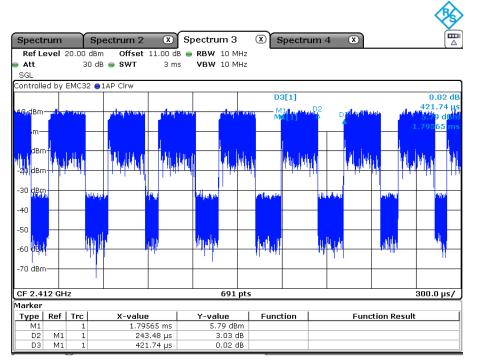
TEST REPORT

Test result:

Channel No.	Frequency (MHz)	Mode	On time (ms)	Period (ms)	Duty Cycle (%)
1	2412	802.11b	1.29	1.41	91.49
1	2412	802.11g	0.24	0.42	57.14
1	2412	802.11n (HT20)	0.22	0.38	57.89
1	2422	802.11n (HT40)	0.12	0.23	52.17

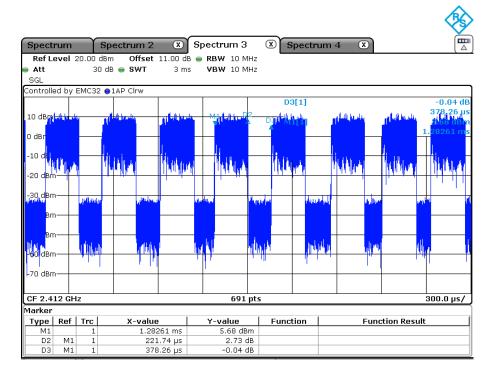
Result plot as follows:

802.11b mode


Channel 1: 2412 MHz:

Specti										
Ref Le		L	diam Offe	at 11.00 db	😑 RBW 10 M	115				
Att	ver a		0 dB 👄 SW1		: - VBW 10 M					
-		3	0 08 - 5 WI	10 ms	S - ARM TO W	HZ				
SGL										
Controlle	dby	EMC3:	2 😑 1 Pk Clrw							
						D	3[1]			-0.79 dB
20 dBm-										0580 ms
20 00111				M1	D3	м	1[1]			.05 dBm
10 dBm		******		and	- State and any mountain falling					6 377s
10 0.0111										
0 dBm-										
-10 dBm										
-20 dBm							\vdash			
-30 dBm										
	r i		40	M	**	ſ	W	8×	'	*
-40 dBm	_									
-50 dBm										
-60 dBm	_									
CF 2.41	2 GH	7		I	2001	nts			1	.0 ms/
Marker		-			2001	P				
Type	Ref	Tre	X-va	ا مىل	Y-value	Func	tion	Eup	ction Result	-
M1	Kel	1		46377 ms	13.05 dB		cion	Full	cion Result	
D2	M1	1		115.94 µs	-0.52 c					
D3	M1	1		1.4058 ms	-0.79 c					
		-	1		0.119 0	· ,				

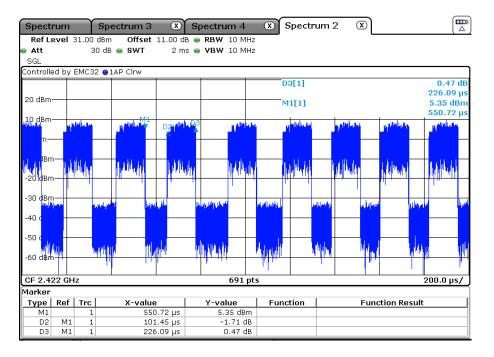
802.11g mode Channel 1: 2412 MHz:



TEST REPORT

802.11n(HT 20) mode

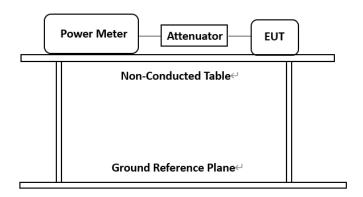
Channel 1: 2412 MHz:



802.11n(HT 40) mode Channel 1: 2422 MHz:

Version: 20 September 2021

TEST REPORT



4.4 Maximum Average Conducted Output Power

Test Requirement:	FCC Part 15 C section 15.247 Section 15.247: (b)(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. Clause 5.4(d): For DTSs employing digital modulation techniques
	operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W.
	Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the
	conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b) (1), (b) (2), and (b) (3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10: Clause 11.9.2.3.1
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.
Test Configurations	

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =1 dB, with a 10dB attenuator) from the antenna port to the power meter.
- 2. The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
- 3. If the EUT is transmitting at all times, it must be transmitting at its maximum power control level.
- 4. If the EUT does not transmit continuously, measure the duty cycle and adjust the

TEST REPORT

measurement in dBm by adding $10\log(1/x)$ where x is the duty cycle of transmitter output signal. This measurement is an average over both the ON and OFF periods of the transmitter.

5. Report the worst case.

Used Test Equipment List

Power meter. Refer to Clause 5 Test Equipment List for details.

Channel No.	Frequency (MHz)	Mode	Data Rate	Measur ed	e.i.r.p (dBm)	Limi	t	Result
				Power (dBm)		Measured Channel Power	e.i.r.p	
1	2412		1 Mbps	14.11	15.98			Pass
6	2437	802.11b	1 Mbps	15.33	17.20			Pass
11	2462		1 Mbps	16.40	18.27			Pass
1	2412		6 Mbps	8.40	10.27			Pass
6	2437	802.11g	6 Mbps	8.86	10.73			Pass
11	2462		6 Mbps	9.89	11.76	1W	4W	Pass
1	2412	802.11n	6.5 Mbps	8.09	9.96	(30dBm)	(36dBm)	Pass
6	2437	(HT20)	6.5 Mbps	8.53	10.40	-		Pass
11	2462	(1120)	6.5 Mbps	10.08	11.95			Pass
3	2422		13.5 Mbps	6.86	8.73			Pass
6	2437	802.11n	13.5	7.81	9.68			Pass
0	2437	(HT40)	Mbps	1.01	5.00			rass
9	2452		13.5 Mbps	8.21	10.08			Pass

Test result:

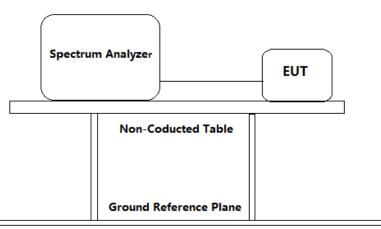
Remark:

The measured power in the table has considered the compensation of duty cycle.

cable lose=1dB

Antenna gain=1.87 dBi

e.i.r.p=output power + antenna gain



TEST REPORT

4.4 Peak Power Spectral Density

Test Requirement:	FCC Part 15 C section 15.247 RSS-247 Clause 5.2(b)
	(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
	This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10: Clause 11.10.2
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable(cable loss =1 dB, with a 10dB attenuator) from the antenna port to the spectrum analyzer or power meter.
- 2. Set the spectrum analyzer:
 - a) Set analyzer center frequency to DTS channel center frequency.
 - b) Set the span= 1.5 × DTS bandwidth.
 - c) Set the RBW to 3 kHz \leqslant RBW \leqslant 100 kHz.
 - d) Set the VBW \geq [3 × RBW].
 - e) Detector = peak.
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.

TEST REPORT

- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
- 3. Measure the Power Spectral Density of the test frequency with special test status.
- 4. Repeat until all the test status is investigated.
- 5. Report the worst case.

Used Test Equipment List

Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

Test result:

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured Peak Power Spectral Density (dBm/3kHz)	Limit	Result
1	2412		1 Mbps	-10.20		Pass
6	2437	802.11b	1 Mbps	-7.69		Pass
11	2462		1 Mbps	-6.11		Pass
1	2412		6 Mbps	-20.80		Pass
6	2437	802.11g	6 Mbps	-17.99		Pass
11	2462		6 Mbps	-17.28	8dBm/	Pass
1	2412	802.11n	6.5 Mbps	-20.70	3 KHz	Pass
6	2437	(HT20)	6.5 Mbps	-16.60	-	Pass
11	2462	(1120)	6.5 Mbps	-16.60		Pass
3	2422	802.11n	13.5 Mbps	-20.51	1	Pass
6	2437	(HT40)	13.5 Mbps	-20.52	1	Pass
9	2452		13.5 Mbps	-18.41		Pass

TEST REPORT

Result plot as follows:

802.11b mode with 1Mbps data rate Channel 1: 2.412GHz:

			
Spectrum	Spectrum 2 🗶 Spe	ctrum 3 🛛 🛪 Spectrum 4	× ×
Ref Level 20.0	0 dBm Offset 11.00 dB 👄 RI 30 dB SWT 2.5 ms 👄 VI		·
Controlled by EMC	32 🔵 1 Pk Max		
		M1[1]	-10.20 dBm 2.4102680 GHz
10 dBm			
0 dBm			
-10 dBm	M1	a status da series de la series d	
an dam daa ^M	MI	working when relationships and write he	able and hand stored rach
and with the state of the state			and the weat the
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
CF 2.412 GHz		691 pts	Span 13.6 MHz

Channel 6: 2.437GHz:

Spectrum									
Ref Level		Offset 1	.1.00 dB 👄	RBW 3 kH	z				
Att 🗧	30 dB	SWT	1.9 ms 👄	VBW 10 kH	z Mode /	Auto FFT			
⊖1Pk Max									
					м	1[1]			-7.69 dBm 60500 GHz
10 dBm									
0 dBm				M1					
-10 dBm			No. Marker Market	and the last of th	Maramakanaa	Autor and			
-10 dBm	mannewedler	howand					terreturnet	whether have	dan .
r-20-adeth									- munture
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-oo ubili									
-70 dBm									
CF 2.437 GH	Iz			691	pts		I	Span 1	2.87 MHz

 $\mathbf{\wedge}$

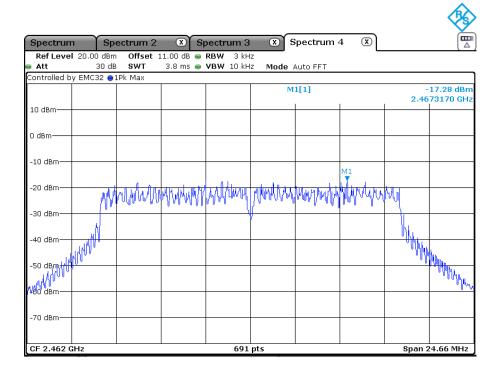
TEST REPORT

Channel 11: 2.462GHz:

				(\$\$)
Spectrum	Spectrum 2 🛛 🗴	Spectrum 3 🛛 🛞	Spectrum 4 🛞	
Ref Level 20.00 (• Auto FFT	· · · ·
Controlled by EMC32	e 1Pk Max			
			M1[1]	-6.11 dBm 2.4612520 GHz
10 dBm				
0 dBm				
o ubin		M1		
-10 dBm	and a start a start a start a start a start a start	manus have marile	marken marken Marken Mark	where where where a sheether
20 de the we we de the	www			malas lever when an
-20 GDH1-4				and the second
-30 dBm				
10 -0				
-40 dBm				
-50 dBm				
co dou				
-60 dBm				
-70 dBm				
CF 2.462 GHz		691 pts	1	Span 13.978 MHz

802.11g mode with 6Mbps data rate Channel 1: 2.412GHz:

Spectrum	Spectrum 2	Spectrum	3 🗴 Spectrum	4 🗵	
	30 dB SWT	.1.00 dB 👄 RBW 3 k 3.8 ms 👄 VBW 10 k			\
Controlled by EMC	32 😑 1Pk Max		M1[1]		-20.80 dB
			MILI		-20.80 dB 2.4144710 GF
10 dBm					
0 dBm					
-10 dBm					
-20 dBm			M1	lasing 114	1
-30 dBm	MANNIN	NPM MANUM	Manana	MANA	¥
-40 dBm					
	U				Why he is
-50 dBm					Will have been and the second
-60°48m					V
-70 dBm					
CF 2.412 GHz		69	1 pts		Span 24.75 MH:

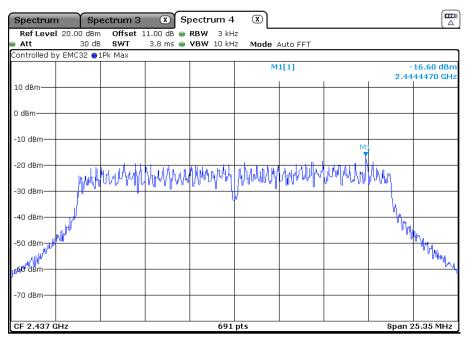


TEST REPORT

Channel 6: 2.437GHz:

Spectrum	Spectrum 2	Spectrum	3 X S	pectrum 4	x		
RefLevel 20.0 Att	0 dBm Offset 1 30 dB SWT	11.00 dB 👄 RBW 3 3.8 ms 👄 VBW 10	Hz Hz Mode A	uto FFT			
Controlled by EMC	32 🔵 1 Pk Max						
			M1	1[1]			17.99 dBm 44780 GHz
10 dBm							
0 dBm							
-10 dBm							
-20 dBm		المعالية والمعالية	haul			11 Y N I W	
-30 dBm	MANANAMA	nannanna	1 Naurour	www.www	WWW	M	
-40 dBm			W			N	
. m Martin	N .					"Hu	lu -
-50 dBm							Marth Martin
dBm							~bull
-70 dBm							
05.0.407.011-		6	1 == ==				4 40 MU-
CF 2.437 GHz		69	1 pts			span 2	4.49 MHz

Channel 11: 2.462GHz:

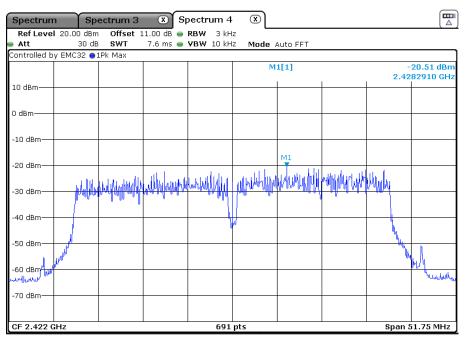


TEST REPORT

802.11n(HT20) mode with 6.5Mbps data rate Channel 1: 2.412GHz:

Spectrum	n Spe	ectrum 3	🗶 SI	pectrum 4	×				
	20.00 dBm			RBW 3 kH					
Att	30 dB	SWT	3.8 ms 👄	VBW 10 kH	z Mode /	Auto FFT			
Controlled by	y EMC32 🔵 1	.Pk Max							
					M	1[1]			20.70 dBm
10 dBm						I	I	2.41	94970 GHz
TO OBIN-									
0 dBm									
-10 dBm									
-20 dBm							м	-	
		ի նվակեստե	Lond M. C.	and that	Anthony	بالمارا المرابع	it ha fUlimite	UAA.J	
-30 dBm	MAN	YUUPMAN	MAMA	(MANA)	Than A Mail	WWWWW	odrad kaska	P(FY)/	
00 00		ľ	, in the second s	• \		Ť			
-40 dBm					ļ			4 .	
-40 aBm								4	
	M ^r							N Wu	ki -
-50 dBm	/*								Mu.
M									TADO TO THE TADO
u do dBm									- Mill
•									
-70 dBm									
CF 2.412 G	Hz			691	pts			Span 2	5.27 MHz

Channel 6: 2.437GHz:


TEST REPORT

Channel 11: 2.462GHz:

Spectrum	Spe	ectrum 3	×s	pectrum 4	×				
Ref Level	20.00 dBm	Offset 1	L1.00 dB 👄	RBW 3 kH	z				
Att	30 dB		3.8 ms 👄	VBW 10 kH	z Mode /	Auto FFT			
Controlled by	/ EMC32 🔵 1	.Pk Max							
					М	1[1]			16.60 dBm 79400 GHz
10 dBm									
0 dBm									
-10 dBm			M1						
-20 dBm	144V	nun thun	tunikan	al har faller and	maliti	Authory	unMtrat	Mi	
-30 dBm	h								
-50 dBm	war							W	M.
HED dBm									YHYYYYYY
r									UA.
-70 dBm									
CF 2.462 G	Hz		·	691	pts	·		Span 2	6.22 MHz

802.11n(HT40) mode with 13.5Mbps data rate

Channel 3: 2.422GHz:

TEST REPORT

Channel 6: 2.437GHz:

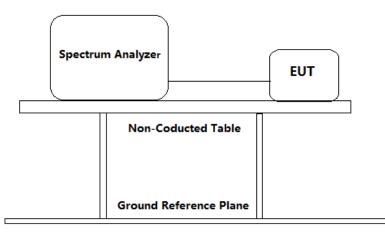
Spectrum	n Spi	ectrum 3	🗴 Sp	ectrum 4	x s	pectrum :	2 🗶		
	20.00 dBm		1.00 dB 😑						
Att	30 dB		7.6 ms 😑	VBW 10 kH	z Mode /	Auto FFT			
Controlled by	y EMC32 🔵 1	LPk Max							
					м	1[1]			20.52 dBm 20270 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm		1	. he m	n n ll		ا م ا ما ما ما .	MI Muran		
-30 dBm	- populy	Nrthhurth	alle flere	hadababa	HIPM WAT WI	manahah	huhhulturla	111111	
-40 dBm					ļ .				
-50 dBm								K.	
-60 dBm	all ^{ulu}							y.	161
worddor									Vordhuley
-70 dBm									
CF 2.437 G	Hz			691	pts	I	I	Span :	51.92 MHz

Channel 9: 2.452GHz:

Spectrum	n Spe	ectrum 3	× s	pectrum 4	. 🔊 E	Spectrum (2 🗴		
	20.00 dBm		11.00 dB 👄						
Att	30 dB		7.6 ms 👄	VBW 10 kH	z Mode	Auto FFT			
Controlled by	y EMC32 🔵 1	LPK Max		1					10.11.10
					I INI	1[1]			18.41 dBm 60400 GHz
10 dBm									
0 dBm									
-10 dBm									
							M1		
-20 dBm							T.		
	يا يان	lashinin da	a data Mampa	ALL MARKAGE	Hildhinku	AN ALANA	NMUN MMM	HUM I	
-30 dBm		WINNE	Assanth M	PA TANA	Wallin . n.		d als dolla.		
	U								
-40 dBm				1	/			ļ (
	JU I							<u> </u>	
-50 dBm	1							<u> </u>	
a./	√ "							1	M.,
-60 dBr									WY L
www.www.ww									Whiteh
-70 dBm									
CF 2.452 G	:Hz			691	nts			Snan 5	51.06 MHz

TEST REPORT

4.5 Out of Band Conducted Emissions


Test Requirement: FCC Part 15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Method: ANSI C63.10: Clause 11.11

Test Status: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable (cable loss =1dB, with a 10dB attenuator) from the antenna port to the spectrum analyzer or power meter.
- 2. Establish a reference level by using the following procedure:
 - a) Set instrument center frequency to DTS channel center frequency.
 - b) Set the span to \geqslant 1.5 imes DTS bandwidth.
 - c) Set the RBW = 100 kHz.
 - d) Set the VBW \geq [3 × RBW].
 - e) Detector = peak.
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the maximum PSD level.

TEST REPORT

Note that the channel found to contain the maximum PSD level can be used to establish the reference level

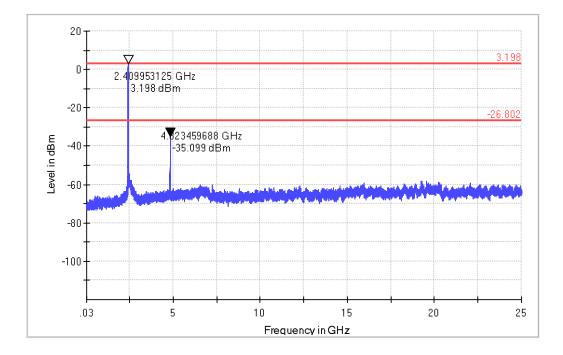
3. Emission level measurement

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.
- 4. Measure the Conducted unwanted Emissions of the test frequency with special test status.
- 5. Repeat until all the test status is investigated.
- 6. Report the worst case.

Used Test Equipment List

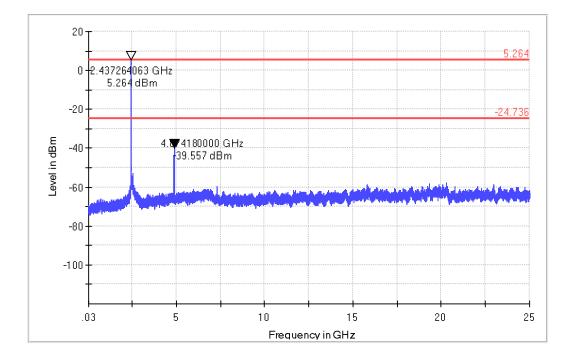
Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.


Result plot as follows:

802.11b mode with 1Mbps data rate Channel 1: 2.412GHz:

Spectrum	Spectrum 3	Spectrum 4	Spectrum :	2 🗴	
DC		B e RBW 100 kHz s e VBW 300 kHz			·
1Rm Max					
0 dBm D1 3.:	198 dBm — — — -		M1[1]		-67.93 dBm 20.030650 MHz
-10 dBm					
-20 dBm					
-30 dBm	2 -35.099 dBm				
-40 dBm	2 -33.099 0611				
-50 dBm					
-60 dBm			M1		
d dBm at hi mai	an a	AND	an last and struktore struktore till black	¹¹ նալ հեղորիսլ (եկ) որ, լ	teristic militian alerta da padatiti kan damat
-80 dBm	and and a paper part of the second	ihiheen konteger planta par ster	and the second	^{ali} tt papa legaritpileary attac	in and the line of the state of
-90 dBm					

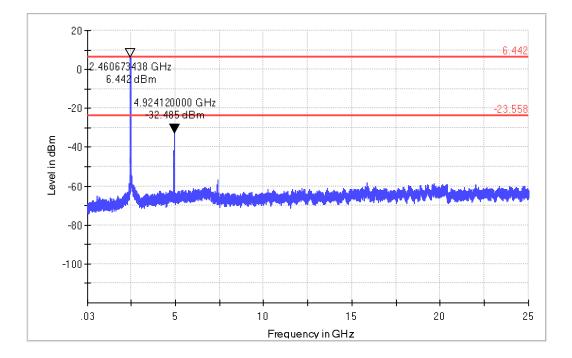
 \land



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

Channel 6: 2.437GHz:

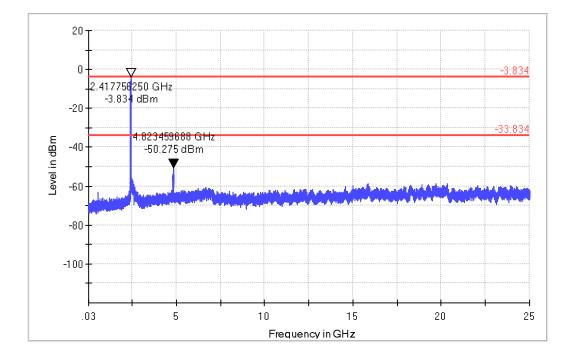
Spectrum	Spectrum 3	× Si	ectrum 4		Spectrum 2	2 🛛		
-	-	0 -		0	spectrum			(A
Ref Level 10.0			(BW 100 kH /BW 300 kH					
DC	20 UB 3141 .	52.1 1115 🔲 🕯	DW SUUKH	z Mode	Sweep			
1Rm Max								
-				M	1[1]		-	65.79 dBn
D1 5.	264 dBm							41.030 kHz
0 dBm								
-10 dBm								
-20 dBm								
D	2 -24.736 dBm-							
-30 dBm								
-40 dBm								
-+0 0011								
-50 dBm								
-50 UBIII								
-60 dBm								
and a set of					1.1			
dia na dia mandri dia m	Terrori "Territori fatori da	1. S. 1. K. A. L. M. K.	out ^h theorem	Roman Profess	namp' mit i far	باللي ويعالمه المرابع	والالاس مطولهما اللاط	المعطابة المراجع
a state of the second	a series a second second second second	and all distances	A Designation of the second	and the second secon	Configuration of the last	and the second second	And the state of the	the first and a print of the little
-80 dBm								
CF 15.0045 MHz			32001					9.991 MHz



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

Channel 11:2.462 GHz:

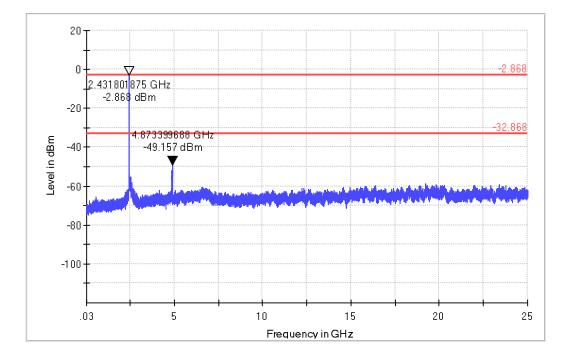
					
Spectrum	Spectrum 3	Spectrum 4	Spectrum	2 🗴	
RefLevel 10.00 Att : DC		.00 dB ● RBW 100 kH 2.1 ms ● VBW 300 kH			
1Rm Max D1 6.4	142 dBm		M1[1]		-68.22 dBm 978.520 kHz
0 dBm					576.020 KHZ
-10 dBm					
-20 dBm	2 -23.558 dBm				
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-1.9 Determine the property on	n de la tra Million de Constana para na sector parte de Cardon de C	di kacali dali yaka di walini ka ipi ka pera Mikerati Alimina yipi wasili na paninyani y	la para ang ang batakan ng pang pang pang ^{ang ang ang ang ang ang ang ang ang ang}	an and a state of the design	n ha ha maga katala <mark>da ja da kana kada sa sa</mark> . Manga katala kata nga mata tang mana kata sa sa
-80 dBm				A STATE OF THE OWNER	on and an original sector of the sector of t
CF 15.0045 MHz		3200	1 pts		Span 29.991 MHz


In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

802.11g mode with 6Mbps data rate

Channel 1: 2.412GHz:

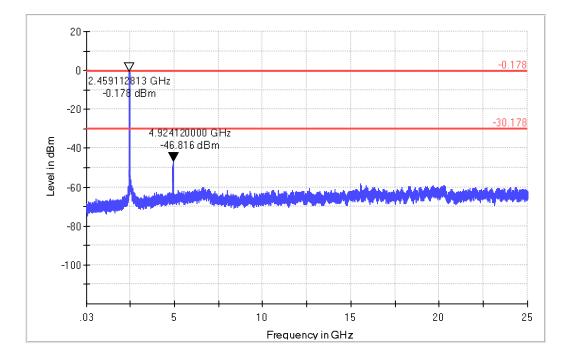
				
Spectrum	Spectrum 3	Spectrum 4 🛛 🗴	Spectrum 2 🛛 🗶	
RefLevel 10.00 Att DC		dB @ RBW 100 kHz ms @ VBW 300 kHz Mo	de Sweep	
∋1Rm Max				
			M1[1]	-68.91 dBm 2.693580 MHz
0 dBm	834 dBm			
-10 dBm				
-20 dBm				
-30 dBm	2 -33.834 dBm— —			
-40 dBm				
-50 dBm				
-60 dBm				
20 dBm life	lation of the state of the stat	and any second state of the fact second state of the	Charles and States and States	لار الإسلام الحريق المراجع الم
-80 dBm	nyé hana na manana panén na mana panén k	alley here and prover a product or a participation of the second s	an fan fan fan de fa In fan fan fan fan de	la canda di ponisi na cilina poli alla finita data di plac
CF 15.0045 MHz		32001 pts		Span 29.991 MHz



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

Channel 6: 2.437GHz:

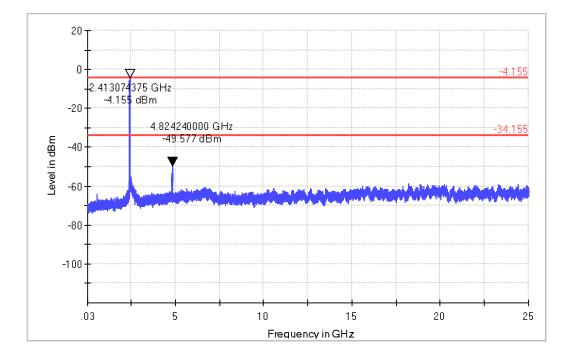
Spectrum	Spectrum 3	Spectrum 4 🛛 S	pectrum 2 🛛 🗴	
DC		B • RBW 100 kHz s • VBW 300 kHz Mode :	Sweep	
●1Rm Max		м	1[1]	-67.56 dBm 926.040 kHz
0 dBm	868 dBm			
-10 dBm				
-20 dBm				
-30 dBm	2 -32.868 dBm			
-40 dBm				
-50 dBm				
-60 dBm				
th dBmatter	and a faither of a diff. In	Harrison and the local as a product of product of the test of		lindek stat kisat i jing as sedara ta ta daki
-80 dBm	uterand period of the left of	Consects Sector Distances and Distances	it and construction into an international states and and the second states of the second stat	n belans der eller i Lytheologing schrieben enser at performen
CF 15.0045 MHz		32001 pts		Span 29.991 MHz



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

Channel 11: 2.462 GHz:

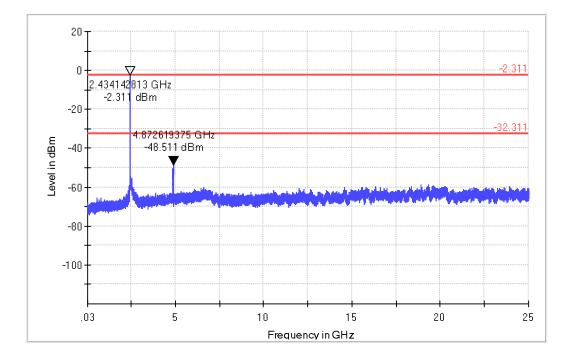
				×
Spectrum	Spectrum 3	Spectrum 4 S	Spectrum 2 🛛 🗴	
Ref Level 10.04 Att		dB 🖷 RBW 100 kHz ms 🖷 VBW 300 kHz Mode	Sweep	(
1Rm Max				
		M	1[1]	-67.72 dBn 905.420 kH
0 dBm D1 -0	.178 dBm			
-10 dBm				
-20 dBm				
-30-dBmD	2 -30.178 dBm			
-40 dBm				
-50 dBm				
-60 dBm				
M1 TridBm			day diam'r ffiniad	
		الم المراجع المراجع المراجع والمراجع عن من المراجع المراجع المراجع المراجع ومراجع الألي من المراجع المراجع المراجع والمراجع والمراجع ومن المراجع والمراجع والمراجع والمراجع المراجع والمراجع المراجع وا	and the state of t	out, states topolo, as possibly as a
-80 dBm	an or random second of a difference of the	an and the second states in the second states in the second states and the second states in the second states and th	heightenplyssing	ինչերնեն ու ենթանի հեն ու նկերություն։
CF 15.0045 MHz		32001 pts		Span 29.991 MHz



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

802.11n(HT20) mode with 6.5Mbps data rate Channel 1: 2.412GHz:

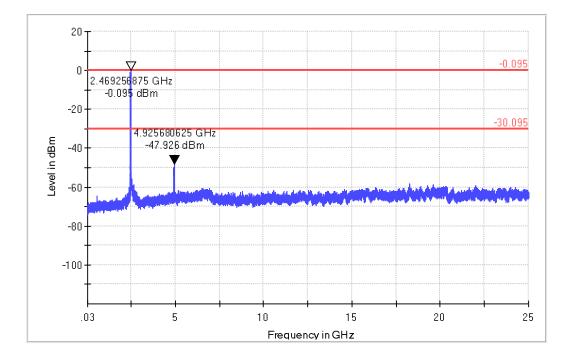
					
Spectrum	Spectrum 3	Spectrum 4	Spectrum 2	2 🕱	(The second seco
RefLevel 10.00 Att : DC		dB 💿 RBW 100 kHz ns 💿 VBW 300 kHz			
●1Rm Max			M1[1]		-67.47 dBm 660.820 kHz
	155 dBm				
-10 dBm					
-30 dBm					
-40 dBm	2 -34.155 dBm				
-50 dBm					
-60 dBm					
and an an an and the stand	danagen <mark>billing bilang big bagan biga</mark> Ing mengang billing bilang bing panak dal		ha ga da ya katif () tana a ta an da yi kuta katif tina na Manana katina katif yi katif ya katif yi katif yi katif yi katif yi katif ya katif ya katif ya katif ya katif y	^{da} (karadiki Markada julika ^{Ma} rada markada julika julika	in face, the former of the forme
-oo ubiii					
CF 15.0045 MHz		32001	pts		Span 29.991 MHz



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

Channel 6: 2.437GHz:

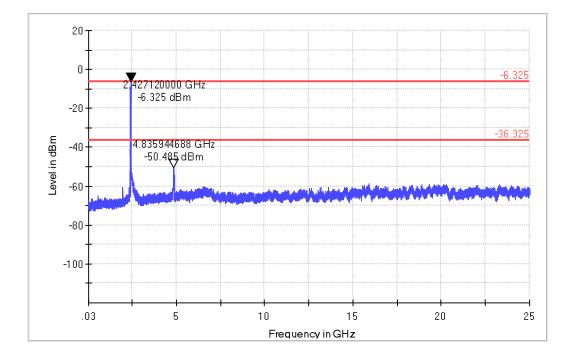
Spectrum	Spectrum 3	Spectrum 4	Spectrum :	2 🗶		
Ref Level 10.00 Att DC		00 dB ● RBW 100 kH 2.1 ms ● VBW 300 kH				(=
€1Rm Max						
			M1[1]			67.28 dBm 29190 MHz
0 dBm	.311 dBm					
-10 dBm						
20 dBm						
-30 dBmD	2 -32.311 dBm					
-40 dBm						
-50 dBm						
-60 dBm						
	an tradicional distantia da constitu	- India di Andra da ang kanangana ang	International States	he sult		
and the second states in the second sec	success of the second states o	Standard Construction of the State of the St	الموسط والمور والمسترك ومسمق والرواسي والمعر والمراجع		lighter of a literation data for an about the literation	Sity for the standard of the Count of the standard of the st
-80 dBm						
CF 15.0045 MHz		3200	1 pts	I	Span 29	0.991 MHz



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

Channel 11:2.462 GHz:

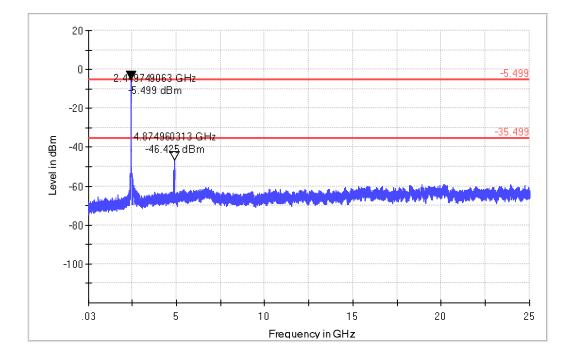
Spectrum	Spectrum 3	🗴 Sp	ectrum 4	× s	pectrum	2 X		
Ref Level 10.00 Att :		00 dB 🛑 RI 2.1 ms 🛑 V			Sweep			
●1Rm Max●2Pk M	ax							
				М	1[1]			66.61 dBm 18.540 kHz
0 dBmD1 -0.	095 dBm							
-10 dBm								
-20 dBm								
	2 -30.095 dBm							
-40 dBm								
-50 dBm								
-60 dBm								
Malater and Angle and	hands the providence of	Martin Martin	ulula (parti land	Alley He glaran		Martine Automat	and a strategy light	and the production
-80 dBm	ى يەلغا (لەي يەر بىلەيتە يىلەيلىغ قىيار. 1	and the second second second	n an an gan da gan da sa	and the second	ha seditar a se an		an a	Aland bolindi (1996-1944)
CF 15.0045 MHz			3200	1 pts			Span 29	9.991 MHz



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

802.11n(HT40) mode with 13.5Mbps data rate Channel 3: 2.422GHz:

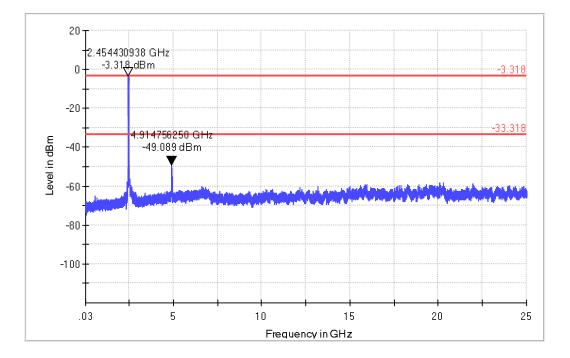
Spectrum	Spectrum 3 🛛 🗴	Spectrum 4	Spectrum 2 🛛 🔊	
RefLevel 4.00 Att 2 DC			de Sweep	
●1Rm Max				
0 dBm			M1[1]	-67.11 dBm 3.505190 MHz
-10 dBm	.325 dBm			
-20 dBm				
-30 dBm				
-40 dBm	2 -36.325 dBm			
-50 dBm				
-60 dBm				
he dem to the d	hadalah di sana di pata pada di sa ta	والمارو يقار والمراجع والمراجع والمراجع والمراجع		I the officient and the state of the state o
-80 dBm	tydy atolicy skops of this tradicise in a first position.	an a		alf the fidge attraction of the fitter of the state of the
-90 dBm				
CF 15.0045 MHz	1	32001 pts		Span 29.991 MHz



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

Channel 6: 2.437GHz:

								-
Spectrum	Spectrum 3	× SI	ectrum 4	× s	pectrum :	2 🗶		
Ref Level 4.00	dBm Offset 1.	00 dB 🔵 RE	3W 100 kHz					
Att 2 DC	0 dB SWT 32	2.1 ms 👄 VI	3W 300 kHz	Mode S	weep			
∋1Rm Max		-		-				
0 dBm				M	1[1]			68.18 dBm 75.430 kHz
-10 dBm	499 dBm							
-20 dBm								
-30 dBm								
-40 dBm	2 -35.499 dBm							
-50 dBm								
-60 dBm								
M1 MidBm-Maria	and the shelf of the state of the	s di sulla i s	ate catility of a	LIN DUNIE	the thread to a	u		
-80 dBm	anian (againta la angaintean angain) Ing panangan ang pang pang pang pang pang	ingelangen gerief	ing a supervision of the subscript of the supervision of the supervisi	adala di suma di suma Adala di superiori di superiori	A STREET OF	alanda panah Manuarpané	el huerre de herre plans Gebre angere en gegreie	alayddallyganayd (dina. Ynganariganayaaniya
-90 dBm								
CF 15.0045 MHz			3200	1 pts			Span 29	9.991 MHz



In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

Spectrum X Spectrum 3 Spectrum 4 Spectrum 2 Ref Level 4.00 dBm Att 20 dB Mode Sweep DC ⊖1Rm Max -67.27 dBm /39.540 kHz M1[1] 0 dBm D1 -2.318 dBm -10 dBm -20 dBm--30 dBm--D2 -32.318 dBm--40 dBm -50 dBm -60 dBm the following -80 dBm -90 dBm 32001 pts Span 29.991 MHz CF 15.0045 MHz

Channel 9: 2.452 GHz:

In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

4.6 Out of Band Radiated Emissions

For out of band radiated emissions into Non-Restricted Frequency Bands were performed at a 3m separation distance to determine whether these emissions complied with the 20dB attenuation requirement.

- [×] Not required, since all emissions are more than 20dB below fundamental
- [] See attached data sheet

4.7 Radiated Emissions in Restricted Bands

Test Requirement:	FCC Part 15 C section 15.247				
	section 15.247: (d) In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).				
	Clause 5.5: Category I licence-exempt equipment is required to comply with the provisions in RSS-Gen with respect to emissions falling within restricted frequency bands. These restricted				

Intertek Report No.: 220923108GZU-001

TEST REPORT

	frequency bands are listed in RSS-Gen.
Test Method:	ANSI C63.10: Clause 11.12.1, 6.4, 6.5 and 6.6
Test Status: Test site:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. Measurement Distance: 3m (Semi-Anechoic Chamber)
Limit:	
	40.0 dBμV/m between 30MHz & 88MHz;
	43.5 dB μ V/m between 88MHz & 216MHz;
	46.0 dBμV/m between 216MHz & 960MHz;
Detector:	54.0 dB μ V/m above 960MHz. For Peak and Quasi-Peak value: RBW = 1 MHz for f \ge 1 GHz, 200 Hz for 9 kHz to 150 kHz
	9 kHz for 150 kHz to 30 MHz 120 kHz for 30 MHz to 1GHz VBW \ge RBW
	Sweep = auto
	Detector function = peak for $f \ge 1$ GHz, QP for $f < 1$ GHz Trace = max hold
	For AV value: RBW = 1 MHz for f \geq 1 GHz, 100 kHz for f < 1 GHz
	VBW=10 Hz
	Sweep = auto
Field Strength Calculation:	Trace = max hold
Tield Strength Calculation.	The field strength is calculated by adding the reading on the
	Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below: FS = RA + AF + CF - AG + PD + AV FS = RA + Correct Factor + AV
Where:	FS = Field Strength in dBμV/m RA = Receiver Amplitude (including preamplifier) in dBμV AF = Antenna Factor in dB CF = Cable Attenuation Factor in dB AG = Amplifier Gain in dB PD = Pulse Desensitization in dB AV = Average Factor in –dB Correct Factor = AF + CF – AG + PD
	In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example

Intertek Report No.: 220923108GZU-001

TEST REPORT

of the calculations, where the reading does not reflect the preamplifier gain, follows: FS = RA + AF + CF - AG + PD + AVAssume a receiver reading of 62.0 dBµV is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is $32 \text{ dB}\mu\text{V/m}$. $RA = 62.0 dB\mu V$ AF = 7.4 dB/mCF = 1.6 dB AG = 29.0 dB PD = 0 dBAV = -10 dBCorrect Factor = 7.4 + 1.6 - 29.0 + 0 = -20 dB $FS = 62 + (-20) + (-10) = 32 dB\mu V/m$

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. Only spurious emissions are permitted in any of the frequency bands listed below:

FCC	Part	15	C	section	15 247
FUU	rait	TO.	L	Section	13.247

MHz	MHz	MHz	GHz
$\begin{array}{c} 0.090 - 0.110 \\ 10.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 - 12.52025 \\ 12.57675 - 12.57725 \\ 13.36 - 13.41 \\ \end{array}$	16.42 - 16.423 $16.69475 - 16.69525$ $16.80425 - 16.80475$ $25.5 - 25.67$ $37.5 - 38.25$ $73 - 74.6$ $74.8 - 75.2$ $108 - 121.94$ $123 - 138$ $149.9 - 150.05$ $156.52475 -$ $156.52475 -$ 156.52525 $156.7 - 156.9$ $162.0125 - 167.17$ $167.72 - 173.2$ $240 - 285$ $322 - 335.4$	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	$\begin{array}{r} 4.5 - 5.15\\ 5.35 - 5.46\\ 7.25 - 7.75\\ 8.025 - 8.5\\ 9.0 - 9.2\\ 9.3 - 9.5\\ 10.6 - 12.7\\ 13.25 - 13.4\\ 14.47 - 14.5\\ 15.35 - 16.2\\ 17.7 - 21.4\\ 22.01 - 23.12\\ 23.6 - 24.0\\ 31.2 - 31.8\\ 36.43 - 36.5\end{array}$

Intertek Report No.: 220923108GZU-001

TEST REPORT

RSS-247 Clause 5.5

MHz
0.090 - 0.110
0.495 - 0.505
2.1735 - 2.1905
3.020 - 3.026
4.125 - 4.128
4.17725 - 4.17775
4.20725 - 4.20775
5.677 - 5.683
6.215 - 6.218
6.26775 - 6.26825
6.31175 - 6.31225
8.291 - 8.294
8.362 - 8.366
8.37625 - 8.38675
8.41425 - 8.41475
12.29 - 12.293
12.51975 - 12.52025
12.57675 - 12.57725
13.36 - 13.41
16.42 - 16.423
16.69475 - 16.69525
16.80425 - 16.80475
25.5 - 25.67
37.5 - 38.25
73 - 74.6
74.8 - 75.2
108 - 138

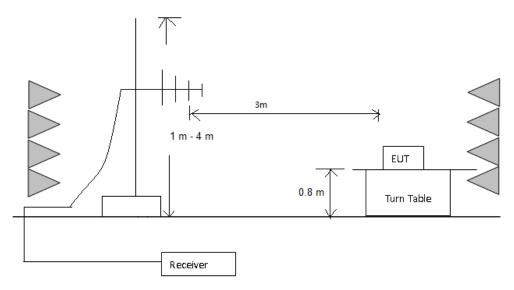
MHz
149.9 - 150.05
156.52475 - 156.52525
156.7 - 156.9
162.0125 - 167.17
167.72 - 173.2
240 - 285
322 - 335.4
399.9 - 410
608 - 614
960 - 1427
1435 - 1626.5
1645.5 - 1646.5
1660 - 1710
1718.8 - 1722.2
2200 - 2300
2310 - 2390
2483.5 - 2500
2655 - 2900
3260 - 3267
3332 - 3339
3345.8 - 3358
3500 - 4400
4500 - 5150
5350 - 5460
7250 - 7750
8025 - 8500

GHz						
9.0 - 9.2						
9.3 - 9.5						
10.6 - 12.7						
13.25 - 13.4						
14.47 - 14.5						
15.35 - 16.2						
17.7 - 21.4						
22.01 - 23.12						
23.6 - 24.0						
31.2 - 31.8						
36.43 - 36.5						
Above 38.6						

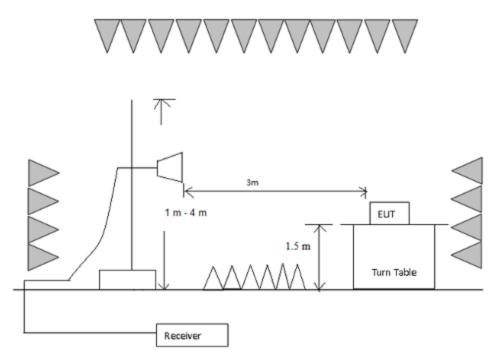
* Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licenceexempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Intertek Report No.: 220923108GZU-001

TEST REPORT


Test Configuration:

1) 9 kHz to 30 MHz emissions:


2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 40 GHz emissions:

Test Procedure:

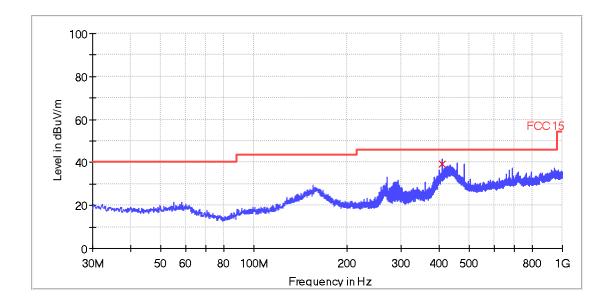
Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2010 was used to perform radiated emission test above 1 GHz.

The receiver was scanned from 9 kHz to 25 GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

Used Test Equipment List:

3m Semi-Anechoic Chamber, EMI Test Receiver (9 kHz~7 GHz), Signal and Spectrum Analyzer (10 Hz~40 GHz), Loop antenna (9 kHz-30 MHz). TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX), Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX) and High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX). Refer to Clause 5 Test Equipment List for details.

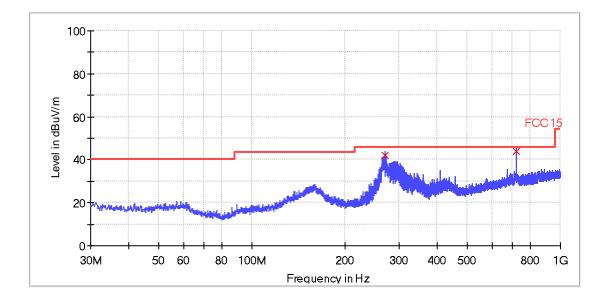
802.11b mode with 1Mbps data rate


9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Test at Channel 1 (2.412 GHz) in transmitting status

30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement

Vertical:


QP

<u></u>						
Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
408.000000	39.1	120.000	۷	17.8	6.9	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

Horizontal:

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
269.960000	42.1	120.000	н	14.1	3.9	46.0
719.960000	43.9	120.000	н	23.8	2.1	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

1~25 GHz Radiated Emissions.

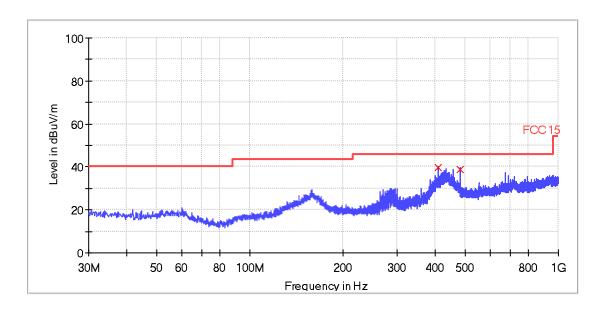
PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBµV/m)	(dBµV/m)	
1007.5	64.5	-14.5	50.0	74	V
2110.0	56.5	-9.2	47.3	74	V
4823.5	66.9	-1.1	65.8	74	V
1007.5	63.1	-14.5	48.6	74	Н
3167.5	53.6	-5.3	48.3	74	Н
4823.5	64.6	-1.1	63.5	74	Н

AV Measurement:

Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBµV/m)	(dBµV/m)	
1007.5	-	-14.5	-	54	V
2110.0	-	-9.2	-	54	V
4823.5	52.8	-1.1	51.7	54	V
1007.5	-	-14.5	-	54	Н
3167.5	-	-5.3	-	54	Н
4823.5	51.6	-1.1	50.5	54	Н

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.


Intertek Report No.: 220923108GZU-001

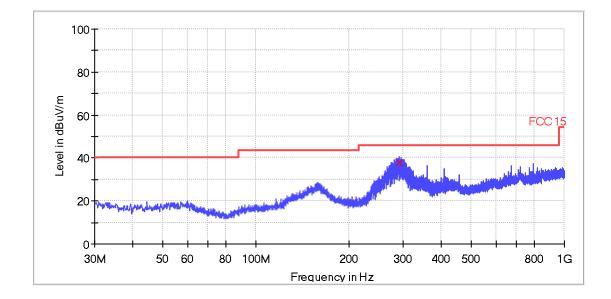
TEST REPORT

Test at Channel 6 (2.437 GHz) in transmitting status

30 MHz~1 GHz Radiated Emissions. Quasi-Peak Measurement

Vertical

QP


Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
408.000000	39.6	120.000	V	17.8	6.4	46.0
480.000000	38.6	120.000	V	19.5	7.4	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

Horizontal

QP

Frequency (MHz)	Quasi Peak	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK	Limit - QPK
()	(dBuV/ m)	()		(42)	(dB)	(dBuV/m)
291.720000	38.0	120.000	Н	14.9	8.0	46.0

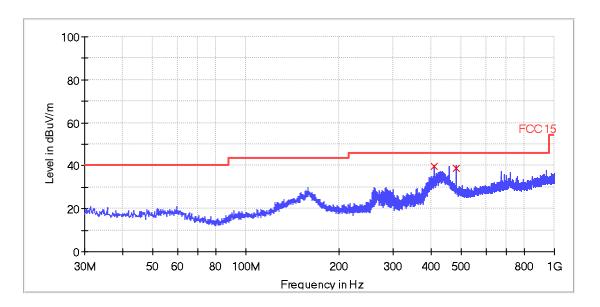
Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

1~25 GHz Radiated Emissions.

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level PK Limit		Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	64.2	-14.5	49.7	74	V
3167.5	52.3	-5.3	47.0	74	V
4874.5	62.9	-1.0	61.9	74	V
1007.5	62.9	-14.5	48.4	74	Н
3169.0	52.0	-5.3	46.7	74	Н
4874.5	60.8	-1.0	59.8	74	Н



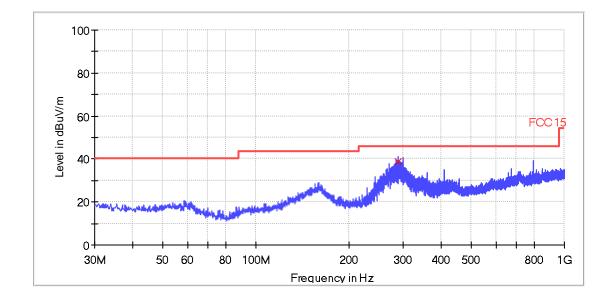
AV Measurement:

Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
3167.5	-	-5.3	-	54	V
4874.5	50.5	-1.0	49.5	54	V
1007.5	-	-14.5	-	54	Н
3169.0	-	-5.3	-	54	Н
4874.5	50.2	-1.0	49.2	54	Н

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded

Test at Channel 6 (2.462 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement Vertical

QP


Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
408.000000	39.5	120.000	v	17.8	6.5	46.0
480.000000	39.0	120.000	۷	19.5	7.0	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

Horizontal

QP

Frequency (MHz)	Quasi Peak (dBuV/	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
288.880000	m) 39.0	120.000	н	14.8	7.0	46.0
200.000000	39.0	120.000		14.0	7.0	40.0

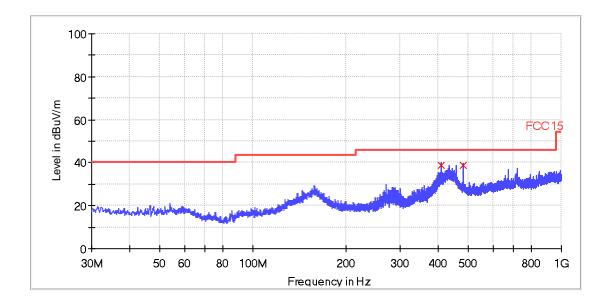
Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

1~25 GHz Radiated Emissions.

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	63.5	-14.5	49.0	74	V
3167.5	52.6	-5.3	47.3	74	V
4924.0	62.2	-0.9	61.3	74	V
1007.5	63.1	-14.5	48.6	74	Н
3167.5	52.7	-5.3	47.4	74	Н
4924.0	60.7	-0.9	59.8	74	Н


AV Measurement:

Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
3167.5	-	-5.3	-	54	V
4924.0	48.9	-0.9	48.0	54	V
1007.5	-	-14.5	-	54	Н
3167.5	-	-5.3	-	54	Н
4924.0	49.1	-0.9	48.2	54	Н

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

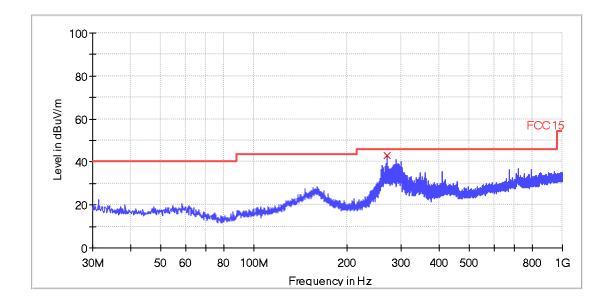
802.11g mode with 6Mbps data rateTest at Channel 1 (2.412 GHz) in transmitting status30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
408.000000	39.0	120.000	V	17.8	7.0	46.0
480.000000	38.7	120.000	V	19.5	7.3	46.0

Remark:


- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

Intertek Report No.: 220923108GZU-001

TEST REPORT

Horizontal

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
269.960000	42.9	120.000	н	14.1	3.1	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)

3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

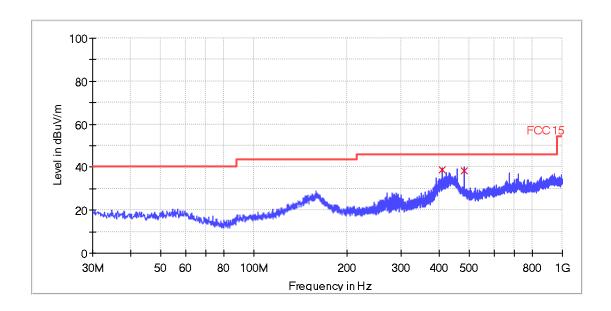
1~25 GHz Radiated Emissions.

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	64.4	-14.5	49.9	74	V
3167.5	52.6	-5.3	47.3	74	V
4822.0	53.1	-1.1	52.0	74	V
1007.5	62.4	-14.5	47.9	74	Н
3169.0	52.9	-5.3	47.6	74	Н
4819.0	51.6	-1.1	50.5	74	Н

AV Measurement:

	Frequency	PK Reading	Correction	AV Emission	AV Limit	Antenna
--	-----------	------------	------------	-------------	----------	---------

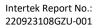


	Level	factors	Level		polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
3167.5	-	-5.3	-	54	V
4822.0	-	-1.1	-	54	V
1007.5	-	-14.5	-	54	Н
3169.0	-	-5.3	-	54	Н
4819.0	-	-1.1	-	54	Н

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

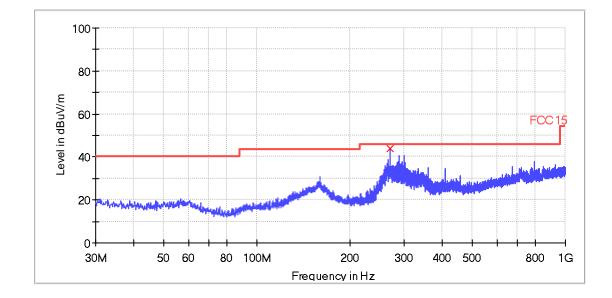
Test at Channel 6 (2.437GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical



QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
408.000000	38.7	120.000	V	17.8	7.3	46.0
480.000000	38.4	120.000	۷	19.5	7.7	46.0


Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

Horizontal

QP

G I						
Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
269.960000	43.8	120.000	н	14.1	2.2	46.0

Remark:

1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)

2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)

3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	64.9	-14.5	50.4	74	V
3167.5	51.1	-5.3	45.8	74	V
4877.5	49.6	-1.0	48.6	74	V
1007.5	62.1	-14.5	47.6	74	Н
3167.5	53.6	-5.3	48.3	74	Н
4873.0	52.3	-1.0	51.3	74	Н

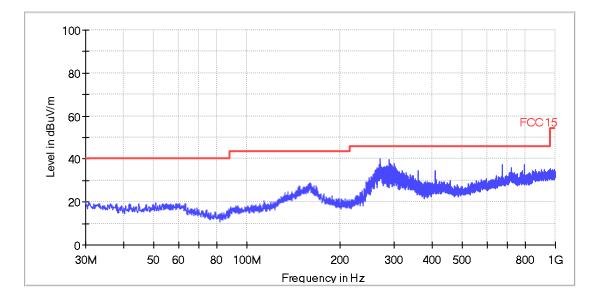
AV Measurement:

Frequency	PK Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V

3167.5	-	-5.3	-	54	V
4877.5	-	-1.0	-	54	V
1007.5	-	-14.5	-	54	Н
3167.5	-	-5.3	-	54	Н
4873.0	-	-1.0	-	54	Н

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

Test at Channel 11 (2.462 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement


Vertical

All emission levels are more than 6 dB below the limit.

Horizontal

All emission levels are more than 6 dB below the limit.

1~25 GHz Radiated Emissions.

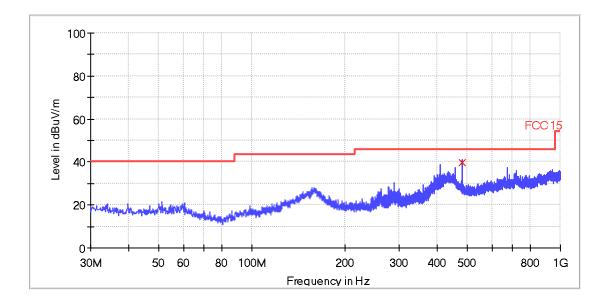
PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	63.3	-14.5	48.8	74	V
3167.5	54.0	-5.3	48.7	74	V
4916.5	49.9	-1.0	48.9	74	V
1007.5	62.4	-14.5	47.9	74	Н
3167.5	51.8	-5.3	46.5	74	Н
4925.5	47.8	-0.9	46.9	74	Н

AV Measurement:

Av weasureme	int:				
Frequency	PK Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
3167.5	-	-5.3	-	54	V
4916.5	-	-1.0	-	54	V
1007.5	-	-14.5	-	54	Н
3167.5	-	-5.3	-	54	Н
4925.5	-	-0.9	-	54	Н

Intertek Report No.: 220923108GZU-001


TEST REPORT

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

802.11n (HT20) mode with 6.5Mbps data rate Test at Channel 1 (2.412 GHz) in transmitting status

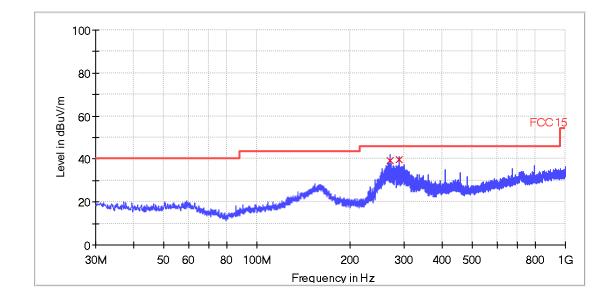
30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
480.000000	39.5	120.000	۷	19.5	6.5	46.0

Remark:


1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)

2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)

3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

Horizontal

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
269.960000	39.4	120.000	Н	14.1	6.7	46.0
288.880000	39.6	120.000	Н	14.8	6.4	46.0

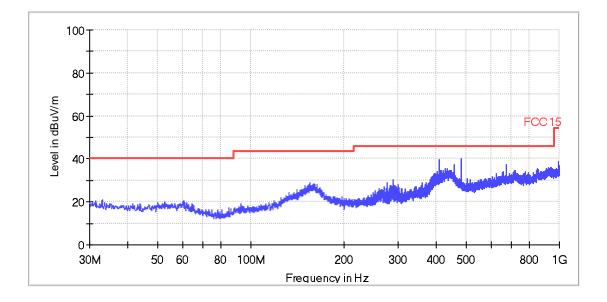
Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

1~25 GHz Radiated Emissions.

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	63.5	-14.5	49.0	74	V
3169.0	51.4	-5.3	46.1	74	V
4825.0	50.3	-1.1	49.2	74	V
1007.5	61.8	-14.5	47.3	74	Н
3167.5	53.5	-5.3	48.2	74	Н
4825.0	52.7	-1.1	51.6	74	Н

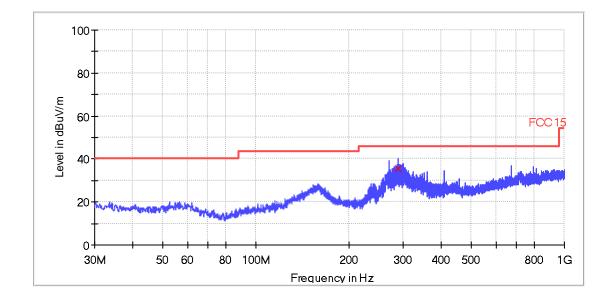

AV Measurement:

Frequency	PK Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
3169.0	-	-5.3	-	54	V
4825.0	-	-1.1	-	54	V
1007.5	-	-14.5	-	54	Н
3167.5	-	-5.3	-	54	Н
4825.0	-	-1.1	-	54	Н

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

Test at Channel 6 (2.437 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical



All emission levels are more than 6 dB below the limit.

Horizontal

QP

Frequency (MHz)	Quasi Peak (dBuV/	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
288.800000	m) 35.5	120.000	Н	14.7	10.5	46.0

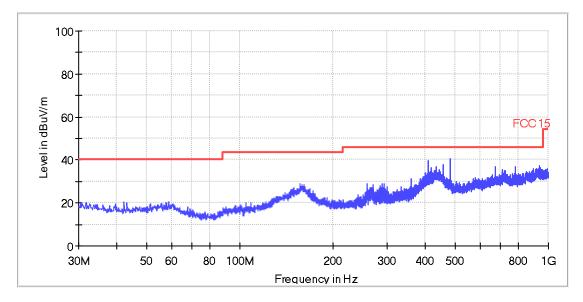
Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

1~25 GHz Radiated Emissions.

PK Measurement:

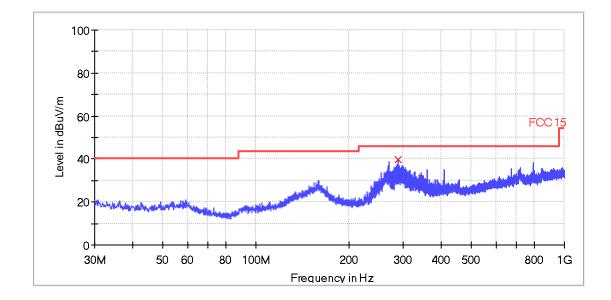
Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	63.9	-14.5	49.4	74	V
3167.5	51.9	-5.3	46.6	74	V
4873.0	52.4	-1.0	51.4	74	V
1007.5	61.8	-14.5	47.3	74	Н
3167.5	53.5	-5.3	48.2	74	Н
4873.0	52.1	-1.0	51.1	74	Н


AV Measurement:

Frequency	PK Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
3167.5	-	-5.3	-	54	V
4873.0	-	-1.0	-	54	V
1007.5	-	-14.5	-	54	Н
3167.5	-	-5.3	-	54	Н
4873.0	-	-1.0	-	54	Н

Remark: When Peak emission level was below AV limit, the AV emission level did not be record.

Test at Channel 11 (2.462 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement


Vertical

All emission levels are more than 6 dB below the limit.

Horizontal

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
288.880000	39.7	120.000	н	14.8	6.3	46.0

Remark:

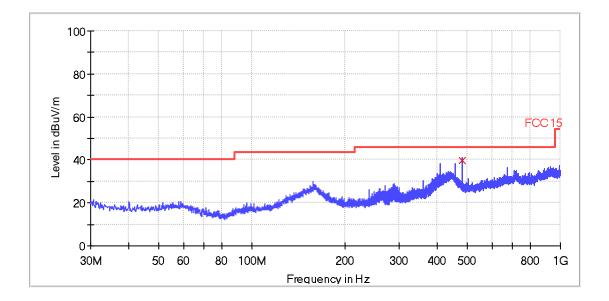
- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

1~25 GHz Radiated Emissions.

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	64.1	-14.5	49.6	74	V
3167.5	51.2	-5.3	45.9	74	V
4930.0	48.3	-0.9	47.4	74	V
1007.5	61.8	-14.5	47.3	74	Н
3167.5	53.6	-5.3	48.3	74	Н
4924.0	48.6	-0.9	47.7	74	Н

AV Measurement:


Frequency	PK Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
3167.5	-	-5.3	-	54	V
4930.0	-	-0.9	-	54	V
1007.5	-	-14.5	-	54	Н
3167.5	-	-5.3	-	54	Н
4924.0	-	-0.9	-	54	Н

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

802.11n (HT40) mode with 13.5 Mbps data rate

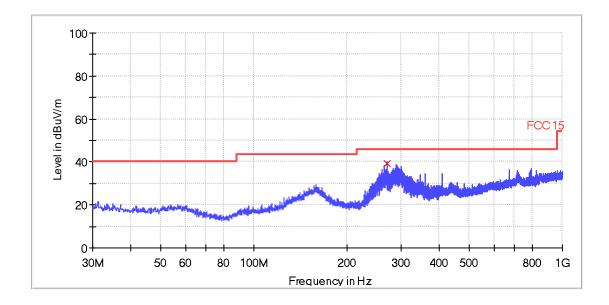
Test at Channel 3 (2.422 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
480.000000	39.7	120.000	۷	19.5	6.3	46.0

Remark:


- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

Intertek Report No.: 220923108GZU-001

TEST REPORT

Horizontal

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
269.960000	39.3	120.000	Н	14.1	6.7	46.0

Remark:

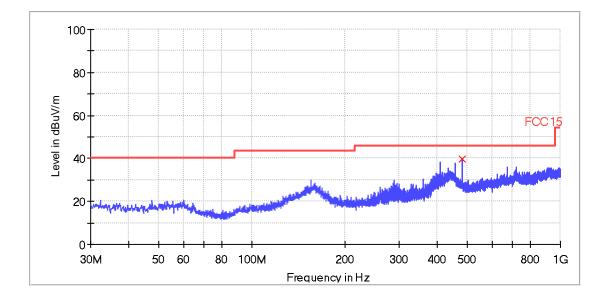
- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)

3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

1~25 GHz Radiated Emissions.

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	65.9	-14.5	51.4	74	V
2969.5	54.1	-6.1	48.0	74	V
4841.5	49.6	-1.1	48.5	74	V
1007.5	61.8	-14.5	47.3	74	Н
3169.0	51.8	-5.3	46.5	74	Н
4835.5	49.5	-1.1	48.4	74	Н


AV Measurement:

Frequency	PK Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
2969.5	-	-6.1	-	54	V
4841.5	-	-1.1	-	54	V
1007.5	-	-14.5	-	54	Н
3169.0	-	-5.3	-	54	Н
4835.5	-	-1.1	-	54	Н

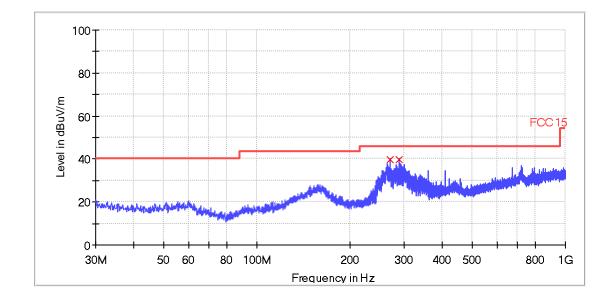
Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

Test at Channel 6 (2.437 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
480.000000	39.7	120.000	v	19.5	6.3	46.0


Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

Horizontal

QP

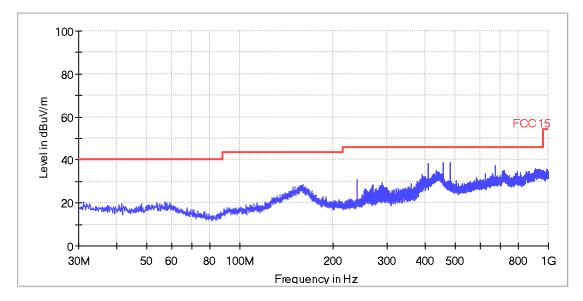
Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
269.960000	39.8	120.000	Н	14.1	6.2	46.0
288.880000	39.5	120.000	Н	14.8	6.5	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

1~25 GHz Radiated Emissions.

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	65.9	-14.5	51.4	74	V
2968.0	52.6	-6.1	46.5	74	V
4873.0	48.8	-1.0	47.8	74	V
1007.5	61.8	-14.5	47.3	74	Н
3167.5	49.9	-5.3	44.6	74	Н
4865.5	46.7	-1.0	45.7	74	Н

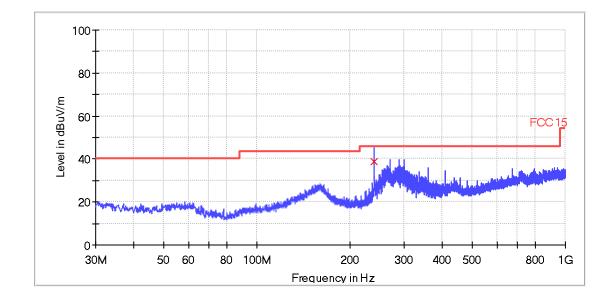

AV Measurement:

Frequency	PK Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
2968.0	-	-6.1	-	54	V
4873.0	-	-1.0	-	54	V
1007.5	-	-14.5	-	54	Н
3167.5	-	-5.3	-	54	Н
4865.5	-	-1.0	-	54	Н

Remark: When Peak emission level was below AV limit, the AV emission level did not be record.

Test at Channel 11 (2.452 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical



All emission levels are more than 6 dB below the limit.

Horizontal

QP

Frequency (MHz)	Quasi Peak (dBuV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
239.920000	38.8	120.000	н	13.4	7.3	46.0

Remark:

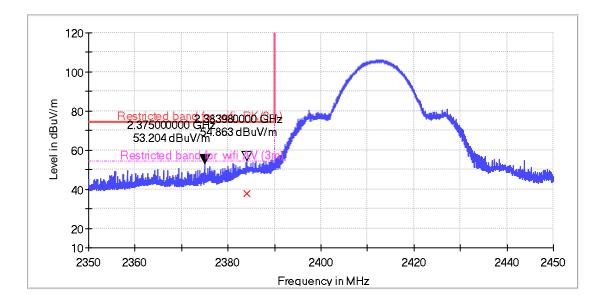
- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

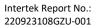
1~25 GHz Radiated Emissions.

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	63.2	-14.5	48.7	74	V
3167.5	51.3	-5.3	46.0	74	V
4894.0	47.5	-1.0	46.5	74	V
1007.5	62.2	-14.5	47.7	74	Н
1231.0	58.6	-13.3	45.3	74	Н
4903.0	48.1	-1.0	47.1	74	Н

AV Measurement:

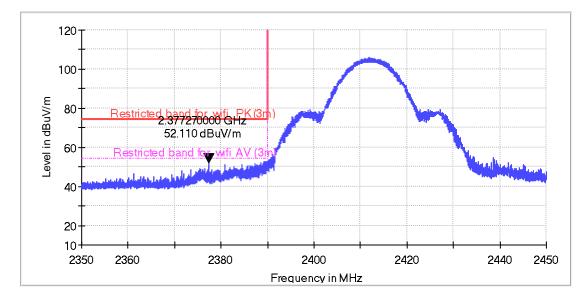
Frequency	PK Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1007.5	-	-14.5	-	54	V
3167.5	-	-5.3	-	54	V
4894.0	-	-1.0	-	54	V
1007.5	-	-14.5	-	54	Н
1231.0	-	-13.3	-	54	Н
4903.0	-	-1.0	-	54	Н


Remark: When Peak emission level was below AV limit, the AV emission level did not be record.


Band Edges Emission

802.11b mode with 1Mbps data rate

Test at Channel 1 (2.412 GHz) in transmitting status


Vertical

Horizontal

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2377.3	60.3	-8.2	52.1	74	Н
2375.0	61.4	-8.2	53.2	74	V
2384.0	63.1	-8.2	54.9	74	V

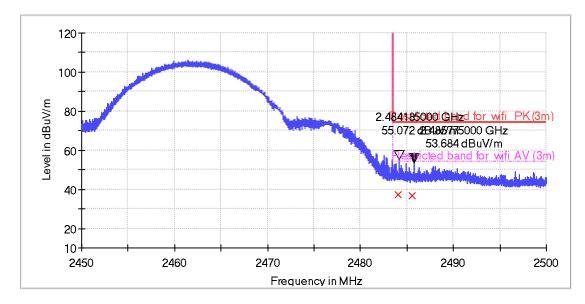
AV Measurement:

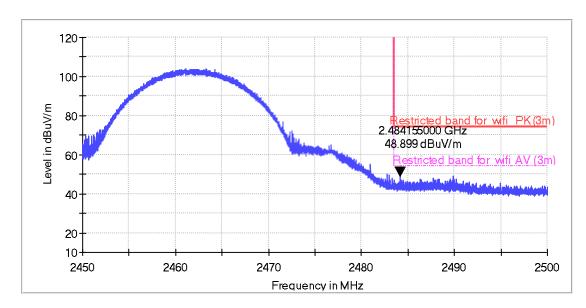
Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2377.3	-	-8.2	-	54	Н
2375.0	-	-8.2	-	54	V
2384.0	46.2	-8.2	38.0	54	V

Remark:

1. When Peak emission level was below AV limit, the AV emission level did not be recorded.

2. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)


3. Peak/Aveage (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)


TEST REPORT

Test at Channel 11 (2.462 GHz) in transmitting status

Vertical

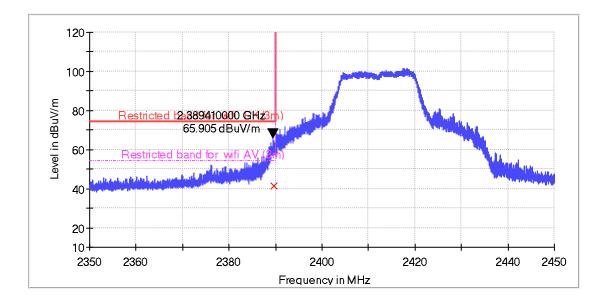
Horizontal

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	•
2484.2	56.7	-7.8	48.9	74	Н
2484.2	62.9	-7.8	55.1	74	V
2485.8	61.5	-7.8	53.7	74	V

AV Measurement:

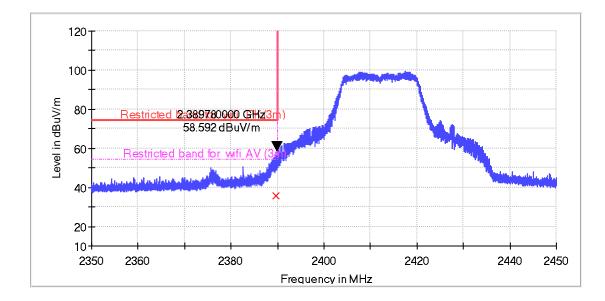
Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2484.2	-	-7.8	-	54	Н
2484.2	45.0	-7.8	37.2	54	V
2485.8	-	-7.8	-	54	V

Remark:


1. When Peak emission level was below AV limit, the AV emission level did not be recorded.

2. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)

3. Peak/Aveage (dBµV/m) = Corr. (dB) + Read Level (dBµV)


802.11g mode with 6Mbps data rate Test at Channel 1 (2.412 GHz) in transmitting status

Vertical

Horizontal

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2389.8	66.8	-8.2	58.6	74	Н
2389.4	74.1	-8.2	65.9	74	V

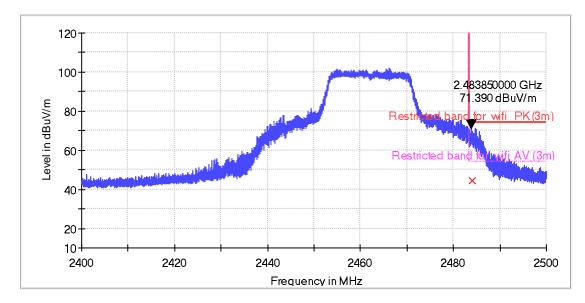
AV Measurement:

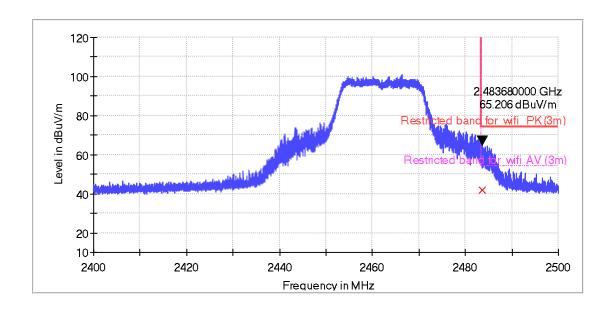
Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2389.8	43.7	-8.2	35.5	54	Н
2389.4	49.5	-8.2	41.3	54	V

Remark:

1. When Peak emission level was below AV limit, the AV emission level did not be recorded.

2. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)


3. Peak/Aveage (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)


TEST REPORT

Test at Channel 11 (2.462 GHz) in transmitting status

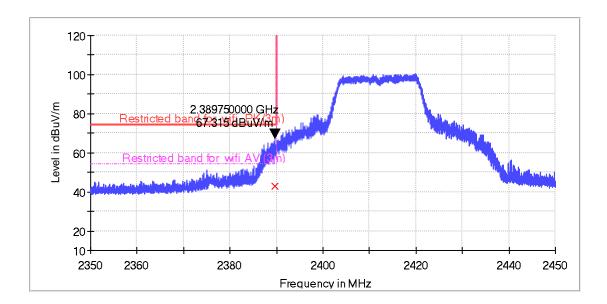
Vertical

Horizontal

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2483.7	73.0	-7.8	65.2	74	Н
2483.9	79.2	-7.8	71.4	74	V

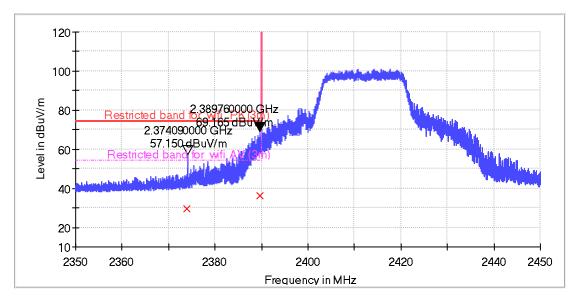
AV Measurement:

Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2483.7	49.5	-7.8	41.7	54	Н
2483.9	52.1	-7.8	44.3	54	V


Remark:

1. When Peak emission level was below AV limit, the AV emission level did not be recorded.

2. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)


3. Peak/Aveage (dBµV/m) = Corr. (dB) + Read Level (dBµV)

802.11n (HT20) mode with 6.5 Mbps data rate Test at Channel 1 (2.412 GHz) in transmitting status Vertical

Horizontal

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2374.0	65.4	-8.2	57.2	74	Н
2389.8	77.4	-8.2	69.2	74	Н
2389.8	75.5	-8.2	67.3	74	V

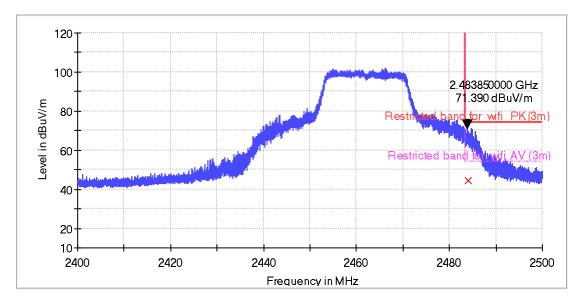
AV Measurement:

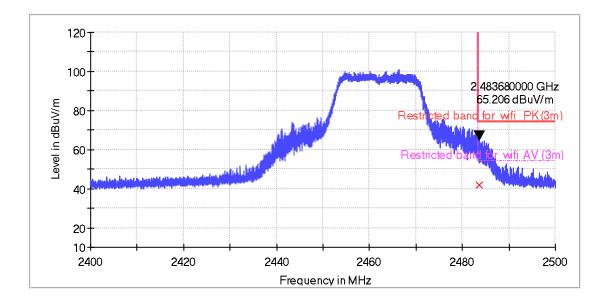
Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2374.0	37.9	-8.2	29.7	54	Н
2389.8	46.0	-8.2	37.8	54	Н
2389.8	50.9	-8.2	42.7	54	V

Remark:

1. When Peak emission level was below AV limit, the AV emission level did not be recorded.

2. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)


3. Peak/Aveage (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)


TEST REPORT

Test at Channel 11 (2.462 GHz) in transmitting status

Vertical

Horizontal

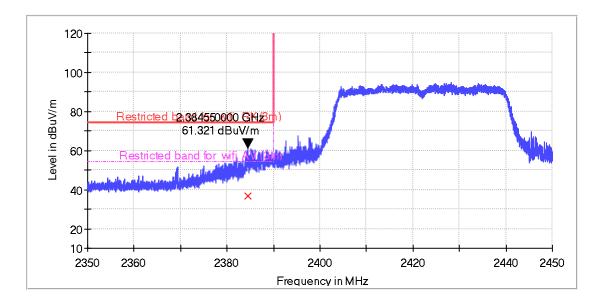
Frequency	PK Reading	Correction	PK Emission	PK Limit	Antenna
Frequency	Level	factors	Level		polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2483.7	73.0	-7.8	65.2	74	Н
2483.9	79.2	-7.8	71.4	74	V

AV Measurement:

Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2483.7	49.5	-7.8	41.7	54	Н
2483.9	52.1	-7.8	44.3	54	V

Remark:

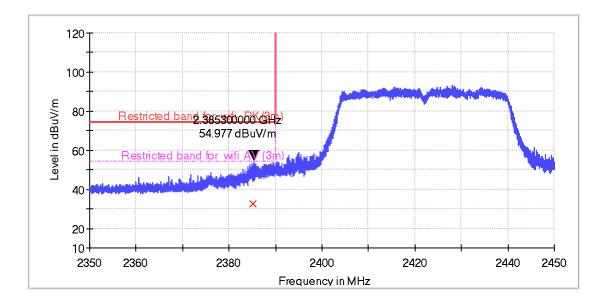
1. When Peak emission level was below AV limit, the AV emission level did not be recorded.


2. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)

3. Peak/Aveage (dBµV/m) = Corr. (dB) + Read Level (dBµV)

802.11n (HT40) mode with 13.5 Mbps data rate

Test at Channel 1 (2.422 GHz) in transmitting status


Vertical

TEST REPORT

Horizontal

PK Measurement:

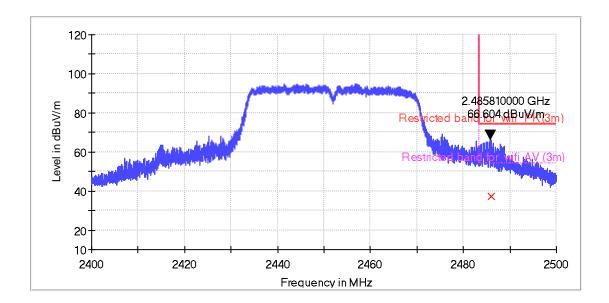
Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	
(MHz)	(dBuV) (dB) (dBuV/m)		(dBuV/m)		
2385.3	63.2	-8.2	55.0	74	Н
2384.6	69.5	-8.2	61.3	74	V

AV Measurement:

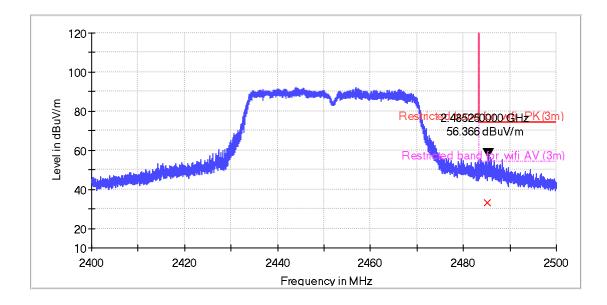
Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2385.3	40.8	-8.2	32.6	54	Н
2384.6	44.7	-8.2	36.5	54	V

Remark:

1. When Peak emission level was below AV limit, the AV emission level did not be recorded.


2. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)

3. Peak/Aveage (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)


TEST REPORT

Test at Channel 11 (2.452 GHz) in transmitting status Vertical

Horizontal

PK Measurement:

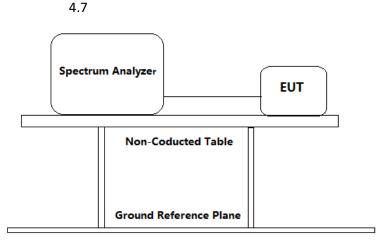
Frequency	PK Reading Level	Correction factors	PK Emission Level PK Limit p		Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2485.3	64.2	-7.8	56.4	74	Н
2485.8	74.4	-7.8	66.6	74	V

AV Measurement:

Frequency	AV Reading Level	Correction factors	AV Emission Level	AV Limit	
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2485.3	41.2	-7.8	33.4	54	Н
2485.8	45.1	-7.8	37.3	54	V

Remark:

1. When Peak emission level was below AV limit, the AV emission level did not be recorded.


2. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)

3. Peak/Aveage (dBµV/m) = Corr. (dB) + Read Level (dBµV)

4.8 Band Edges Requirement

Test Requirement:	FCC Part 15 C section 15.247
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.
Frequency Band:	2400 MHz to 2483.5 MHz
Test Method:	ANSI C63.10: Clause 11.11 and 11.13
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.
Test Configuration:	For Band Edges Emission in Radiated mode, please refer to clause

Test Procedure: For Band Edges Emission in Radiated mode, Please refer to clause 4.7

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.

a) Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

b) Set the center frequency and span to encompass frequency range to be measured.

- c) RBW = 100 kHz.
- d) VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto.
- g) Trace mode = max hold.

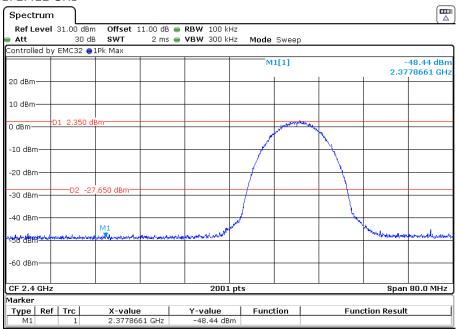
TEST REPORT

- h) Allow sweep to continue until the trace stabilizes (required measurement time may increase for low-duty-cycle applications).
- i) For radiated Band-edge emissions within a restricted band and within 2 MHz of an authorized band edge, integration method is considered.
- 2. Repeat until all the test status is investigated.
- 3. Report the worst case.

Used Test Equipment List:

3m Semi-Anechoic Chamber, EMI Test Receiver (9 kHz~7 GHz), Signal and Spectrum Analyzer (10 Hz~40 GHz), Loop antenna (9 kHz-30 MHz). TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX), Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX) and High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX). Refer to Clause 5 Test Equipment List for details.

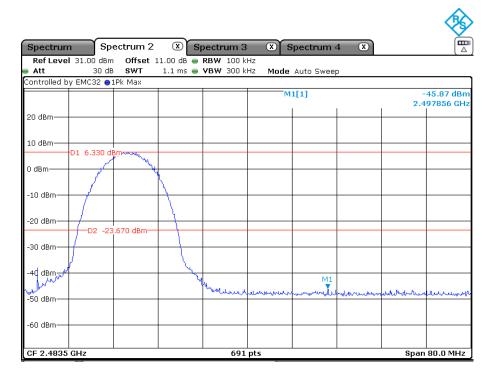
Test result with plots as follows: For conduct mode:


The band edges was measured and recorded Result:

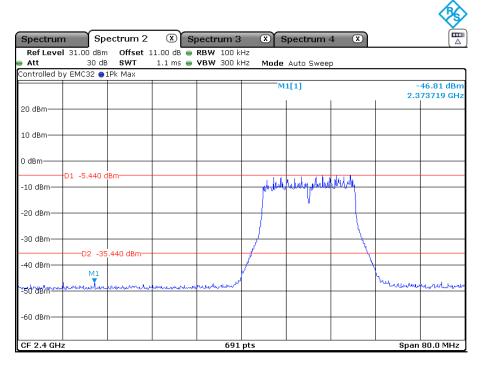
The Lower Edges attenuated more than 20dB.

The Upper Edges attenuated more than 20dB.

Result plots as follows:


802.11b mode with 1 Mbps data rate Channel1: 2.412 GHz

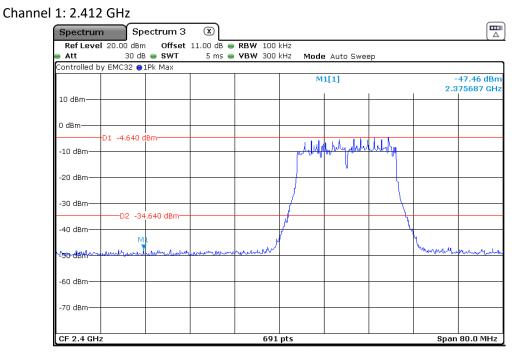
Channel 11: 2.462 GHz



TEST REPORT

802.11g mode with 6 Mbps data rate

Channel1: 2.412 GHz

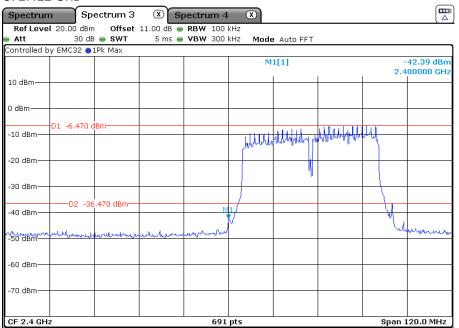


TEST REPORT

Channel 11: 2.462 GHz

Spectrun	n Sp	ectrum 2	🗴 SI	bectrum 3	×	Spectrum -	4 🗶		
Ref Leve	31.00 dBm	Offset	11.00 dB 🔵	RBW 100 k	Hz				
Att	30 dE		1.1 ms 👄	VBW 300 k	Hz Mode	Auto Swee	p		
Controlled b	у ЕМСЗ2 😑	1Pk Max							
					м	1[1]			46.38 dBm 86394 GHz
20 dBm								2.1	00051 0112
10 dBm									
0 40									
0 dBm	D1 -2.100 a	Bm	ALI N						
-10 dBm	philupsu	Mandlanmala	1906-19						
10 000		U							
-20 dBm—			+						
-30 dBm	1		L L						
-50 abin	D2 -32	.100 dBm—	1						
-40 dBm 🕇			<u> </u>						
al and the second			Wa	monder	M1				
-50 dBm				willing	Manuli	Allowhermore	hannan	- in manually	mohumulun
-60 dBm									
CF 2.4835	GHz			691	pts			Span	80.0 MHz

802.11n(HT20) mode with 6.5Mbps data rate

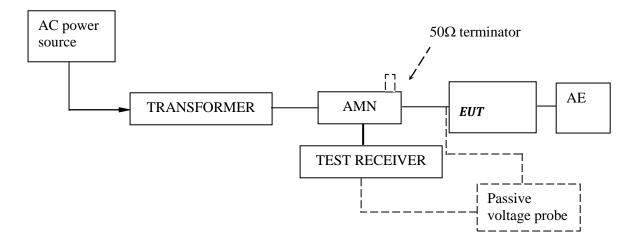

TEST REPORT

Channel	11:	2.462	GHz
Chunner		2.402	0112

Spectrum Spectrum 3	Spectrum 4	x	
Ref Level 20.00 dBm Offset	11.00 dB 🔵 RBW 100	kHz	X
Att 30 dB 👄 SWT	5 ms 👄 VBW 300	kHz – Mode Auto Swee	ib.
Controlled by EMC32 🔵 1Pk Max			
		M1[1]	-46.23 dBm 2.490215 GHz
10 dBm			
D1 -1.330 dBm	1kiAo		
-10 dBm			
-20 dBm			
-30 dBmD2 -31,330 dBm			
-40 dBm	<u> </u>		
and the work	"have well	M1	
-50 dBm	a connorm	and work and the work and the second	ihumaniumonanullunanana
-60 dBm-			
-70 dBm			
CF 2.4835 GHz	691	pts	Span 80.0 MHz

802.11n(HT40) mode with 13.5Mbps data rate

Channel 3: 2.422 GHz


TEST REPORT

Channel 9: 2.452 GHz

Spectrum Spectrum 3	Spectrum 4	1 🗴 Spectrum 2	8
RefLevel 20.00 dBm Offset Att 30 dB SWT	11.00 dB RBW 100 5 ms VBW 300		
Controlled by EMC32 1Pk Max	5 ms 🖶 VBW 300	kHz Mode Auto FFT	
		M1[1]	-34.84 dBm 2.473775 GHz
10 dBm			
0 dBm			
	blood Welling		
-20 dBm			
-30 dBm	M1		
um/ -50 dBm	Vilinow	www.www.www.www.www.	- My downly washing have not
-60 dBm			
-70 dBm			
CF 2.4835 GHz	691	l pts	Span 120.0 MHz

4.9 Conducted Emission Test

Test Configuration:

Test Setup and Procedure:

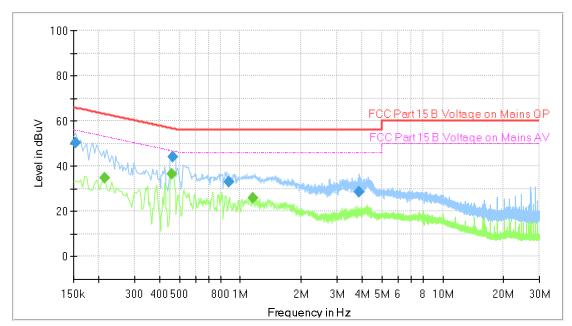
Test was performed according to ANSI C63.10 Clause 6.2. The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains

TEST REPORT

Network which provides a 50Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane (Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m


The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.

Test Data and Curve

At main terminal: Pass

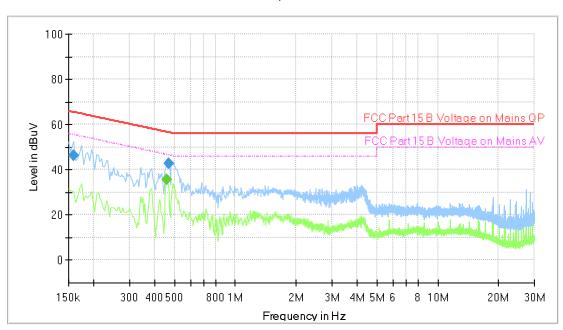
Tested Wire: Live

Operation Mode: transmitting mode

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.154000	50.43		65.78	15.35	1000.0	9.000	L1	ON	9.6
0.214000		34.86	53.05	18.19	1000.0	9.000	L1	ON	9.6
0.458000		36.43	46.73	10.30	1000.0	9.000	L1	ON	9.6
0.466000	43.95		56.59	12.64	1000.0	9.000	L1	ON	9.6
0.878000	33.15		56.00	22.85	1000.0	9.000	L1	ON	9.6
1.150000		25.91	46.00	20.09	1000.0	9.000	L1	ON	9.6
3.854000	28.75		56.00	27.25	1000.0	9.000	L1	ON	9.7


TEST REPORT

Remark:

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

Tested Wire: Neutral

Operation Mode: transmitting mode

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.158000	46.41		65.57	19.16	1000.0	9.000	L1	ON	9.6
0.458000		35.55	46.73	11.18	1000.0	9.000	L1	ON	9.6
0.470000	42.58		56.51	13.93	1000.0	9.000	L1	ON	9.6

Remark:

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBµV) = Corr. (dB) + Read Level (dBµV)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

5.0 Test Equipment List

Radiated Emission/Radio

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date (YYYY-MM-DD)	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m ³	ETS• LINDGRE N	2023-04-07	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	2023-11-15	1Y
EM031-03	Signal and Spectrum Analyzer (10 Hz~40 GHz)	R&S FSV40	R&S	2023-11-15	1Y
EM011-04	Loop antenna (9 kHz-30 MHz)	HFH2-Z2	R&S	2023-06-27	1Y
EM061-03	TRILOG Super Broadband test Antenna (30 MHz-1.5 GHz) (TX)	VULB 9161	SCHWARZBECK	2023-06-26	1Y
EM033-01	TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX)	VULB 9163	SCHWARZBECK	2023-10-25	1Y
EM033-02	Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX)	R&S HF907	R&S	2023-06-26	1Y
EM033-03	High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX)	R&S SCU-26	R&S	2023-04-16	1Y
EM033-04	High Frequency Antenna & preamplifier (26 GHz-40 GHz)	R&S SCU-40	R&S	2023-04-16	1Y
EM031-02-01	Coaxial cable(9 kHz-1 GHz)	N/A	R&S	2023-04-08	1Y
EM033-02-02	Coaxial cable(1 GHz-18 GHz)	N/A	R&S	2023-04-08	1Y
EM033-04-02	Coaxial cable(18 GHz~40 GHz)	N/A	R&S	2023-04-15	1Y
EM031-01	Signal Generator (9 kHz~6 GHz)	SMB100A	R&S	2023-07-17	1Y
EM040-01	Band Reject/Notch Filter	WRHFV	Wainwright	N/A	1Y
EM040-02	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM040-03	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM022-03	2.45 GHz Filter	BRM50702	Micro-Tronics	2023-05-06	1Y
SA016-29	Climatic Test Chamber	MHU-80L	JIANQIAO	2023-01-20	1Y
SA012-74	Digital Multimeter	FLUKE175	FLUKE	2023-10-07	1Y
EM010-01	Regulated DC Power supply	PAB-3003A	GUANHUA	N/A	1Y
SA040-22	Regulated DC Power supply	IT6721	ITECH	2023-09-04	1Y
EM084-06	Audio Analyzer	8903B	HP	2023-04-11	1Y
EM046-05	Power meter	NPR6A	R&S	2023-04-20	1Y
EM046-06	Power meter	NPR6A	R&S	2023-04-20	1Y
EM045-01-01	EMC32 software (RE/RS)	V10.01.00	R&S	N/A	N/A
EM045-01-09	EMC32 software (328/893)	V9.26.01	R&S	N/A	N/A
Conducted emis	ssion at the mains terminals				
Equipment No.	Equipment	Model	Manufacturer	Cal. Due date	
			and the second	(YYYY-MM-DD)	Interval

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date (YYYY-MM-DD)	
EM080-05	EMI receiver	ESCI	R&S	2023-06-08	1Y
EM006-05	LISN	ENV216	R&S	2023-06-05	1Y
EM006-06	LISN	ENV216	R&S	2023-09-05	1Y
EM006-06-01	Coaxial cable	/	R&S	2023-04-08	1Y
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	2023-01-06	1Y