Compliance Testing, LLC Previously Flom Test Lab EMI, EMC, RF Testing Experts Since 1963 toll-free: (866)311-3268 fax: (480)926-3598 http://www.ComplianceTesting.com info@ComplianceTesting.com # Test Report **Prepared for: Proxim Wireless** Model: NGP1058BX **Description: Outdoor Radio Communication System** Serial Number: N/A FCC ID: HZB-NGP1058B IC: 1856A-NGP1058B To FCC Part 15.407 RSS 247 Issue 2 Date of Issue: April 3, 2018 On the behalf of the applicant: Proxim Wireless 47633 Westinghouse Dr Fremont, CA 94539 Attention of: Cor Van de Water, Sr. Regulatory and Compliance Manager Ph: (408)383-7626 E-mail: cwater@proxim.com Prepared By Compliance Testing, LLC 1724 S. Nevada Way Mesa, AZ 85204 (480) 926-3100 phone / (480) 926-3598 fax www.compliancetesting.com Project No: p17c0012 **Poona Saber** **Project Test Engineer** This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested. # **Test Report Revision History** | Revision | Date | Revised By | Reason for Revision | |----------|------------------|-------------|--| | 1.0 | January 15, 2018 | Poona Saber | Original Document | | 2.0 | March 2, 2018 | Poona Saber | Updated Annex C for UNII 3 for the typo of 0 degree instead of 25 degree | | 3.0 | March 30, 2018 | Poona Saber | Updated Annex A A note added on page 15- updated test equipment table | | 4.0 | April 3, 2018 | Poona Saber | -Revised power and power spectral density tables and test procedures based on the fact that antenna is cross polarized and using KDB 662911 D02 - revised Annex A -updated test procedure on page 14 -added RSS 247 section to test result summary | # **Table of Contents** | <u>Description</u> | <u>Page</u> | |--|-------------| | Standard Test Conditions Engineering Practices | 6 | | Test Results Summary | 9 | | Average Output Power | 10 | | Transmitter Power Spectral Density | 12 | | Undesirable Emissions Conducted | 14 | | Occupied Bandwidth | 16 | | Frequency Stability | 17 | | RF Exposure | 18 | | A/C Powerline Conducted Emission | 20 | | Test Equipment Utilized | 21 | ### ILAC / A2LA Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009). The tests results contained within this test report all fall within our scope of accreditation, unless noted below. Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation. Testing Certificate Number: 2152.01 FCC Site Reg. #349717 IC Site Reg. #2044A-2 Non-accredited tests contained in this report: N/A ### The applicant has been cautioned as to the following ### 15.21 - Information to User The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. ### 15.27(a) - Special Accessories Equipment marked to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer without an additional charge. Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment. ### **Standard Test Conditions Engineering Practices** Except as noted herein, the following conditions and procedures were observed during the testing: In accordance with C63.10-2013 and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104°F) unless the particular equipment requirements specified testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity. Measurement results, unless otherwise noted, are worst-case measurements. | Environmental Conditions | | | | |--------------------------|-----------------|--------------------|--| | Temperature (°C) | Humidity
(%) | Pressure
(mbar) | | | 25.4 – 26.6 | 21.4 – 22.5 | 976.7 – 980.9 | | ### **EUT Operation during Tests** EUT is an 802.11 PCIe Module that is located 20 cm out of the host and controlled by a web access interface to transmit continuously on Low, Mid and High channels and control the power settings on each channel. It gets power through a POE and is tested for 20, 40 and 80 MHz bands on 802.11 ac mode. **EUT Description Model:** Beam X **Description:** 5 GHz MIMO Firmware: NA Software: NA Serial Number: NA Additional Information: The Module is connected to an active PRX14-200620 beam steering antenna V3.2 and is tested Radiated throughout the report. The maximum antenna gain for 5725-5850 MHz range is 21.5 dBi # **EUT Specifications** | Equipment Code | NII | |------------------|--| | Model(s)Tested | 802.11 ac-VHT 20,40,80 | | Model(s) covered | 802.11a/n-20MHz/ac-20MHz
802.11n-40MHz/ac-40MHz
802.11ac-80MHz | | Frequency Range | 5725-5850 | | Bandwidths | 20,40,80 MHz | | Data Rates | MCS0 | | Modulations | 802.11a/n/ac: OFDM, BPSK, QPSK, 16QAM, 64QAM, 256QAM | # 15.203: Antenna Requirement: | | The antenna is permanently attached to the EUT | |---|--| | | The antenna uses a unique coupling | | X | The EUT must be professionally installed | | | The antenna requirement does not apply | ### Accessories: | Qty | Description | Manufacturer | Model | S/N | | |-----|------------------|-------------------|------------------|-----|--| | 1 | POE power supply | SL Power and AULT | PENB1032E4800F02 | N/A | | # Cables: | Qty | Description | Length
(M) | Shielding
Y/N | Shielded Hood
Y/N | Ferrite
Y/N | |-----|-----------------|---------------|------------------|----------------------|----------------| | 2 | Ethernet cables | <3 | N | N | N | Modifications: None # **Test Results Summary** | Specification | Test Name | Pass,
Fail, N/A | Comments | |---|---|--------------------|----------| | §15.203 | Antenna Requirements | Pass | | | §15.207
§15.407(b)(6)
RSS GEN | Line Conducted Emissions | Pass | | | §15.407(a)(3)
RSS 6.2.4.1 | Radiated Output Power | Pass | | | §15.407(a)(3),(5)
RSS 6.2.4.1 | Power Spectral Density | Pass | | | §15.403(i)
§15.407(e) | 6dB Occupied Bandwidth | Pass | | | RSS 6.2.4.1 | 99% Occupied Bandwidth | 1 433 | | | §15.407(b)(4)
6.2.4.2 | Undesirable Emissions | Pass | | | §15.205
§15.407(b)(4),(5),(6)
6.2.4.1 | General Field Strength Limits
(Restricted Bands and
Radiated Emission limits) | Pass | | | §15.407(g) | Frequency Stability | Pass | | | §15.407(f) | RF Exposure | Pass | | | References | Description | |---------------------------|---| | CFR47, Part 15, Subpart B | Unintentional Radiators | | CFR47, Part 15, Subpart C | Intentional Radiators | | CFR47, Part 15, Subpart E | Unlicensed Nation Information Infrastructure Devices (U-NII) | | ANSI C63.10-2009 | American National standard for testing Unlicensed Wireless Devices | | ANSI C63.4-2009 | Method and Measurements of Radio-Noise Emissions from low-Voltage Electrical and Electronic Equipment in the range 9kHz to 40GHz. | | ISO/IEC 17025:2005 | General requirements for the Competence of Testing and Calibrations Laboratories | | KDB 644545 D03 | Guidance for IEEE 802 11ac New Rules | | KDB 789033 D02 | General U-NII Test Procedures New Rules V01 | | KDB 926956 D01 | U-NII Transition Plan | | KDB 662911 D02 | MIMO with Cross-Polarized Antennas v01 | | RSS 247- issue 2 | Digital Transmission systems, frequency hopping systems and license-
Exempt local area network devices | Average Output Power Engineer: Poona Saber Test Date: 1/3/2018 ### **Test Requirements** For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Based on KDB 662911 D02 for Cross polarized antenna power was first measured radiated and the total emission was derived from below steps - (1) Measured radiated emissions with vertical and horizontal polarizations of the measurement antenna - (2) Converted each radiated measurement to transmit power or PSD based on the antenna gain - (3) Summed the powers or PSDs across the two polarizations ### **Test Procedure** Testing was done Radiated at 1 meters distance from EUT in anechoic chamber and the position of the EUT and antenna was maximized to get the highest power reading out of the unit. The RF power was calculated using the spectrum analyzers' band power function per Method SA-1 from KDB 789033 D02 General U-NII Test Procedures New Rules v01. Measurements were made at the low, mid, and high channels of the band. ### The Spectrum analyzer was set to the following: - a. RBW = 1 MHz - b. VBW ≥ 3 MHz - c. Sweep time = auto - d. Detector = RMS - e. 100 traces in power averaging mode ### **Test Setup** # **Test Results** | Band
Width | Frequency | Combined
Power
(EIRP) | Combined
Power
Conducted | Limit | Margin | |---------------|-----------|-----------------------------|--------------------------------|-------|--------| | MHz | MHz | dBm | dBm | dBm | dB | | 20 | 5745 | 20.4 | 1.9 | 14.5 | -12.6 | | 20 | 5785 | 20.1 | 1.6 | 14.5 | -13.0 | | 20 | 5825 | 19.8 | 1.3 | 14.5 | -13.2 | | 40 | 5755 | 19.4 | 0.9 | 14.5 | -13.6 | | 40 | 5795 | 19.0 | 0.5 | 14.5 | -14.0 | | 80 | 5210 | 19.5 | 1.0 | 14.5 | -13.5 | **Transmitter Power Spectral Density** Engineer: Poona Saber Test Date: 1/4/2018 ### **Test Requirements** For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in power spectral density. Based on KDB 662911 D02 for Cross polarized antenna power was first measured radiated and the total emission was derived from below steps - (1) Measured radiated emissions with vertical and horizontal polarizations of the measurement antenna - (2) Converted each radiated measurement to transmit power or PSD based on the antenna gain - (3) Summed the powers or PSDs across the two polarizations ### **Test Procedure** Testing was done Radiated at 1 meters distance from EUT in anechoic chamber and the position of the EUT and antenna was maximized to get the highest power reading out of the unit. The Power Spectral Density was measured using the method per SA-1 from KDB 789033 D02 General U-NII Test Procedures New Rules v01. Measurements were made at the low, mid, and high channels of the band. The maximum PSD was determine by finding the peak value across the carrier bandwidth. The Spectrum Analyzer was set to the following: - a. RBW = 500 KHz. - b. VBW ≥ 1500 MHz - c. Span 1.5 * BW - d. Sweep time = auto - e. Detector = RMS - f. 100 traces in power averaging mode # Test Setup Antenna Spectrum Analyzer # **Test Results** | Band
Width | Frequency | Combined
spectral
density
(EIRP) | Combined spectral density Conducted | Limit | Margin | |---------------|-----------|---|-------------------------------------|-------|--------| | MHz | MHz | dBm | dBm | dBm | dB | | 20 | 5745 | 8.4 | -10.1 | 14.5 | -24.6 | | 20 | 5785 | 8.7 | -9.8 | 14.5 | -24.3 | | 20 | 5825 | 8.8 | -9.7 | 14.5 | -24.2 | | 40 | 5755 | 5.2 | -13.3 | 14.5 | -27.8 | | 40 | 5795 | 4.9 | -13.6 | 14.5 | -28.1 | | 80 | 5210 | 1.7 | -16.8 | 14.5 | -31.3 | Undesirable Emissions Engineer: Poona Saber Test Date: 1/5/2018 ### **Test Requirements** ### **Unwanted Emissions that fall Outside Restricted Bands** For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz The provisions of §15.205 apply to intentional radiators operating under this section. Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. In addition the requirements of §15.205 were also applied. ### FCC Part 15 Subpart C Paragraph 15.209(a) Limits | Frequency
(MHz) | Frequency (microvolts/meter) | Frequency
(meter) | |--------------------|------------------------------|----------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m) ### **Test Procedure** The EUT was setup in accordance with ANSI C63.10. 2013 and tested per KDB 789033. The EUT is placed on non-conductive platform at a height of 0.8 meters above the ground plane and 3 meters away from receiving antenna in the semi-anechoic chambers. The EUT was rotated 360 degrees and the receive antenna raised and lowered to find the maximum emissions from 30MHz to the 10th harmonic of the fundamental. The EUT was set to the maximum power level allowed and the low, mid, and high channels were investigated for emissions. ### The Spectrum Analyzer was set to the following for emissions > 1000MHz: - a. (RBW = 1 MHz) - b. VBW ≥ 3 MHz - c. Detector = Peak. - d. Sweep time = auto. - e. Trace mode = max hold. - 1. Note: For emissions where the peak exceeded that of the average 15.209 emission limit the following was performed. - f. RBW = 1 MHz - g. VBW ≤ RBW/100 (i.e., 10 kHz) but not less than 10Hz ### For emissions below 1000MHz the Spectrum Analyzer settings were as follows: - a. RBW = 100 kHz - b. VBW ≥ 300 kHz - c. Detector = Peak. - d. Sweep time = auto. - e. Trace mode = max hold. - Note: A quasi peak detector was used for emissions where the peak exceeded that of the average 15.209 emission limits ### Test Setup below 1000MHz ### Test Setup above 1000MHz ### Test Results: See Annex A: Undesirable Emission Radiated Note: All the emissions up to 5th harmonic of the fundamental were investigated and there was nothing observed above noise floor after 18GHz Occupied Bandwidth Engineer: Poona Saber Test Date: 1/4/2018 ### **Test Requirement** Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 6 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement For industry Canada the Occupied bandwidth will be the 99% emission bandwidth in megahertz. ### **Test Procedure** The Spectrum analyzer was set to the following parameters - a. RBW = 100 kHz. - b. VBW ≥ 300 kHz - c. Detector = Peak. - d. Trace mode = max hold. Test Results: See Annex B: Occupied Bandwidth Frequency Stability Engineer: Poona Saber Test Date: 1/12/2018 ### **Test Requirement** Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual. ### **Test Procedure** - a. The EUT was placed into a temperature chamber and the temperature ranges were set to the manufacturers' specifications. - b. The RF output of the EUT was connected to a spectrum analyzer - c. The lowest and highest channels of the band were set to transmit - d. The carrier plots were measured to insure that the 6dB band width remained within the band over the prescribed temperature extremes. ### **Test Setup** Test Results: See Annex C: Frequency Stability **RF Exposure** Engineer: Poona Saber Test Date: 1/15/2018 ### Requirements U-NII devices are subject to the radio frequency radiation exposure requirements specified in §1.1307(b), §2.1091 and §2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. In addition, systems operating under the provisions of this section shall be operated in a manner that insures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. ### **Exposure Limits** At operating frequencies less than or equal to 6 GHz, the limits for maximum permissible exposure (MPE) shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Section 1.1307(b), except for portable devices as defined in §2.1093 as these evaluations shall be performed according to the SAR provisions in §2.1093 of this chapter. ### **MPE Limit Calculations** Exposure Limit 1mW/cm² # **Source Based Time Averaged Power Calculation** | Tuned Frequency
(MHz) | Average Output Power
EIRP
(dBm) | Antenna Gain | Conducted Average Power (mW) | | |--------------------------|---------------------------------------|--------------|------------------------------|--| | 5745 | 20.4 | 21.5 | 1.28 | | ### **MPE Evaluation** This is a **mobile** device used in uncontrolled /general population exposure environment. ### **Test Data** | Test Frequency, MHz | 5745 | | |--------------------------|---------------|--| | Power, Conducted, mW (P) | 1.5 | | | Antenna Gain Isotropic | 21.5 | | | Antenna Gain Numeric (G) | 141.28 | | | Antenna Type | Beam steering | | | Distance (R) | 20 | | | $S = \frac{P * G}{4\pi r^2}$ | | | | |--------------------------------------|--------------|------------------|-------------------------------| | Power Density (S) mw/cm ² | Power mW (P) | Numeric Gain (G) | Distance (r ²) cm | | | 1.5 | 141.25 | 20 | Power Density (S) = 0.042 Limit =(from above table) = 1 ### A/C Powerline Conducted Emission Engineer: Poona Saber Test Date: 1/16/2018 ### **Test Procedure** The EUT power cable was connected to a LISN and the monitored output of the LISN was connected to a transient limiter, which then connected directly to a spectrum analyzer. The conducted emissions from 150 kHz to 30 MHz were measured and compared to the specification limits. ### **Test Setup** Test Results: See Annex D: A/C Powerline Conducted Emission # **Test Equipment Utilized** | Description | Manufacturer | Model # | CT Asset # | Last Cal
Date | Cal Due
Date | |----------------------------------|--------------|-----------------------|------------|------------------------|-----------------| | Temperature Chamber | Tenney | Tenney II Benchmaster | i00287 | NCR | NCR | | Preamplifier | HP | 8447D | i00055 | NCR | NCR | | Harmonic Mixer
26.5-40GHz | HP | 11970A | i00193 | 6/4/15 | 6/4/18 | | Horn Antenna, Amplified | ARA | DRG-118/A | i00271 | 6/16/16 | 6/16/18 | | Spectrum Analyzer | Agilent | E4407B | i00331 | 11/21/17 | 11/21/18 | | Bi-Log Antenna | Teseq | CBL 6111D | i00349 | 8/3/16 | 8/3/18 | | EMI Analyzer | Agilent | E7405A | i00379 | 2/22/2017 | 2/22/2018 | | EMI Receiver | HP | 8546A | i00033 | 3/28/17 | 3/28/18 | | Transient Limiter | Com-Power | LIT-153 | i00123 | Verified on: 1/16/2018 | | | AC Power Source | Behlman | BL 6000 | i00362 | Verified on: 1/16/2018 | | | LISN | COM-Power | LI-125A | i00446 | 4/29/16 | 4/29/18 | | LISN | COM-Power | LI-125A | i00448 | 4/29/16 | 4/29/18 | | Horn Antenna, | Emco | 3116 | i00085 | 2/6/17 | 2/6/19 | | harmonic mixer
33-50GHz | НР | 11970Q | i00465 | 6/4/2015 | 6/4/2018 | | waveguide horn (33GHz-
50GHz) | NA | HO22R | i00484 | Verified on: 1/16/2018 | | In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation. **END OF TEST REPORT**