

1 Contents

Page

		i ugo
1 CONTENTS		2
2 VERSION		
3 TEST SUMMARY		4
4 GENERAL INFORMATION	<u></u>	5
4.1 CLIENT INFORMATION		
4.2 GENERAL DESCRIPTION OF EUT		5
4.3 Test Configuration		
4.4 Test Environment		
4.5 DESCRIPTION OF SUPPORT UNITS		
5 TEST RESULTS AND MEASUREMENT DATA		
5.1 ANTENNA REQUIREMENT		
5.2 CONDUCTED EMISSIONS		
5.3 MAXIMUM CONDUCTED OUTPUT POWER		
5.4 20DB Emission Bandwidth		
5.5 CARRIER FREQUENCY SEPARATION 5.6 NUMBER OF HOPPING CHANNEL		
5.7 TIME OF OCCUPANCY		
5.8 BAND EDGE MEASUREMENTS		
5.9 Conducted Spurious Emissions		
5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE		
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS		
6 APPENDIX 2.4G		
7 PHOTOGRAPHS OF TEST SETUP	<u></u>	
8 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAI	LS	47

2 Version

	Version No.	Date		Description	
(2)	00	Dec. 17, 2024		Original	(2)
S)			S)		

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Remark: Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

4 General Information

4.1 Client Information

Applicant:	Legami S.p.A. SB	
Address of Applicant:	Via Stezzano, 18 Azzano San Paolo Italy	100
Manufacturer:	Legami S.p.A. SB	(\mathcal{A})
Address of Manufacturer:	Via Stezzano, 18 Azzano San Paolo Italy	

4.2 General Description of EUT

Product Name:	USB Receiver + Type C Adapter	
Model No.:	DONGLEWMO	
Trade Mark:	LEGAMI	
Product Type:	☐ Mobile	
Operation Frequency:	2402MHz~2480MHz	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	(\mathbf{c})
Modulation Type:	GFSK	\sim
Number of Channel:	40	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Antenna Type:	Heteromorphic Antenna	
Antenna Gain:	0.132dBi	
Power Supply:	USB Port: DC 5V	
Test Voltage:	DC 5V	
Sample Received Date:	Nov. 25, 2024	S
Sample tested Date:	Nov. 25, 2024 to Dec. 09, 2024	

and the first		and the second se	
Ope	eration Frequen	cy each of c	hannel
Channel	Frequency	Channel	Frequency
0	2402MHz	20	2442MHz
1	2404MHz	21	2444MHz
2	2406MHz	22	2446MHz
3	2408MHz	23	2448MHz
4	2410MHz	24	2450MHz
5	2412MHz	25	2452MHz
6	2414MHz	26	2454MHz
7	2416MHz	27	2456MHz
8	2418MHz	28	2458MHz
9	2420MHz	29	2460MHz
10	2422MHz	30	2462MHz
11	2424MHz	31	2464MHz
12	2426MHz	32	2466MHz
13	2428MHz	33	2468MHz
14	2430MHz	34	2470MHz
15	2432MHz	35	2472MHz
16	2434MHz	36	2474MHz
17	2436MHz	37	2476MHz
18	2438MHz	38	2478MHz
19	2440MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	(6))
Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2440MHz
The Highest channel	2480MHz

4.3 Test Configuration

Software:			N/A					
EUT Powe			selected)				cannot be cha	G
Use test so transmitting			vest frequency	/, the middle f	requency and	I the highest	frequency kee	p
	Mode			Channel	10-	F	requency(MH	z)
				CH0			2402	
DH	11/DH3/D	DH5		CH19			2440	
				CH39			2480	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

4.4 Test Environment

		(~			
Operating Environment	t:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		(in)		10
Atmospheric Pressure:	1010mbar		(\mathcal{C})		6
Conducted Emissions:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH	195		2°2	
Atmospheric Pressure:	1010mbar	(\mathcal{A})			
RF Conducted:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
	67		G		0

4.5 Description of Support Units

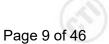
The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	/	/	/

4.6

4.6 Test Location


All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	(Sr) (Sr)	3.3dB (9kHz-30MHz)
2	Padiated Spurious amission test	4.3dB (30MHz-1GHz)
3 Radiate	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

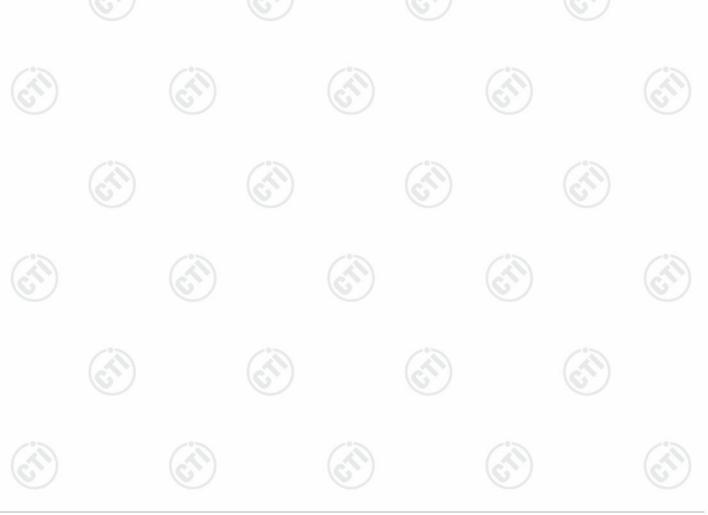
4.8 Equipment List

BT/WIFI/SRD RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd- yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024		
Signal Generator	Keysight	N5182B	MY53051549	12-11-2023 11-30-2024	12-10-2024 11-29-2028		
DC Power	Keysight	E3642A	MY56376072	12-11-2023 11-30-2024	12-10-2024 11-29-2028		
Communication test set	R&S	CMW500	169004	03-08-2024	03-07-202		
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	08-04-2023 07-22-2024	08-03-2024 07-21-2025		
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	06-09-2023 05-31-2024	06-08-2024 05-30-2025		
High-low temperature test chamber	Dong Guangemperature testchamberTemperature/Humiditybiaozhi		QZ20150611879	12-11-2023 11-30-2024	12-10-2024 11-29-2025		
-			1804186	06-01-2023 05-29-2024	05-31-2024 05-28-2025		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20		9		
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-202		

Conducted Emissions Test							
Equipment	Manufacturer	Manufacturer No.		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025		
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025		
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025		
ISN	TESEQ	ISN T800	30297	12-14-2023	12-13-2024		
Barometer	Changchun	DYM3	1188				
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025		
			EMC-				
Test software	Fara	EZ-EMC	CON 3A1.1				

			Serial	Cal. date	Cal. Due date (mm-dd-yyyy)	
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025	
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025	
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025	
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025	
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre		- (
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A		A)	
Cable line	Fulai(3M)	SF106	5216/6A		<u> </u>	
Cable line	Fulai(3M)	SF106	5217/6A	- 11-		

		3M full-anechoi											
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy								
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027								
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025								
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025								
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025								
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025								
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025								
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025								
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025								
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025								
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023	12-13-2024								
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024								
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025								
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0		0								
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	~									
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	(3	9 -								
Cable line	Times	SFT205-NMSM-2.50M	394812-0003										
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		- /3								
Cable line	Times EMC104-NMNM-10		SN160710	<u></u>	_6								
Cable line	Times	SFT205-NMSM-3.00M	394813-0001										
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	()	-								
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		ツ								
Cable line	Times	HF160-KMKM-3.00M	393493-0001										

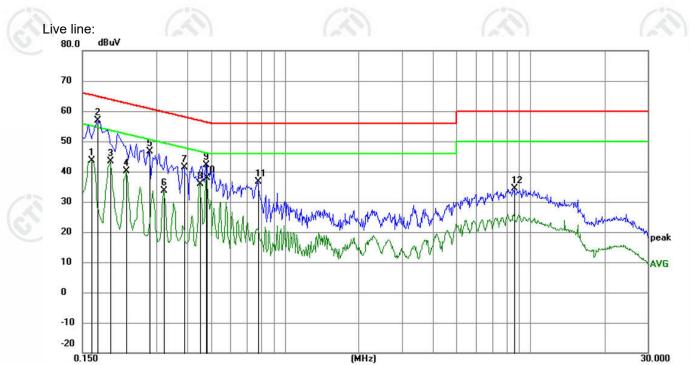


5 Test results and Measurement Data

5.1 Antenna Requirement

onsible party shall be nna that uses a uniqu nat a broken antenna trical connector is pro	all be designed to ensure that no antenna other than that furnished by the e used with the device. The use of a permanently attached antenna or of an ue coupling to the intentional radiator, the manufacturer may design the unit can be replaced by the user, but the use of a standard antenna jack or phibited.
onsible party shall be nna that uses a uniqu nat a broken antenna trical connector is pro	e used with the device. The use of a permanently attached antenna or of an ue coupling to the intentional radiator, the manufacturer may design the unit can be replaced by the user, but the use of a standard antenna jack or
47(b) (4) requirement	
nnas with directional ion, if transmitting ant er from the intentiona	wer limit specified in paragraph (b) of this section is based on the use of gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this tennas of directional gain greater than 6 dBi are used, the conducted output I radiator shall be reduced below the stated values in paragraphs (b)(1), ection, as appropriate, by the amount in dB that the directional gain of the
	Please see Internal photos
)	

Test Requirement:	47 CFR Part 15C Section 15.	207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz	- 0.5	- 1				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	(4				
Limit:	Limit (dBuV)						
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm of the frequency.						
Test Setup:		1 5	1				
	AC Mains	Ground Reference Plane	tins				
<u></u>	12.0	12.2 (
Test Procedure:	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 						

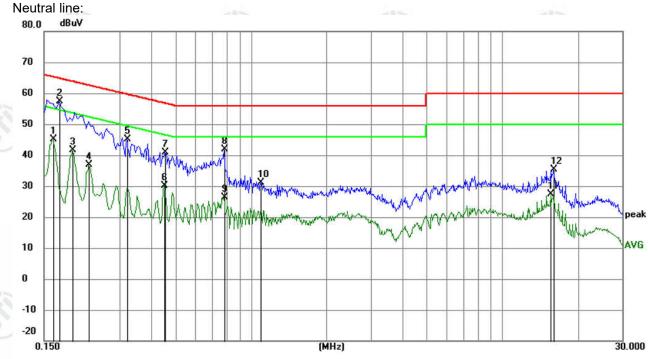

Report No. : EED32Q81896401

Test Mode:	All modes were tested, only the worst case mode (channel 0) was recorded in the report.
Test Results:	Pass

Measurement Data

13	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
6			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1635	33.39	10.26	43.65	55.28	-11.63	AVG	
_	2	*	0.1725	46.57	10.25	56.82	64.84	-8.02	QP	
_	3		0.1949	33.11	10.22	43.33	53.83	-10.50	AVG	
-	4		0.2265	30.04	10.19	40.23	52.58	-12.35	AVG	
_	5		0.2805	36.44	10.15	46.59	60.80	-14.21	QP	
_	6		0.3209	23.58	10.12	33.70	49.68	-15.98	AVG	
_	7		0.3885	31.30	10.09	41.39	58.10	-16.71	QP	
100	8		0.4515	25.81	10.08	35.89	46.85	-10.96	AVG	
6	9		0.4785	32.15	10.08	42.23	56.37	-14.14	QP	
S.	10		0.4830	27.85	10.08	37.93	46.29	-8.36	AVG	
_	11		0.7755	26.47	10.17	36.64	56.00	-19.36	QP	
-	12		8.6370	24.45	9.99	34.44	60.00	-25.56	QP	

Remark:

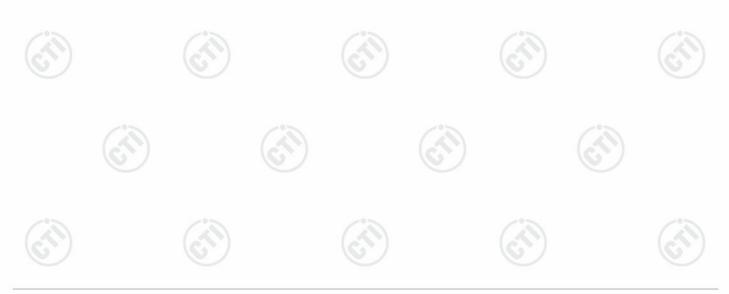

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 17 of 46

No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1635	34.98	10.26	45.24	55.28	-10.04	AVG	
2	2 *	0.1725	47.06	10.25	57.31	64.84	-7.53	QP	
3	3	0.1949	31.53	10.22	41.75	53.83	-12.08	AVG	
4	1	0.2265	26.61	10.19	36.80	52.58	-15.78	AVG	
į	5	0.3209	35.09	10.12	45.21	59.68	-14.47	QP	
(5	0.4515	19.99	10.08	30.07	46.85	-16.78	AVG	
-	7	0.4560	30.78	10.08	40.86	56.77	-15.91	QP	
8	3	0.7799	31.61	10.17	41.78	56.00	-14.22	QP	
ę	9	0.7799	16.30	10.17	26.47	46.00	-19.53	AVG	
1()	1.0905	21.05	10.18	31.23	56.00	-24.77	QP	
1	1	15.5670	17.47	9.85	27.32	50.00	-22.68	AVG	
12	2	16.0260	25.45	9.85	35.30	60.00	-24.70	QP	

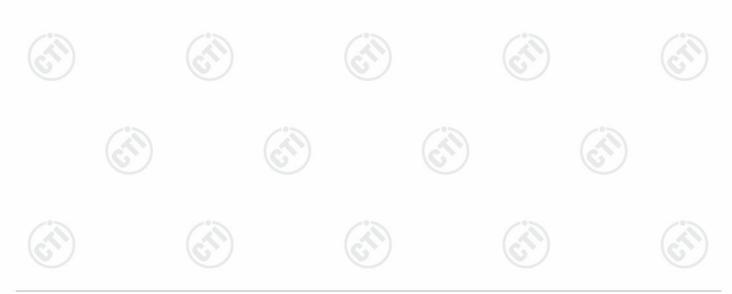
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



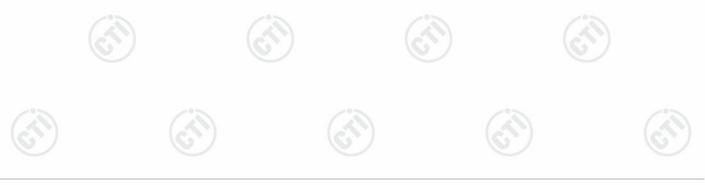
5.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Computer Computer Power Supple Power Supple Table RF test System Instrument
iQ_	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
2	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix 2.4G
	C)	



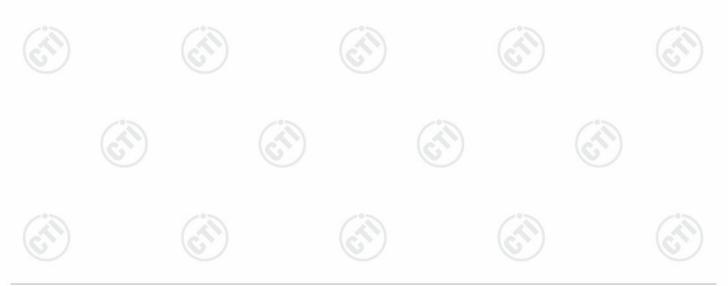
5.4 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)							
	Test Method:	ANSI C63.10:2013							
	Test Setup:	Control Computer Supply Four Supply Table							
	Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report. 							
	Limit:	NA							
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type							
<u>i</u>	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type, 2-DH5 of data type is the worst case of π /4DQPSI modulation type, 3-DH5 of data type is the worst case of 8DPSK modulatio type.							
	Test Results:	Refer to Appendix 2.4G							
	C)								



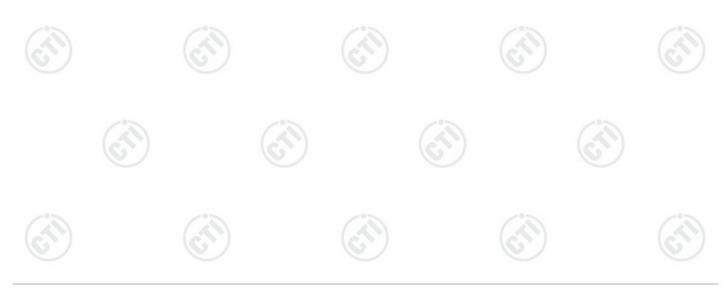
5.5 Carrier Frequency Separation

•.•	camerrequency	oopulation					
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
	Test Setup:	RF test Congular Computer Computer Computer Power Supply Table RF test System Instrument					
		Remark: Offset=Cable loss+ attenuation factor.					
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 					
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.					
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type					
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
(c)	Test Results:	Refer to Appendix 2.4G					



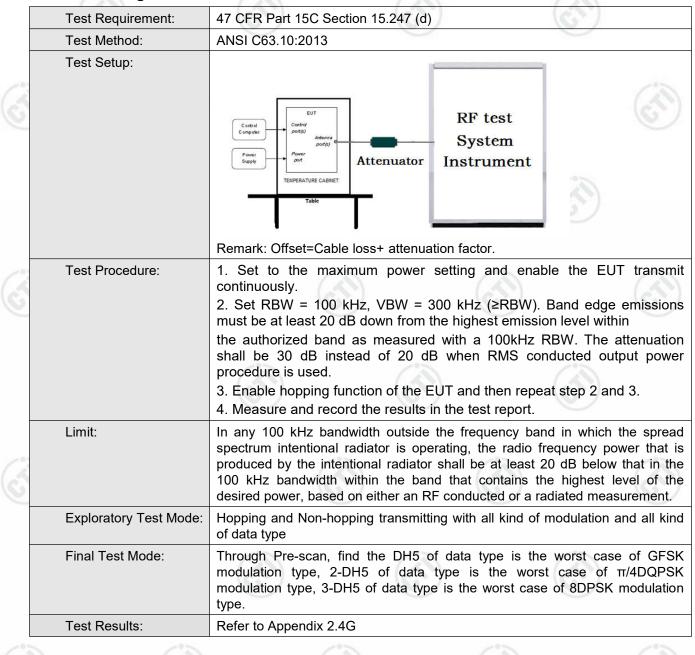
5.6 Number of Hopping Channel

			(C)
Test Requiren		tion 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013		
Test Setup:	Control Compress Power Supply TEMPERATURE CABINET Table	RF t Syst Attenuator Instru	tem
	Remark: Offset=Cable	loss+ attenuation factor	r.
Test Procedur	cable and attenuator. each measurement.	The path loss was com num power setting and	ne spectrum analyzer by RF npensated to the results for enable the EUT transmit
	band of operation; se or the 20 dB bandwid	the RBW to less than 3	ngs: Span = the frequency 30% of the channel spacing VBW≥RBW; Sweep= auto;
Ś	5. The number of ho total channel.6. Record the measured		s defined as the number of
Limit:	Frequency hopping s least 15 channels.	ystems in the 2400-248	3.5 MHz band shall use at
Test Mode:	Hopping transmitting	vith all kind of modulatio	n
Test Results:	Refer to Appendix 2.4	G	
		U I	U



5.7 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
(CN)	Test Setup:	Control Computer Doctor Suppy TemPerature Cabnet Table RF test System Instrument
	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor.1. The RF output of EUT was connected to the spectrum analyzer by RF
		 cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. 5. Measure and record the results in the test report.
<u>í</u>	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
	Test Results:	Refer to Appendix 2.4G
	6	



5.8 Band edge Measurements

5.9 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)	(G [*])
	Test Method:	ANSI C63.10:2013	
	Test Setup:	Control Computer Computer Power Supply TemPERATURE CABNET Table	RF test System Instrument
		Remark: Offset=Cable loss+ attenua	
	Test Procedure:	 cable and attenuator. The path loss of measurement. 2. Set to the maximum power secontinuously. 3. Set RBW = 100 kHz, VBW = 300 harmonics / spurs must be at least level within the authorized band as n 4. Measure and record the results in 5. The RF fundamental frequency sh the operating frequency band. 	the test report. hould be excluded against the limit line in
<u>_</u>	Limit:	spectrum intentional radiator is oper produced by the intentional radiator 100 kHz bandwidth within the band	the frequency band in which the spread rating, the radio frequency power that is shall be at least 20 dB below that in the d that contains the highest level of the r an RF conducted or a radiated
	Exploratory Test Mode:	Non-hopping transmitting with all kin	d of modulation and all kind of data type
	Final Test Mode:	modulation type, 2-DH5 of data t	f data type is the worst case of GFSK ype is the worst case of π /4DQPSK is the worst case of 8DPSK modulation
105		-71	

Page 25 of 46

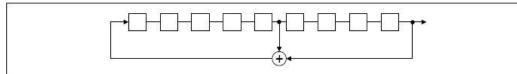
5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement:

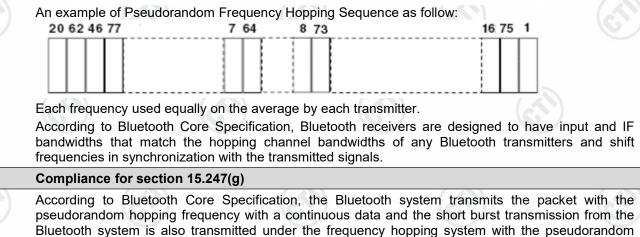
47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

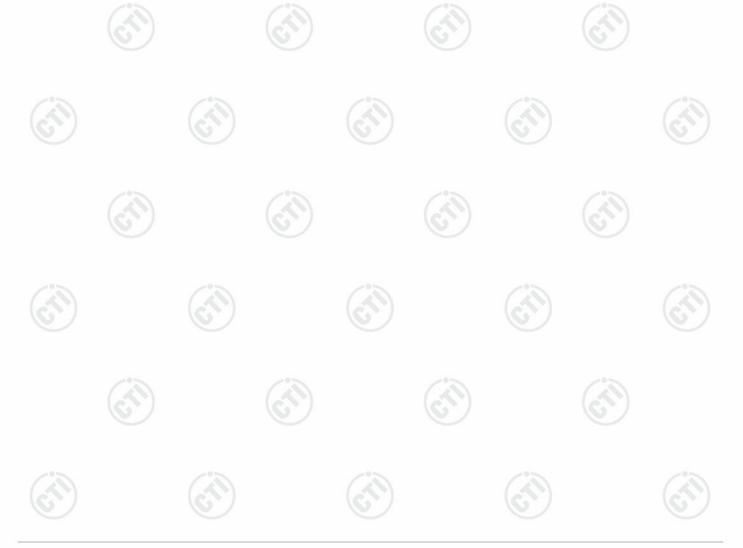

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

Report No. : EED32Q81896401


Page 26 of 46

hopping frequency system.

Compliance for section 15.247(h)

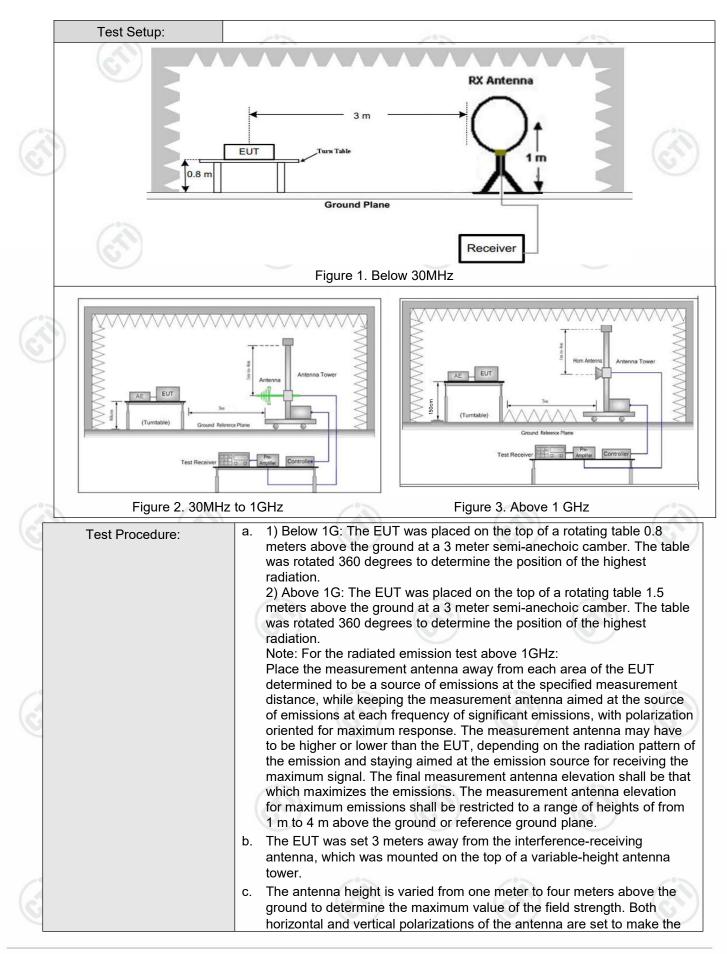
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

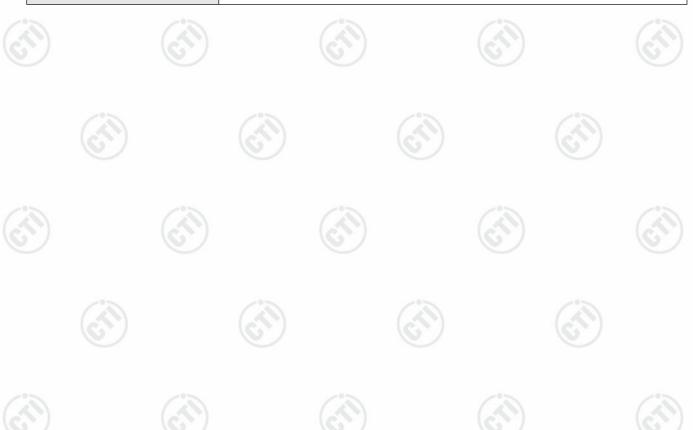
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5.11 Radiated Spurious Emission & Restricted bands

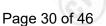
	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15.	.205	G)
	Test Method:	ANSI C63.10: 2013		\sim		\bigcirc	
	Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)	
2	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark
		0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak
-		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	: 30kHz	Quasi-peak
		0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
		0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak
				Peak	1MHz	3MHz	Peak
		Above 1GHz		Peak	1MHz	10kHz	Average
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m)
		0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300
		0.490MHz-1.705MHz	24	000/F(kHz)	-	-73	30
		1.705MHz-30MHz		30	-	0	30
		30MHz-88MHz		100	40.0	Quasi-peak	3
		88MHz-216MHz		150	43.5	Quasi-peak	3
		216MHz-960MHz	2	200	46.0	Quasi-peak	3
		960MHz-1GHz	P)	500	54.0	Quasi-peak	3
		Above 1GHz	/	500	54.0	Average	3
		Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 ab equi	ove the maxin pment under t	num permi est. This p	tted average	emission limit



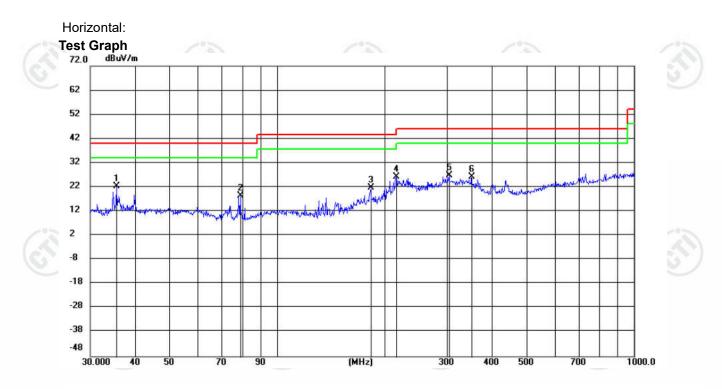
Page 28 of 46



Report No. : EED32Q81896401

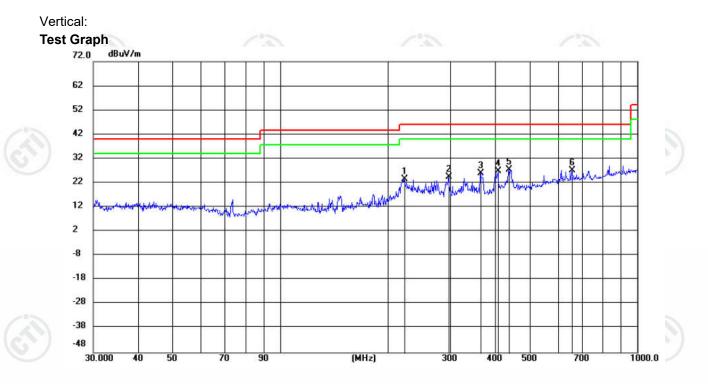


	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	35.5179	9.23	13.00	22.23	40.00	-17.77	QP	199	7	
2		79.1453	9.23	9.27	18.50	40.00	-21.50	QP	199	7	
3		183.4254	10.08	11.52	21.60	43.50	-21.90	QP	100	94	
4		216.0239	13.40	12.98	26.38	46.00	-19.62	QP	199	248	
5		304.1830	10.48	16.23	26.71	46.00	-19.29	QP	100	352	
6		351.5846	8.98	17.12	26.10	46.00	-19.90	QP	100	352	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		222.5597	10.46	13.23	23.69	46.00	-22.31	QP	200	146	
2		297.1198	8.46	16.04	24.50	46.00	-21.50	QP	200	167	
3		364.3234	8.68	17.37	26.05	46.00	-19.95	QP	100	344	
4		407.7289	8.60	18.18	26.78	46.00	-19.22	QP	100	174	
5	*	437.8102	8.87	18.72	27.59	46.00	-18.41	QP	100	174	
6		656.6451	4.49	22.68	27.17	46.00	-18.83	QP	100	153	

Radiated Spurious Emission above 1GHz:

	Mode	:		GFSK Transmi	tting		Channel:		2402 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
- 80	1	1414.1609	10.62	38.09	48.71	74.00	25.29	Pass	Н	PK
~	2	1947.9299	17.02	36.25	53.27	74.00	20.73	Pass	Н	PK
2	3	4803.1202	-10.45	61.11	50.66	74.00	23.34	Pass	Н	PK
	4	7205.2804	-5.19	52.97	47.78	74.00	26.22	Pass	Н	PK
	5	11358.5572	4.98	44.78	49.76	74.00	24.24	Pass	Н	PK
	6	15900.8601	13.64	39.49	53.13	74.00	20.87	Pass	Н	PK
	7	1392.1595	10.55	37.62	48.17	74.00	25.83	Pass	V	PK
	8	1947.6632	17.00	36.06	53.06	74.00	20.94	Pass	V	PK
	9	4803.1202	-10.45	60.26	49.81	74.00	24.19	Pass	V	PK
	10	7206.2804	-5.17	52.54	47.37	74.00	26.63	Pass	V	PK
1	11	10594.5063	5.35	43.74	49.09	74.00	24.91	Pass	V	PK
3	12	15895.8597	13.55	39.43	52.98	74.00	21.02	Pass	V	PK
	1							/		

Mode	e:		GFSK Transmit	ting		Channel:		2441 MHz	<u>.</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1839.256	15.07	37.24	52.31	74.00	21.69	Pass	н	PK
2	4879.1253	-9.84	61.92	52.08	74.00	21.92	Pass	н	PK
3	7319.288	-4.44	52.15	47.71	74.00	26.29	Pass	Н	PK
4	10813.5209	4.16	44.46	48.62	74.00	25.38	Pass	Н	PK
5	11978.5986	5.88	45.44	51.32	74.00	22.68	Pass	Н	PK
6	15242.8162	13.47	38.05	51.52	74.00	22.48	Pass	Н	PK
7	1871.5248	15.38	36.84	52.22	74.00	21.78	Pass	V	PK
8	3537.0358	-13.41	53.52	40.11	74.00	33.89	Pass	V	PK
9	4879.1253	-9.84	60.69	50.85	74.00	23.15	Pass	V	PK
10	7319.288	-4.44	52.53	48.09	74.00	25.91	Pass	V	PK
11	10836.5224	4.27	45.17	49.44	74.00	24.56	Pass	V	PK
12	15246.8165	13.78	39.49	53.27	74.00	20.73	Pass	V	PK
0		100		20		20-	2.0		-95

CTI 华测检测 Benert Na : EED22081806401

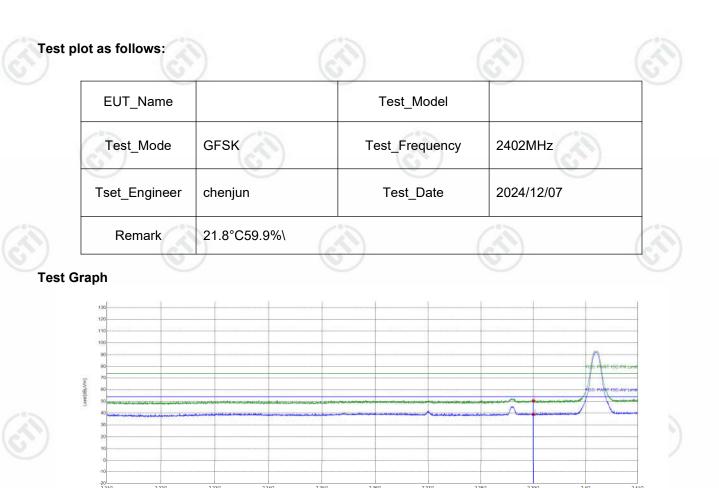
Report No. : EED32Q81896401

Page 33 of 46

Mode	:		GFSK Transmit	tting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1827.1218	14.80	37.65	52.45	74.00	21.55	Pass	Н	PK
2	4959.1306	-13.22	64.79	51.57	74.00	22.43	Pass	Н	PK
3	7441.2961	-4.56	53.27	48.71	74.00	25.29	Pass	н	PK
4	10450.4967	4.79	43.17	47.96	74.00	26.04	Pass	Н	PK
5	14255.7504	12.39	40.84	53.23	74.00	20.77	Pass	Н	PK
6	15246.8165	13.78	38.14	51.92	74.00	22.08	Pass	Н	PK
7	1839.3893	15.07	37.20	52.27	74.00	21.73	Pass	V	PK
8	3371.0247	-12.94	53.55	40.61	74.00	33.39	Pass	V	PK
9	4959.1306	-13.22	64.89	51.67	74.00	22.33	Pass	V	PK
10	7439.296	-4.55	53.60	49.05	74.00	24.95	Pass	V	PK
11	9792.4528	3.17	44.61	47.78	74.00	26.22	Pass	V	PK
12	14248.7499	12.66	40.08	52.74	74.00	21.26	Pass	V	PK
· /		10.7	1	10.7	1	100		·	10.21

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

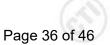


	Suspecte	d List								
(Z	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
C	1	2390	15.31	35.28	50.59	74.00	23.41	PASS	Horizontal	PK
	2	2390	15.31	23.65	38.96	54.00	15.04	PASS	Horizontal	AV

2.36G uency[Hz]

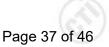
2.370

Hotline:400-6788-333



	EUT_Nar	me	- A		Test_Mod	del		Ì	
	 Test_Mo	de G	FSK		Test_Frequ	ency	2402MH	Z	
<u>(1)</u>	Tset_Engi	neer ch	nenjun	(S)	Test_Da	te	2024/12/	07	(S)
	Remarl	k 2 ²	1.8°C59.9%\	١					
Test G	raph		(21))	641			(34)	
	130 120 110								
	100 90 80							FUC PART 150 F	
	70 60 50 50 50			ion desiration discussion and	an fridanska galaciji sijilarna sružitu zbužu zbužu zvršeg				
	40	البطالية المعوية الرواد الدادي وعد		and a second second second second					
	30 20								
	30 20 10 -10								
	-20	2326 23	33G 2.34G	2.356	2.36G 2.37G Frequency[Hz]	a 2.380	2.39G	246	2416
			and a state of the					246	
Suspec	-20 2.31G 2 PK Limit	AV Limit Ve				3 2380		240	2416
Suspec	20 231G 2 PK Limit * PK Detector	- AV Limit - Ve						Polarity	
NO 1	2310 2 PK Limit PK Detector Cted List Freq. [MHz] 2390	AV Limit Ve AV Detector Factor [dB] 15.31	Reading [dBµV] 34.43	Level [dBµV/m] 49.74	Limit [dBµV/m] 74.00	Margin [dB] 24.26	Result	Polarity Vertical	Remar
NO	2310 2 PK Limit • PK Detector Cted List Freq. [MHz]	AV Linit Ve AV Detector Factor [dB]	rical PK - Vertical AV	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
NO 1	2310 2 PK Limit PK Detector Cted List Freq. [MHz] 2390	AV Limit Ve AV Detector Factor [dB] 15.31	Reading [dBµV] 34.43	Level [dBµV/m] 49.74	Limit [dBµV/m] 74.00	Margin [dB] 24.26	Result	Polarity Vertical	Remar
NO 1	2310 2 PK Limit PK Detector Cted List Freq. [MHz] 2390	AV Limit Ve AV Detector Factor [dB] 15.31	Reading [dBµV] 34.43	Level [dBµV/m] 49.74	Limit [dBµV/m] 74.00	Margin [dB] 24.26	Result	Polarity Vertical	Remar
NO 1	2310 2 PK Limit PK Detector Cted List Freq. [MHz] 2390	AV Limit Ve AV Detector Factor [dB] 15.31	Reading [dBµV] 34.43	Level [dBµV/m] 49.74	Limit [dBµV/m] 74.00	Margin [dB] 24.26	Result	Polarity Vertical	Remar
NO 1	2310 2 PK Limit PK Detector Cted List Freq. [MHz] 2390	AV Limit Ve AV Detector Factor [dB] 15.31	Reading [dBµV] 34.43	Level [dBµV/m] 49.74	Limit [dBµV/m] 74.00	Margin [dB] 24.26	Result	Polarity Vertical	Remar
NO 1	2310 2 PK Limit PK Detector Cted List Freq. [MHz] 2390	AV Limit Ve AV Detector Factor [dB] 15.31	Reading [dBµV] 34.43	Level [dBµV/m] 49.74	Limit [dBµV/m] 74.00	Margin [dB] 24.26	Result	Polarity Vertical	Remar
NO 1	2310 2 PK Limit PK Detector Cted List Freq. [MHz] 2390	AV Limit Ve AV Detector Factor [dB] 15.31	Reading [dBµV] 34.43	Level [dBµV/m] 49.74	Limit [dBµV/m] 74.00	Margin [dB] 24.26	Result	Polarity Vertical	Remar

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



	EUT_Name Test_Mode Tset_Engineer		GFSK chenjun		Test_Model				
					Test_Frequ	ency	2480MH		
					Test_Date		2024/12/07		6
	Remark	. 21	21.8°C59.9%\						
Test G	iraph		(1)		(21)		(3)	
	130								
	110	J							
	60 70 60 60 50							FCC PART ISC PI	
	50 40			1999) - Aline Carlos - Aline - Carlos		در به مرکز میکونی بی این و بی این این این این این این این این این ای		Contraction of the second seco	undan
	30 20 10								
	20 10 -10 -27 -2478G 2.486	02G 2.485	24G 2.4846G	2.4888G	2489G 24912C	3 249346	2.4956G	2.4978G	256
	20 10 -10 2478G 2.480	02G 2.482	24G 2.4846G	2.4868G	2.480G 2.4912C Frequency[Hz]	3 24934G	2.4056G	24978G	256
	20 20 		24G 24846G	F		3 249346	2.4956G	249786	250
Suspe	PK Limit	— AV Limit — Hor		F		3 249346	2.4056G	24978G	250
Suspe NO	PK Limit AV Detector			F		3 249340 Margin [dB]	24956G	24978G	167
NO 1	Cted List Freq. [MHz] 2483.5	AV Limit Her Factor [dB] 15.16	Reading [dBµV] 34.83	Level [dBµV/m] 49.99	Limit [dBµV/m] 74.00	Margin [dB] 24.01	Result	Polarity Horizontal	Rema
NO	Cted List Freq. [MHz]	AVLinit Hor Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Rema
NO 1	Cted List Freq. [MHz] 2483.5	AV Limit Her Factor [dB] 15.16	Reading [dBµV] 34.83	Level [dBµV/m] 49.99	Limit [dBµV/m] 74.00	Margin [dB] 24.01	Result	Polarity Horizontal	Rema
NO 1	Cted List Freq. [MHz] 2483.5	AV Limit Her Factor [dB] 15.16	Reading [dBµV] 34.83	Level [dBµV/m] 49.99	Limit [dBµV/m] 74.00	Margin [dB] 24.01	Result	Polarity Horizontal	Rema
NO 1	Cted List Freq. [MHz] 2483.5	AV Limit Her Factor [dB] 15.16	Reading [dBµV] 34.83	Level [dBµV/m] 49.99	Limit [dBµV/m] 74.00	Margin [dB] 24.01	Result	Polarity Horizontal	Rema
NO 1	Cted List Freq. [MHz] 2483.5	AV Limit Her Factor [dB] 15.16	Reading [dBµV] 34.83	Level [dBµV/m] 49.99	Limit [dBµV/m] 74.00	Margin [dB] 24.01	Result	Polarity Horizontal	Rema
NO 1	Cted List Freq. [MHz] 2483.5	AV Limit Her Factor [dB] 15.16	Reading [dBµV] 34.83	Level [dBµV/m] 49.99	Limit [dBµV/m] 74.00	Margin [dB] 24.01	Result	Polarity Horizontal	Rema
NO 1	Cted List Freq. [MHz] 2483.5	AV Limit Her Factor [dB] 15.16	Reading [dBµV] 34.83	Level [dBµV/m] 49.99	Limit [dBµV/m] 74.00	Margin [dB] 24.01	Result	Polarity Horizontal	Rema

(E.				(3)				
6	EUT_Nam	ne			Test_Mod	del			
	Test_Mode		=SK		Test_Frequency		2480MHz		
9	Tset_Engin	eer ch	enjun	S.	Test_Dat	te	2024/12/	07	6
	Remark	21	.8°C59.9%\			t			
Test Gra	ph	L	(3)		6)		(3)	
luuv(gi)aari	130 130 100 80 70 60 50 40 40 50 10 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	129 2482	40 248465	2.4880	2489G 2.4912G equency(Hz]	249346	24956	FIGE PART 150 FA	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	PK Limit	— AV Limit — Ver	ical PK — Vertical AV						
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	34.99	50.15	74.00	23.85	PASS	Vertical	PK

Note:

2

2483.5

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

54.00

13.07

PASS

Vertical

AV

40.93

Final Test Level =Receiver Reading - Correct Factor

15.16

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

25.77

6 Appendix 2.4G

Refer to Appendix: 2.4G of EED32Q81896401

