

Test Report for FCC

FCC ID :TKWBSA2-OEPW

					TOO ID .TRVVB3AZ-DEPVV		
Repo	rt Number	ESTEF	ESTEFC1603-009				
	Company name	SUPRE	SUPREMA INC				
Applicant	Address		kview Office Towe gi, 463-863 Korea		Bundang-gu, Seongnam,		
	Telephone	82-31-	-710–4908				
Conta	ack person	Kyung-	-Jin Hong				
	Product name	BioStat	ion A2				
Product	Model No.	BS	A2-OEPW	Manufacturer	SUPREMA INC		
	Serial No.		NONE	Country of origin	KOREA		
Test date	2016-03-0	07 ~ 2016	-03-14	Date of issue	31-Mar-16		
Testing location	347-		69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea				
Standard	F	CC PART	15 Subpart C(15	.225), ANSI C 63.	10(2009)		
	Result		Complied				
Measurement	facility registration	number	659627				
Tested by	Senior E	ngineer S.	S. An	(Sisharure)			
Reviewed by	Engineering	Manager	J.M. Yang	(Signature)	9		
Abbreviation	OK, Pass = Com	plied, Fa	il = Failed, N/A	= not applicable			
NI I	A	95%					

* Note

- Basic Model: BSA2-OEPW , Additional Model: BSA2-OHPW
- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Pag

Page 1 of 16

Contents

1.	. Laboratory Information	3
2.	. Description of EUT	4
3.	. Test Standards ······	5
4.	. Measurement condition	6
5.	. Measurement of radiated disturbance	8
	5.1 Radiated emission limits, general requirements	8
	5.2 Measurement equipment	8
	5.3 Environmental conditions	8
	5.4 Test data (9 kHz ~ 30 MHz)	9
	5.5 Test data (30 MHz ~ 1 000 MHz)	10
6.	. Measurement of conducted disturbance	11
	6.1 Measurement equipments	11
	6.2 Environmental condition	11
	6.3 Test data	12
7.	. Photographs of test setup	13
Ω	Photographs of FUT	16

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 2 of 16

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co., Ltd.

Head Office: Suite 1015 World Meridian II, 123 Gasan Digital 2-ro, Geumcheon-gu,

Seoul 153-759, R. O. Korea

EMC/Telecom/Safety Test Lab: 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

1.3 Official Qualification(s)

MSIP: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Conformity Assessment Body(CAB) with registration number 659627 under APEC TEL MRA between the RRA and the FCC

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 3 of 16

2. Description of EUT

2.1 Summary of Equipment Under Test

Product : BioStation A2 : BSA2-OEPW Model Number

Serial Number : NONE

: SUPREMA INC Manufacturer

: KOREA Country of origin Operating Frequency: 125 kHz

Antenna Type : Mag Integrated Loop Antenna

Modulation Type : ASK Power Rating : DC 12 V

: AC 120 V , 60 Hz Testing Voltage

Receipt Date : 11-Feb-16

X-tal list(s) or

: The highest operating frequency is 2 462 MHz Frequencies generated

2.2 General descriptions of EUT

Product specifications

Category	Feature	Specification			
	Biometric	Fingerprint			
General	LFD	Supported			
General	RF Option	2.4 GHz, 125 kHz Mifare/DesFire/DesFire EV1/Felica/NFC, 125 kHz			
	кі орион	iClass SE			
	Max. User (1:1)	500,000			
	Max. User (1:N)	100,000			
Storage	Max. Template (1:1)	1,000,000			
capacity	Max. Template (1:N)	200,000			
	Max. Text Log	5,000,000			
	Max. Image Log	50,000			
	Wi-Fi	Supported			
	TCP/IP	Supported			
	RS-485	1ch Host or Slave (Selectable)			
Interface	RS-232	Supported			
Interrace	Wiegand	1ch Input, 1ch Output			
	TTLinput	1ch Input			
	Relay	2 Relay			
	USB	USB 2.0 (Host)			

Report Number: ESTEFC1603-009, Web: www.estech.co.kr Page 4 of 16

3. Test Standards

Test Standard: FCC PART 15 Subpart C(15.225)

This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.10 (2009)

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Summary of Test Results

	Applied Satandard : 47 CFR Part 15, Subpart C										
Standard	Test Type	Result	Remark								
15.203	Antenna Requirement	Pass	See Appendix 2								
15.207	AC Power Conducted Emission	Pass	Meet the requirement								
15.205	Restricted bands	Pass	Meet the requirement								
15.209	Radiated Emission	Pass	Meet the requirement								

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 5 of 16

4. Measurement Condition

4.1 EUT Operation.

-The EUT was tested, tested under transmission/receiving condition continuously between the EUT

1. Check normal communication with RF OUT Frequeny (125 kHz)

4.2 Configuration and Peripherals

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 6 of 16

4.3 EUT and Support equipment

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
BioStation A2	BSA2-OEPW	NONE	SUPREMA INC	EUT
Adapter	JPW128KA1200N05	NONE	BridgePower Corp.	
USB MEMORY KEY	NONE	NONE	NONE	

4.4 Cable Connecting

Start Equipment		End Equ	End Equipment			Remark
Name	I/O port	Name	I/O port	Length	Shielded	Remark
BioStation A2	POWER	ADAPTER	-	2.0	Unshielded	
BioStation A2	LAN	Notebook Computer (External)	LAN	3.0	Unshielded	
BioStation A2	RS-485	RS-485 CONVERTER (External)	USB	3.0	Unshielded	
BioStation A2	Jack Line	Sensor Line x 6 (External)	-	3.0	Shielded	
BioStation A2	Wireless (125 kHz)	RFID CARD	Wireless (125 kHz)	_	-	
BioStation A2	POE(LAN)	POE HUB (External)	POE(LAN)	20.0	Unshielded	

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 7 of 16

5. Measurement of radiated disturbance

The EUT was placed on the top of a rotating table 0.8 m above the ground at a 10 m semi-anechoic chamber . The table was rotated 360° to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at 1 m above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0° to 360° to find the maximum reading. The test receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

5.1 Radiated emission limits, general requirements

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator

shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength(microvolt/meter)	Distance(meter)
0.009-0.490	2400/F(KHz)	300
0.490-1.705	24000/F(KHz)	30
1.705-30	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{*} dBuV/m=20*log(uV/m) * Distance factor=40dB / decade(15.31(f))

5.2 Measurement equipments

Equipment Name	Type	Type Manufacturer		Next Calibration date
TEST Receiver	ESCI7	ROHDE & SCHWARZ	100916	7-Sep-16
Logbicon Antenna	VULB 9168	SCHWARZBECK	9168-193	30-Sep-16
Turn Table	DT3000-2t	Innco System GmbH	N/A	-
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
Antenna Master & Turn table controller	CO2000-P	Innco System GmbH	CO2000/641 /28051111/L	-
Loop Antenna	HFH2-Z2	ROHDE & SCHWARZ	100188	19-Aug-16

5.3 Environmental Condition

Test Place : 10 m Semi-anechoic chamber

Below 1 GHz

Temperature (°C) : $(20.2 \sim 20.6)$ °C Humidity (% R.H.) : $(49.6 \sim 48.8)$ % R.H.

Test Place : 3 m Semi-anechoic chamber(3 m)

Above 1 GHz - N / A
Temperature (°C)
Humidity (% R.H.)

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 8 of 16

5.4 Test data(9 kHz \sim 30 MHz) Adapter Mode

Test Date: 7-Mar-16 Measurement Distance: 3 m

Frequency Reading		Position	Height	Correctio	n Factor	Result Va	alue(Quasi-pe	eak)	
(MHz)	neading (dB₩)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
125.76	63.04	Н	1.0	18.80	0.1	105.7	81.92	-23.75	
Remark	H: Horizontal, V: Vertical There did not measure any radiated spurious emission in the range 9 kHz to 30 MHz *There is no found Restricted bands. *The 300 m limit was converted to 3m Limit using square factor(x) as it was found by measurements as follows; 3 m Limit(dBuV/m) = 20log(2400/F(KHz))+40log(300/3)= 20log(2400/125)+40log(300/3)								

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 9 of 16

5.4 Test data(9 kHz ~ 30 MHz) Poe Mode

Test Date: 7-Mar-16 Measurement Distance: 3 m

Fraguency	Reading	Position	Usiaht	Correctio	n Factor	Result Va	alue(Quasi-p	eak)
Frequency (MHz)	Heading (dB≠V)	(V/H)	Height (m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
125.76	65.22	V	1.0	18.80	0.1	105.7	84.10	-21.57
Remark	H: Horizontal, V: Vertical There did not measure any radiated spurious emission in the range 9 kHz to 30 MHz *There is no found Restricted bands. *The 300 m limit was converted to 3m Limit using square factor(x) as it was found by measurements as follows; 3 m Limit(dBuV/m) = 20log(2400/F(KHz))+40log(300/3)= 20log(2400/125)+40log(300/3)							

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 10 of 16

5.5 Test data(30 MHz ~ 1 000 MHz)-Adapter Mode

Test Date: 14-Mar-16 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correctio	n Factor	Result V	alue(Quasi-pe	eak)
	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
72.00	22.35	2.6	V	10.55	1.34	40.00	34.24	5.76
250.00	27.21	2.5	\	11.67	2.52	46.00	41.40	4.60
410.00	17.70	2.5	V	15.97	3.27	46.00	36.94	9.06
550.00	17.16	1.8	Н	19.07	3.82	46.00	40.04	5.96
650.00	12.34	2.0	Н	20.68	4.18	46.00	37.20	8.80
850.00	12.01	1.4	Н	23.25	4.85	46.00	40.10	5.90

H: Horizontal, V: Vertical

*Result Value = Reading + Antenna + Cable loss

*Correction Factor = Ant Factor + Cable

*The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 10-1 of 16

Remark

5.5 Test data(30 MHz ~ 1 000 MHz)-PoE Mode

Test Date: 14-Mar-16 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correctio	n Factor	Result V	alue(Quasi-pe	eak)
(MHz)		(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
250.00	19.49	1.9	Н	11.67	2.52	46.00	33.68	12.32
450.00	15.65	2.2	Н	16.91	3.43	46.00	35.98	10.02
500.00	17.15	1.6	Н	18.07	3.62	46.00	38.84	7.16
750.00	9.50	1.9	V	22.01	4.52	46.00	36.02	9.98
800.00	9.53	1.6	Н	22.72	4.69	46.00	36.94	9.06
850.00	13.11	1.4	Н	23.25	4.85	46.00	41.20	4.80
_				_				

H: Horizontal, V: Vertical

*Result Value = Reading + Antenna + Cable loss

*Correction Factor = Ant Factor + Cable

*The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 10-2 of 16

Remark

6. Measurement of conducted disturbance

The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC Part 15 (2010) & ANSI C 63.4 (2003) The test setup was made according to FCC Part 15 (2010) & ANSI C 63.4 (2003) in a shielded Room. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16.

6.1 Measurement equipments

Equipment Name	Model	Manufacturer Serial No.		Next Calibration date	
TEST RECEIVER	ESPI	Rohde & Schwarz	100005	7-Dec-16	
LISN	ESH3-Z5	Rohde & Schwarz	836679/025	7-Dec-16	
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	7-Dec-16	

6.2 Environmental Condition

Test Place : Shielded Room

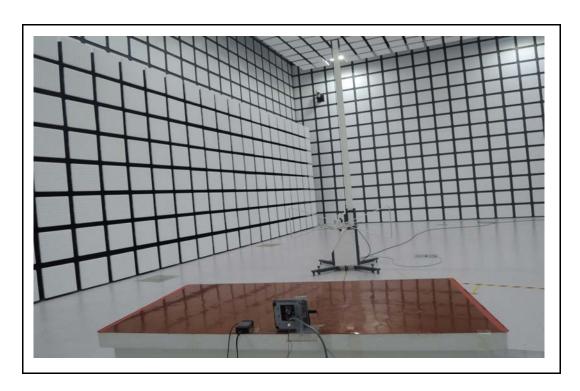
Temperature (°C) : 19.2 °C

Humidity (% R.H.) : 49.3 % R.H.

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 11 of 16

6.3 Test data

Test Date: 14-Mar-16


Frequency (MHz)	Correction Factor		Lina	Quasi-peak Value			Average Value		
	Lisn (dB)	Cable (dB)	Line (H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#)	Result (dB)
10.62	0.40	0.35	Ν	60.00	43.64	44.39	50.00		
11.35	0.43	0.36	Z	60.00	44.56	45.35	50.00		
12.15	0.56	0.37	Н	60.00	45.30	46.22	50.00		
12.22	0.56	0.37	Н	60.00	45.74	46.67	50.00		
13.15	0.51	0.38	Z	60.00	44.94	45.83	50.00		
13.21	0.52	0.38	Z	60.00	45.16	46.06	50.00		
Remark	H: Hot Li *Correctio *Result =	n Factor :	= Lisn +						

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 12 of 16

- 7. Photographs of test setup
- 7.1.Setup for Radiated Test : 9 kHz \sim 1 000 MHz

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 13 of 16

7.2.Setup	for Radiated Test : Above 1 GHz
	(N/A)
	[Rear]
	(N/A)

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 14 of 16

7.3. Setup for Conducted Test : (0.15 \sim 30) MHz

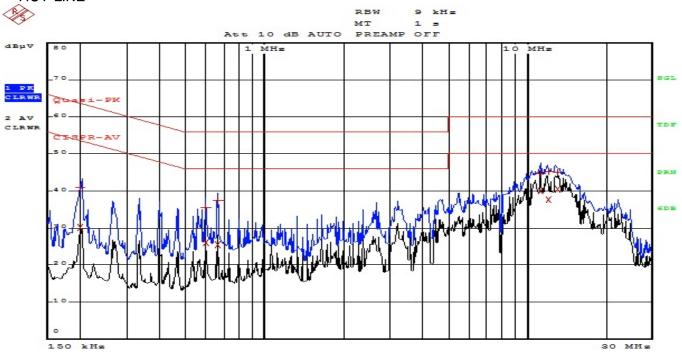
[Front]

[Rear]

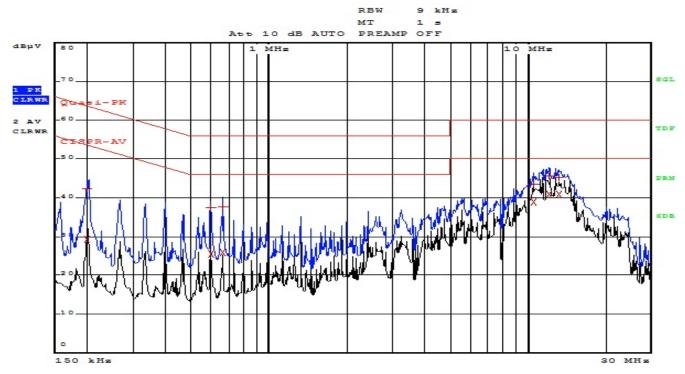
Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 15 of 16

8. Photographs of EUT

[Front]


[Rear]

Report Number: ESTEFC1603-009, Web: www. estech. co. kr Page 16 of 16


Appendix 1. Special diagram

Comment: 16-02123_HOT Date: 14.MAR.2016 09:34:27

* NEUTRAL LINE

Comment: 16-02123_NEUTRAL Date: 14.MAR.2016 09:31:39

Appendix 1. Antenna Requirement

Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Result

-Complied

The transmitter has an Mag Integrated Loop Antenna.