

SIM7600G,SIM7600G miniPCIE User manual

LTE/HSPA/GSM/GNSS MODULE

SIMCom Wireless Solutions Limited

Building B, SIM Technology Building, No.633, Jinzhong Road Changning District, Shanghai P.R. China Tel: 86-21-31575100 support@simcom.com www.simcom.com

Document Title:	SIM7600G User manual	
Version:	V1.03	
Date:	2020-05-09	
Status:	Released	
Document Control ID:	SIM7600G User manual	

GENERAL NOTES

SIMCOM OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS, TO SUPPORT APPLICATION AND ENGINEERING EFFORTS THAT USE THE PRODUCTS DESIGNED BY SIMCOM. THE INFORMATION PROVIDED IS BASED UPON REQUIREMENTS SPECIFICALLY PROVIDED TO SIMCOM BY THE CUSTOMERS. SIMCOM HAS NOT UNDERTAKEN ANY INDEPENDENT SEARCH FOR ADDITIONAL RELEVANT INFORMATION, INCLUDING ANY INFORMATION THAT MAY BE IN THE CUSTOMER'S POSSESSION. FURTHERMORE, SYSTEM VALIDATION OF THIS PRODUCT DESIGNED BY SIMCOM WITHIN A LARGER ELECTRONIC SYSTEM REMAINS THE RESPONSIBILITY OF THE CUSTOMER OR THE CUSTOMER'S SYSTEM INTEGRATOR. ALL SPECIFICATIONS SUPPLIED HEREIN ARE SUBJECT TO CHANGE.

IC Caution:

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- (1) This device may not cause interference, and
- (2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement

This equipment complies with ISED radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

Ce matériel est complété par une exposition de rayonnements IC pour un environnement naturel. Ce matériel doit être installé et se faire avec une distance minimale de 20cm entre les radiateurs et les autresYour body shop.

For a host manufacture's using a certified modular, if (1) the module's IC number is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the IC number of the module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module IC: 23761-8PYA009" or "Contains IC: 23761-8PYA009" must be used.

This radio transmitter IC: 23761-8PYA009 has been approved by Imovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximm permissible gain indicated. Antenna types not included in this list that have gain greater than the maximm gain indicated for any type listed are strictly prohibilted for use with this device.

Antenna List: Type: Dipole antenna with non-standard SMA connector(50ohm); Model: MF25D Antenna Gain: Band 2:8dBi, Band 4:5dBi, Band 5:8dBi, Band 12:7dBi, Band13:8dBi, Band 25:8dBi, Band 26:8dBi, Band 41:8dBi, Band 66:5dBi GSM 850:8 dBi, PCS 1900:8 dBi WCDMA B2:8 dBi, WCDMA B4:5 dBi WCDMA B5:8 dBi

Single Module

Declaration of Conformity

SIMCom Wireless Solutions Limited, hereby declares that this LTE /HSPA/GSM/GNSS MODULE in compliance with the essential requirements and other relevant provisions of Directive 2014/53/EU. In accordance with Article 10(2) and Article 10(10), This product is allowed to be used in all EU member states.

FCC Statement

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) this device must accept

any interference received, including interference that may cause undesired operation.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The modular can be installed or integrated in mobile or fix devices only. This modular cannot be installed in any portable device.

FCC Radiation Exposure Statement

This modular complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This modular must be installed and operated with a minimum distance of 20 cm between the radiator and user body.

If the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID: 2AJYU-8PYA00E Or Contains FCC ID: 2AJYU-8PYA00E"

When the module is installed inside another device, the user manual of the host must contain below warning statements;

1. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference.

(2) This device must accept any interference received, including interference that may cause undesired operation.

2. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The devices must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the product.

Any company of the host device which install this modular with Single modular approval should perform the test of radiated emissionand spurious emission according to FCC part 15C : 15.247 and 15.209 requirement, Only if the test result comply with FCC part 15C : 15.247 and 15.209 requirement, then the host can be sold legally.

COPYRIGHT

THIS DOCUMENT CONTAINS PROPRIETARY TECHNICAL INFORMATION WHICH IS THE PROPERTY OF SIMCOM WIRELESS SOLUTIONS LIMITED COPYING, TO OTHERS AND USING THIS DOCUMENT, ARE FORBIDDEN WITHOUT EXPRESS AUTHORITY BY SIMCOM. OFFENDERS ARE LIABLE TO THE PAYMENT OF INDEMNIFICATIONS. ALL RIGHTS RESERVED BY SIMCOM IN THE PROPRIETARY TECHNICAL INFORMATION , INCLUDING BUT NOT LIMITED TO REGISTRATION GRANTING OF A PATENT, A UTILITY MODEL OR DESIGN. ALL SPECIFICATION SUPPLIED HEREIN ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME.

manufacturer information:

SIMCom Wireless Solutions Limited No.633, Jinzhong Rd, Changning Dist., Shanghai, P.R.China Tel: +86 21 31575100

Email: simcom@simcom.com

For more information, please visit: https://www.simcom.com/download/list-863-en.html

For technical support, or to report documentation errors, please visit: https://www.simcom.com/ask/ or email to: support@simcom.com

importer information:

importer Name : XXXX

importer Address:XXXX

Copyright © 2020 SIMCom Wireless Solutions Limited All Rights Reserved.

Version History

Date	Version	Description of change	Author
2019-3-29	1.00	Original	Xutao.Jiang
2019-10-21	1.01	Update current consumption	Xutao.Jiang
2020-04-22	1.02	Modify the Format	Xiong Yuqing
2020-05-09	1.03	Add Sim7600NA/NA-H frequency band Change Table 2	Xutao.Jiang Qiang.Zhang

Contents

Version History	6
Contents	7
Table Index	9
Figure Index	11
1 Introduction	13
1.1 Product Outline	
1.2 Hardware Interface Overview	
1.3 Functional Overview	
2 Package Information	17
2.1 Pin Assignment Overview	
2.2 Pin Description	
2.3 Mechanical Information	
2.4 Footprint Recommendation	
3 Interface Application	
3.1 Power Supply	
3.1.1 Power Supply Design Guide	
3.1.2 Recommended Power Supply Circuit	
3.1.3 Voltage Monitor	
3.2 Power on/Power off/Reset Function	
3.2.1 Power on	
3.2.2 Power off	
3.2.3 Reset Function	
3.3 UART Interface	
3.3.1 UART Design Guide	
3.3.2 RI and DTR Behavior	
3.4 USB Interface	
3.5 HSIC interface	
3.6 SGMII Interface	
3.6.1 Reference schematic with AR8033	
3.6.2 Reference schematic with BCM89820	40
3.7 USIM Interface	
3.7.1 USIM Application Guide	
3.8 PCM Interface	43
3.8.1 PCM timing	
3.8.2 PCM Application Guide	
3.9 SD Interface	45
3.10 I2C Interface	
3.11 SDIO Interface	

	3.12 SPI Interface	
	3.13 Network status	
	3.14 Flight Mode Control	
	3.15 Other interface	51
	3.15.1 Sink Current Source	51
	3.15.2 ADC	
	3.15.3 LDO	
4	RF Specifications	53
	4.1. LTE RF Specifications	53
	4.2. LTE Antenna Design Guide	54
	4.3. GNSS	
	4.3.1 GNSS Technical specification	
	4.3.2 GNSS Application Guide	
5	Electrical Specification	
	5.1 Absolute maximum ratings	
	5.2 Operating conditions	
	5.3 Operating Mode	60
	5.3.1. Operating Mode Definition	
	5.3.2. Sleep mode	
	5.3.3. Minimum functionality mode and Flight mode	61
	5.4 Current Consumption	61
	5.5 ESD Notes	
6	SMT Production Guide	64
	6.1 Top and Bottom View of MODULE	
	6.2 Label Information	65
	6.3 Typical SMT Reflow Profile	65
	6.4 Moisture Sensitivity Level (MSL)	
	6.5 Stencil Foil Design Recommendation	
7	Packaging	68
8	Appendix	71
	8.1 Coding Schemes and Maximum Net Data Rates over Air Interface	
	8.2 Related Documents	71
	8.3 Terms and Abbreviations	73
	8.4 Safety Caution	74

Table Index

TABLE 38: THE DESCRIPTION OF LABEL INFORMATION	65
TABLE 37: THE ESD PERFORMANCE MEASUREMENT TABLE (TEMPERATURE: 25°C, HUMIDIT	Y: 45%)
TABLE 36: CURRENT CONSUMPTION ON VBAT PINS (VBAT=3.8V)	61
TABLE 35: OPERATING MODE DEFINITION	
TABLE 34: OPERATING TEMPERATURE	
TABLE 33: 1.8V DIGITAL I/O CHARACTERISTICS*	59
TABLE 32: RECOMMENDED OPERATING RATINGS	58
TABLE 31: ABSOLUTE MAXIMUM RATINGS	
TABLE 30: RECOMMENDED TVS	
TABLE 29: TRACE LOSS	
TABLE 28: REFERENCE SENSITIVITY (QPSK)	
TABLE 27: CONDUCTED RECEIVE SENSITIVITY	54
TABLE 26: E-UTRA OPERATING BANDS	53
TABLE 25: OPERATING FREQUENCIES	53
TABLE 24: CONDUCTED TRANSMISSION POWER	
TABLE 23: ELECTRONIC CHARACTERISTIC	52
TABLE 22: ADC1 AND ADC2 ELECTRONIC CHARACTERISTICS	52
TABLE 21: SINK CURRENT ELECTRONIC CHARACTERISTIC	51
TABLE 20: FLIGHTMODE PIN STATUS	50
TABLE 19: NETLIGHT PIN STATUS	49
TABLE 18: SD/MMC/EMMC ELECTRONIC CHARACTERISTIC AS 1.8V (SD_DATA0-3, SD_CLK SD_CMD)	
TABLE 17: SD/MMC ELECTRONIC CHARACTERISTIC AS 2.85V (SD_DATA0-3, SD_CLK AND SD_	
TABLE 16: PCM TIMING PARAMETERS	
	43
TABLE 14: AMPHENOL USIM SOCKET PIN DESCRIPTION	
TABLE 13: USIM ELECTRONIC CHARACTERISTIC 3.0V MODE (USIM_VDD=2.95V)	
TABLE 12: USIM ELECTRONIC CHARACTERISTIC IN 1.8V MODE (USIM_VDD=1.8V)	
TABLE 11: KEY DIFFERENCES BETWEEN HSIC AND HS-USB	
TABLE 10: RESET PIN ELECTRONIC CHARACTERISTIC	
TABLE 9: POWER OFF TIMING AND ELECTRONIC CHARACTERISTIC	
TABLE 8: POWER ON TIMING AND ELECTRONIC CHARACTERISTIC	
TABLE 7: RECOMMENDED TVS LIST	
TABLE 6: VBAT PINS ELECTRONIC CHARACTERISTIC	
TABLE 5: PIN DESCRIPTION	
TABLE 4: IO PARAMETERS DEFINITION	
TABLE3: PIN DEFINITION	17
TABLE2: GENERAL FEATURES	15
TABLE1: MODULE FREQUENCY BANDS	13

TABLE 39: MOISTURE SENSITIVITY LEVEL AND FLOOR LIFE	66
TABLE 40: TRAY SIZE	68
TABLE 41: SMALL CARTON SIZE	69
TABLE 42: BIG CARTON SIZE	70
TABLE 43: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE	71
TABLE 44: RELATED DOCUMENTS	71
TABLE 45: TERMS AND ABBREVIATIONS	73
TABLE 46: SAFETY CAUTION	74

Figure Index

FIGURE 2 : PIN ASSIGNMENT OVERVIEW	.17
FIGURE 3 : DIMENSIONS (UNIT: MM)	. 24
FIGURE 4 : FOOTPRINT RECOMMENDATION (UNIT: MM)	.25
FIGURE 5 : VBAT VOLTAGE DROP DURING BURST EMISSION (GSM/GPRS)	.26
FIGURE 6 : POWER SUPPLY APPLICATION CIRCUIT	.27
FIGURE 7 : LINEAR REGULATOR REFERENCE CIRCUIT	.28
FIGURE 8 : SWITCHING MODE POWER SUPPLY REFERENCE CIRCUIT	.29
FIGURE 9 : REFERENCE POWER ON/OFF CIRCUIT	. 30
FIGURE 10 : POWER ON TIMING SEQUENCE	
FIGURE 11 : POWER OFF TIMING SEQUENCE	. 32
FIGURE 12 : REFERENCE RESET CIRCUIT	
FIGURE 13 : UART FULL MODEM	. 34
FIGURE 14 : UART NULL MODEM	. 34
FIGURE 15 : REFERENCE CIRCUIT OF LEVEL SHIFT	
FIGURE 16 : LEVEL MATCHING CIRCUIT	. 35
FIGURE 17 : RI BEHAVIOUR (SMS AND URC REPORT)	
FIGURE 18 : RI BEHAVIOUR (VOICE CALL)	. 36
FIGURE 19 : USB REFERENCE CIRCUIT	. 37
FIGURE 20 : REFERENCE SGMII CIRCUIT WITH AR8033	. 39
FIGURE 21 : REFERENCE SGMII CIRCUIT WITH BCM89820	.40
FIGURE 22 : USIM INTERFACE REFERENCE CIRCUIT	. 41
FIGURE 23 : USIM INTERFACE REFERENCE CIRCUIT WITH USIM_DET	. 42
FIGURE 24 : AMPHENOL SIM CARD SOCKET	
FIGURE 25 : PCM_SYNC TIMING	.44
FIGURE 26 : EXT CODEC TO MODULE TIMING	.44
FIGURE 27 : MODULE TO EXT CODEC TIMING	.44
FIGURE 28 : AUDIO CODEC REFERENCE CIRCUIT	. 45
FIGURE 29 : SD REFERENCE CIRCUIT	.46
FIGURE 30 : EMMC REFERENCE CIRCUIT	. 47
FIGURE 31 : I2C REFERENCE CIRCUIT	.48
FIGURE 32 : NETLIGHT REFERENCE CIRCUIT	. 49
FIGURE 33 : FLIGHT MODE SWITCH REFERENCE CIRCUIT	. 50
FIGURE 34 : ISINK REFERENCE CIRCUIT	. 51
FIGURE 35 : ANTENNA MATCHING CIRCUIT (MAIN_ANT)	. 55
FIGURE 36 : ANTENNA MATCHING CIRCUIT (AUX_ANT)	. 55
FIGURE 37 : ACTIVE ANTENNA CIRCUIT	
FIGURE 38 : PASSIVE ANTENNA CIRCUIT (DEFAULT)	.57
FIGURE 39 : TOP AND BOTTOM VIEW OF MODULE	
FIGURE 40 : LABEL INFORMATION	
FIGURE 41 : THE RAMP-SOAK-SPIKE REFLOW PROFILE OF MODULE	.66
FIGURE 42 : STENCIL FOIL	. 67

FIGURE 43 : PACKAGING DIAGRAM	68
FIGURE 44 : TRAY DRAWING	68
FIGURE 45 : SMALL CARTON DRAWING	69
FIGURE 46 : BIG CARTON DRAWING	70

1 Introduction

This document describes the electronic specifications, RF specifications, interfaces, mechanical characteristics and testing results of the SIMCom module. With the help of this document and other software application notes/user guides, users can understand and use module to design and develop applications quickly.

1.1 Product Outline

Aimed at the global market, the module support GSM, WCDMA, LTE-TDD and LTE-FDD. Users can choose the module according to the wireless network configuration. The supported radio frequency bands are described in the following table.

Standar d	Frequency	SIM7600G	SIM7600G-H	SIM7600NA	SIM7600NA-H
	850MHz				
0014	900MHz				
GSM	1800M Hz				
	1900M Hz	\checkmark			
	B1				
	B2	\checkmark			
	B4	\checkmark			
WCDMA	B5				
	B6				
	B8				
	B19				
	FDD B1				
	FDD B2	\checkmark	\checkmark	\checkmark	\checkmark
	FDD B3				
	FDD B4	\checkmark	\checkmark	\checkmark	\checkmark
LTE	FDD B5	\checkmark	\checkmark	\checkmark	\checkmark
	FDD B7				
	FDD B8				
	FDD B12	\checkmark	\checkmark	\checkmark	\checkmark
	FDD B13	\checkmark	√	\checkmark	\checkmark

Table1: Module frequency bands

	FDD B14 FDD B18			·	
	FDD B19				
	FDD B20				
	FDD B25	\checkmark	\checkmark	\checkmark	\checkmark
	FDD B26	\checkmark	\checkmark	\checkmark	\checkmark
	FDD B28				
	FDD B66	\checkmark	\checkmark	\checkmark	\checkmark
	FDD B71			\checkmark	\checkmark
	TDD B34				
	TDD B38				
	TDD B39				
	TDD B40				
	TDD B41		\checkmark		\checkmark
Category		CAT1	CAT4	CAT1	CAT4

With a small physical dimension of 30*30*2.9 mm and with the functions integrated, the module can meet almost any space requirement in users' applications, such as smart phone, PDA, industrial handhold, machine-to-machine and vehicle application, etc.

1.2 Hardware Interface Overview

The interfaces are described in detail in the next chapters include:

- Power Supply
- USB2.0 Interface
- UART Interface
- MMC/SD Interface
- SDIO Interface
- USIM Interface
- SPI Interface
- GPIO
- ADC
- LDO Power Output
- Current Sink Source
- PCM Interface
- SPI Interface
- I2C Interface
- HSIC Interface
- SGMII Interface

1.3 Functional Overview

Table2: General features

Feature	Implementation	
Power supply	Single supply voltage 3.4 \sim 4.2V, Recommend supply voltage 3.8V	
Power saving	Current in sleep mode : <5mA	
Radio frequency bands	Please refer to the table 1	
Transmitting power	LTE power class: 3 (24+1/-2dBm)	
Data Transmission Throughput	LTE CAT 1: 10 Mbps(DL) 5 Mbps(UL)	
Antenna	LTE main antenna. LTE auxiliary antenna GNSS antenna	
GNSS	GNSS engine (GPS,GLONASS,BD,QZSS and GALILEO) Protocol: NMEA 0183	
SMS	MT, MO, CB, Text and PDU mode SMS storage: USIM card or ME(default) Transmission of SMS alternatively over CS or PS.	
USIM interface	Support identity card: 1.8V/ 3V	
USIM application toolkit	Support USAT	
Phonebook management	ent Support phonebook types: DC,MC,RC,SM,ME,FD,ON,LD,EN	
Audio feature	Support PCM interface Only support PCM master mode and short frame sync, 16-bit linear data formats	
UART interface	A full modem serial port by default Baud rate: 300bps to 4Mbps(default:115200bps) Autobauding baud rate: 9600,19200,38400,57600,115200bps Can be used as the AT commands or data stream channel Support RTS/CTS hardware handshake Multiplex ability according to GSM 07.10 Multiplexer Protocol	
MMC/SD	Support MMC and SD cards with 2.85 V on SD port	
SDIO	Support SDIO with 1.8 V only on SDIO port	
USB	USB 2.0 high speed interface, Can used be send AT command, Software update, GNSS NMEA, USB voice function etc.	
Firmware upgrade	Firmware upgrade over USB interface or FOTA	
Physical characteristics	Size:30*30*2.9m Weight:5.7 g	
Temperature range	Normal operation temperature: -30°C to +80°C Extended operation temperature: -40°C to +85°C* Storage temperature -45°C to +90°C	
antenna type	External(SMA connector)	
max. output power	LTE Band12:24.50dBm,LTE Band13:22.43dBm,	

	LTE Band25:23.15dBm,LTE Band26:23.84dBm,LTE Band 41:22.57dBm, LTE Band 66:22.78dBm GSM850:27.34dBm, PCS1900:24.89dBm WCDMA B2:24.01dBm,WCDMA B4:22.62dBm WCDMA B5:23.64dBm
	Tx: LTE Band2:1850~1910MHz,LTE Band4:1710MHz~1755MHz LTE Band5:824~849MHz,LTE Band12:699~716MHz LTE Band13:777~787MHz,LTE Band25:1850~1915MHz LTE Band26:814~849MHz,LTE Band41:2496MHz~2690MHz LTE Band66:1710MHz~1780MHz
frequency range	GSM850: 824-849 MHz, GSM1900: 1850-1910 MHz WCDMA B2: 1850-1910 MHz, WCDMA B5: 824-849 MHz
	WCDMA B4: 1710-1755 MHz Rx:LTE Band2:1930~1990MHz,LTE Band4:2110MHz~2155MHz LTE Band5:869~894MHz,LTE Band12:729~746MHz LTE Band13:746~756MHz,LTE Band25:1930~1995MHz LTE Band26:859~894MHz,LTE Band41:2496MHz~2690MHz
NOTE	LTE Band66:2110MHz~2200MHz GSM850: 869-894 MHz GSM1900: 1930-1990 MHz WCDMA B2: 1930-1990 MHz WCDMA B5: 869-894 MHz WCDMA B4: 2110-2155 MHz GPS: 1575.42MHz; BDS: 1559MHz~1563MHz

Module is able to make and receive voice calls, data calls, SMS and make LTE traffic in -40°C ~ +85°C. The performance will be reduced slightly from the 3GPP specifications if the temperature is outside the normal operating temperature range and still within the extreme operating temperature range.

2 Package Information

2.1 Pin Assignment Overview

All functions of the MODULE will be provided through 135 pads that will be connected to the users' platform. The following Figure is a high-level view of the pin assignment of the MODULE.

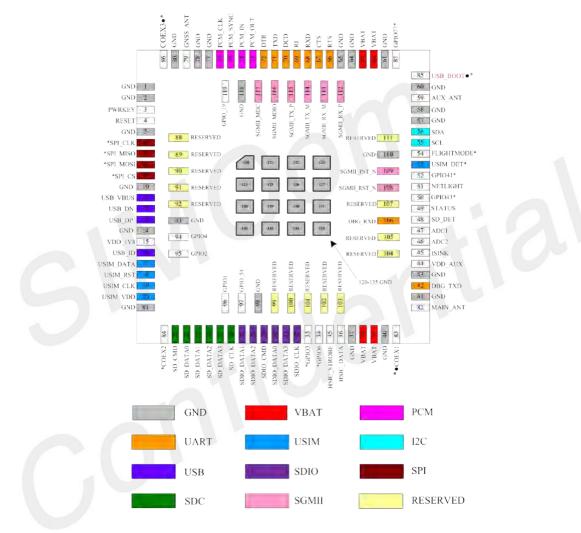


Figure 2: Pin assignment overview

Table3: Pin definition

Pin No.	Pin name	Pin No.	Pin name
1	GND	2	GND
3	PWRKEY	4	RESET
5	GND	6	SPI_CLK*

7	SPI_MISO*	8	SPI_MOSI*
9	SPI_CS*	10	GND
11	USB_VBUS	12	USB_DN
13	USB_DP	14	GND
15	VDD_1V8	16	USB_ID
17	USIM_DATA	18	USIM_RST
19	USIM_CLK	20	USIM_VDD
21	SD_CMD	22	SD_DATA0
23	SD_DATA1	24	SD_DATA2
25	SD_DATA3	26	SD_CLK
27	SDIO_DATA1	28	SDIO_DATA2
29	SDIO_CMD	30	SDIO_DATA0
31	SDIO_DATA3	32	SDIO_CLK
33	GPIO3*	34	GPIO6*
35	HSIC_STROBE	36	HSIC_DATA
37	GND	38	VBAT
39	VBAT	40	GND
41	GND	42	DBG_TXD
43	GND	44	VDD_AUX
45	ISINK	46	ADC2
47	ADC1	48	SD_DET
49	STATUS	50	GPIO43*
51	NETLIGHT	52	GPIO41*
53	USIM_DET*	54	FLIGHTMODE*
55	SCL	56	SDA
57	GND	58	GND
59	AUX_ANT	60	GND
61	GND	62	VBAT
63	VBAT	64	GND
65	GND	66	RTS
67	CTS	68	RXD
69	RI	70	DCD
71	TXD	72	DTR
73	PCM_OUT	74	PCM_IN
75	PCM_SYNC	76	PCM_CLK
77	GND	78	GND
79	GNSS_ANT	80	GND
81	GND	82	MAIN_ANT
83	COEX1.*	84	COEX2*
85	BOOT_CFG0.*	86	COEX3•*
87	GPIO77	88	RESERVED

89	RESERVED	90	RESERVED
91	RESERVED	92	RESERVED
93	GND	94	GPIO4
95	GPIO2	96	GPIO1
97	GPIO_54	98	GND
99	RESERVED	100	RESERVED
101	RESERVED	102	RESERVED
103	RESERVED	104	RESERVED
105	RESERVED	106	DBG_RXD
107	RESERVED	108	SGMII_RST_N
109	SGMII_INT_N	110	GND
111	RESERVED	112	SGMII_RX_P
113	SGMII_RX_M	114	SGMII_TX_M
115	SGMII_TX_P	116	SGMII_MDIO
117	SGMII_MDC	118	GND
119	GPIO_19	120	GND
121	GND	122	GND
123	GND	124	GND
125	GND	126	GND
127	GND	128	GND
129	GND	130	GND
131	GND	132	GND
133	GND	134	GND
135	GND		

NOTE

- Means Before the normal power up, COEX1, COEX3 or BOOT_CFG0 cannot be pulled up, otherwise module will not be powered up normally.
- * Means that pins has MUX function.

2.2 Pin Description

Table 4: IO parameters definition

Pin type	Description
PI	Power input
PO	Power output

AI	Analog input
AIO	Analog input/output
I/O	Bidirectional input /output
DI	Digital input
DO	Digital output
DOH	Digital output with high level
DOL	Digital output with low level
PU	Pull up
PD	Pull down

Table 5: Pin description

Pin name	Pin No.	Default status	Description	Comment
Power supply				
VBAT	38,39, 62,63	PI	Power supply, voltage range: $3.4 \sim 4.2$ V.	
VDD_AUX	44	PO	LDO power output for other external circuits with Max 150mA current output. Its output voltage is 2.85V by default. (The voltage can be configured from 1.7V to 3.05V by AT command).	If used SGMII function ,this pin used for SGMII function. If unused, keep it open.
VDD_1V8	15	PO	1.8 output with Max 50mA current output for external circuit, such as level shift circuit.	lf unused, keep it open.
GND	1,2,5, 10,14,37, 40,41,43, 57,58,60, 61,64,65, 77,78,80, 81,93,96, 110,118,1 20,121,1 22,123,1 24,125,1 26,127,1 28,129,1 30,131,1 32,133,1 34135		Ground	
System Control				
PWRKEY	3	DI,PU	System power on/off control input, active low.	The high voltage is 0.8V;
RESET	4	DI, PU	System reset control input, active low.	RESET has been pulled up to 1.8V via 40Kohm resistor internally.

SD CMD	21	I/O,PD	SDIO command	
SD_DATA0	22	I/O,PD		
SD DATA1	23	I/O,PD	SDIO data	
SD DATA2	24	I/O,PD		If unused, keep them
SD DATA3	25	I/O,PD	_	open.
SD_CLK	26	DO	SDIO clock	
SD_DET	48	DI,PU	SD card insertion detect H: SD card is removed L: SD card is inserted	
USIM interface				
USIM_DATA	17	I/O,PU	USIM Card data I/O, which has been pulled up via a 10KR resistor to USIM_VDD internally. Do not pull it up or down externally.	All lines of USIM
USIM_RST	18	DO,PD	USIM Reset	interface should be
USIM_CLK	19	DO,PD	USIM clock	protected against ESD.
USIM_VDD	20	PO,PD	Power output for USIM card, its output Voltage depends on USIM card type automatically. Its output current is up to 50mA.	ESD.
SPI interface				
SPI_CLK*	6	DO	SPI clock output	
SPI_MISO*	7	DI	SPI master in/slave out data	Default SPI
SPI_MOSI*	8	DO	SPI master out/slave in data	 Optional: BT uart function
SPI_CS*	9	DO	SPI chip-select output	
USB				
USB_VBUS	11	AI	Valid USB detection input with 3.0~5.25V detection voltage	
USB_DN	12	AI, AO	Negative line of the differential, bi-directional USB signal.	
USB_DP	13	AI, AO	Positive line of the differential, bi-directional USB signal.	
USB_ID	16	AI	High-speed USB ID input	Keep it open.
SGMII interface	€			
SGMII_RX_P	112	AI	SGMII receive – positive	
SGMII_RX_M	113	AI	SGMII receive - negative	If unused, keep them
SGMII_TX_M	114	AO	SGMII transmit - negative	open.
SGMII_TX_P	115	AO	SGMII transmit- positive	
SGMII_RST_N	108	DO	Ethernet PHY reset	External 1.5K pull-up
SGMII_INT_N	109	DI,PU	Ethernet PHY interrupt	resistor from 3.3V/2.5V to
SGMII_MDIO	116	DIO	Management data input/output-data	MDIO_DATA and 10K pull-up resistor
SGMII_MDC	117	DO	Management data input/output-clock	from VDD_1V8 to ETH_INT_N are needed when the Ethernet PHY is connected.

				If unused, please
				keep them open.
UART interface	;			
RTS	66	DOH	Request to send	
CTS	67	DI	Clear to Send	-
RXD	68	DI	Receive Data	
RI	69	DOH	Ring Indicator	If unused, keep them
DCD	70	DOH	Carrier detects	open.
TXD	71	DOH	Transmit Data	
DTR	72	DI,PU	DTE get ready	-
DBG_UART				
DBG_TXD	42	DO	Log output	If unused, keep them
DBG_RXD	106	DI	Log input	open.
I2C interface				
SCL	55	OD	I2C clock output	lf unused, keep
				open, or else pull
SDA	56	OD	I2C data input/output	them up via 2.2KΩ
				resistors to 1.8V.
SDIO interface				
SDIO_DATA1	27	1/O	SDIO data1	
SDIO_DATA2	28	I/O	SDIO data2	It can be used for
SDIO_CMD	29	I/O	SDIO command	WLAN function.
SDIO_DATA0	30	I/O	SDIO data0	If unused, please keep them open.
SDIO_DATA3	31	I/O	SDIO data3	
SDIO_CLK	32	DO	SDIO clock	
HSIC interface				
HSIC_STROBE	35	I/O	HSIC strobe wakeup	If use, please refer to <u>document [27]</u>
HSIC_DATA	36	I/O	HSIC data	Otherwise please keep them open.
PCM interface				
PCM_OUT	73	DO,PD	PCM data output.	
PCM_IN	74	DI,PD	PCM data input.	lf unused, please
PCM_SYNC	75	I/O,PD	PCM data frame sync signal.	keep them open.
PCM_CLK	76	I/O,PU	PCM data bit clock.	
GPIO				
NETLIGHT	51	DO,PU	LED control output as network status indication.	-
STATUS	49	DO,PU	Operating status output. High level: Power on and firmware ready Low level: Power off	If unused, keep them open.
GPIO4	94	IO,PD	Default: GPIO	

GPIO2	95	IO,PD	Default: GPIO	
GPIO1	96	IO,PD	Default: GPIO	
GPIO_54	97	IO,PD	Default: GPIO	-
GPIO_19	119	IO,PD	Default: GPIO	
RF interface	1			
MAIN _ANT	82	AIO	MAIN antenna soldering pad	
GNSS ANT	79	AI	GNSS antenna soldering pad	
AUX_ANT	59	AI	Auxiliary antenna soldering pad	
Other interface	1	1	, , , , , , , , , , , , , , , , , , , ,	
ISINK	45	PI	Ground-referenced current sink.	
ADC1	47	AI	Analog-digital converter input 1	If unused, please
ADC2	46	AI	Analog-digital converter input 2	keep them open.
	88,89,90, 91,92,99, 100,101,			Please keep them
RESERVED	102,103, 104,105, 107,111		Reserved for future use	open.
Mux function in		1		
COEX1•*	83	I/O	RF synchronizing between Wi-Fi and LTE.	Default:COEX1•*
COEX2*	84	I/O	RFsynchronizing between Wi-Fi and LTE.	Option:WLAN_EN• Default:COEX2* Option: WoWWAN•
COEX3•*	86	I/O	RF synchronizing between Wi-Fi and LTE.	Default:COEX3∗ Option:BT_PCM_CL K∙
BOOT_CFG0•*	85	DI,PD	Boot configuration input. Module will be forced into USB download mode by connect 85 pin to VDD_1V8 during power up.	Default: BOOT_CFG0•* Option:COEX_RXD• Do place 2 test points for debug. DO NOT PULL UP BOOT_CFG0 DURING NORMAL POWER UP!
FLIGHTMODE*	54	DI,PU	Flight Mode control input. High level(or open): Normal Mode Low level: Flight Mode	Default: FLIGHTMODE* Option:BT_PCM_IN•
GPIO3*	33	Ю	GPIO	Default:GPIO3* Option:WL_PWR_E N•
GPIO6*	34	Ю	GPIO	Default:GPIO6* Option:WL_SLP_CL K•
USIM_DET*	53	Ю	Default: GPIO Optional: USIM card detecting input. H: USIM is removed L: USIM is inserted	Default:USIM_DET* Option:BT_EN•
GPIO77*	87	IO	GPIO	Default:GPIO77* Option:BT_PCM_OU

				Τ•
GPIO43*	50	I/O,PD	GPIO	Default:GPIO43* Option:COEX_TXD•
GPIO41*	52	I/O,PD	GPIO	Default:GPIO41* Option:BT_PCM_SY NC•

2.3 Mechanical Information

The following figure shows the package outline drawing of MODULE.

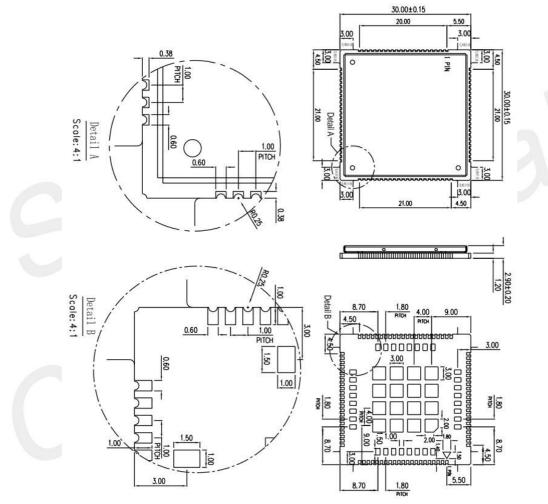
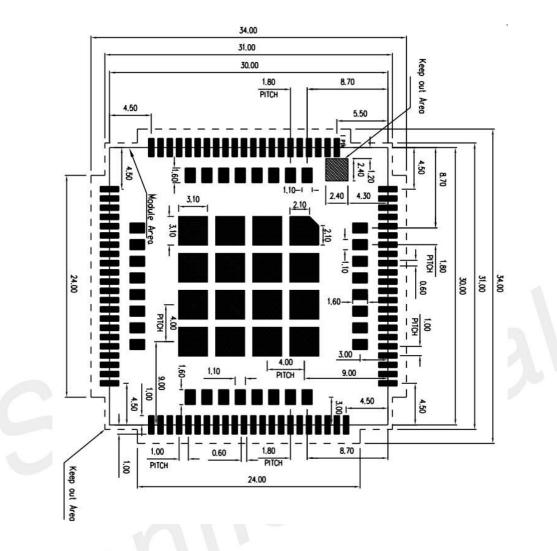
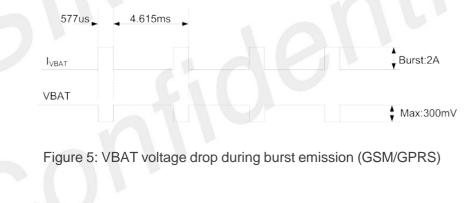



Figure 3: Dimensions (Unit: mm)

2.4 Footprint Recommendation

Figure 4: Footprint recommendation (Unit: mm)


3 Interface Application

3.1 Power Supply

The power supply pins of MODULE include 4 pins (pin 62&63, pin 38&39) named VBAT.

The 4 VBAT pads supply the power to RF and baseband circuits directly. On VBAT pads, the ripple current up to 2A typically, due to GSM/GPRS emission burst (every 4.615ms), may cause voltage drop. So the power supply for these pads must be able to provide sufficient current up to more than 2A in order to avoid the voltage drop is more than 300mV.

The following figure shows the VBAT voltage ripple wave at the maximum power transmit phase.

NOTE

The test condition: The voltage of power supply for VBAT is 3.8V, Cd=100 μ F tantalum capacitor (ESR=0.7 Ω) and Cf=100nF (Please refer to Figure 6—Application circuit).

Symbol	Description	Min.	Тур.	Max.	Unit	
VBAT	Module power voltage	3.4	3.8	4.2	V	
I _{VBAT(peak)}	Module power peak current in normal mode.	-	2	-	А	
VBAT(average)	Module power average current in normal mode	Please	Please refer to the table 34			
VBAT(sleep)	Power supply current in sleep mode					
I _{VBAT(power-off)}	Module power current in power off mode.	-	-	20	uA	

3.1.1 Power Supply Design Guide

Make sure that the voltage on the VBAT pins will never drop below 3.4V, even during a transmit burst, when current consumption may rise up to 2A. If the voltage drops below 3.4V, the RF performance may be affected.

NOTE

If the power supply for VBAT pins can support up to 2A, more than 300uF capacitors are recommended .Otherwise users must use a total of 1000uF capacitors typically, in order to avoid of the voltage drop more than 300mV.

Some multi-layer ceramic chip (MLCC) capacitors (0.1/1uF) with low ESR in high frequency band can be used for EMC.

These capacitors should be put as close as possible to VBAT pads. Also, users should keep VBAT trace on circuit board wider than 2 mm to minimize PCB trace impedance. The following figure shows the recommended circuit.

Recommend Bead for vbat filter are BLM21PG300SN1D and MPZ2012S221A.

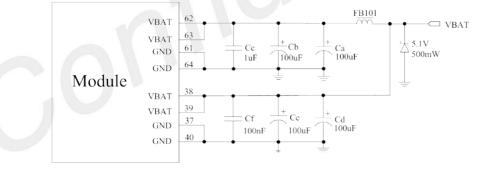


Figure 6: Power supply application circuit

In addition, in order to guard for over voltage protection, it is suggested to use TVS.

NOTE

user could only power pin 62, 63 or only power pin 38, 39, for these pins are connected inside the MODULE.

Table 7: Recommended TVS list

No.	Manufacturer	Part Number	Power dissipation	Package
1	JCET	ESDBW5V0A1	5V	DFN1006-2L
2	WAYON	WS05DPF-B	5V	DFN1006-2L
3	WILLSEMI	ESD5611N	5V	DFN1006-2L
4	WILLSEMI	ESD56151W05	5V	SOD-323
5*	PRISEMI	PESDHC2FD4V5BH	4.5V	DFN1006-2L
6*	WAYON	WS4.5DPV	4.5V	DFN1610-2L

NOTE

If user chooses TVS, please pay attention to Clamping Voltage in your datasheet . For example when the surge input is 100V,the Clamping Voltage is less than 10V. *If vbat is higher than 3.8V, do not choose NO. 5 and NO. 6.

3.1.2 Recommended Power Supply Circuit

It is recommended that a switching mode power supply or a linear regulator power supply is used. It is important to make sure that all the components used in the power supply circuit can resist a peak current up to 2A.

The following figure shows the linear regulator reference circuit with 5V input and 3.8V output.

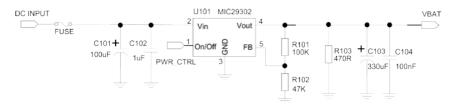


Figure 7: Linear regulator reference circuit

If there is a big voltage difference between input and output for VBAT power supply, or the efficiency is

extremely important, then a switching mode power supply will be preferable. The following figure shows the switching mode power supply reference circuit.

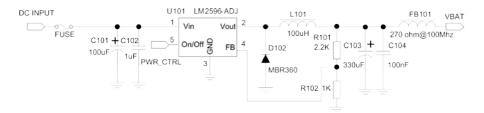


Figure 8: Switching mode power supply reference circuit

NOTE

The Switching Mode power supply solution for VBAT must be chosen carefully against Electro Magnetic Interference and ripple current from depraving RF performance.

3.1.3 Voltage Monitor

To monitor the VBAT voltage, the AT command "AT+CBC" can be used.

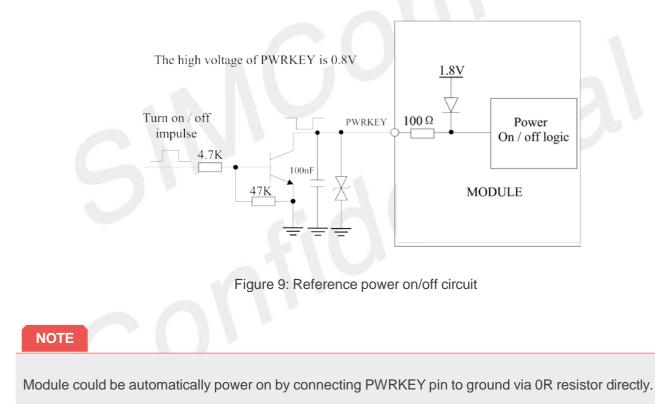
For monitoring the VBAT voltage outside or within a special range, the AT command "AT+CVALARM" can be used to enable the under-voltage warning function.

If users need to power off MODULE, when the VBAT voltage is out of a range, the AT command "AT+CPMVT" can be used to enable under-voltage power-off function.

Note: Under-voltage warning function and under-voltage power-off function are disabled by default. For more information about these AT commands, please refer to Document [1].

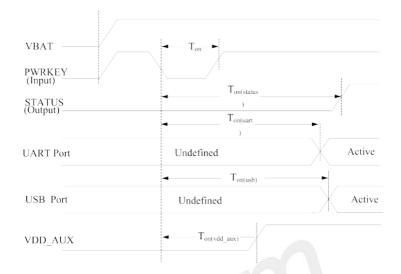
NOTE

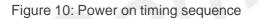
Under-voltage warning function and under-voltage power-off function are disabled by default. For more information about these AT commands, please refer to Document [1].



3.2 Power on/Power off/Reset Function

3.2.1 Power on


MODULE can be powered on by pulling the PWRKEY pin down to ground.


The PWRKEY pin has been pulled up with a diode to 1.8V internally, so it does not need to be pulled up externally. It is strongly recommended to put a100nF capacitor, an ESD protection diode, close to the PWRKEY pin as it would strongly enhance the ESD performance of PWRKEY pin. Please refer to the following figure for the recommended reference circuit.

The power-on scenarios are illustrated in the following figure.

Table 8: Power on timing and electronic characteristic

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _{on}	The time of active low level impulse of PWRKEY pin to power on MODULE	100	500	-	ms
T _{on(status)}	The time from power-on issue to STATUS pin output high level(indicating power up ready)	15	16	-	S
T _{on(uart)}	The time from power-on issue to UART port ready	13	14	-	S
Ton(vdd_aux)	The time from power-on issue to VDD_AUX ready		2.5	-	S
T _{on(usb)}	The time from power-on issue to USB port ready	11	12	-	S
VIH	Input high level voltage on PWRKEY pin	0.6	0.8	1.8	V
V _{IL}	Input low level voltage on PWRKEY pin	-0.3	0	0.5	V

3.2.2 Power off

The following methods can be used to power off MODULE.

- Method 1: Power off MODULE by pulling the PWRKEY pin down to ground.
- Method 2: Power off MODULE by AT command "AT+CPOF".
- Method 3: over-voltage or under-voltage automatic power off. The voltage range can be set by AT command "AT+CPMVT".
- Method 4: over-temperature or under-temperature automatic power off.

NOTE

If the temperature is outside the range of $-30 \sim +80^{\circ}$ C, some warning will be reported via AT port. If the temperature is outside the range of $-40 \sim +85^{\circ}$ C, MODULE will be powered off automatically.

For details about "AT+CPOF" and "AT+CPMVT", please refer to Document [1].

These procedures will make MODULE disconnect from the network and allow the software to enter a safe state, and save data before MODULE be powered off completely.

The power off scenario by pulling down the PWRKEY pin is illustrated in the following figure.

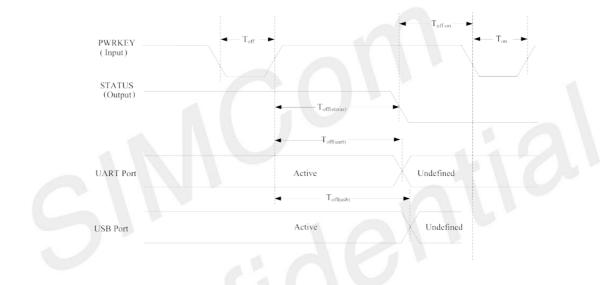


Figure 11: Power off timing sequence

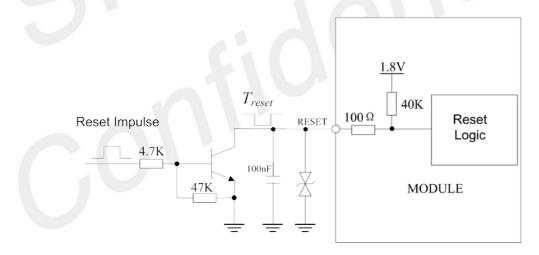
Table 9: Power off timing and electronic characteristic

Symbol	Deveryoter	Time value			L los it
	Parameter	Min.	Тур.	Max.	- Unit
T _{off}	The active low level time pulse on PWRKEY pin to power off MODULE		2.5		S
T _{off(status)}	The time from power-off issue to STATUS pin output low level(indicating power off)*	25	26	-	S
T _{off(uart)}	The time from power-off issue to UART port off	14	15	-	S
Toff(usb)	The time from power-off issue to USB port off	27	28	-	S
T _{off-on}	The buffer time from power-off issue to power-on issue	0	-	-	S

NOTE

The STATUS pin can be used to detect whether MODULE is powered on or not. When MODULE has

been powered on and firmware goes ready, STATUS will be high level, or else STATUS will still low level.


3.2.3 Reset Function

MODULE can be reset by pulling the RESET pin down to ground.

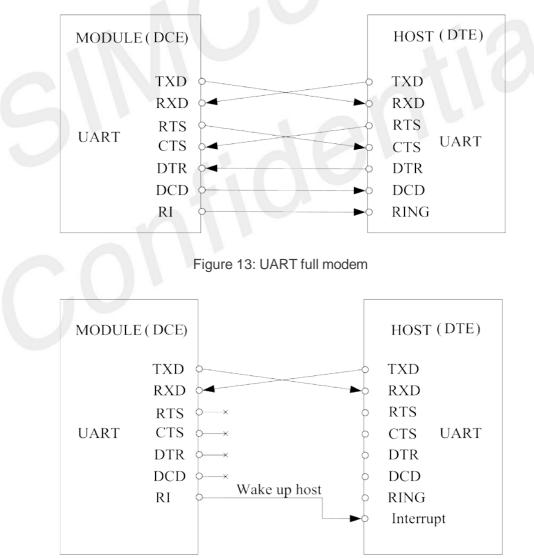
NOTE

This function is only used as an emergency reset, when AT command "AT+CPOF" and the PWRKEY pin all have lost efficacy.

The RESET pin has been pulled up with a $40K\Omega$ resistor to 1.8V internally, so it does not need to be pulled up externally. It is strongly recommended to put a 100nF capacitor and an ESD protection diode close to the RESET pin. Please refer to the following figure for the recommended reference circuit.

Table 10: RESET pin electronic characteristic

Symbol	Description	Min.	Тур.	Max.	Unit
T _{reset}	The active low level time impulse on RESET pin to reset MODULE	100	200	500	ms
Vih	Input high level voltage	1.17	1.8	2.1	V


					·····
VIL	Input low level voltage	-0.3	0	0.8	V

3.3UART Interface

MODULE provides a 7-wire UART (universal asynchronous serial transmission) interface as DCE (Data Communication Equipment). AT commands and data transmission can be performed through UART interface.

3.3.1 UART Design Guide

The following figures show the reference design.

The MODULE UART is 1.8V voltage interface. If user's UART application circuit is 3.3V voltage interface, the level shifter circuits should be used for voltage matching. The TXB0108RGYR provided by Texas Instruments is recommended. The following figure shows the voltage matching reference design.

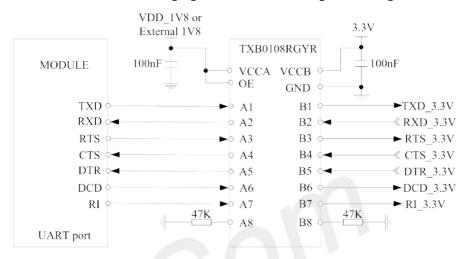
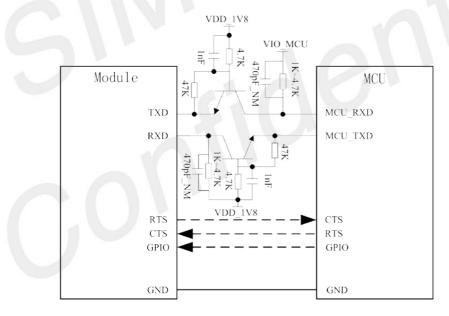



Figure 15: Reference circuit of level shift

User can use another level shifter circuits as follow

To comply with RS-232-C protocol, the RS-232-C level shifter chip should be used to connect MODULE to the RS-232-C interface, for example SP3238ECA, etc.

NOTE

User needs to use high speed transistors such as MMBT3904.

NOTE

MODULE supports the following baud rates: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600, 3200000, 3686400, 4000000bps. The default band rate is 115200bps.

3.3.2 RI and DTR Behavior

The RI pin can be used to interrupt output signal to inform the host controller such as application CPU. Normally RI will keep high level until certain conditions such as receiving SMS, or a URC report coming, and then it will change to low level.

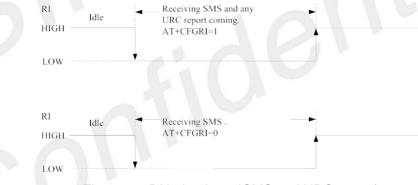
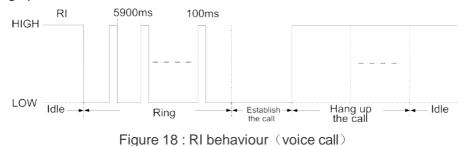



Figure 17: RI behaviour (SMS and URC report)

Normally RI will be kept at a high level until a voice call, then it will output periodic rectangular wave with 5900ms low level and 100ms high level. It will output this kind of periodic rectangular wave until the call is answered or hung up.

NOTE

For more details of AT commands about UART, please refer to document [1] and [22].

DTR pin can be used to wake MODULE from sleep. When MODULE enters sleep mode, pulling down DTR can wake MODULE.

3.4USB Interface

The MODULE contains a USB interface compliant with the USB2.0 specification as a peripheral, but the USB charging function is not supported.

MODULE can be used as a USB device. MODULE supports the USB suspend and resume mechanism which can reduce power consumption. If there is no data transmission on the USB bus, MODULE will enter suspend mode automatically, and will be resumed by some events such as voice call, receiving SMS, etc.

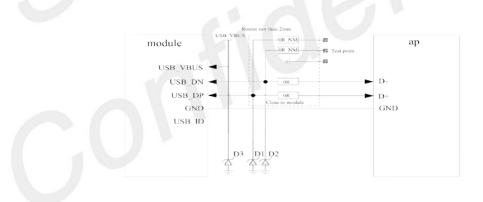


Figure 19: USB reference circuit

Because of the high bit rate on USB bus, more attention should be paid to the influence of the junction capacitance of the ESD component on USB data lines. Typically, the capacitance should be less than 1pF. It is recommended to use an ESD protection component such as ESD9L5.0ST5G provided by On Semiconductor (www.onsemi.com).

D3 is suggested to select the diode with anti-ESD and voltage surge function, or user could add a TVS for surge clamping. The recommend TVS please refer to table 7.

NOTE

The USB_DN and USB_DP nets must be traced by 90Ohm+/-10% differential impedance. SIMcom recommend add USB test pads on customer's EVB board for Product Debug.

3.5 HSIC interface

HSIC is a 2-signal source synchronous serial interface which uses 240MHz DDR signaling to provide High-Speed 480Mbps USB transfers which are 100% host driver compatible with traditional USB cable-connected topologies. Full-Speed (FS) and Low-Speed (LS) USB transfers are not directly supported by the HSIC interface (a HSIC enabled hub can provide FS and LS support, as well as IC_USB support)

The differences between HSIC and USB2.0 are listed below:

Table 11: Key differences between HSIC and HS-USB

HSIC	USB2.0
Signal-ended signaling at 1.2 V	Differential signaling
Two signals – STROBE, DATA	Four wires – Ground, D+, D-, VBUS
Double data rate signaling	Data inferred from differential signaling
HS-USB 480 Mbps only	HS/FS/LS support
Maximum trace length of 10 cm	Maximum cable length of 5 m
No HS chirp protocol	HS chirp protocol
Lower power consumption (digital)	Higher power consumption (analog)
No concept of disconnect	Hot plug/play support

module implements a HSIC interface compliant with the HSIC1.0 specification which can be used to connect to the external IC.

NOTE

The module HSIC default work as HSIC to LAN function, if user have any other questions ,please contact simcom for more details.

3.6 SGMII Interface

MODULE provides a SGMII interface with an Ethernet MAC embedded, users could add a PHY to connect to the Ethernet, and the PHY device could be controlled by the MDIO interface and other dedicated signals.

Two Ethernet PHY are supported: AR8031/AR8033 (Qualcomm) and BCM89820 (Broadcom). The AR8031/AR8033 is used for the industrial field and the BCM89820 is dedicated for the automotive field.

Main features of SGMII:

- Ethernet Mac integrated in the module
- IEEE 802.3 Ethernet 10/100/1000Mbps, SGMII IF
- Supports IEEE 1588, Precision Time Protocol (PTP)
- Full duplex rated to 1 Gbps
- Half/full duplex for 10/100 Mbps
- Can be connected to external Ethernet PHY like AR8031/AR8033(industrial 10/100/1000Mbps), BCM89820(automotive 10/100Mbps)
- Uses 8B10B encoding of data with effective baud data rate of 1 Gbps, data rate is always 1.25 Gbps (or DDR clock is always at 625 MHz)

Main features of MDIO:

- Host mode only
- Dual voltage: 1.8 V or 2.85 V operation
- Default signal frequency: 6.25MHz
- MDIO_DATA is OD-gate, and requires an external 1.5 kΩ pull-up resistor to VMDIO.

For the AR8031/AR8033, User should provide 3.3V to power the external Ethernet PHY system and the current should be more than 200mA.

3.6.1 Reference schematic with AR8033

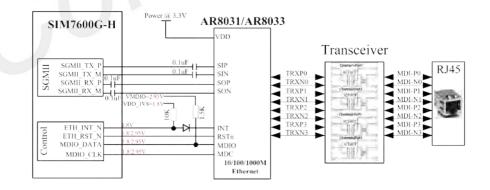
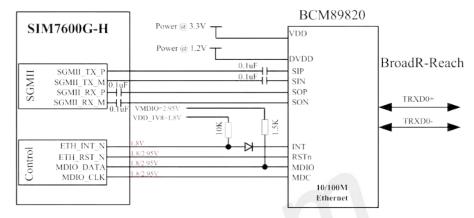



Figure 20: Reference SGMII circuit with AR8033

For the BCM89820, Users should provide 3.3V and 1.2V to power the external Ethernet PHY system and the data interface of PHY. The current of 3.3V and 1.2V should be more than 100mA and 150mA.

3.6.2 Reference schematic with BCM89820

NOTE

The module SGMII function default closed. If user need, please contact SIMCom for more details or refer to <u>document [28]</u>

3.7 USIM Interface

MODULE supports both 1.8V and 3.0V USIM Cards.

Table 12: USIM electronic characteristic in 1.8V mode (USIM_VDD=1.8V)

Symbol	Parameter	Min.	Тур.	Max.	Unit
USIM_V DD	LDO power output voltage	1.75	1.8	1.95	V
VIH	High-level input voltage	0.65*USIM_VDD	-	USIM_VDD +0.3	V
VIL	Low-level input voltage	-0.3	0	0.35*USIM_VDD	V
V _{OH}	High-level output voltage	USIM_VDD -0.45	-	USIM_VDD	V
V _{OL}	Low-level output voltage	0	0	0.45	V

Table 13: USIM electronic characteristic 3.0V mode (USIM_VDD=2.95V)

Symbol Parameter	Min.	Typ. Max.	Unit
------------------	------	-----------	------

USIM_V DD	LDO power output voltage	2.75	2.00	3.05	V
VIH	High-level input voltage	0.65*USIM_VDD	-	USIM_VDD +0.3	V
V _{IL}	Low-level input voltage	-0.3	0	0.25*USIM_VDD	V
V _{OH}	High-level output voltage	USIM_VDD -0.45	-	USIM_VDD	V
V _{OL}	Low-level output voltage	0	0	0.45	V

3.7.1 USIM Application Guide

It is recommended to use an ESD protection component such as ESDA6V1W5 produced by ST (<u>www.st.com</u>) or SMF15C produced by ON SEMI (<u>www.onsemi.com</u>). Note that the USIM peripheral circuit should be close to the USIM card socket. The following figure shows the 6-pin SIM card holder reference circuit.

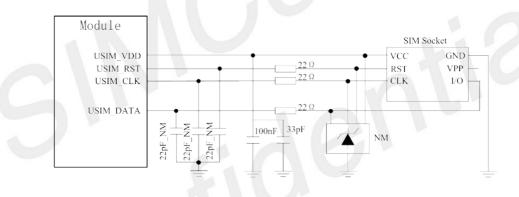
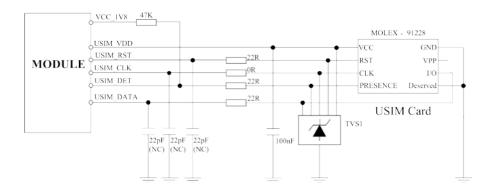


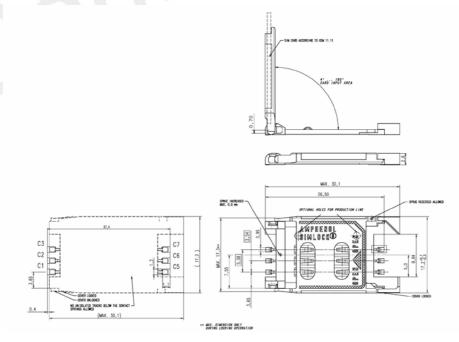
Figure 22: USIM interface reference circuit


NOTE

USIM_DATA has been pulled up with a 10KΩ resistor to USIM_VDD in MODULE. A 100nF capacitor on USIM_VDD is used to reduce interference. For more details of AT commands about USIM, please refer to document [1].USIM_CLK is very important signal, the rise time and fall time of USIM_CLK should be less than 40ns, otherwise the USIM card might not be initialized correctly.

The USIM_DET pin is used for detection of the USIM card hot plug in. User can select the 8-pin USIM card holder to implement USIM card detection function.

The following figure shows the 8-pin SIM card holder reference circuit.


If the USIM card detection function is not used, user can keep the USIM_DET pin open.

SIM card circuit is susceptible, the interference may cause the SIM card failures or some other situations, so it is strongly recommended to follow these guidelines while designing:

- Make sure that the SIM card holder should be far away from the antenna while in PCB layout.
- SIM traces should keep away from RF lines, VBAT and high-speed signal lines.
- The traces should be as short as possible.
- Keep SIM holder's GND connect to main ground directly.
- Shielding the SIM card signal by ground.
- Recommended to place a 0.1~1uF capacitor on USIM_VDD line and keep close to the holder.
- The rise/fall time of USIM_CLK should not be more than 40ns.
- Add some TVS and the parasitic capacitance should not exceed 60pF.

Recommended USIM Card Holder

It is recommended to use the 6-pin USIM socket such as C707 10M006 512 produced by Amphenol. User can visit http://www.amphenol.com for more information about the holder.

Figure 24: Amphenol SIM card socket

Table 14: Amphenol USIM socket pin description

Pin	Signal	Description
C1	USIM_VDD	USIM Card Power supply.
C2	USIM_RST	USIM Card Reset.
C3	USIM_CLK	USIM Card Clock.
C5	GND	Connect to GND.
C6	VPP	NC
C7	USIM_DATA	USIM Card data I/O.

3.8 PCM Interface

MODULE provides a PCM interface for external codec, which can be used in master mode with short sync and 16 bits linear format.

Table 15: PCM format

Characteristics	Specification
Line Interface Format	Linear(Fixed)
Data length	16bits(Fixed)
PCM Clock/Sync Source	Master Mode(Fixed)
PCM Clock Rate	2048 KHz (Fixed)
PCM Sync Format	Short sync(Fixed)
Data Ordering	MSB

NOTE

For more details about PCM AT commands, please refer to document [1].

3.8.1 PCM timing

MODULE supports 2.048 MHz PCM data and sync timing for 16 bits linear format codec.

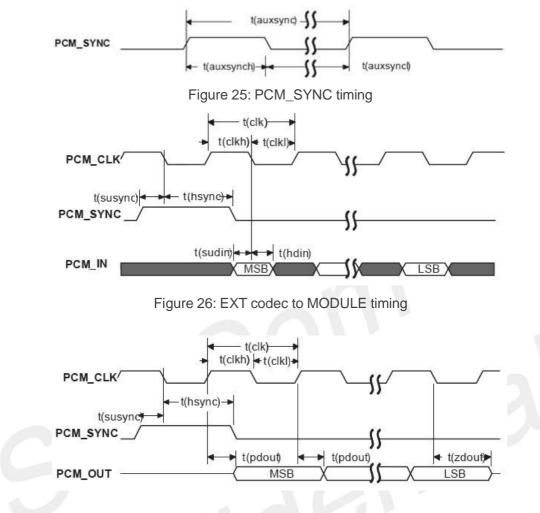
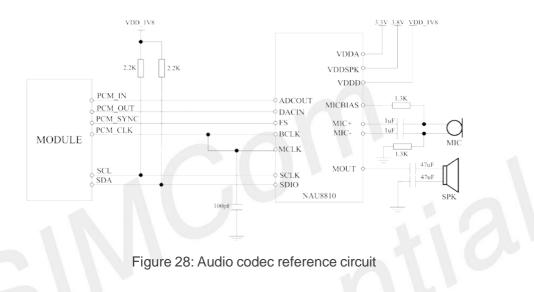


Figure 27: Module to EXT codec timing

Table 16: PCM	timing	parameters
---------------	--------	------------


Parameter	Description	Min.	Тур.	Max.	Unit
T(sync)	PCM_SYNC cycle time	_	125	-	μs
T(synch)	PCM_SYNC high level time	-	488	_	ns
T(syncl)	PCM_SYNC low level time	-	124.5	_	μs
T(clk)	PCM_CLK cycle time	-	488	_	ns
T(clkh)	PCM_CLK high level time	_	244	_	ns
T(clkl)	PCM_CLK low level time	-	244	_	ns
T(susync)	PCM_SYNC setup time high before falling edge of PCM_CLK	—	244	_	ns
T(hsync)	PCM_SYNC hold time after falling edge of PCM_CLK	_	244	_	ns
T(sudin)	PCM_IN setup time before falling edge of PCM_CLK	60	_	_	ns
T(hdin)	PCM_IN hold time after falling edge of PCM_CLK	10	-	_	ns
T(pdout)	Delay from PCM_CLK rising to PCM_OUT valid	_	_	60	ns

T(zdout)	Delay	from	PCM_CLK	falling	to	PCM_OUT	 160	_	ne
1 (20001)	HIGH-2	Ζ					100	-	ns

3.8.2 PCM Application Guide

The following figure shows the external codec reference design.

3.9 SD Interface

MODULE provides a 4-bit SD/MMC/eMMC interface with clock rate up to 200 MHz.

When connected to a SD or MMC card, the voltage of SD interface is 1.8/2.85V, which is compatible with Secure Digital Physical Layer Specification version 3.0 and SDIO Card Specification version 3.0.It supports up to 128GB SD cards.

When connected to a eMMC card, the interface voltage will be a sigle 1.8V, which is compatible with eMMC Specification, version 4.5. It supports up to 128GB eMMC cards.

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIH	High-level input voltage	0.65*2.85	-	2.85+0.3	V
VIL	Low-level input voltage	-0.3	0	0.25*2.85	V
V _{OH}	High-level output voltage	0.75*2.85	2.85	2.85	V
Vol	Low-level output voltage	0	0	0.15*2.85	V

Table 17: SD/MMC electronic characteristic as 2.85V (SD_DATA0-3, SD_CLK and SD_CMD)

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIH	High-level input voltage	0.7*1.8	-	1.8+0.2	V
VIL	Low-level input voltage	-0.3	0	0.3*1.8	V
V _{OH}	High-level output voltage	1.8-0.4	1.8	1.8	V
V _{OL}	Low-level output voltage	0	0	0.45	V

Table 18: SD/MMC/eMMC electronic characteristic as 1.8V (SD_DATA0-3, SD_CLK and SD_CMD)

Users should provide 2.85V to power SD card system and the current should more than 350mA, which is showed below as VCC_SD. ESD/EMI components should be arranged beside SD card socket. Refer to the following application circuit.

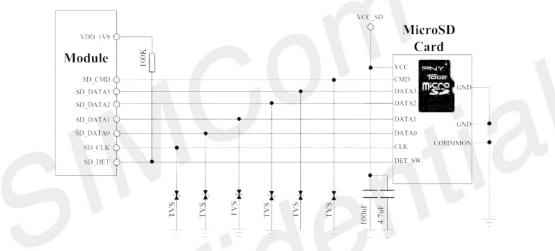


Figure 29: SD reference circuit

Users should provide 2.85V to power eMMC card system and 1.8V to power the SDIO_DATA/CMD/CLK signals. The source of 2.85V should be able to provide more than 500mA* which showed below as VCC_eMMC, as the source of 1.8V should be able to provide more than 300mA* which showed below as VCCQ_1V8. ESD/EMI components should be arranged close to the eMMC card. Refer to the following application circuit.

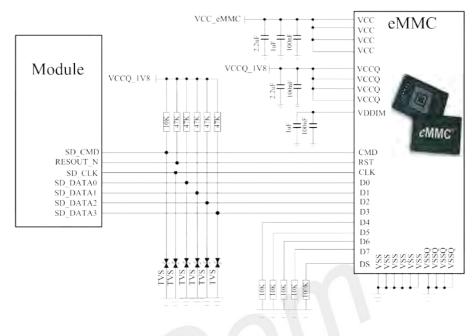


Figure 30: eMMC reference circuit

NOTE

For the current of VCC_eMMC and VCCQ_1V8, users should better refer to the related datasheet of eMMC which is used. The listed current of 500mA and 300mA are just for your reference.

SD/MMC/eMMC card layout guide lines:

- Protect SD card signals from noisy signals (clocks, SMPS, etc.).
- Up to 200 MHz clock rate, 50 Ω nominal, ±10% trace impedance
- CLK to DATA/CMD length matching < 1 mm
- Total routing length < 50 mm
- Spacing to all other signals = 2x line width
- Bus capacitance < 10 pF

3.10 I2C Interface

MODULE provides a I2C interface compatible with I2C specification, version 5.0, with clock rate up to 400 kbps. Its operation voltage is 1.8V.

The following figure shows the I2C bus reference design.

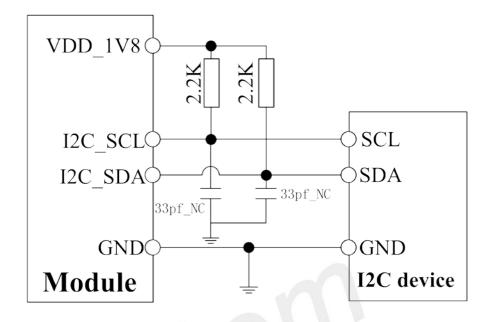


Figure 31: I2C reference circuit

NOTE

SDA and SCL do not have pull-up resistors in MODULE. So, 2 external pull up resistors are needed in application circuit.

"AT+CRIIC and AT+CWIIC" AT commands could be used to read/write register values of the I2C peripheral devices. For more details about AT commands please refer to document [1].

3.11 SDIO Interface

MODULE provides a 4 bit 1.8V SDIO interface for WLAN solution with W58 module.

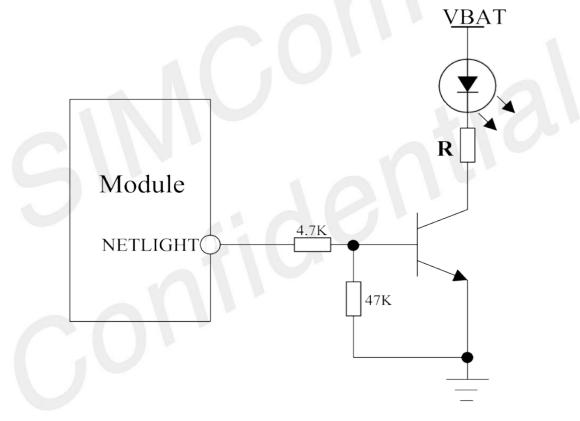
The SDIO interface can be used for WLAN solution.

NOTE

Special software version for CAT4 MODULEs supports this function.

3.12 SPI Interface

Module provides a SPI interface as a master only. It provides a duplex, synchronous, serial communication


link with peripheral devices. Its operation voltage is 1.8V, with clock rates up to 50 MHz

NOTE

For more details of the AT commands about the SPI, please refer to document [1].

3.13 Network status

The NETLIGHT pin is used to control Network Status LED, its reference circuit is shown in the following figure.

NOTE

The value of the resistor named "R" depends on the LED characteristic.

Table 19: NETLIGHT pin status

NETLIGHT pin status	Module status
Always On	Searching Network; Call Connect(include VOLTE,SRLTE)

200ms ON, 200ms OFF	Data Transmit; 4G registered;
800ms ON, 800ms OFF	2G/3G registered network
OFF	Power off ;Sleep
NOTE	

NETLIGHT output low level as "OFF", and high level as "ON".

3.14 Flight Mode Control

The FLIGHTMODE pin can be used to control MODULE to enter or exit the Flight mode. In Flight mode, the RF circuit is closed to prevent interference with other equipments and minimize current consumption. Bidirectional ESD protection component is suggested to add on FLIGHTMODE pin, its reference circuit is shown in the following figure.

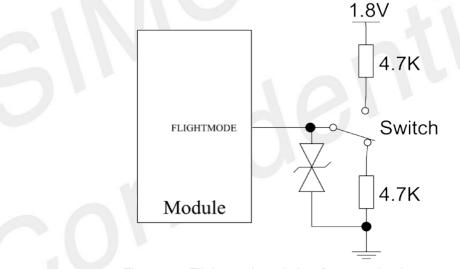
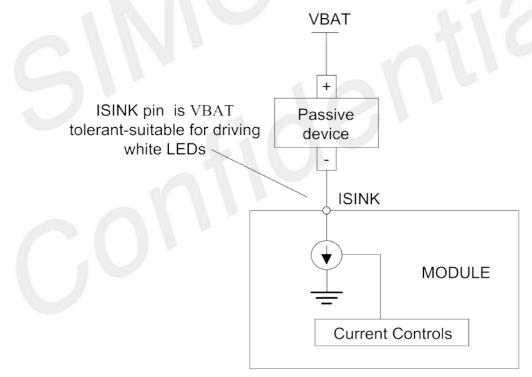


Figure 33: Flight mode switch reference circuit

Table 20: FLIGHTMODE pin status

FLIGHTMODE pin status	Module operation
Input Low Level	Flight Mode: RF is closed
Input High Level	AT+CFUN=0: RF is closed AT+CFUN=1:RF is working

3.15 Other interface


3.15.1 Sink Current Source

The ISINK pin is VBAT tolerant and intended to drive some passive devices, such as LCD backlight and white LED, etc. Its output current can be up to 40mA and be set by the AT command "AT+ CLEDITST".

Table 21: Sink current electronic characteristic

Symbol	Description	Min.	Тур.	Max.	Unit
VISINK	Voltage tolerant	0.5	-	VBAT	V
I _{ISINK}	Current tolerant	0	-	40	mA

ISINK is a ground-referenced current sink. The following figure shows its reference circuit.

Figure 34: ISINK reference circuit

NOTE

The sinking current can be adjusted to meet the design requirement through the AT command "AT+ CLEDITST =<0>, <value>".The "value" ranges from 0 to 8, on behalf of the current from 0mA to 40mA by 5mA step.

3.15.2 ADC

MODULE has 2 dedicated ADC pins named ADC1 and ADC2. They are available for digitizing analog signals such as battery voltage and so on. These electronic specifications are shown in the following table.

Table 22: ADC1 and ADC2 electronic characteristics

Characteristics	Min.	Тур.	Max.	Unit
Resolution	_	15	—	Bits
Conversion time	_	442	-	ms
Input Range	0.1		1.7	V
Input serial resistance	1	_	_	MΩ

NOTE

"AT+CADC" and "AT+CADC2" can be used to read the voltage of the ADC1 and ADC2 pins, for more details, please refer to document [1].

3.15.3 LDO

MODULE has a LDO power output, named VDD_AUX. its output voltage is 2.85V by default, Users can switch the LDO on or off by the AT command "AT+CVAUXS" and configure its output voltage by the AT command "AT+CVAUXV".

Table 23: Electronic characteristic

Symbol	Description	Min.	Тур.	Max.	Unit
V _{VDD_AUX}	Output voltage	1.7	2.85	3.05	V
lo	Output current	-	-	150	mA

NOTE

For more details of AT commands about VDD_AUX, please refer to document [1].

4 RF Specifications

4.1. LTE RF Specifications

Table 24: Conducted transmission power

Frequency	Power	Min.		
LTE-FDD B2	23dBm +/-2.7dB	<-40dBm		
LTE-FDD B4	23dBm +/-2.7dB	<-40dBm		
LTE-FDD B5	23dBm +/-2.7dB	<-40dBm		
LTE-FDD B12	23dBm +/-2.7dB	<-40dBm		
LTE-FDD B13	23dBm +/-2.7dB	<-40dBm		
LTE-FDD B25	23dBm +/-2.7dB	<-40dBm		
LTE-FDD B26	23dBm +/-2.7dB	<-40dBm		
LTE-FDD B66	23dBm +/-2.7dB	<-40dBm		
LTE-TDD B41	23dBm +/-2.7dB	<-40dBm		
Table 25: Operating frequencies				

Table 25: Operating frequencies

Frequency	Receiving	Transmission		
	TE Operating frequencies are shown in the following table 24. Operating frequencies of LTE TDD B41 for the MODULE is 200MHz BW, 2496 MHz			
GPS	1574.4 ~1576.44 MHz	-		
GLONASS	1598 ~1606 MHz	-		
BD	1559 ~1563 MHz			

Table 26: E-UTRA operating bands

E-UTRA Operating Band	Uplink (UL) operating band	Downlink (DL) operating band	Duplex Mode
2	1850~1910 MHz	1930~1990 MHz	FDD
4	1710~1755MHz	2110~2155MHz	FDD
5	824~849 MHz	869~894MHz	FDD
12	699~716MHz	728~746MHz	FDD
13	777~787MHz	746~757MHz	FDD

25	1850~1915MHz	1930~1995MHz	FDD
26	814~849MHz	859~894MHz	FDD
66	1710~1780MHz	2110~2200MHz	FDD
41	2496~2696 MHz	2496~2696 MHz	TDD

Table 27: Conducted receive sensitivity

Frequency	Receive sensitivity(Typical)	Receive sensitivity(MAX)	
LTE FDD/TDD	See table 26.	3GPP	

Table 28: Reference sensitivity (QPSK)

E-UTR A band	1.4 MHz Standar d	3 MHz Standar d	5 MHz Standar d	10 MHz Standar d	15 MHz Standard	20 MHz Standar d	Duplex Mode
2	-102.7	-99.7	-98	-95	-93.2	-92	FDD
4	-104.7	-101.7	-100	-97	-95.2	-94	FDD
5	-103.2	-100.2	-98	-95		20	FDD
12	-101.7	-98.7	-97	-94			FDD
13			-97	-94			FDD
25	-101.2	-98.2	-96.5	-93.5	-91.7	-90.5	FDD
26	-102.7	-99.7	-97.5	-94.5	-92.7		FDD
66	-104.7	-101.7	-100	-97	-95.2	-94	FDD
41	-	-	-99	-96	-94.2	-93	TDD

4.2. LTE Antenna Design Guide

Users should connect antennas to MODULE's antenna pads through micro-strip line or other types of RF trace and the trace impedance must be controlled in 50Ω . SIMCom recommends that the total insertion loss between the antenna pads and antennas should meet the following requirements:

Table 29: Trace loss

Frequency	Loss
700MHz-960MHz	<0.5dB
1710MHz-2170MHz	<0.9dB
2300MHz-2650MHz	<1.2dB

To facilitate the antenna tuning and certification test, a RF connector and an antenna matching circuit should be added. The following figure is the recommended circuit.

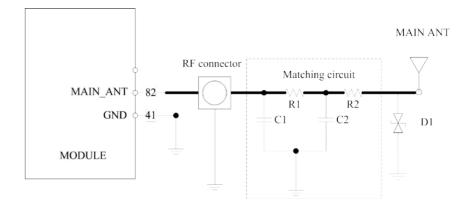


Figure 35: Antenna matching circuit (MAIN_ANT)

In above figure, the components R1, C1, C2 and R2 are used for antenna matching, the values of components can only be achieved after the antenna tuning and usually provided by antenna vendor. By default, the R1, R2 are 0Ω resistors, and the C1, C2 are reserved for tuning. The component D1 is a TVS for ESD protection, and it is optional for users according to application environment.

The RF test connector is used for the conducted RF performance test, and should be placed as close as to the MODULE's MAIN_ANT pin. The traces impedance between MODULE and antenna must be controlled in 50Ω .

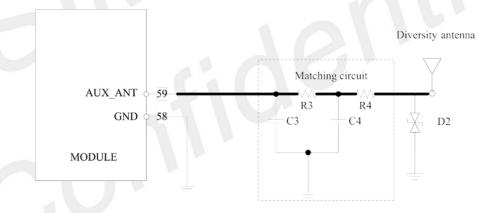


Figure 36: Antenna matching circuit (AUX_ANT)

In above figure, R3, C3, C4 and R4 are used for auxiliary antenna matching. By default, the R3, R4 are 0Ω resistors, and the C3, C4 are reserved for tuning. D2 is a TVS for ESD protection, and it is optional for users according to application environment.

Two TVS are recommended in the table below.

Table 30: Recommended TVS

Package	Part Number	Vender
0201	LXES03AAA1-154	Murata

0402

LXES15AAA1-153

Murata

NOTE

SIMCom suggests the LTE auxiliary antenna to be kept on, since there are many high bands in the designing of LTE-TDD, such as band41. Because of the high insert loss of the RF cable and layout lines, the receiver sensitivity of these bands above will have risk to meet the authentication without the diversity antenna. For more details about auxiliary antenna design notice, please refer to document [25].

4.3. GNSS

MODULE merges GNSS (GPS/GLONASS/BD) satellite and network information to provide a high-availability solution that offers industry-leading accuracy and performance. This solution performs well, even in very challenging environmental conditions where conventional GNSS receivers fail, and provides a platform to enable wireless operators to address both location-based services and emergency mandates.

4.3.1 GNSS Technical specification

- Tracking sensitivity: -159 dBm (GPS) /-158 dBm (GLONASS) /-159 dBm (BD)
- Cold-start sensitivity: -148 dBm
- Accuracy (Open Sky): 2.5m (CEP50)
- TTFF (Open Sky) : Hot start <1s, Cold start<35s
- Receiver Type: 16-channel, C/A Code
- GPS L1 Frequency: 1575.42±1.023MHz
- GLONASS: 1597.5~1605.8 MHz
- BD: 1559.05~1563.14 MHz
- Update rate: Default 1 Hz
- GNSS data format: NMEA-0183
- GNSS Current consumption : 100mA (GSM/UMTS/LTE Sleep ,in total on VBAT pins)
- GNSS antenna: Passive/Active antenna

NOTE

If the antenna is active type, the power should be given by main board because there is no power supply on the GPS antenna pad. If the antenna is passive, it is suggested that the external LNA should be used.

4.3.2 GNSS Application Guide

Users can adopt an active antenna or a passive antenna to MODULE. If using a passive antenna, an external LNA is a must to get better performance.

The following figures are the reference circuits.

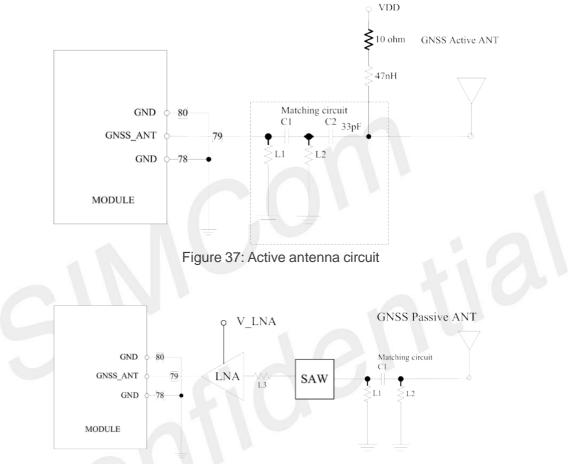


Figure 38: Passive antenna circuit (Default)

In above figures, the components C1, L1 and L2 are used for antenna matching. Usually, the values of the components can only be achieved after antenna tuning and usually provided by antenna vendor. C2 is used for DC blocking. L3 is the matching component of the external LNA, and the value of L3 is determined by the LNA characteristic and PCB layout. Both VDD of active antenna and V_LNA need external power supplies which should be considered according to active antenna and LNA characteristic. LDO/DCDC is recommended to get lower current consuming by shutting down active antennas and LNA when GNSS is not working.

GNSS can be tested by NMEA port. NMEA sentences can be obtained through UART or USB automatically. NMEA sentences include GSV, GGA, RMC, GSA, and VTG. Before using GNSS, user should configure MODULE in proper operating mode by AT command. Please refer to related documents for details. MODULE can also get position location information through AT directly.

Note: GNSS is closed by default and can be started by AT+CGPS. The AT command has two parameters,

the first is on/off, and the second is GNSS mode. Default mode is standalone mode. AGPS mode needs more support from the mobile telecommunication network. Please refer to document [24] for more details.

NOTE

GNSS is closed by default and can be started by AT+CGPS. The AT command has two parameters, the first is on/off, and the second is GNSS mode. Default mode is standalone mode. AGPS mode needs more support from the mobile telecommunication network. Please refer to document [24] for more details.

5 Electrical Specification

5.1 Absolute maximum ratings

Absolute maximum rating for digital and analog pins of MODULE are listed in the following table:

Table 31: Absolute maximum ratings

Parameter	Min.	Тур.	Max.	Unit
Voltage at VBAT	-0.5	-	6.0	V
Voltage at USB_VBUS	-0.5	-	5.85	V
Voltage at digital pins (RESET,SPI,Keypad,GPIO,I2C,UART,PCM)	-0.3	-	2.1	V
Voltage at digital pins (SD,USIM)	-0.3	-	3.05	V
Voltage at PWRKEY	-0.3	-	1.8	

5.2 Operating conditions

Table 32: Recommended operating ratings

Parameter	Min.	Тур.	Max.	Unit
Voltage at VBAT	3.4	3.8	4.2	V
Voltage at USB_VBUS	3.0	5.0	5.25	V

Table 33: 1.8V Digital I/O characteristics*

Parameter	Description	Min.	Тур.	Max.	Unit
V _{IH}	High-level input voltage	1.17	1.8	2.1	V
VIL	Low-level input voltage	-0.3	0	0.63	V
V _{OH}	High-level output voltage	1.35	-	1.8	V
V _{OL}	Low-level output voltage	0	-	0.45	V
I _{OH}	High-level output current(no pull down resistor)	-	2	-	mA
lol	Low-level output current(no pull up resistor)	-	-2	-	mA
Іін	Input high leakage current (no pull down resistor)	-	-	1	uA
IIL	Input low leakage current(no pull up resistor)	-1	-	-	uA

NOTE

These parameters are for digital interface pins, such as SPI, GPIOs (NETLIGHT, FLIGHTMODE, STATUS, USIM_DET, SD_DET), SDIO, I2C, UART, PCM, COEXn, and BOOT_CFG0.

The operating temperature of MODULE is listed in the following table.

Table 34: Operating temperature

Parameter	Min.	Тур.	Max.	Unit
Normal operation temperature	-30	25	80	°C
Extended operation temperature*	-40	25	85	°C
Storage temperature	-45	25	+90	°C

NOTE

Module is able to make and receive voice calls, data calls, SMS and make GSM/ UMTX/LTE traffic in -40 $^{\circ}$ C ~ +85 $^{\circ}$ C . The performance will be reduced slightly from the 3GPP specifications if the temperature is outside the normal operating temperature range and still within the extreme operating temperature range.

5.3 Operating Mode

5.3.1. Operating Mode Definition

The table below summarizes the various operating modes of MODULE product.

Table 35: Operating mode Definition

Mode		Function
Normal operation	LTE Sleep	In this case, the current consumption of MODULE will be reduced to the minimal level and the MODULE can still receive paging message and SMS.
	LTE Idle	Software is active. Module is registered to the network, and the MODULE is ready to communicate.
	LTE Talk	Connection between two subscribers is in progress. In this case, the power consumption depends on network settings such as DTX off/on, FR/EFR/HR, hopping sequences, and antenna.
Norm	GPRS/EDGE/ ULTE Standby	Module is ready for data transmission, but no data is currently sent or received. In this case, power consumption depends on network settings.
	LTE Data transmission	There is data transmission in progress. In this case, power consumption is related to network settings (e.g. power control level); uplink/downlink data rates, etc.
Minimum functionality mode		AT command "AT+CFUN=0" AT+CSCLK=1 can be used to set the MODULE to a minimum functionality mode without removing the power supply. In this mode, the RF part of the MODULE will not work and the USIM card will not be accessible, but the serial port and USB port are still accessible. The power consumption in this mode is lower than normal mode.
Flight mode		AT command "AT+CFUN=4" or pulling down the FLIGHTMODE pin can be used to set the MODULE to flight mode without removing the power supply. In this mode, the RF part of the MODULE will not work, but the serial port and USB port are still accessible. The power consumption in this mode is lower than normal mode.
Power off		Module will go into power off mode by sending the AT command "AT+CPOF" or pull down the PWRKEY pin, normally. In this mode the power management unit shuts down the power supply, and software is not active. The serial port and USB are is not accessible.

5.3.2. Sleep mode

In sleep mode, the current consumption of MODULE will be reduced to the minimal level, and MODULE can

still receive paging message and SMS.

Several hardware and software conditions must be satisfied together in order to let MODULE enter into sleep mode:

- 1. UART condition
- 2. USB condition
- 3. Software condition

NOTE

Before designing, pay attention to how to realize sleeping/waking function and refer to Document [26] for more details.

5.3.3. Minimum functionality mode and Flight mode

Minimum functionality mode ceases a majority function of MODULE, thus minimizing the power consumption. This mode is set by the AT command which provides a choice of the functionality levels.

- AT+CFUN=0: Minimum functionality
- AT+CFUN=1: Full functionality (Default)
- AT+CFUN=4: Flight mode

If MODULE has been set to minimum functionality mode, the RF function and USIM card function will be closed. In this case, the serial port and USB are still accessible, but RF function and USIM card will be unavailable.

If MODULE has been set to flight mode, the RF function will be closed. In this case, the serial port and USB are still accessible, but RF function will be unavailable.

When MODULE is in minimum functionality or flight mode, it can return to full functionality by the AT command "AT+CFUN=1".

5.4 Current Consumption

The current consumption is listed in the table below.

Table 36: Current consumption on VBAT Pins (VBAT=3.8V)

GNSS	
GNSS supply current (AT+CFUN=0,with USB connection)	@ -140dBm, Tracking Typical:38ma
LTE sleep/idle mode	
LTE supply current (GNSS off, without USB connection)	Sleep mode Typical: 2.04ma Idle mode Typical: 17.3ma
LTE data	
LTE-FDD B2	 @5MHz 22.1dBm Typical: 676 ma @10MHz 22.4dBm Typical: 723 ma @20MHz 22.3dBm Typical: 759 ma
LTE-FDD B4	@5MHz22.0dBmTypical: 709 ma@10MHz22.1dBmTypical:769 ma@20MHz22.6dBmTypical: 896 ma
LTE-FDD B5	@5MHz22.2dBmTypical: 619 ma@10MHz22.1dBmTypical: 628 ma
LTE-FDD B12	@5MHz22.7dBmTypical: 600 ma@10MHz22.7dBmTypical: 607 ma
LTE-FDD B13	@5MHz@10MHz22.0dBmTypical: 653 ma
LTE-FDD B25	 @5MHz 22dBm Typical: 634 ma @10MHz 22dBm Typical: 702 ma @20MHz 22dBm Typical: 781 ma
LTE-FDD B26	 @5MHz 22.4dBm Typical: 615 ma @10MHz 22.7dBm Typical:664 ma @15MHz 22.3dBm Typical:713 ma
LTE-FDD B66	 @5MHz 22dBm Typical: 707ma @10MHz 22dBm Typical: 728ma @20MHz 22dBm Typical: 795 ma
@5MHz22dBmTypical: 555 ma@10MHz22dBmTypical: 546 ma@5MHz21.8dBmTypical: 799ma@10MHz21.8dBmTypical: 759ma@20MHz21.8dBmTypical: 779ma@5MHz22dBmTypical: 575 ma@10MHz22dBmTypical: 627 ma@10MHz22dBmTypical: 627 ma@20MHz21.5dBmTypical: 681 ma@5MHz21.5dBmTypical: 715 ma@10MHz21.7dBmTypical: 715 ma@20MHz21.7dBmTypical: 703 ma	
LTE-TDD B41	 @5MHz @10MHz @1.7dBm Typical: 771 ma @20MHz 21.7dBm Typical: 793 ma

5.5 ESD Notes

MODULE is sensitive to ESD in the process of storage, transporting, and assembling. When MODULE is mounted on the users' mother board, the ESD components should be placed beside the connectors which human body may touch, such as USIM card holder, audio jacks, switches, keys, etc. The following table shows the MODULE ESD measurement performance without any external ESD component.

Table 37: The ESD performance measurement table (Temperature: 25°C, Humidity: 45%)

Part	Contact discharge	Air discharge
VBAT,GND	+/-5K	+/-10K
Antenna port	+/-4K	+/-8K
Other PADs	+/-0.5K	+/-1K

6 SMT Production Guide

6.1 Top and Bottom View of MODULE

Figure 39: Top and bottom view of MODULE

NOTE

The above is the design effect diagram of the module for reference. The actual appearance is subject to the actual product.

6.2 Label Information

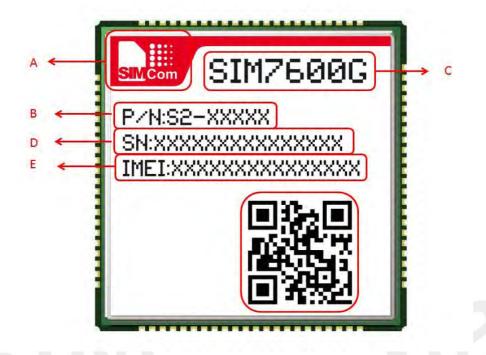


Figure 40: Label information

Table 38: The description of label information

No.	Description
А	LOGO
В	Module part number
С	Project name
D	Serial number
Е	International mobile equipment identity

6.3 Typical SMT Reflow Profile

SIMCom provides a typical soldering profile. Therefore the soldering profile shown below is only a generic recommendation and should be adjusted to the specific application and manufacturing constraints.

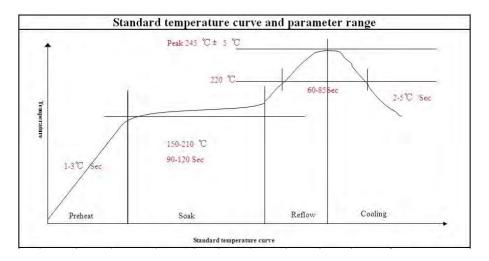


Figure 41: The ramp-soak-spike reflow profile of MODULE

NOTE

For more details about secondary SMT, please refer to the document [21].

6.4 Moisture Sensitivity Level (MSL)

MODULE is qualified to Moisture Sensitivity Level (MSL) 3 in accordance with JEDEC J-STD-033. If the prescribed time limit is exceeded, users should bake MODULE for 192 hours in drying equipment (<5% RH) at 40+5/-0°C, or 72 hours at 85+5/-5°C. Note that plastic tray is not heat-resistant, and only can be baked at 45° C.

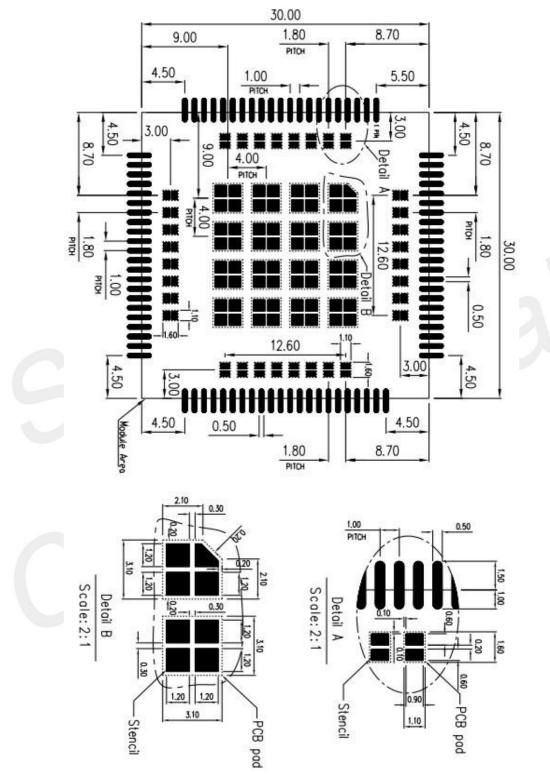

Moisture Sensitivity Level (MSL)	Floor Life (out of bag) at factory ambient≤30°C/60% RH or as stated
1	Unlimited at ≦30°C/85% RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. After bake, it must be reflowed within the time limit specified on the label.

Table 39: Moisture Sensitivity Level and Floor Life

PC9JEDEC J-STD-033 standard must be followed for production and storage.

6.5 Stencil Foil Design Recommendation

The recommended thickness of stencil foil is more than $0.15\mbox{mm}.$

Figure 42 : Stencil Foil

7 Packaging

MODULE support tray packaging.

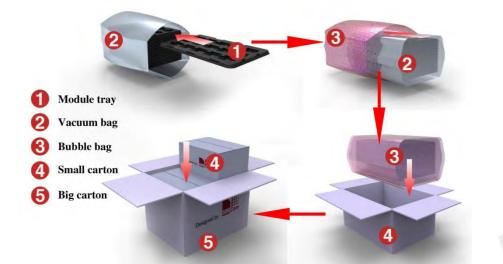
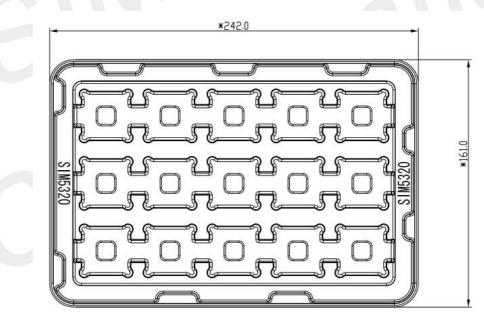



Figure 43: packaging diagram

Module tray drawing:

Table 40: Tray size

Length(±3mm)	Width(±3mm)	Number
242.0	161.0	15

Small carton drawing:

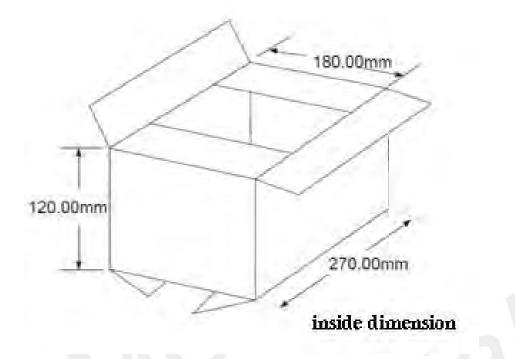


Figure 45: Small carton drawing

Table 41: Small Carton size

Length(±10mm)	Width(±10mm)	Height(±10mm)	Number
270	180	120	15*20=300

Big carton drawing:

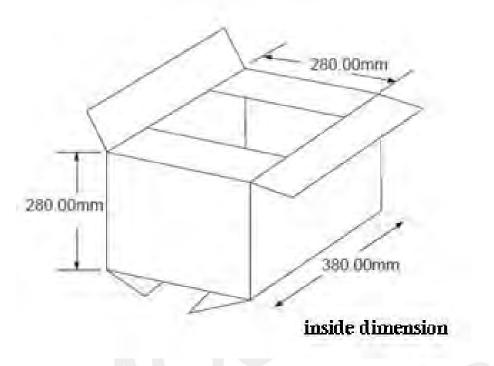


Figure 46: Big carton drawing

Table 42: Big Carton size

Length(±10mm)	Width(±10mm)	Height(±10mm)	Number
380	280	280	300*4=1200

8 Appendix

8.1 Coding Schemes and Maximum Net Data Rates over Air Interface

Table 43: Coding Schemes and Maximum Net Data Rates over Air Interface

OMbps OMbps OOMbps 50Mbps ax data rate (peak)	QPSK/16QAM/64QAM QPSK/16QAM/64QAM QPSK/16QAM/64QAM QPSK/16QAM/64QAM Modulation type QPSK/16QAM
00Mbps 50Mbps ax data rate (peak)	QPSK/16QAM/64QAM QPSK/16QAM/64QAM Modulation type
50Mbps lax data rate (peak)	QPSK/16QAM/64QAM Modulation type
ax data rate (peak)	Modulation type
lbps	OPSK/16OAM
vinha	
5Mbps	QPSK/16QAM
OMbps	QPSK/16QAM
OMbps	QPSK/16QAM
	FIO C

8.2 Related Documents

Table 44: Related Documents

NO.	Title	Description
[1]	SIM7500_SIM7600 Series_AT Command Manual_V1.xx	AT Command Manual
[2]	ITU-T Draft new recommendationV.25ter	Serial asynchronous automatic dialing and control
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[6]	GSM 11.14	Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[7]	GSM 11.11	Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile

		Equipment (SIM – ME) interface
[8]	GSM 03.38	Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information
[9]	GSM 11.10	Digital cellular telecommunications system (Phase 2) ; Mobile Station (MS) conformance specification ; Part 1: Conformance specification
[10]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification
[11]	3GPP TS 34.124	Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.
[12]	3GPP TS 34.121	Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.
[13]	3GPP TS 34.123-1	Technical Specification Group Radio Access Network; Terminal conformance specification; Radio transmission and reception (FDD)
[14]	3GPP TS 34.123-3	User Equipment (UE) conformance specification; Part 3: Abstract Test Suites.
[15]	Radio	ETSI EN 301 908-1 V13.1.1 (2019); ETSI EN 301 908-2 V13.1.1(2020);ETSI EN 301 908-13 V13.1.1(2019); ETSI EN303 413V1.1.1(2017)
[16]	EMC	ETSI EN 301 489-1 V2.2.3 (2019);EN 301 489-52 V1.1.0 (2016); ETSI EN301 489-19V2.1.1(2019)
[17]	Safety	EN 60950-1:2006+A11:2009+A1:2010+A12:2011+A2:2013
[18]	Health	EN 62311:2008
[19]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification
[20]	GCF-CC V3.23.1	Global Certification Forum - Certification Criteria
[21]	2002/95/EC	Directive of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)
[22]	Module secondary-SMT-UGD-V1.xx	Module secondary SMT Guidelines
[23]	SIM7X00 Series_UART_Application Note_V1.xx	This document describes how to use UART interface of SIMCom modules.
[24]	SIM7100_SIM7500_SIM7600 Series_USB AUDIO_Application Note_V1.xx	USB AUDIO Application Note
[25]	SIM7X00 Series_GPS_Application Note_V1.xx	GPS Application Note
[26]	Antenna design guidelines for diversity receiver system	Antenna design guidelines for diversity receiver system
[27]	SIM7100_SIM7500_SIM7600_ Sleep Mode_Application Note_V1.xx	Sleep Mode Application Note
[28]	7600CE-LAN-Reference Design V1.0	HSIC Application Note
[29]	SIM7600_Series_SGMII-Refer ence_Design_V1.00	SGMII Reference Design

8.3 Terms and Abbreviations

Table 45: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
ARP	Antenna Reference Point
BER	Bit Error Rate
BTS	Base Transceiver Station
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
EVDO	Evolution Data Only
FCC	Federal Communications Commission (U.S.)
FD	SIM fix dialing phonebook
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global Standard for Mobile Communications
HR	Half Rate
HSPA	High Speed Packet Access
I2C	Inter-Integrated Circuit
IMEI	International Mobile Equipment Identity
LTE	Long Term Evolution
МО	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE

MT	Mobile Terminated
NMEA	National Marine Electronics Association
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PCS	Personal Communication System, also referred to as GSM 1900
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
SIM	Subscriber Identification Module
SMS	Short Message Service
SPI	serial peripheral interface
SMPS	Switched-mode power supply
TDMA	Time Division Multiple Access
TE	Terminal Equipment, also referred to as DTE
ТХ	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter
VSWR	Voltage Standing Wave Ratio
SM	SIM phonebook
NC	Not connect
EDGE	Enhanced data rates for GSM evolution
HSDPA	High Speed Downlink Packet Access
HSUPA	High Speed Uplink Packet Access
ZIF	Zero intermediate frequency
WCDMA	Wideband Code Division Multiple Access
VCTCXO	Voltage control temperature-compensated crystal oscillator
USIM	Universal subscriber identity module
UMTS	Universal mobile telecommunications system
UART	Universal asynchronous receiver transmitter

8.4 Safety Caution

Table 46: Safety Caution

Marks	Requirements
♥	When in a hospital or other health care facility, observe the restrictions about the use of mobiles. Switch the cellular terminal or mobile off, medical equipment may be sensitive and not operate normally due to RF energy interference.

X	Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forgetting to think much of these instructions may impact the flight safety, or offend local legal action, or both.
	Do not operate the collular terminal or mabile in the processes of flammable generation

Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.

SOS

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for hands free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

GSM cellular terminals or mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, especially with a mobile fee or an invalid SIM card. While you are in this condition and need emergent help, please remember to use emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call.

Also, some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

Antenna requirements

1. Antenna List:

Type: Dipole antenna with non-standard SMA connector(50ohm);

Model: MF25D Antenna Gain: Band 2:8dBi, Band 4:5dBi, Band 5:8dBi, Band 12:7dBi, Band13:8dBi, Band 25:8dBi, Band 26:8dBi, Band 41:8dBi, Band 66:5dBi GSM 850:8 dBi, PCS 1900:8dBi WCDMA B2:8dBi,WCDMA B4:5dBi WCDMA B5:8dBi

2. The user must match the MF25D antenna with the non-standard SMA connector and cannot change the antenna.

This device is intended only for OEM integrators under the following conditions: (For module device use)

1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and

2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Radiation Exposure Statement

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

Cet appareil est conçu uniquement pour les intégrateurs OEM dans les conditions suivantes:

(Pour utilisation de dispositif module)

1) L'antenne doit être installée de telle sorte qu'une distance de 20 cm est respectée entre l'antenne et les utilisateurs, et

2) Le module émetteur peut ne pas être coïmplanté avec un autre émetteur ou antenne. Tant que les 2 conditions ci-dessus sont remplies, des essais supplémentaires sur l'émetteur ne seront pas nécessaires. Toutefois, l'intégrateur OEM est toujours responsable des essais sur son produit final pour toutes exigences de conformité supplémentaires requis pour ce module installé.

Déclaration d'exposition aux radiations:

Cet équipement est conforme aux limites d'exposition aux rayonnements ISED établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

FCC Statement

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The modular can be installed or integrated in mobile or fix devices only. This modular cannot be installed in any portable device.

FCC Radiation Exposure Statement

This modular complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This modular must be installed and operated with a minimum distance of 20 cm between the radiator and user body.

If the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID: 2AJYU-8PYA00E Or Contains FCC ID: 2AJYU-8PYA00E"

When the module is installed inside another device, the user manual of the host must contain below warning statements;

1. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference.

(2) This device must accept any interference received, including interference that may cause undesired operation.

2. Changes or modifications not expressly approved by the party responsible

for compliance could void the user's authority to operate the equipment. The devices must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the product. Any company of the host device which install this modular with limit modular approval should perform the test of radiated emissionand spurious emission according to FCC Part 22H and 24E, 47 CFR Part 2, 22H, 24(E), 27 and 47 CFR Part 2, 22H, 24(E), 27, 90 requirement,Only if the test result comply with FCC Part 22H and 24E, 47 CFR Part 2, 22H, 24(E), 27, 90 requirement, then the host can be sold legally.

IC Warning

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

(1) This device may not cause interference, and

(2) This device must accept any interference, including interference that may cause undesired operation of the device.

The modular can be installed or integrated in mobile or fix devices only. This modular cannot be installed in any portable device.

IC Radiation Exposure Statement

This modular complies with IC RF radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This modular must be installed and operated with a minimum distance of 20 cm between the radiator and user body.

For a host manufacture's using a certified modular, if (1) the module's IC number is not visible

when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the IC number of the module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module IC: " 23761-8PYA009" or "Contains IC: 23761-8PYA009" must be used.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

(1) l'appareil ne doit pas produire de brouillage, et

(2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement

Le modular peut être installé ou intégré dans un mobile ou réparer une seule chose Installation dans n'importe quel appareil portable.

Déclaration de rayonnement IC

Ce modular complies avec des radiations émettrices de rayonnement Environnement. Ceci ne doit pas être co-localisé ou opérer avec des autres Ce modular doit être installé et obtenu avec une distance minimale de 20 cm entre les radiateurs et le corps de l'utilisateur.

Pour un hôte, on utilise un modular, si (1) le numéro de module est non visible Quand on est installé dans le serveur, or (2) si le propriétaire est commercialisé Straightforward commonly used for the access to remove travail so that the number IC en vue Le module est visible; Ensuite, le label permanent a été attribué au module: "Contient le Module IC:" 23761-8PYA009" ou "contenu IC: 23761-8PYA009" doit" be use

2.2 List of applicable FCC rules

List the FCC rules that are applicable to the modular transmitter. These are the rules that specifically establish the bands of operation, the power, spurious emissions, and operating fundamental frequencies. DO NOT list compliance to unintentional-radiator rules (Part 15 Subpart B) since that is not a condition of a module grant that is extended to a host manufacturer. See also Section 2.10 below concerning the need to notify host manufacturers that further testing is required.

Explanation: This module meets the requirements of FCC Part 22 24 27 and FCC Part 22 24 27 90.

2.3 Summarize the specific operational use conditions

Describe use conditions that are applicable to the modular transmitter, including for example any limits on antennas, etc. For example, if point-to-point antennas are used that require reduction in power or compensation for cable loss, then this information must be in the instructions. If the use condition limitations extend to professional users, then instructions must state that this information also extends to the host manufacturer's instruction manual. In addition, certain information may also be needed, such as peak gain per frequency band and minimum gain, specifically for master devices in 5 GHz DFS bands.

Explanation: The module use antenna(Dipole antenna with non-standard SMA connector) and cannot change the antenna.

2.4 Limited module procedures

If a modular transmitter is approved as a "limited module," then the module manufacturer is responsible for approving the host environment that the limited module is used with. The manufacturer of a limited module must describe, both in the filing and in the installation instructions, the alternative means that the limited module manufacturer uses to verify that the host meets the necessary requirements to satisfy the module limiting conditions.

A limited module manufacturer has the flexibility to define its alternative method to address the conditions that limit the initial approval, such as: shielding, minimum signaling amplitude, buffered modulation/data inputs, or power supply regulation. The alternative method could include that the limited module manufacturer reviews detailed test data or host designs prior to giving the host manufacturer approval. This limited module procedure is also applicable for RF exposure evaluation when it is necessary to demonstrate compliance in a specific host. The module manufacturer must state how control of the product into which the modular transmitter will be installed will be maintained such that full compliance of the product is always ensured. For additional hosts other than the specific host originally granted with a limited module, a Class II permissive change is required on the module grant to register the additional host as a specific host also approved with the module.

Explanation: The Module is not a limited module.

2.5 Trace antenna designs

For a modular transmitter with trace antenna designs, see the guidance in Question 11 of KDB Publication 996369 D02 FAQ – Modules for Micro-Strip Antennas and traces. The integration information shall include for the TCB review the integration instructions for the following aspects: layout of trace design, parts list (BOM), antenna, connectors, and isolation requirements.

a) Information that includes permitted variances (e.g., trace boundary limits, thickness, length, width, shape(s), dielectric constant, and impedance as applicable for each type of antenna);

b) Each design shall be considered a different type (e.g., antenna length in multiple(s) of frequency, the wavelength, and antenna shape (traces in phase) can affect antenna gain and must be considered); c) The parameters shall be provided in a manner permitting host manufacturers to design the printed circuit (PC) board layout;

d) Appropriate parts by manufacturer and specifications;

e) Test procedures for design verification; and

f) Production test procedures for ensuring compliance.

The module grantee shall provide a notice that any deviation(s) from the defined parameters of the antenna trace, as described by the instructions, require that the host product manufacturer must notify the module grantee that they wish to change the antenna trace design. In this case, a Class II permissive change application is required to be filed by the grantee, or the host manufacturer can take responsibility through the change in FCC ID (new application) procedure followed by a Class II permissive change application.

Explanation: Yes, The module use antenna(Dipole antenna with non-standard SMA connector) and cannot change the antenna.

2.6 RF exposure considerations

It is essential for module grantees to clearly and explicitly state the RF exposure conditions that permit a host product manufacturer to use the module. Two types of instructions are required for RF exposure information: (1) to the host product manufacturer, to define the application conditions (mobile, portable – xx cm from a person's body); and (2) additional text needed for the host product manufacturer to provide to end users in their end-product manufacturer is required to take responsibility of the module through a change in FCC ID (new application). Explanation: This module complies with FCC RF radiation exposure limits set forth for an uncontrolled environment, This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body." This module is designed to comply with the FCC statement, FCC ID is: 2AJYU-8PYA00E.

2.7 Antennas

A list of antennas included in the application for certification must be provided in the instructions. For modular transmitters approved as limited modules, all applicable professional installer instructions must be included as part of the information to the host product manufacturer. The antenna list shall also identify the antenna types (monopole, PIFA, dipole, etc. (note that for example an "omni-directional antenna" is not considered to be a specific "antenna type")).

For situations where the host product manufacturer is responsible for an external connector, for example with an RF pin and antenna trace design, the integration instructions shall inform the installer that unique antenna connector must be used on the Part 15 authorized transmitters used in the host product. The module manufacturers shall provide a list of acceptable unique connectors.

Explanation: The module use antenna(Dipole antenna with non-standard SMA connector) and cannot change the antenna.

2.8 Label and compliance information

Grantees are responsible for the continued compliance of their modules to the FCC rules. This includes advising host product manufacturers that they need to provide a physical or e-label stating "Contains FCC ID" with their finished product. See Guidelines for Labeling and User Information for RF Devices – KDB Publication 784748.

Explanation:The host system using this module, should have label in a visible area indicated the following texts: "Contains FCC ID: 2AJYU-8PYA00E."

2.9 Information on test modes and additional testing requirements⁵

Additional guidance for testing host products is given in KDB Publication 996369 D04 Module Integration Guide. Test modes should take into consideration different operational conditions for a stand-alone modular transmitter in a host, as well as for multiple simultaneously transmitting modules or other transmitters in a host product.

The grantee should provide information on how to configure test modes for host product evaluation for different operational conditions for a stand-alone modular transmitter in a host, versus with multiple, simultaneously transmitting modules or other transmitters in a host.

Grantees can increase the utility of their modular transmitters by providing special means, modes, or instructions that simulates or characterizes a connection by enabling a transmitter. This can greatly simplify a host manufacturer's determination that a module as installed in a host complies with FCC requirements.

Explanation: Top band can increase the utility of our modular transmitters by providing instructions that simulates or characterizes a connection by enabling a transmitter.

2.10 Additional testing, Part 15 Subpart B disclaimer

The grantee should include a statement that the modular transmitter is only FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the grant, and

that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuity), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

Explanation: The module without unintentional-radiator digital circuity, so the module does not require an evaluation by FCC Part 15 Subpart B. The host shoule be evaluated by the FCC Subpart B.