

FCC Test Report

Report No. : 1821C50002812504

Applicant: Matco Tools

Address : 4403 Allen Rd. Stow, OH 44224 USA

Product Name : Automotive Intelligent Diagnostic Tool

Report Date : Apr. 17, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Hotline

400-003-0500 www.anbotek.com

Contents

1. General Information	6
1.1. Client Information 1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test 1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty 1.7. Test Summary 1.8. Additional Instructions 1.8. Description of Test Facility 1.9. Disclaimer 1.10. Test Equipment List	
2. Antenna requirement	14
2.1. Conclusion	14
3. Conducted Emission at AC power line	15
3.1. EUT Operation	15
3.2. Test Setup	15
3.3. Test Data	
4. Duty Cycle	18
4.1. EUT Operation	
4.2. Test Setup	
4.3. Test Data	
5. Emission bandwidth and occupied bandwidth	
5.1. EUT Operation	
5.3. Test Data	
6. Maximum conducted output power	
6.1. EUT Operation	
6.2. Test Setup	
6.3. Test Data	
7. Power spectral density	23
7.1. EUT Operation	23
7.2. Test Setup	
7.3. Test Data	
8. Band edge emissions (Radiated)	25
8.1. EUT Operation	
8.2. Test Setup	
9. Undesirable emission limits (below 1GHz)	
9.1. EUT Operation	
9.3. Test Data	

10. Undesirable emission limits (above 1GHz)	5 [^]
10.1. EUT Operation	53
10.2. Test Setup	
10.3. Test Data	54
APPENDIX I TEST SETUP PHOTOGRAPH	60
APPENDIX II EXTERNAL PHOTOGRAPH	60
APPENDIX III INTERNAL PHOTOGRAPH	60

TEST REPORT

Matco Tools Applicant

Manufacturer Matco Tools

Automotive Intelligent Diagnostic Tool **Product Name**

MAXPRO Model No.

Trade Mark

Input: 5V == 5A Rating(s)

Date of Receipt:

Battery Capacity: DC 7.6V, 6300mAh

47 CFR Part 15E

Test Standard(s) ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Mar. 06, 2025

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test:	Mar. 06, 2025 to Mar. 24, 2025	
Prepared By:	Cecilia Chen	
	(Cecilia Chen)	
Approved & Authorized Signer:	Augo Chen	
	(Hugo Chen)	

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	Apr. 17, 2025

1. General Information

1.1. Client Information

Applicant	:	Matco Tools	
Address	:	03 Allen Rd. Stow, OH 44224 USA	
Manufacturer	:	Matco Tools	
Address	:	1403 Allen Rd. Stow, OH 44224 USA	

1.2. Description of Device (EUT)

1.2. Description of Bevice (EOT)				
Product Name	:	Automotive Intelligent Diagnostic Tool		
Model No.	:	MAXPRO		
Trade Mark	:	MATCE (S)		
Test Power Supply	:	DC 5V from Adapter input AC 120V/60Hz; DC 7.6V battery inside		
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)		
Adapter	:	Manufacturer: Shenzhen Xindejia Electronic Technology Co.,Ltd Model: XDJ361R-050500 Input: 100-240V~, 50/60Hz, 0.9A Output: 5.0V 5.0A, 25.0W		
RF Specification (M	odı	ıle: MT6631)		
Operation Frequency	:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz		
Number of Channel	:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac(HT40): U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac(HT80): U-NII Band 1: 1; U-NII Band 3: 1		
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);		

		802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)		
Device Type	:	Indoor AP		
Antenna Type	:	FPC Antenna		
Antenna Gain(Peak)	:	WiFi 5.2G: 4.12dBi WiFi 5.8G: 3.81dBi		
RF Specification (Me	odu	ıle: BL-M8822CU3-B)		
Operation Frequency	:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz		
Number of Channel	:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac(HT40): U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac(HT80): U-NII Band 1: 1; U-NII Band 3: 1		
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)		
Device Type	:	Indoor client		
Antenna Type	:	ANT1: FPC Antenna ANT2: FPC Antenna		
Antenna Gain(Peak)	:	WiFi 5.2G-ANT1: 2.62dBi WiFi 5.2G-ANT2: 5.60dBi WiFi 5.8G-ANT1: 2.07dBi WiFi 5.8G-ANT2: 6.68dBi		
Directional antenna gain Remark:	:	WiFi 5.2G: 7.25dBi WiFi 5.8G: 7.69dBi		

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Only the Module: BL-M8822CU3-B support MIMO with 802.11n and 802.11ac mode.
- (4) Directional antenna gain=10*log10(10^(ANT1/10)+10^(ANT2/10))

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.	
1	1	1	1	

1.4. Operation channel list

Operation Band: U-NII Band 1

<u> </u>	-				
Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230	/	/
44	5220	/	/	/	/
48	5240	/	1	/	/

Operation Band: U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795	/	/
157	5785	/	/	/	/
161	5805	/	/	/	/
165	5825	/	1	/	/

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.2dB
Dwell Time	2%
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.64dB; 6G-18GHz: 4.82dB 18G-40GHz: 5.62dB
Radiated emissions (Below 30MHz)	3.26dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.70dB; Vertical: 4.42dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	1	Р
Conducted Emission at AC power line	Mode1,2,3	Р
Duty Cycle	Mode1,2,3	Р
Emission bandwidth and occupied bandwidth	Mode1,2,3	Р
Maximum conducted output power	Mode1,2,3	Р
Power spectral density	Mode1,2,3	Р
Band edge emissions (Radiated)	Mode1,2,3	Р
Undesirable emission limits (below 1GHz)	Mode1,2,3	Р
Undesirable emission limits (above 1GHz)	Mode1,2,3	Р
Note: P: Pass		1

N: N/A, not applicable

1.8. Additional Instructions

Power level setup in software: (For Module-MT6631)Engineering Order:.+.+777+.+.=

Operation Band: U-NII Band 1

Mode	Power level	Transmitting type
802.11a	default	data pack TX
802.11n(HT20)	default	data pack TX
802.11n(HT40)	default	data pack TX
802.11ac(VHT20)	default	data pack TX
802.11ac(VHT40)	default	data pack TX
802.11ac(VHT80)	default	data pack TX

Operation Band: U-NII Band 3

Mode	Power level	Transmitting type
802.11a	default	data pack TX
802.11n(HT20)	default	data pack TX
802.11n(HT40)	default	data pack TX
802.11ac(VHT20)	default	data pack TX
802.11ac(VHT40)	default	data pack TX
802.11ac(VHT80)	default	data pack TX

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- This document may not be altered or revised in any way unless done so by Anbotek and all 4. revisions are duly noted in the revisions section.
- Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.
- The data in this report will be synchronized with the corresponding national market supervision and management departments and cross-border e-commerce platforms as required by regulatory agencies.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Conducted Emission at AC power line						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2025-01-13	2026-01-12
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	1	1
4	EMI Test Receiver(CE2#)	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08

Duty Cycle

Emission bandwidth and occupied bandwidth

Maximum conducted output power

Power spectral density

	opodital dolloity					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2025-01-14	2026-01-13

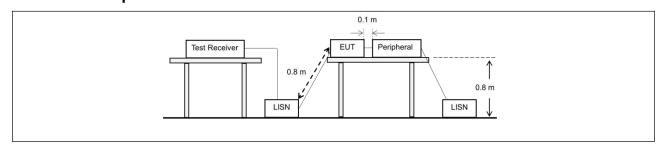
Band edge emissions (Radiated) Undesirable emission limits (above 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2025-01-13	2026-01-12
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	1	1
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2025-02-24	2026-02-23

Undesirable emission limits (below 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	Pre-amplifier	SONOMA	310N	186860	2025-01-14	2026-01-13
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	1	/

2. Antenna requirement

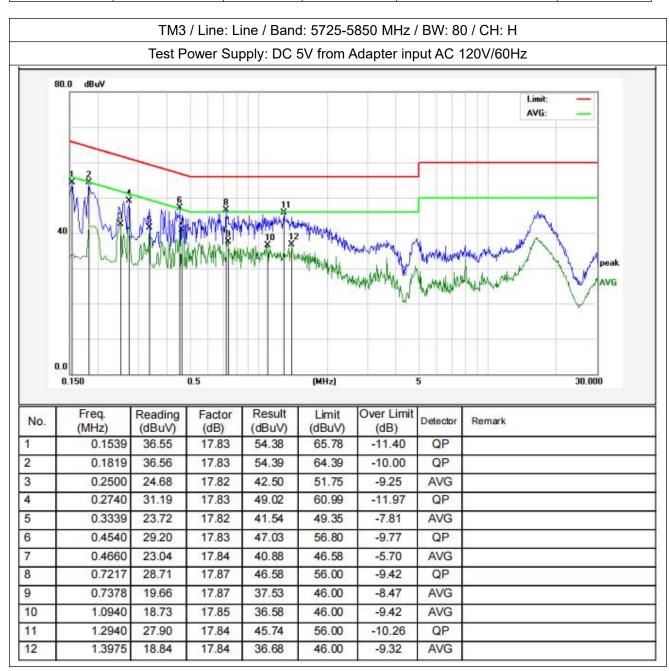
2.1. Conclusion

The antenna is FPC Antenna which permanently attached, and the best case gain of the antenna is 4.12dBi of WiFi 5.2G and 3.81dBi of WiFi 5.8G for module MT6631; 2.62dBi of WiFi 5.2G_ANT1, 5.60dBi of WiFi 5.2G_ANT2, 2.07dBi of WiFi 5.8G_ANT1 and 6.68dBi of WiFi 5.8G_ANT2 for module BL-M8822CU3-B. It complies with the standard requirement.

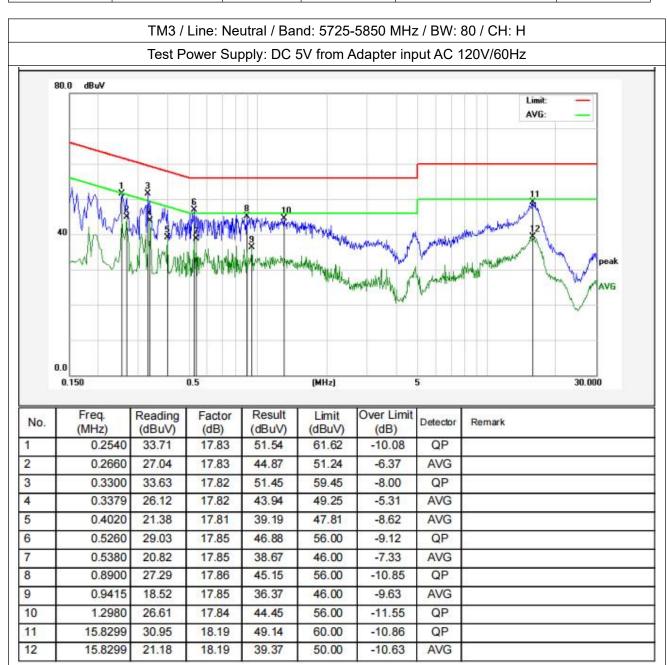

3. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)			
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)		
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of t	he frequency.		
Test Method:	ANSI C63.10-2020 section 6.2			

3.1. EUT Operation


Operating Envi	ronment:
Test mode:	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

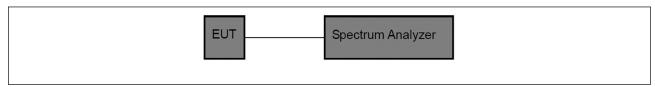


3.3. Test Data

Temperature: 22.8 °C Humidity: 54 % Atmospheric Pressure: 101 kPa

Note:

- 1. Only record the worst data (802.11ac(HT80)_MIMO of Module BL-M8822CU3-B) in the report..
- 2. Result(dBμV) = Reading(dBμV) + Factor(dB); Over Limit(dB) = Result(dBμV) - Limit(dBμV)


4. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

4.1. EUT Operation

Operating Envi	ronment:
Test mode:	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperature: 21.3 °C

Please Refer to Appendix for Details.

Hotline 400-003-0500 www.anbotek.com

5. Emission bandwidth and occupied bandwidth

000.0	mawiath and occupied bandwidth
Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
7	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
Procedure:	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered

amplitude data points,

beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

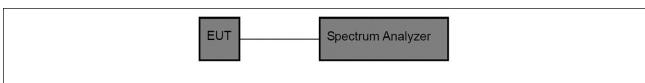
be reported in addition to the plot(s).

6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

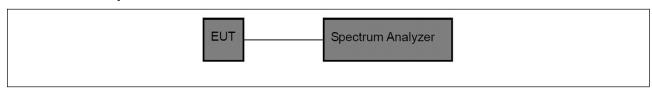
5.3. Test Data

Temperature:	21.3 °C	Humidity:	43 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

6. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(ii)
rest requirement.	47 CFR Part 15.407(a)(3)(i)
Test Limit:	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed,
T (NA ()	point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4


6.1. EUT Operation

Operating Envi	ronment:
Test mode:	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

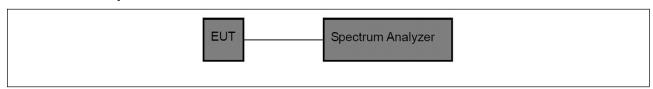
6.2. Test Setup

6.3. Test Data

Temperature: 21.3 °C	Humidity:	43 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

7. Power spectral density


Test Requirement:	47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

7.1. EUT Operation

Operating Environment:				
Test mode:	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.			

7.2. Test Setup

7.3. Test Data

Temperature: 21.3 °C

Please Refer to Appendix for Details.

8. Band edge emissions (Radiated)

47 CFR Part 15.407(b)(10)					
For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.					
edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above of					
below the band edge, and from 5 MHz above or below the band edge					
increasing linearly to a level of 27 dBm/MHz at the band edge.			-		
			GHz		
			4.5-5.15		
0.495-0.505	16.69475- 16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
6.31175-6.31225	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	(2)		
13.36-13.41					
12.29-12.293 12.51975-12.52025 12.57675-12.57725 13.36-13.41	167.72-173.2 240-285 322-335.4		3332-3339 3345.8-3358 3600-4400		
² Above 38.6					
not exceed the limits so 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demor	shown in § 15.209. A e with the limits in § astrumentation emplo MHz, compliance wi astrated based on the	t frequencies equals. 15.209shall be dobying a CISPR quals the emission lies average value of	ual to or less that emonstrated uasi-peak mits in § of the measured		
	47 CFR Part 15.407(b 47 CFR Part 15.407(b 47 CFR Part 15.407(b For transmitters operated of the 5.15-5.35 GHz For transmitters operated above or below the base of base o	For transmitters operating in the 5.15-5.25 of the 5.15-5.35 GHz band shall not excee For transmitters operating solely in the 5.7 All emissions shall be limited to a level of above or below the band edge increasing above or below the band edge, and from 2 edge increasing linearly to a level of 15.6 delow the band edge, and from 5 MHz aborincreasing linearly to a level of 27 dBm/MFMHz MHz 0.090-0.110 16.42-16.423 10.495-0.505 16.69475-16.69525 16.80475-16.80475 16.80	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10) For transmitters operating in the 5.15-5.25 GHz band: All er of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -2 For transmitters operating solely in the 5.725-5.850 GHz band all erion of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -2 For transmitters operating solely in the 5.725-5.850 GHz band line of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -2 For transmitters operating solely in the 5.725-5.850 GHz band in the 5.15-5.35 GHz band shall be limited to a level of -27 dBm/MHz at band band edge increasing linearly to 10 dBr above or below the band edge, and from 25 MHz above or below the increasing linearly to a level of 27 dBm/MHz at the band edge increasing linearly to a level of 27 dBm/MHz at the band edge increasing linearly to a level of 27 dBm/MHz at the band edge increasing linearly to a level of 27 dBm/MHz at the band edge increasing linearly to a level of 27 dBm/MHz at the band edge increasing linearly to a level of 27 dBm/MHz at the band edge increasing linearly to a level of 27 dBm/MHz at the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to 10 dBr above or below the increasing linearly to		

Except as provided elsewhere in this subpart, the emissions from an

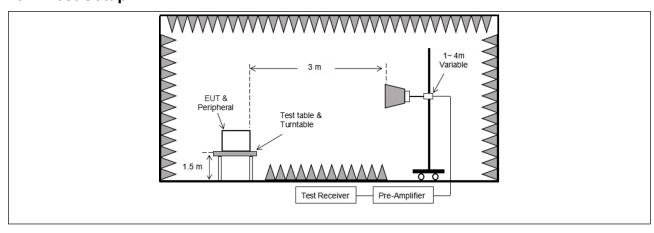
	T		
	intentional radiator shall no following table:	ot exceed the field strength level	s specified in the
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators operative frequency bands 54-72 MH However, operation within sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and	aragraph (g), fundamental emiss ting under this section shall not large, 76-88 MHz, 174-216 MHz or these frequency bands is permit \$\\$\ 15.231 \text{ and } 15.241. e, the tighter limit applies at the in the above table are based or peak detector except for the free above 1000 MHz. Radiated emited on measurements employing	be located in the 470-806 MHz. Itted under other band edges. In measurements quency bands 9–ssion limits in
Test Method:	ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7		
Procedure:	meters above the ground a rotated 360 degrees to det b. The EUT was set 3 meters which was mounted on the c. The antenna height is varying ground to determine the mand vertical polarizations of d. For each suspected emand then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of the limit specified, then testing would be reported. Otherwould be re-tested one by and then reported in a data g. Test the EUT in the lower channel. h. The radiation measurem Transmitting mode, and fo case.	ne EUT in peak mode was 10dB could be stopped and the peak rise the emissions that did not hat one using peak or average metl	aber. The table was st radiation. eceiving antenna, a tower. ers above the ath. Both horizontal ne measurement. Its worst case of 4 meters (for the heights 1 meter) degrees to find the con and Specified lower than the values of the EUT ave 10dB margin and as specified the Highest axis positioning for at it is the worst

Remark:

- 1. Result($dB\mu V/m$) = Reading($dB\mu V$) + Factor(dB/m);Over Limit(dB) = Result(dBµV/m) - Limit(dBµV/m)
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

8.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the

8.2. Test Setup

Test mode:

8.3. Test Data

Temperature: 21.3 °C Humidity: 43 % Atmospheric Pressure: 101 kPa

Test module: MT6631

TM1 / Band: 5150-5250 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	37.17	15.99	53.16	68.20	-15.04	Н	Peak			
5150.00	39.27	15.99	55.26	68.20	-12.94	V	Peak			
5150.00	27.05	15.99	43.04	54.00	-10.96	Н	AVG			
5150.00	29.16	15.99	45.15	54.00	-8.85	V	AVG			
		TM1 / B	and: 5150-52	250 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5250.00	37.56	16.43	53.99	68.20	-14.21	Н	Peak			
5250.00	40.63	16.43	57.06	68.20	-11.14	V	Peak			
5250.00	28.96	16.43	45.39	54.00	-8.61	Н	AVG			
5250.00	29.78	16.43	46.21	54.00	-7.79	V	AVG			

Remark: 1. Result=Reading + Factor

	TM2 / Band: 5150-5250 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.05	15.99	52.04	68.20	-16.16	Н	Peak				
5150.00	37.49	15.99	53.48	68.20	-14.72	V	Peak				
5150.00	26.77	15.99	42.76	54.00	-11.24	Н	AVG				
5150.00	27.74	15.99	43.73	54.00	-10.27	V	AVG				
		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	37.90	16.43	54.33	68.20	-13.87	Н	Peak				
5250.00	38.91	16.43	55.34	68.20	-12.86	V	Peak				
5250.00	27.95	16.43	44.38	54.00	-9.62	Н	AVG				
5250.00	29.45	16.43	45.88	54.00	-8.12	V	AVG				

	TM2 / Band: 5150-5250 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.68	15.99	52.67	68.20	-15.53	Н	Peak				
5150.00	38.51	15.99	54.50	68.20	-13.70	V	Peak				
5150.00	27.26	15.99	43.25	54.00	-10.75	Н	AVG				
5150.00	28.83	15.99	44.82	54.00	-9.18	V	AVG				
		TM2 / B	and: 5150-52	250 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	38.21	16.43	54.64	68.20	-13.56	Н	Peak				
5250.00	37.03	16.43	53.46	68.20	-14.74	V	Peak				
5250.00	28.51	16.43	44.94	54.00	-9.06	Н	AVG				
5250.00	29.75	16.43	46.18	54.00	-7.82	V	AVG				

Remark: 1. Result=Reading + Factor

		TM3 / B	and: 5150-52	250 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.15	15.99	53.14	68.20	-15.06	Н	Peak
5150.00	38.94	15.99	54.93	68.20	-13.27	V	Peak
5150.00	26.68	15.99	42.67	54.00	-11.33	Н	AVG
5150.00	28.94	15.99	44.93	54.00	-9.07	V	AVG
		TM3 / B	and: 5150-52	250 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.00	16.43	54.43	68.20	-13.77	Н	Peak
5250.00	38.23	16.43	54.66	68.20	-13.54	V	Peak
5250.00	27.94	16.43	44.37	54.00	-9.63	Н	AVG
5250.00	28.57	16.43	45.00	54.00	-9.00	V	AVG

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5150-5250 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.09	15.99	52.08	68.20	-16.12	Н	Peak				
5150.00	36.46	15.99	52.45	68.20	-15.75	V	Peak				
5150.00	26.36	15.99	42.35	54.00	-11.65	Н	AVG				
5150.00	27.01	15.99	43.00	54.00	-11.00	V	AVG				
		TM3 / B	and: 5150-52	250 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	38.20	16.43	54.63	68.20	-13.57	Н	Peak				
5250.00	37.30	16.43	53.73	68.20	-14.47	V	Peak				
5250.00	27.61	16.43	44.04	54.00	-9.96	Н	AVG				
5250.00	27.74	16.43	44.17	54.00	-9.83	V	AVG				

Remark: 1. Result=Reading + Factor

		TM3 / B	and: 5150-52	250 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.14	15.99	52.13	68.20	-16.07	Н	Peak
5150.00	36.68	15.99	52.67	68.20	-15.53	V	Peak
5150.00	26.84	15.99	42.83	54.00	-11.17	Н	AVG
5150.00	27.02	15.99	43.01	54.00	-10.99	V	AVG
		TM3 / B	and: 5150-52	250 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.54	16.43	54.97	68.20	-13.23	Н	Peak
5250.00	37.64	16.43	54.07	68.20	-14.13	V	Peak
5250.00	29.08	16.43	45.51	54.00	-8.49	Н	AVG
5250.00	28.29	16.43	44.72	54.00	-9.28	V	AVG

TM1 / Band: 5725-5850 MHz / BW: 20 / L											
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5725.00	38.37	16.37	54.74	68.20	-13.46	Н	Peak				
5725.00	39.83	16.37	56.20	68.20	-12.00	V	Peak				
5725.00	29.18	16.70	45.88	54.00	-8.12	Н	AVG				
5725.00	30.31	16.70	47.01	54.00	-6.99	V	AVG				
		TM1 / B	and: 5725-58	350 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	39.36	17.21	56.57	68.20	-11.63	Н	Peak				
5850.00	39.76	17.21	56.97	68.20	-11.23	V	Peak				
5850.00	29.30	17.21	46.51	54.00	-7.49	Н	AVG				
5850.00	29.28	17.21	46.49	54.00	-7.51	V	AVG				

Remark: 1. Result=Reading + Factor

	TM2 / Band: 5725-5850 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5725.00	38.36	17.05	55.41	68.20	-12.79	Н	Peak				
5725.00	39.00	17.05	56.05	68.20	-12.15	V	Peak				
5725.00	27.71	17.05	44.76	54.00	-9.24	Н	AVG				
5725.00	28.29	17.05	45.34	54.00	-8.66	V	AVG				
		TM2 / B	and: 5725-58	350 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	37.60	17.21	54.81	68.20	-13.39	Н	Peak				
5850.00	38.15	17.21	55.36	68.20	-12.84	V	Peak				
5850.00	27.92	17.21	45.13	54.00	-8.87	Н	AVG				
5850.00	28.67	17.21	45.88	54.00	-8.12	V	AVG				

	TM2 / Band: 5725-5850 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5725.00	37.94	17.05	54.99	68.20	-13.21	Н	Peak				
5725.00	38.88	17.05	55.93	68.20	-12.27	V	Peak				
5725.00	27.21	17.05	44.26	54.00	-9.74	Н	AVG				
5725.00	28.51	17.05	45.56	54.00	-8.44	V	AVG				
		TM2 / B	and: 5725-58	350 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	38.30	17.21	55.51	68.20	-12.69	Н	Peak				
5850.00	38.63	17.21	55.84	68.20	-12.36	V	Peak				
5850.00	28.50	17.21	45.71	54.00	-8.29	Н	AVG				
5850.00	29.53	17.21	46.74	54.00	-7.26	V	AVG				

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5725-5850 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5725.00	37.55	17.05	54.60	68.20	-13.60	Н	Peak				
5725.00	37.62	17.05	54.67	68.20	-13.53	V	Peak				
5725.00	28.42	17.05	45.47	54.00	-8.53	Н	AVG				
5725.00	29.31	17.05	46.36	54.00	-7.64	V	AVG				
		TM3 / B	and: 5725-58	350 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	38.29	17.21	55.50	68.20	-12.70	Н	Peak				
5850.00	39.14	17.21	56.35	68.20	-11.85	V	Peak				
5850.00	28.13	17.21	45.34	54.00	-8.66	Н	AVG				
5850.00	29.27	17.21	46.48	54.00	-7.52	V	AVG				

	TM3 / Band: 5725-5850 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5725.00	36.48	17.05	53.53	68.20	-14.67	Н	Peak				
5725.00	37.95	17.05	55.00	68.20	-13.20	V	Peak				
5725.00	27.70	17.05	44.75	54.00	-9.25	Н	AVG				
5725.00	28.37	17.05	45.42	54.00	-8.58	V	AVG				
		TM3 / B	and: 5725-58	350 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	37.81	17.21	55.02	68.20	-13.18	Н	Peak				
5850.00	38.71	17.21	55.92	68.20	-12.28	V	Peak				
5850.00	27.83	17.21	45.04	54.00	-8.96	Н	AVG				
5850.00	27.50	17.21	44.71	54.00	-9.29	V	AVG				

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5725-5850 MHz / BW: 80 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5725.00	35.74	17.05	52.79	68.20	-15.41	Н	Peak				
5725.00	37.32	17.05	54.37	68.20	-13.83	V	Peak				
5725.00	26.85	17.05	43.90	54.00	-10.10	Н	AVG				
5725.00	27.33	17.05	44.38	54.00	-9.62	V	AVG				
		TM3 / B	and: 5725-58	350 MHz / BV	V: 80 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	37.91	17.21	55.12	68.20	-13.08	Н	Peak				
5850.00	38.13	17.21	55.34	68.20	-12.86	V	Peak				
5850.00	28.40	17.21	45.61	54.00	-8.39	Н	AVG				
5850.00	28.49	17.21	45.70	54.00	-8.30	V	AVG				

Remark: 1. Result=Reading + Factor

21.3 °C Temperature: Humidity: 43 % Atmospheric Pressure: 101 kPa

Test module: BL-M8822CU3-B

TM1 / Band: 5150-5250 MHz / BW: 20 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	37.21	15.99	53.20	68.20	-15.00	Н	Peak	
5150.00	39.32	15.99	55.31	68.20	-12.89	V	Peak	
5150.00	27.08	15.99	43.07	54.00	-10.93	Н	AVG	
5150.00	29.20	15.99	45.19	54.00	-8.81	V	AVG	
		TM1 / B	and: 5150-52	250 MHz / BV	V: 20 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	37.59	16.43	54.02	68.20	-14.18	Н	Peak	
5250.00	40.68	16.43	57.11	68.20	-11.09	V	Peak	
5250.00	29.00	16.43	45.43	54.00	-8.57	Н	AVG	
5250.00	29.81	16.43	46.24	54.00	-7.76	V	AVG	

Remark: 1. Result=Reading + Factor

2. During the test, all antenna chains has been tested, and only worst case (ANT1) data is listed in the report.

TM2 / Band: 5150-5250 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5150.00	36.07	15.99	52.06	68.20	-16.14	Н	Peak		
5150.00	37.53	15.99	53.52	68.20	-14.68	V	Peak		
5150.00	26.79	15.99	42.78	54.00	-11.22	Н	AVG		
5150.00	27.76	15.99	43.75	54.00	-10.25	V	AVG		
		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5250.00	37.93	16.43	54.36	68.20	-13.84	Н	Peak		
5250.00	38.93	16.43	55.36	68.20	-12.84	V	Peak		
5250.00	27.99	16.43	44.42	54.00	-9.58	Н	AVG		
5250.00	29.50	16.43	45.93	54.00	-8.07	V	AVG		

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

TM2 / Band: 5150-5250 MHz / BW: 40 / L									
TIWZ / Dania: 5150-5250 WMZ / BW: 40 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5150.00	36.72	15.99	52.71	68.20	-15.49	Н	Peak		
5150.00	38.55	15.99	54.54	68.20	-13.66	V	Peak		
5150.00	27.31	15.99	43.30	54.00	-10.70	Н	AVG		
5150.00	28.85	15.99	44.84	54.00	-9.16	V	AVG		
		TM2 / B	and: 5150-52	250 MHz / BV	V: 40 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5250.00	38.24	16.43	54.67	68.20	-13.53	Н	Peak		
5250.00	37.05	16.43	53.48	68.20	-14.72	V	Peak		
5250.00	28.56	16.43	44.99	54.00	-9.01	Н	AVG		
5250.00	29.80	16.43	46.23	54.00	-7.77	V	AVG		

Remark: 1. Result=Reading + Factor

^{2.} During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

TM3 / Band: 5150-5250 MHz / BW: 20 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	37.20	15.99	53.19	68.20	-15.01	Н	Peak	
5150.00	38.99	15.99	54.98	68.20	-13.22	V	Peak	
5150.00	26.70	15.99	42.69	54.00	-11.31	Н	AVG	
5150.00	28.98	15.99	44.97	54.00	-9.03	V	AVG	
		TM3 / B	and: 5150-52	250 MHz / BV	V: 20 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	38.02	16.43	54.45	68.20	-13.75	Н	Peak	
5250.00	38.25	16.43	54.68	68.20	-13.52	V	Peak	
5250.00	27.97	16.43	44.40	54.00	-9.60	Н	AVG	
5250.00	28.62	16.43	45.05	54.00	-8.95	V	AVG	

Remark: 1. Result=Reading + Factor

^{2.} During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

TM3 / Band: 5150-5250 MHz / BW: 40 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	36.13	15.99	52.12	68.20	-16.08	Н	Peak	
5150.00	36.49	15.99	52.48	68.20	-15.72	V	Peak	
5150.00	26.42	15.99	42.41	54.00	-11.59	Н	AVG	
5150.00	27.05	15.99	43.04	54.00	-10.96	V	AVG	
		TM3 / B	and: 5150-52	250 MHz / BV	V: 40 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	38.24	16.43	54.67	68.20	-13.53	Н	Peak	
5250.00	37.32	16.43	53.75	68.20	-14.45	V	Peak	
5250.00	27.63	16.43	44.06	54.00	-9.94	Н	AVG	
5250.00	27.80	16.43	44.23	54.00	-9.77	V	AVG	

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

TM3 / Band: 5150-5250 MHz / BW: 80 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	36.16	15.99	52.15	68.20	-16.05	Н	Peak	
5150.00	36.73	15.99	52.72	68.20	-15.48	V	Peak	
5150.00	26.90	15.99	42.89	54.00	-11.11	Н	AVG	
5150.00	27.06	15.99	43.05	54.00	-10.95	V	AVG	
		TM3 / B	and: 5150-52	250 MHz / BV	V: 80 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	38.59	16.43	55.02	68.20	-13.18	Н	Peak	
5250.00	37.68	16.43	54.11	68.20	-14.09	V	Peak	
5250.00	29.15	16.43	45.58	54.00	-8.42	Н	AVG	
5250.00	28.33	16.43	44.76	54.00	-9.24	V	AVG	

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

	TM1 / Band: 5725-5850 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5725.00	38.42	16.37	54.79	68.20	-13.41	Н	Peak				
5725.00	39.89	16.37	56.26	68.20	-11.94	V	Peak				
5725.00	29.21	16.70	45.91	54.00	-8.09	Н	AVG				
5725.00	30.35	16.70	47.05	54.00	-6.95	V	AVG				
		TM1 / B	and: 5725-58	350 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	39.41	17.21	56.62	68.20	-11.58	Н	Peak				
5850.00	39.82	17.21	57.03	68.20	-11.17	V	Peak				
5850.00	29.35	17.21	46.56	54.00	-7.44	Н	AVG				
5850.00	29.32	17.21	46.53	54.00	-7.47	V	AVG				

Remark: 1. Result=Reading + Factor

2. During the test, all antenna chains has been tested, and only worst case (ANT1) data is listed in the report.

		TM2 / B	and: 5725-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	38.42	17.05	55.47	68.20	-12.73	Н	Peak
5725.00	39.06	17.05	56.11	68.20	-12.09	V	Peak
5725.00	27.73	17.05	44.78	54.00	-9.22	Н	AVG
5725.00	28.33	17.05	45.38	54.00	-8.62	V	AVG
		TM2 / B	and: 5725-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.65	17.21	54.86	68.20	-13.34	Н	Peak
5850.00	38.19	17.21	55.40	68.20	-12.80	V	Peak
5850.00	27.99	17.21	45.20	54.00	-8.80	Н	AVG
5850.00	28.73	17.21	45.94	54.00	-8.06	V	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		TM2 / B	and: 5725-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	38.00	17.05	55.05	68.20	-13.15	Н	Peak
5725.00	38.94	17.05	55.99	68.20	-12.21	V	Peak
5725.00	27.25	17.05	44.30	54.00	-9.70	Н	AVG
5725.00	28.53	17.05	45.58	54.00	-8.42	V	AVG
		TM2 / B	and: 5725-58	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.36	17.21	55.57	68.20	-12.63	Н	Peak
5850.00	38.67	17.21	55.88	68.20	-12.32	V	Peak
5850.00	28.55	17.21	45.76	54.00	-8.24	Н	AVG
5850.00	29.57	17.21	46.78	54.00	-7.22	V	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		TM3 / B	and: 5725-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	37.59	17.05	54.64	68.20	-13.56	Н	Peak
5725.00	37.64	17.05	54.69	68.20	-13.51	V	Peak
5725.00	28.45	17.05	45.50	54.00	-8.50	Н	AVG
5725.00	29.37	17.05	46.42	54.00	-7.58	V	AVG
		TM3 / B	and: 5725-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.33	17.21	55.54	68.20	-12.66	Н	Peak
5850.00	39.17	17.21	56.38	68.20	-11.82	V	Peak
5850.00	28.16	17.21	45.37	54.00	-8.63	Н	AVG
5850.00	29.33	17.21	46.54	54.00	-7.46	V	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		TM3 / B	and: 5725-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	36.52	17.05	53.57	68.20	-14.63	Н	Peak
5725.00	37.97	17.05	55.02	68.20	-13.18	V	Peak
5725.00	27.73	17.05	44.78	54.00	-9.22	Н	AVG
5725.00	28.39	17.05	45.44	54.00	-8.56	V	AVG
		TM3 / B	and: 5725-58	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.84	17.21	55.05	68.20	-13.15	Н	Peak
5850.00	38.77	17.21	55.98	68.20	-12.22	V	Peak
5850.00	27.87	17.21	45.08	54.00	-8.92	Н	AVG
5850.00	27.56	17.21	44.77	54.00	-9.23	V	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		TM3 / B	and: 5725-58	350 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	35.77	17.05	52.82	68.20	-15.38	Н	Peak
5725.00	37.37	17.05	54.42	68.20	-13.78	V	Peak
5725.00	26.90	17.05	43.95	54.00	-10.05	Н	AVG
5725.00	27.36	17.05	44.41	54.00	-9.59	V	AVG
		TM3 / B	and: 5725-58	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.98	17.21	55.19	68.20	-13.01	Н	Peak
5850.00	38.19	17.21	55.40	68.20	-12.80	V	Peak
5850.00	28.49	17.21	45.70	54.00	-8.30	Н	AVG
5850.00	28.54	17.21	45.75	54.00	-8.25	V	AVG

^{2.} During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Temperature: 21.3 °C Humidity: 43 % Atmospheric Pressure: 101 kPa

Test module: MT6631+BL-M8822CU3-B

	TM1 / Band: 5150-5250 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	37.29	15.99	53.28	68.20	-14.92	Н	Peak			
5150.00	39.42	15.99	55.41	68.20	-12.79	V	Peak			
5150.00	27.14	15.99	43.13	54.00	-10.87	Н	AVG			
5150.00	29.28	15.99	45.27	54.00	-8.73	V	AVG			
		TM1 / B	and: 5150-52	250 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5250.00	37.65	16.43	54.08	68.20	-14.12	Н	Peak			
5250.00	40.79	16.43	57.22	68.20	-10.98	V	Peak			
5250.00	29.09	16.43	45.52	54.00	-8.48	Н	AVG			
5250.00	29.87	16.43	46.30	54.00	-7.70	V	AVG			

Remark: 1. Result=Reading + Factor

		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.12	15.99	52.11	68.20	-16.09	Н	Peak
5150.00	37.60	15.99	53.59	68.20	-14.61	V	Peak
5150.00	26.84	15.99	42.83	54.00	-11.17	Н	AVG
5150.00	27.80	15.99	43.79	54.00	-10.21	V	AVG
		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.00	16.43	54.43	68.20	-13.77	Н	Peak
5250.00	38.98	16.43	55.41	68.20	-12.79	V	Peak
5250.00	28.06	16.43	44.49	54.00	-9.51	Н	AVG
5250.00	29.60	16.43	46.03	54.00	-7.97	V	AVG

		TM2 / B	and: 5150-52	250 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.81	15.99	52.80	68.20	-15.40	Н	Peak
5150.00	38.63	15.99	54.62	68.20	-13.58	V	Peak
5150.00	27.41	15.99	43.40	54.00	-10.60	Н	AVG
5150.00	28.88	15.99	44.87	54.00	-9.13	V	AVG
		TM2 / B	and: 5150-52	250 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.30	16.43	54.73	68.20	-13.47	Н	Peak
5250.00	37.08	16.43	53.51	68.20	-14.69	V	Peak
5250.00	28.66	16.43	45.09	54.00	-8.91	Н	AVG
5250.00	29.91	16.43	46.34	54.00	-7.66	V	AVG

Remark: 1. Result=Reading + Factor

		TM3 / B	and: 5150-52	250 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.30	15.99	53.29	68.20	-14.91	Н	Peak
5150.00	39.10	15.99	55.09	68.20	-13.11	V	Peak
5150.00	26.75	15.99	42.74	54.00	-11.26	Н	AVG
5150.00	29.06	15.99	45.05	54.00	-8.95	V	AVG
		TM3 / B	and: 5150-52	250 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.07	16.43	54.50	68.20	-13.70	Н	Peak
5250.00	38.29	16.43	54.72	68.20	-13.48	V	Peak
5250.00	28.04	16.43	44.47	54.00	-9.53	Н	AVG
5250.00	28.72	16.43	45.15	54.00	-8.85	V	AVG

	TM3 / Band: 5150-5250 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.22	15.99	52.21	68.20	-15.99	Н	Peak				
5150.00	36.55	15.99	52.54	68.20	-15.66	V	Peak				
5150.00	26.54	15.99	42.53	54.00	-11.47	Н	AVG				
5150.00	27.14	15.99	43.13	54.00	-10.87	V	AVG				
		TM3 / B	and: 5150-52	250 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	38.31	16.43	54.74	68.20	-13.46	Н	Peak				
5250.00	37.37	16.43	53.80	68.20	-14.40	V	Peak				
5250.00	27.68	16.43	44.11	54.00	-9.89	Н	AVG				
5250.00	27.91	16.43	44.34	54.00	-9.66	V	AVG				

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5150-5250 MHz / BW: 80 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.21	15.99	52.20	68.20	-16.00	Н	Peak				
5150.00	36.84	15.99	52.83	68.20	-15.37	V	Peak				
5150.00	27.01	15.99	43.00	54.00	-11.00	Н	AVG				
5150.00	27.14	15.99	43.13	54.00	-10.87	V	AVG				
		TM3 / B	and: 5150-52	250 MHz / BV	V: 80 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	38.70	16.43	55.13	68.20	-13.07	Н	Peak				
5250.00	37.77	16.43	54.20	68.20	-14.00	V	Peak				
5250.00	29.28	16.43	45.71	54.00	-8.29	Н	AVG				
5250.00	28.41	16.43	44.84	54.00	-9.16	V	AVG				

Remark: 1. Result=Reading + Factor

	TM1 / Band: 5725-5850 MHz / BW: 20 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5725.00	38.47	16.37	54.84	68.20	-13.36	Н	Peak		
5725.00	39.96	16.37	56.33	68.20	-11.87	V	Peak		
5725.00	29.25	16.70	45.95	54.00	-8.05	Н	AVG		
5725.00	30.39	16.70	47.09	54.00	-6.91	V	AVG		
		TM1 / B	and: 5725-58	350 MHz / BV	V: 20 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5850.00	39.47	17.21	56.68	68.20	-11.52	Н	Peak		
5850.00	39.89	17.21	57.10	68.20	-11.10	V	Peak		
5850.00	29.40	17.21	46.61	54.00	-7.39	Н	AVG		
5850.00	29.36	17.21	46.57	54.00	-7.43	V	AVG		

Remark: 1. Result=Reading + Factor

	TM2 / Band: 5725-5850 MHz / BW: 20 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5725.00	38.47	17.05	55.52	68.20	-12.68	Н	Peak		
5725.00	39.13	17.05	56.18	68.20	-12.02	V	Peak		
5725.00	27.76	17.05	44.81	54.00	-9.19	Н	AVG		
5725.00	28.37	17.05	45.42	54.00	-8.58	V	AVG		
		TM2 / B	and: 5725-58	350 MHz / BV	V: 20 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5850.00	37.71	17.21	54.92	68.20	-13.28	Н	Peak		
5850.00	38.24	17.21	55.45	68.20	-12.75	V	Peak		
5850.00	28.06	17.21	45.27	54.00	-8.73	Н	AVG		
5850.00	28.78	17.21	45.99	54.00	-8.01	V	AVG		

	TM2 / Band: 5725-5850 MHz / BW: 40 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5725.00	38.05	17.05	55.10	68.20	-13.10	Н	Peak		
5725.00	39.01	17.05	56.06	68.20	-12.14	V	Peak		
5725.00	27.29	17.05	44.34	54.00	-9.66	Н	AVG		
5725.00	28.56	17.05	45.61	54.00	-8.39	V	AVG		
		TM2 / B	and: 5725-58	350 MHz / BV	V: 40 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5850.00	38.41	17.21	55.62	68.20	-12.58	Н	Peak		
5850.00	38.71	17.21	55.92	68.20	-12.28	V	Peak		
5850.00	28.61	17.21	45.82	54.00	-8.18	Н	AVG		
5850.00	29.62	17.21	46.83	54.00	-7.17	V	AVG		

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5725-5850 MHz / BW: 20 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5725.00	37.64	17.05	54.69	68.20	-13.51	Н	Peak		
5725.00	37.66	17.05	54.71	68.20	-13.49	V	Peak		
5725.00	28.48	17.05	45.53	54.00	-8.47	Н	AVG		
5725.00	29.42	17.05	46.47	54.00	-7.53	V	AVG		
		TM3 / B	and: 5725-58	350 MHz / BV	V: 20 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5850.00	38.38	17.21	55.59	68.20	-12.61	Н	Peak		
5850.00	39.21	17.21	56.42	68.20	-11.78	V	Peak		
5850.00	28.20	17.21	45.41	54.00	-8.59	Н	AVG		
5850.00	29.38	17.21	46.59	54.00	-7.41	V	AVG		

	TM3 / Band: 5725-5850 MHz / BW: 40 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5725.00	36.56	17.05	53.61	68.20	-14.59	Н	Peak			
5725.00	38.00	17.05	55.05	68.20	-13.15	V	Peak			
5725.00	27.76	17.05	44.81	54.00	-9.19	Н	AVG			
5725.00	28.42	17.05	45.47	54.00	-8.53	V	AVG			
		TM3 / B	and: 5725-58	350 MHz / BV	V: 40 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5850.00	37.88	17.21	55.09	68.20	-13.11	Н	Peak			
5850.00	38.82	17.21	56.03	68.20	-12.17	V	Peak			
5850.00	27.91	17.21	45.12	54.00	-8.88	Н	AVG			
5850.00	27.61	17.21	44.82	54.00	-9.18	V	AVG			

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5725-5850 MHz / BW: 80 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5725.00	35.81	17.05	52.86	68.20	-15.34	Н	Peak		
5725.00	37.42	17.05	54.47	68.20	-13.73	V	Peak		
5725.00	26.96	17.05	44.01	54.00	-9.99	Н	AVG		
5725.00	27.40	17.05	44.45	54.00	-9.55	V	AVG		
		TM3 / B	and: 5725-58	350 MHz / BV	V: 80 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5850.00	38.05	17.21	55.26	68.20	-12.94	Н	Peak		
5850.00	38.24	17.21	55.45	68.20	-12.75	V	Peak		
5850.00	28.57	17.21	45.78	54.00	-8.22	Н	AVG		
5850.00	28.59	17.21	45.80	54.00	-8.20	V	AVG		

9. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)				
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the					
	following table: Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
Test Limit:	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2020, sec	tion 12.7.4, 12.7.5				
Procedure:	meters above the groun was rotated 360 degree b. The EUT was set 3 or antenna, which was mo c. The antenna height is ground to determine the and vertical polarization d. For each suspected and then the antenna watest frequency of below and the rotatable table waximum reading. e. The test-receiver syst Bandwidth with Maximum f. If the emission level or limit specified, then test would be reported. Other	EUT was placed on the top of d at a 3 meter semi-anechoic is to determine the position of a 10 meters away from the integrated on the top of a variable-avaried from one meter to four maximum value of the field is sof the antenna are set to maximission, the EUT was arranged as tuned to heights from 1 meters as tuned to heights from 1 meters as turned from 0 degrees to seem was set to Peak Detect From Hold Mode. If the EUT in peak mode was 1 meters are the emissions that did report one using quasi-peak meters.	chamber. The table the highest radiation. erference-receiving theight antenna tower. It meters above the trength. Both horizontal ake the measurement. He to its worst case there to 4 meters (for the led to heights 1 meter) af degrees to find the follower than the peak values of the EUT not have 10dB margin			

then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

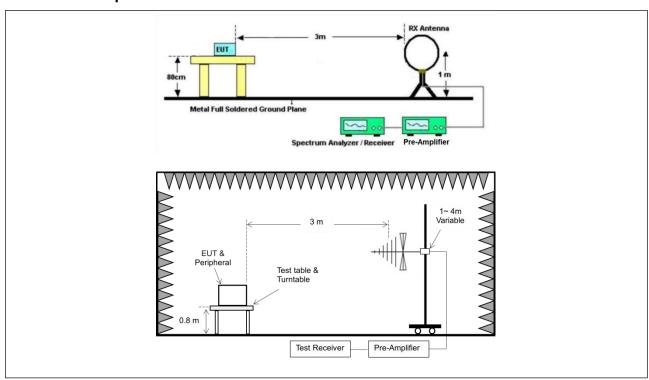
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength

limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

9.1. EUT Operation

Operating Environment:

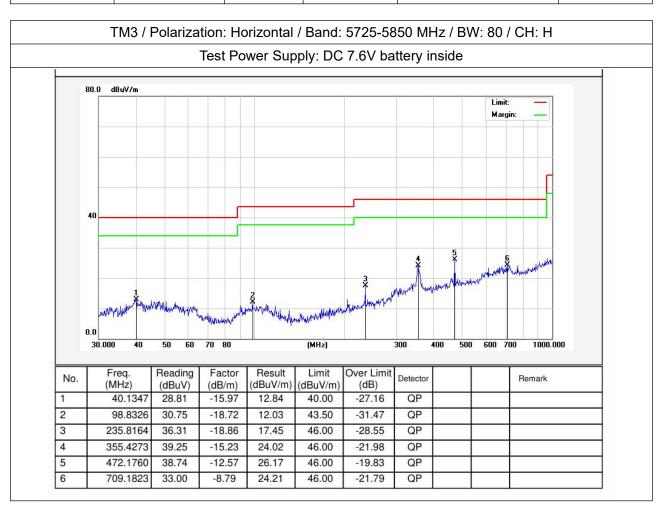

1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the

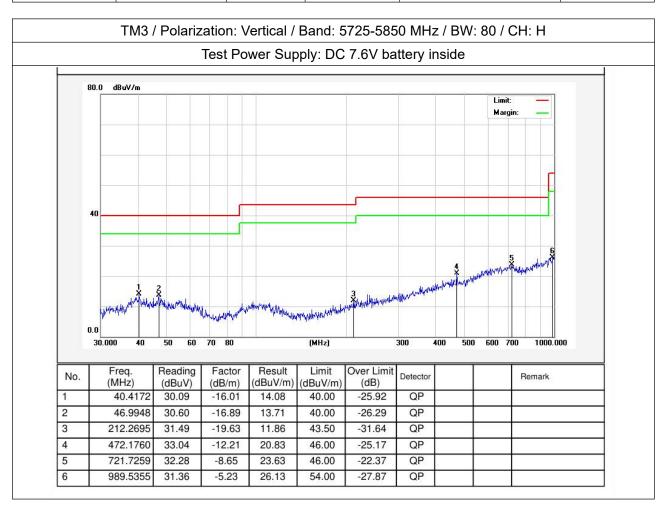
3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

9.2. Test Setup

Test mode:



9.3. Test Data


The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature:	25.3 °C	Humidity:	54 %	Atmospheric Pressure:	101 kPa
				· · · · · · · ·	

Temperature: 25.3 °C Humidity: 54 % Atmospheric Pressure: 101 kPa

Note:

- 1. Only record the worst data (802.11ac(HT80)_MIMO of Module BL-M8822CU3-B) in the report..
- Result(dBμV/m) = Reading(dBμV) + Factor(dB/m);
 Over Limit(dB) = Result(dBμV/m) Limit(dBμV/m)

10. Undesirable emission limits (above 1GHz)

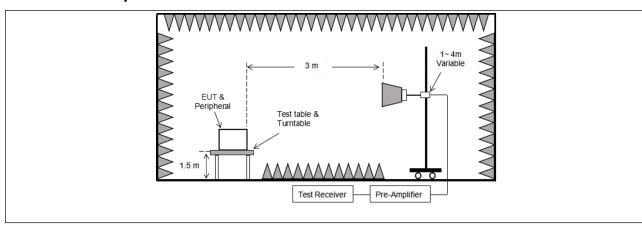
io. Ondesnable	emission illinis (above ronz,						
Test Requirement:	47 CFR Part 15.407(b	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)						
	For transmitters opera of the 5.15-5.35 GHz b							
	All emissions shall be above or below the ba above or below the ba edge increasing linear below the band edge,	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.						
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46				
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5				
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4				
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
	12.57675-12.57725	322-335.4	3600-4400	(2)				
	13.36-13.41							
	¹ Until February 1, 199 ² Above 38.6 The field strength of endexceed the limits so 1000 MHz, compliance using measurement in detector. Above 1000 M15.209shall be demonemissions. The provisions	missions appearing whown in § 15.209. At with the limits in § 1 strumentation employ MHz, compliance with strated based on the lons in § 15.35apply the	vithin these frequencies equencies equencies equencies equencies equencies equencies are continuous expensión the emission lictorial expensión these measures equencies equencie	uency bands shall ual to or less than emonstrated uasi-peak mits in § of the measured ements.				
	Except as provided els	sewnere in this subpa	art, the emission	s irom an				

	1		
		ot exceed the field strength levels	s specified in the
	following table:	Field strength	Magauramant
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance
		(microvoits/meter)	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators operated frequency bands 54-72 MF However, operation within sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and these three bands are based detector.	e, the tighter limit applies at the lin the above table are based on peak detector except for the fred above 1000 MHz. Radiated emised on measurements employing	be located in the 470-806 MHz. ted under other band edges. measurements quency bands 9–ssion limits in
Test Method:	ANSI C63.10-2020, section	n 12.7.4, 12.7.6, 12.7.7	
Procedure:	meters above the ground a rotated 360 degrees to det b. The EUT was set 3 meters which was mounted on the c. The antenna height is varying ground to determine the mand vertical polarizations of d. For each suspected emit and then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum If. If the emission level of the limit specified, then testing would be reported. Otherw would be re-tested one by and then reported in a data g. Test the EUT in the lower channel. h. The radiation measurem Transmitting mode, and for case.	e EUT in peak mode was 10dB could be stopped and the peak ise the emissions that did not hat one using peak or average mether.	ber. The table was st radiation. ecciving antenna, a tower. ers above the th. Both horizontal e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the values of the EUT ave 10dB margin and as specified the Highest its positioning for it is the worst

- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

10.2. Test Setup

10.3. Test Data

Temperature:	21.3 °C	Humidity:	43 %	Atmospheric Pressure:	101 kPa
Test module: M	T6631				

		TM2 / Ban	d: 5150-525	0 MHz / BW:	1			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10360.00	31.51	23.81	55.32	68.20	-12.88	V	Peak	
15540.00	32.87	28.68	61.55	68.20	-6.65	V	Peak	
10360.00	31.94	23.81	55.75	68.20	-12.45	Н	Peak	
15540.00	32.94	28.68	61.62	68.20	-6.58	Н	Peak	
10360.00	20.919	23.81	44.73	54.00	-9.27	V	AVG	
15540.00	22.029	28.68	50.71	54.00	-3.29	V	AVG	
10360.00	21.129	23.81	44.94	54.00	-9.06	Н	AVG	
15540.00	21.610	28.68	50.29	54.00	-3.71	Н	AVG	
		TM2 / Ban	d: 5150-5250	MHz / BW:	20 / CH: M			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10400.00	30.87	23.81	54.68	68.20	-13.52	V	Peak	
15600.00	32.40	29.13	61.53	68.20	-6.67	V	Peak	
10400.00	31.43	23.81	55.24	68.20	-12.96	Н	Peak	
15600.00	32.46	29.13	61.59	68.20	-6.61	Н	Peak	
10400.00	21.189	23.81	45.00	54.00	-9.00	V	AVG	
15600.00	22.149	29.13	51.28	54.00	-2.72	V	AVG	
10400.00	21.119	23.81	44.93	54.00	-9.07	Н	AVG	
15600.00	21.690	29.13	50.82	54.00	-3.18	Н	AVG	
		TM2 / Ban	d: 5150-5250	MHz / BW:	20 / CH: H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10480.00	30.44	23.80	54.24	68.20	-13.96	V	Peak	
15720.00	31.88	30.03	61.91	68.20	-6.29	V	Peak	
10480.00	31.07	23.80	54.87	68.20	-13.33	Н	Peak	
15720.00	31.37	30.03	61.40	68.20	-6.80	Н	Peak	
10480.00	19.86	23.80	43.66	54.00	-10.34	V	AVG	
15720.00	20.91	30.03	50.94	54.00	-3.06	V	AVG	
10480.00	20.33	23.80	44.13	54.00	-9.87	Н	AVG	
15720.00	20.48	30.03	50.51	54.00	-3.49	Н	AVG	

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11n(HT20)) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

Temperature: 21.3 °C Humidity: 43 % Atmospheric Pressure: 101 kPa

Test module: MT6631

TM1 / Band: 5725-5850 MHz / BW: 20 / CH: L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
11490.000	28.59	23.36	51.95	68.20	-16.25	V	Peak	
17235.000	29.99	31.97	61.96	68.20	-6.24	V	Peak	
11490.000	29.12	23.36	52.48	68.20	-15.72	Н	Peak	
17235.000	30.18	31.97	62.15	68.20	-6.05	Н	Peak	
11490.000	17.94	23.36	41.30	54.00	-12.70	V	AVG	
17235.000	18.75	31.97	50.72	54.00	-3.28	V	AVG	
11490.000	18.15	23.36	41.51	54.00	-12.49	Н	AVG	
17235.000	18.12	31.97	50.09	54.00	-3.91	Н	AVG	
		TM1 / Ban	d: 5725-5850	MHz / BW:	20 / CH: M			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
11570.000	29.17	23.42	52.59	68.20	-15.61	V	Peak	
17355.000	29.87	32.18	62.05	68.20	-6.15	V	Peak	
11570.000	29.32	23.42	52.74	68.20	-15.46	Н	Peak	
17355.000	30.27	32.18	62.45	68.20	-5.75	Н	Peak	
11570.000	19.205	23.42	42.63	54.00	-11.37	V	AVG	
17355.000	19.072	32.18	51.25	54.00	-2.75	V	AVG	
11570.000	19.139	23.42	42.56	54.00	-11.44	Н	AVG	
17355.000	18.498	32.18	50.68	54.00	-3.32	Н	AVG	
		TM1 / Ban	d: 5725-5850	MHz / BW:	20 / CH: H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
11650.000	28.68	23.49	52.17	68.20	-16.03	V	Peak	
17475.000	30.11	32.39	62.50	68.20	-5.70	V	Peak	
11650.000	29.06	23.49	52.55	68.20	-15.65	Н	Peak	
17475.000	29.88	32.39	62.27	68.20	-5.93	Н	Peak	
11650.000	18.28	23.49	41.77	54.00	-12.23	V	AVG	
17475.000	18.87	32.39	51.26	54.00	-2.74	V	AVG	
11650.000	18.32	23.49	41.81	54.00	-12.19	Н	AVG	
17475.000	18.47	32.39	50.86	54.00	-3.14	Н	AVG	

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11a) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

Temperature: 21.3 °C Humidity: 43 % Atmospheric Pressure: 101 kPa

Test module: BL-M8822CU3-B

TM3 / Band: 5150-5250 MHz / BW: 40 / CH: L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10380.00	29.67	23.81	53.48	68.20	-14.72	V	Peak	
15570.00	31.04	28.91	59.95	68.20	-8.25	V	Peak	
10380.00	30.90	23.81	54.71	68.20	-13.49	Н	Peak	
15570.00	31.65	28.91	60.56	68.20	-7.64	Н	Peak	
10380.00	20.43	23.81	44.24	54.00	-9.76	V	AVG	
15570.00	20.95	28.91	49.86	54.00	-4.14	V	AVG	
10380.00	20.85	23.81	44.66	54.00	-9.34	Н	AVG	
15570.00	21.17	28.91	50.08	54.00	-3.92	Н	AVG	
		TM3 / Ban	d: 5150-5250	MHz / BW:	40 / CH: H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10460.00	30.08	23.80	53.88	68.20	-14.32	V	Peak	
15690.00	31.24	30.03	61.27	68.20	-6.93	V	Peak	
10460.00	30.50	23.80	54.30	68.20	-13.90	Н	Peak	
15690.00	31.76	30.03	61.79	68.20	-6.41	Н	Peak	
10460.00	20.74	23.80	44.54	54.00	-9.46	V	AVG	
15690.00	20.85	30.03	50.88	54.00	-3.12	V	AVG	
10460.00	20.55	23.80	44.35	54.00	-9.65	Н	AVG	
15690.00	20.74	30.03	50.77	54.00	-3.23	Н	AVG	

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ac(HT40)_MIMO) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

Temperature: 21.3 °C Humidity: 43 % Atmospheric Pressure: 101 kPa

Test module: BL-M8822CU3-B

TM3 / Band: 5725-5850 MHz / BW: 80								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
11550.000	30.23	23.40	53.63	68.20	-14.57	V	Peak	
17325.000	31.03	32.13	63.16	68.20	-5.04	V	Peak	
11550.000	31.30	23.40	54.70	68.20	-13.50	Н	Peak	
17325.000	31.55	32.13	63.68	68.20	-4.52	Н	Peak	
11550.000	17.75	23.40	41.15	54.00	-12.85	V	AVG	
17325.000	18.37	32.13	50.50	54.00	-3.50	V	AVG	
11550.000	17.85	23.40	41.25	54.00	-12.75	Н	AVG	
17325.000	18.90	32.13	51.03	54.00	-2.97	Н	AVG	

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ac(HT80)_MIMO) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

Temperature: 21.3 °C Humidity: 43 % Atmospheric Pressure: 101 kPa

Test module: MT6631+BL-M8822CU3-B

TM3 / Band: 5150-5250 MHz / BW: 40 / CH: L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
10380.00	29.70	23.81	53.51	68.20	-14.69	V	Peak		
15570.00	31.09	28.91	60.00	68.20	-8.20	V	Peak		
10380.00	30.96	23.81	54.77	68.20	-13.43	Н	Peak		
15570.00	31.69	28.91	60.60	68.20	-7.60	Н	Peak		
10380.00	20.47	23.81	44.28	54.00	-9.72	V	AVG		
15570.00	21.00	28.91	49.91	54.00	-4.09	V	AVG		
10380.00	20.91	23.81	44.72	54.00	-9.28	Н	AVG		
15570.00	21.24	28.91	50.15	54.00	-3.85	Н	AVG		
		TM3 / Ban	d: 5150-5250	0 MHz / BW:	40 / CH: H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
10460.00	30.13	23.80	53.93	68.20	-14.27	V	Peak		
15690.00	31.28	30.03	61.31	68.20	-6.89	V	Peak		
10460.00	30.52	23.80	54.32	68.20	-13.88	Н	Peak		
15690.00	31.79	30.03	61.82	68.20	-6.38	Н	Peak		
10460.00	20.80	23.80	44.60	54.00	-9.40	V	AVG		
15690.00	20.89	30.03	50.92	54.00	-3.08	V	AVG		
10460.00	20.57	23.80	44.37	54.00	-9.63	Н	AVG		
15690.00	20.77	30.03	50.80	54.00	-3.20	Н	AVG		

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ac(HT40)_MIMO) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

Temperature:	21.3 °C	Humidity:	43 %	Atmospheric Pressure:	101 kPa		
Test module: MT6631+BL-M8822CU3-B							

TM3 / Band: 5725-5850 MHz / BW: 80								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
11550.000	30.27	23.40	53.67	68.20	-14.53	V	Peak	
17325.000	31.08	32.13	63.21	68.20	-4.99	V	Peak	
11550.000	31.36	23.40	54.76	68.20	-13.44	Н	Peak	
17325.000	31.61	32.13	63.74	68.20	-4.46	Н	Peak	
11550.000	17.79	23.40	41.19	54.00	-12.81	V	AVG	
17325.000	18.42	32.13	50.55	54.00	-3.45	V	AVG	
11550.000	17.89	23.40	41.29	54.00	-12.71	Н	AVG	
17325.000	18.94	32.13	51.07	54.00	-2.93	Н	AVG	

- 1. Result =Reading + Factor
- Only the worst case (802.11ac(HT80)_MIMO) is recorded in the report.
 Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

