TEST REPORT

Applicant: Hunan GM Innovation Technology Co., Ltd

Address of Applicant: No 46, Jiefang East Road, Furong District, Changsha, China

Manufacturer/Factory: Hunan GM Innovation Technology Co., Ltd

Address of No 46, Jiefang East Road, Furong District, Changsha, China

Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Wireless monitor system

Model No.: ATOM A5 MONITOR, ATOM A5 PRO MONITOR

Trade Mark: VAXIS

FCC ID: 2AJOF-ATOMA5MONITOR

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: July 21, 2022

Date of Test: July 26~August 5, 2022

Date of report issue: August 5, 2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

2 Version

Version No.	Date	Description
00	August 5, 2022	Original

Prepared By:	Joseph Clu	Date:	August 5, 2022
	Project Engineer		9
Check By:	Johnson Lux	Date:	August 5, 2022
	Reviewer		

3 Contents

			Page
1	cov	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
3	CON	11EN13	ა
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	TEST FACILITY	
	5.4	TEST LOCATION	6
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	DEVIATION FROM STANDARDS	
	5.7	ABNORMALITIES FROM STANDARD CONDITIONS	6
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT:	9
	7.2	CONDUCTED EMISSIONS	10
	7.3	EMISSION BANDWIDTH	13
	7.4	AVERAGE TRANSMIT POWER	17
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGE.	
	7.6.1		
	7.6.2		
	7.7	RADIATED EMISSION	
	7.8	FREQUENCY STABILITY	36
8	TES	T SETUP PHOTO	39
9	EUT	CONSTRUCTIONAL DETAILS	39

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	PASS
Emission Bandwidth	FCC part 15.407	PASS
Average Transmit Power	FCC part 15.407(a)(1)	PASS
Power Spectral Density	FCC part 15.407(a)(1)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Band Edge	FCC part 15.407(b)(1)	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Test Method: KDB 662911 D01 Multiple Transmitter Output v02r01

4.1 Measurement Uncertainty

No.	Item	Measurement Uncertainty				
1	Radio Frequency	1 x 10 ⁻⁷				
2	Duty cycle	0.37%				
3	Occupied Bandwidth	2.8dB				
4	RF conducted power	0.75dB				
5 RF power density 3dB						
6	Conducted Spurious emissions	2.58dB				
7	AC Power Line Conducted Emission	3.44dB (0.15MHz ~ 30MHz)				
		3.1dB (9kHz-30MHz)				
		3.8039dB (30MHz-200MHz)				
8	Radiated Spurious emission test	3.9679dB (200MHz-1GHz)				
		4.29dB (1GHz-18GHz)				
		3.30dB (18GHz-40GHz)				
Note	(1): The measurement uncertainty is for cover	age factor of k=2 and a level of confidence of 95%.				

5 General Information

5.1 General Description of EUT

Product Name:	Wireless monitor system						
Model No.:	ATOM A5 MONIT	OR, ATOM A5 PRO MONIT	TOR				
Test Model No.:	ATOM A5 MONITOR						
Serial No.:	N/A						
Hardware Version:	V1.2				111		
Software Version:	V 0261						
Test sample(s) ID:	GTSL2022080001	154-1					
Sample(s) Status:	Engineer sample	Engineer sample					
Operation Frequency:	Band	Mode	Frequency Range (MHz)	Number of channels			
	U-NII Band I	IEEE 802.11a	5180-5240	4			
		IEEE 802.11n 20MHz	5180-5240	4			
Modulation technology:	OFDM						
	MIMO: 802.11n						
	SISO: 802.11a						
Antenna Type:	External antenna						
Antenna gain:	ANT1:2.5dBi						
	ANT2:2.5dBi						
	MIMO Mode:						
	For power measur	rement: the direct gain=2.50	dBi				
	For Power Spectra	al Density measurement: th	e direct gain=5.5	51dBi			
Power supply:	DC 7-17V (Power	ed By Adaptor or Battery)			THE STATE OF THE S		

Channel list for 802.11a/n(HT20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 5 of 39

5.2 Test mode

Transmitting mode Keep the EUT in transmitting with modulation..

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11a	6.5 Mbps		
n(HT20)	MCS0		

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383 Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, sBaoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

AC/DC Adaptor Mode Number: YW-122 Input: AC 100-240V,50/60Hz, Output: DC 12V 2A

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

6 Test Instruments list

Radiated Emission:								
Item			Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023		
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023		
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023		
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023		
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023		
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023		
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023		
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023		
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023		
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023		
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022		
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023		
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17, 2021	Oct. 16, 2022		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17, 2021	Oct. 16, 2022		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17, 2021	Oct. 16, 2022		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023		
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023		

Con	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 15, 2022	April 14, 2023			
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023			
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023			

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023			
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023			

Ger						
Item	Test Equipment	Test Equipment Manufacturer		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023

7 Test results and Measurement Data

7.1 Antenna requirement:

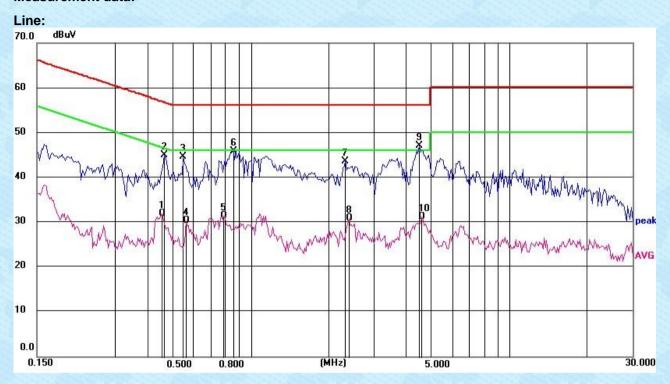
Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

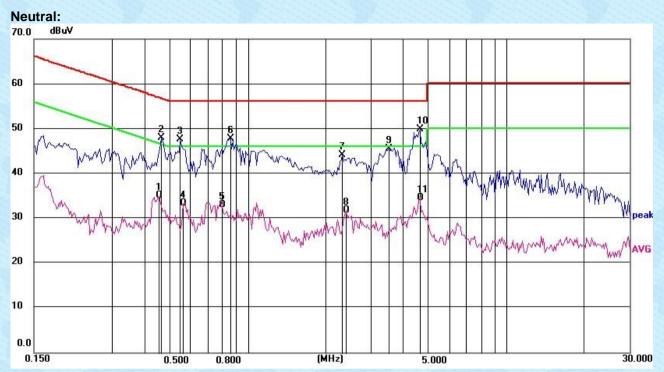
E.U.T Antenna:

The antennas are External antenna, the best case gain of the antennas are 2.50dBi, reference to the appendix II for details


7.2 Conducted Emissions

Test Requirement:									
•	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10								
Test Frequency Range:	150KHz to 30MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9KHz, VBW=30KHz	RBW=9KHz, VBW=30KHz							
Limit:	Frequency range (MHz)	Limi	t (dBuV)						
		Quasi-peak	Average						
		0.15-0.5 66 to 56* 56 to 46*							
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarithn The E.U.T and simulators are								
	impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.								
Test setup:	Refere	ence Plane							
	LISN 40cm	80cm LISI	N N						
	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	J.T EMI Receive	ilter — AC power						
Test Instruments:	Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization	J.T EMI Receive							
Test Instruments: Test mode:	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	U.T EMI Received							
	Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m Refer to section 6 for details	U.T EMI Receive							
Test mode:	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m Refer to section 6 for details Refer to section 5.2 for details	EMI Received and Network]						

Note: Pre-scan all test modes, found worst case at 802.11n(HT20) 5180MHz, and so only show the test result of 802.11n(HT20) 5180MHz.



Measurement data:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Remark
	(IVIIIZ)	(ubuv)	(ub)	(ubuv)	(ubuv)	(ub)	
1	0.4561	22.01	10.05	32.06	46.76	-14.7	AVG
2	0.4661	35.03	10.05	45.08	56.58	-11.5	QP
3	0.5522	34.63	10.06	44.69	56	-11.31	QP
4	0.5635	20.41	10.06	30.47	46	-15.53	AVG
5	0.7913	21.49	10.07	31.56	46	-14.44	AVG
6	0.8618	35.83	10.09	45.92	56	-10.08	QP
7	2.3334	33.55	10.27	43.82	56	-12.18	QP
8	2.4089	20.81	10.29	31.1	46	-14.9	AVG
9	4.5014	37.13	10.57	47.7	56	-8.3	QP
10	4.5978	21.24	10.61	31.85	46	-14.15	AVG

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.4561	25.01	10.05	35.06	46.76	-11.7	AVG
2	0.4661	38.03	10.05	48.08	56.58	-8.5	QP
3	0.5522	37.63	10.06	47.69	56	-8.31	QP
4	0.5635	23.41	10.06	33.47	46	-12.53	AVG
5	0.8002	22.96	10.08	33.04	46	-12.96	AVG
6	0.8618	37.83	10.09	47.92	56	-8.08	QP
7	2.3334	34.05	10.27	44.32	56	-11.68	QP
8	2.4089	21.81	10.29	32.1	46	-13.9	AVG
9	3.5278	35.6	10.35	45.95	56	-10.05	QP
10	4.6467	39.93	10.66	50.59	56	-5.41	QP
11	4.6467	24.61	10.66	35.27	46	-10.73	AVG

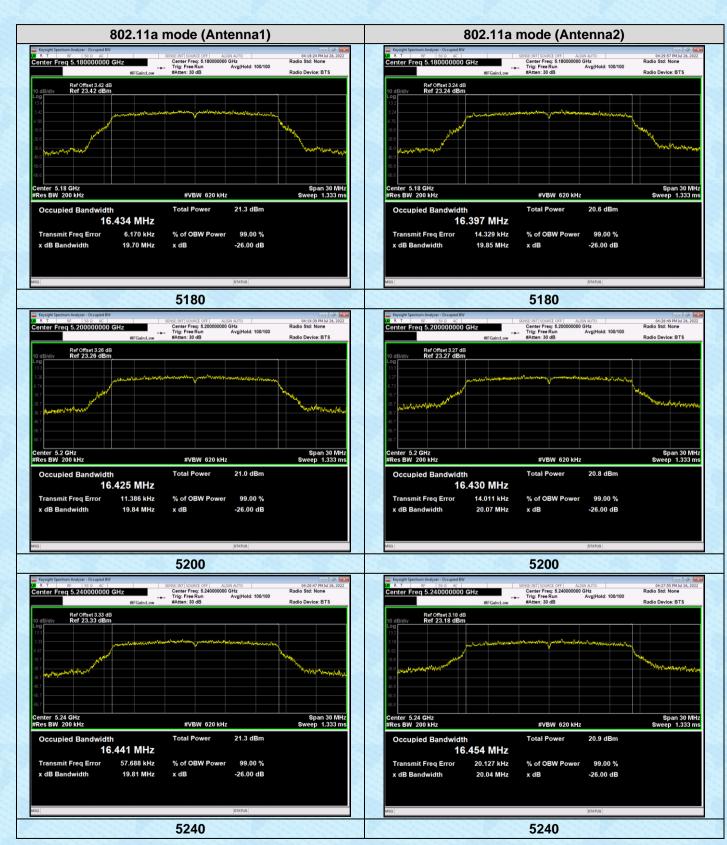
Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

7.3 Emission Bandwidth

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01					
Limit:	N/A					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test procedure:	According to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.					
Test Instruments:	Refer to section 6 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data:


		99%	Occupied I	Bandwidth	ndwidth (MHz) 26dB Occupied Bandwidth (MHz)				
CH. No.	Frequenc y (MHz)	802.11a		XIIZ TAN XIIZ TAN(HIZIN		802.11a		802.11n(HT20)	
140.	y (IVII 12)	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
36	5180	16.434	16.397	17.549	17.583	19.70	19.85	19.87	19.88
40	5200	16.425	16.43	17.572	17.592	19.84	20.07	20.32	20.10
48	5240	16.441	16.454	17.563	17.581	19.81	20.04	20.29	20.07

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Test plots as followed:

Report No.: GTSL202208000154F01

GTS

7.4 Average Transmit Power

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01					
Limit:	Frequency band (MHz)					
	5150-5250 ≤1W(30dBm) for master device ≤250mW(23.98dBm) for client device					
	5250-5350 ≤250mW(23.98dBm) for client device or					
	11dBm+10logB* ≤250mW(23.98dBm) for client device or					
	11dBm+10logB*					
	Remark: *Where B is the 26dB emission bandwidth in MHz. The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.					
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane					
Test procedure:	Measurement using an RF average power meter					
	 (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent). 					
Test Instruments:	Refer to section 6 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data

	Frequency	Duty cy	cle	Duty	Factor
Modulation	(MHz)	(MHz) Antenna1 Antenna2		Antenna1	Antenna2
902.110	5180	97.84	97.73	0.1	0.1
802.11a	5200	97.87	97.76	0.1	0.1
	5240	97.85	97.78	0.1	0.1
000 44 m (UT20)	5180	97.68	97.68	0.1	0.1
802.11n(HT20)	5200	97.68	97.68	0.1	0.1
	5240	97.67	97.67	0.1	0.1

	The second second second			802	2.11a mode)		Control Control		
СН	Frequency	Measu	red Power	(dBm)	Duty	Output Power (dBm)			Limit	Result
No.	(MHz)	ANT1	ANT2	ANT 1+2	Factor	ANT1	ANT2	ANT 1+2	(dBm)	Result
36	5180	15.549	15.068	1	0.1	15.649	15.168	1		
40	5200	15.346	15.206	1	0.1	15.446	15.306	1	24	Pass
48	5240	15.614	15.222	1	0.1	15.714	15.322	1		
				802.11	n(HT20) m	ode				
СН	Frequency	Measu	red Power	(dBm)	Duty	0	utput Powe (dBm)	er	Limit	Result
No.	(MHz)	ANT1	ANT2	ANT 1+2	Factor	ANT1	ANT2	ANT 1+2	(dBm)	Result
36	5180	16.066	13.031	17.819	0.1	16.166	13.131	17.919		
40	5200	15.68	13.253	17.644	0.1	15.78	13.353	17.7449	24	Pass
48	5240	15.876	13.314	17.792	0.1	15.976	13.414	17.892		

Note: Output Power = Measured Power + Duty Factor

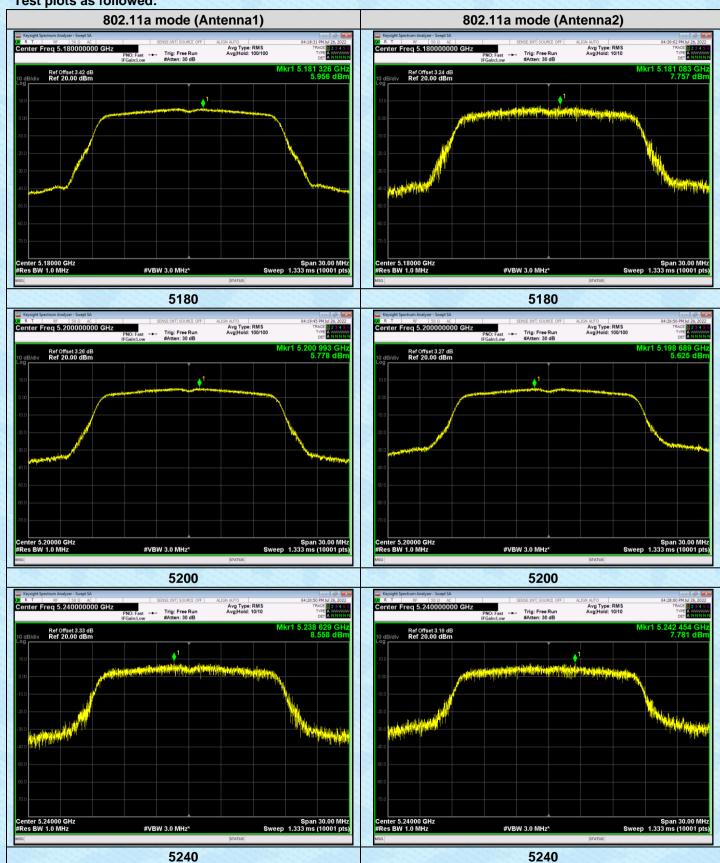
Duty Factor = 10 log (1/Duty Cycle)

7.5 Power Spectral Density

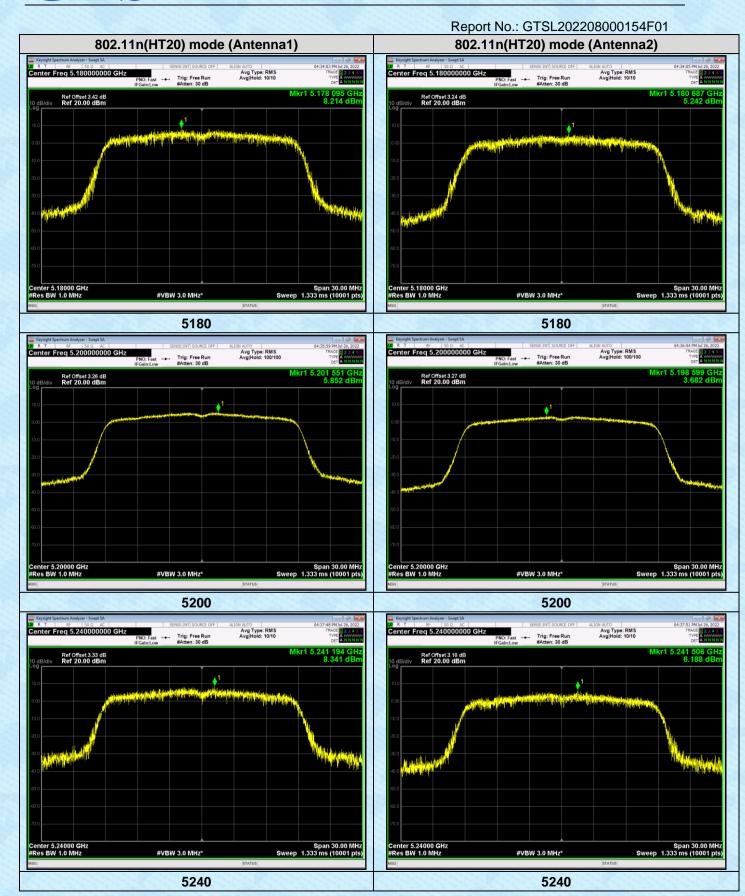
Test Requirement:	FCC Part15 E Section 15.40	FCC Part15 E Section 15.407						
Test Method:	KDB 789033 D02 General L	J-NII Test Procedures New Rules v02r01						
Limit:	Frequency band (MHz)	Limit						
	5150-5250	≤17dBm in 1MHz for master device						
		≤11dBm in 1MHz for client device						
	5250-5350	≤11dBm in 1MHz for client device						
	5470-5725	≤11dBm in 1MHz for client device						
		ewer spectral density is measured as a ect connection of a calibrated test instrument st.						
Test setup:	Spectrum Analyzer							
	Non-Cond	E.U.T						
	0 17							
	Ground Res	ference Plane						
Toot procedure:	1) Create on average new	or appartum for the EUT appreting mode						
Test procedure:	being tested by following measuring maximum co- analyzer or EMI receive SA-2, SA-3, or alternative	er spectrum for the EUT operating mode g the instructions in section E)2) for onducted output power using a spectrum r: select the appropriate test method (SA-1, wes to each) and apply it up to, but not ed, "Compute power".						
	Use the peak search fur the spectrum.	nction on the instrument to find the peak of						
	Make the following adju- applicable:	stments to the peak value of the spectrum, if						
		A-2 Alternative was used, add 10 log(1/x), e, to the peak of the spectrum.						
	used in step E)2)g)(viii), the difference between	native was used and the linear mode was, add 1 dB to the final result to compensate for linear averaging and power averaging.						
	4) The result is the PSD.							
Test Instruments:	Refer to section 6 for details							
Test mode:	Refer to section 5.2 for deta	ils						
Test results:	Pass							

Measurement Data Measurement Data

	Frequency	Duty cy	cle	Duty	Factor
Modulation	(MHz)	Antenna1	Antenna2	Antenna1	Antenna2
000 445	5180	97.84	97.73	0.1	0.1
802.11a	5200	97.87	97.76	0.1	0.1
	5240	97.85	97.78	0.1	0.1
002 44~(UT20)	5180	97.68	97.68	0.1	0.1
802.11n(HT20)	5200	97.68	97.68	0.1	0.1
	5240	97.67	97.67	0.1	0.1


					200 44					
175		1.20			802.11a r					
СН	Frequency		easured P (dBm/MHz		Duty		Total PSE ver(dBm/N		Limit	Result
No.	(MHz)	ANT1	ANT2	ANT 1+2	Factor	ANT1	ANT2	ANT 1+2	(dBm/MHz)	Result
36	5180	5.956	7.757	-	0.1	6.056	7.857	-	11	Pass
40	5200	5.778	5.625	1	0.1	5.878	5.725		11	Pass
48	5240	8.558	7.781	-	0.1	8.658	7.881	-	11	Pass
				802.	.11n(HT2	0) mode				
СН	Frequency		easured P (dBm/MHz		Duty	Total PSD Power(dBm/MHz)			Limit	
No.	(MHz)	ANT1	ANT2	ANT 1+2	Factor	ANT1	ANT2	ANT 1+2	(dBm/MHz)	Result
36	5180	8.214	5.242	9.988	0.1	8.314	5.342	10.087	11	Pass
40	5200	5.852	3.682	7.911	0.1	5.952	3.782	8.011	11	Pass
48	5240	8.341	6.188	10.407	0.1	8.441	6.288	10.507	11	Pass

Note: Output Power = Measured Power + Duty Factor


Duty Factor = 10 log (1/Duty Cycle)

Test plots as followed:

GTS

7.6 Band Edge

7.6.1 Radiated Emission Method

Test Requirement:	ent: FCC Part15 E Section 15.407 and 15.205								
Test Method:	ANSI C63.10								
		Measurement Distance: 3m (Semi-Anechoic Chamber)							
Test site:	Measurement Dis	stance: 3m (S	semi-Anecho	ic Chambei	r)				
Receiver setup:	Frequency 30MHz-1GHz	Detector Quasi-peak	RBW 100KHz	VBW 300KHz	Remark Quasi-peak Value				
		Peak	1MHz	3MHz	Peak Value				
	Above 1GHz	AV	1MHz	3MHz	Average Value				
Limit:	Frequen 30MHz-88 88MHz-216 216MHz-96 960MHz-1	MHz 6MHz 0MHz	Limit (dBuV/ 40.0 43.5 46.0 54.0	5	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value				
	Above 10	\L	54.0		Average Value				
	Above 10	סחב	68.2	2	Peak Value				
	 Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band. (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 								
Test Procedure:	 a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than 								

Page 23 of 39

	Report No.: OTSEZUZZUSUU01541 01
	the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
Radiated Emissions	For radiated emissions above 1GHz
Test setup:	Tum Table Carter Preamplifier Preamplifier
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Radiated Emissions Measurement Data:

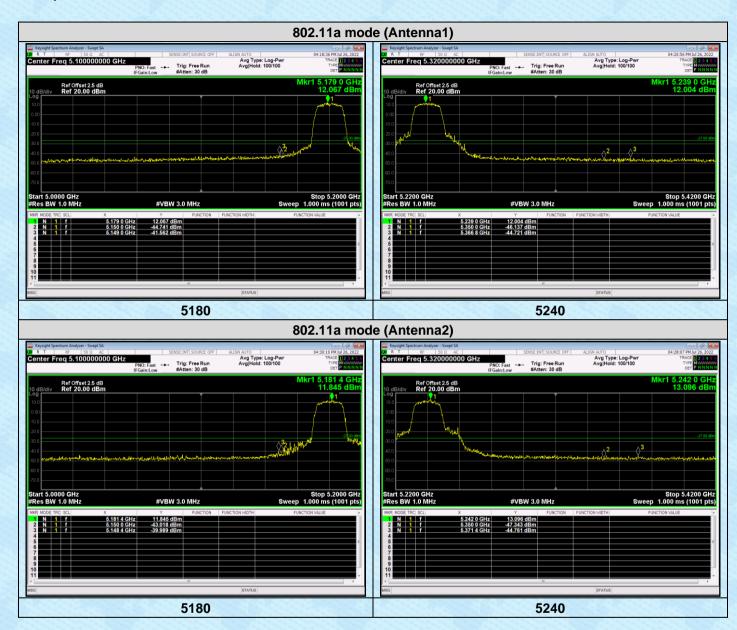
Worse case mode: ANT 1		802.	11a	Test Fred	quency:	5180MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150	51.02	-3.63	47.39	68.2	-20.81	peak	Н
5150	35.38	-3.63	31.75	54	-22.25	AVG	Н
5150	50.55	-3.63	46.92	68.2	-21.28	peak	V
5150	32.99	-3.63	29.36	54	-24.64	AVG	V

Worse case mode: ANT 1		802.	11a	Test Fred	quency:	5240MHz	
Frequency	Meter Reading	Factor	Emission Level Limits Over		Level Limits Over Detec		Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350	49.63	-3.59	46.04	68.2	-22.16	peak	Н
5350	34.39	-3.59	30.8	54	-23.2	AVG	Н
5350	49.73	-3.59	46.14	68.2	-22.06	peak	V
5350	32.37	-3.59	28.78	54	-25.22	AVG	V

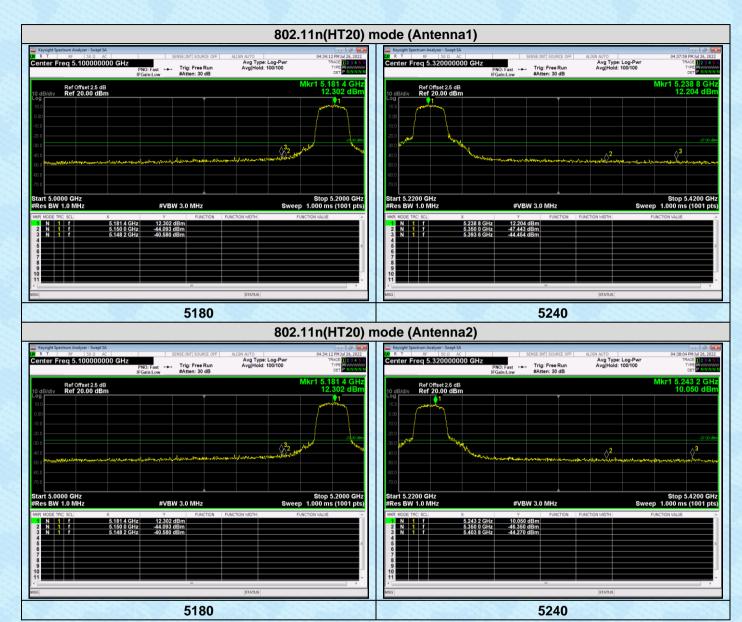
Worse case mode: SUM		802.11n(HT20)		Test Fred	quency:	5180MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	20.00.0		Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150	50.36	-3.63	46.73	68.2	-21.47	peak	Н
5150	35.05	-3.63	31.42	54	-22.58	AVG	Н
5150	49.79	-3.63	46.16	68.2	-22.04	peak	V
5150	32.73	-3.63	29.1	54	-24.9	AVG	V

Worse case mode: SUM		802.11n(HT20)		Test Fred	quency:	5240MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over Detector		Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350	49.84	-3.59	46.25	68.2	-21.95	peak	Н
5350	34.6	-3.59	31.01	54	-22.99	AVG	Н
5350	49.5	-3.59	45.91	68.2	-22.29	peak	V
5350	32.26	-3.59	28.67	54	-25.33	AVG	V

7.6.2 Conducted Emission Method


Test Requirement:	FCC Part15 E Section 15.407 and 15.205						
Test Method:	ANSI C63.10						
Receiver setup: Limit:	RBW=1MHz, VBW=3MHz, Detector=Peak For transmitters operating in the 5.15-5.25 GHz band:						
	All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Test plot as follows:

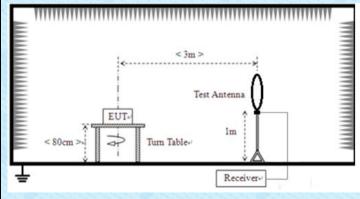
Report No.: GTSL202208000154F01

7.7 Radiated Emission

FCC Part15 C Sec ANSI C63.10 9kHz to 40GHz										
			A COLUMN TO THE PARTY	THE PART OF THE PA						
Manager and Diet										
Measurement Distance: 3m (Semi-Anechoic Chamber)										
Frequency		ector	RBW	VBW	Value					
9kHz-150KHz	Quas	i-peak	200Hz	1kHz	Quasi-peak Value					
150kHz-30MHz	Quas	i-peak	9kHz	30kHz	Quasi-peak Value					
30MHz-1GHz					Quasi-peak Value					
Above 1GHz					Peak Value					
	А	V	1MHZ	3MHz	Average Value					
Frequency		Limit	(uV/m)	Value	Measurement Distance					
0.009MHz-0.490MHz 2400/F(KHz) QP 300m										
0.490MHz-1.705MHz 24000/F(KHz) QP 300m										
		L THE BURN TO		QP	30m					
		M. 7	2000							
The state of the s	The State of the Control	1	150		3m					
			N							
	960MHz-1GHz									
Frequency	Frequency Lin			Remark						
Above 1GH:	68	8.20		Peak						
Above Toriz		5	4.00	I	Average					
Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than										
	Frequency 0.009MHz-0.490 0.490MHz-1.705 1.705MHz-30M 30MHz-8MH 88MHz-216MI 216MHz-960M 960MHz-1GH Frequency Above 1GHz Substitution method emission levels of The following test 1>.Below 1GHz te 1. The EUT was 1GHz and 1.5 meter camber position of the 2. The EUT was antenna, which antenna towe 3. The antenna the ground to Both horizont make the me 4. For each sus case and the meters and the degrees to fir 5. The test-rece Specified Bar 6. If the emission the limit specified in the service of the service of the limit specified in the service of the service of the limit specified in the service of the service o	Trequency O.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Frequency Above 1GHz Substitution method was emission levels of the EUThe following test proced 1>.Below 1GHz test proced 1>.Below 1GHz test proced 1. The EUT was placed 1GHz and 1.5 meters meter camber. The taposition of the highes 2. The EUT was set 3 antenna, which was antenna tower. The antenna height the ground to determ Both horizontal and make the measurem 4. For each suspected case and then the ameters and the rotal degrees to find the rotal degrees to fi	150kHz-30MHz	150kHz-30MHz Quasi-peak 9kHz 30MHz-1GHz Peak 1MHz AV 1MHz	150kHz-30MHz Quasi-peak 9kHz 30kHz 30MHz-1GHz Peak 1MHz 3MHz Above 1GHz Peak 1MHz 3MHz AV 1MHz 3MHz 3MHz 3MHz 24000/F(KHz) QP 0.490MHz-1.705MHz 24000/F(KHz) QP 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP Frequency Limit (dBuV/m) Above 1GHz 54.00 AV AV AV AV AV AV AV					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 29 of 39

in a data sheet.

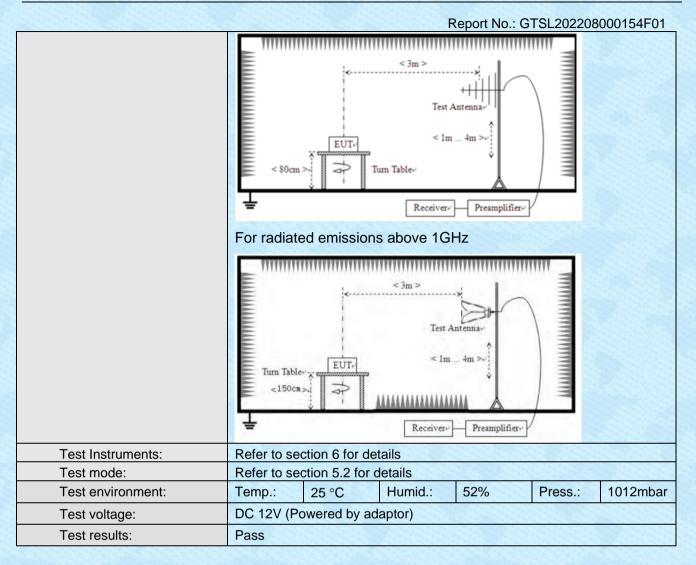

2>. Above 1GHz test procedure:

- 1. On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
- 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
 EIRP(dBm) = Pg(dBm) cable loss (dB) + antenna gain (dBi) where:

Pg is the generator output power into the substitution antenna.

Test setup:

For radiated emissions from 9kHz to 30MHz



For radiated emissions from 30MHz to1GHz

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

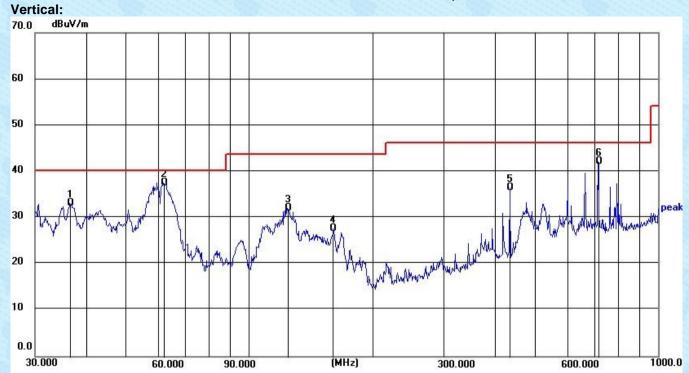
Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


30MHz~1GHz

Pre-scan all test modes, found worst case at 802.11n(HT20) 5180MHz, and so only show the test result of 802.11n(HT20) 5180MHz.

Horizontal dBuV/m 70.0 60 50 40 30 20 10 0.0 30.000 (MHz) 1000.0 60.000 90.000 300,000 600.000

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	62.6507	15.59	13.44	29.03	40.00	-10.97	QP
2	152.1297	14.39	16.00	30.39	43.50	-13.11	QP
3	344.3854	16.57	15.73	32.30	46.00	-13.70	QP
4	377.2591	15.95	16.38	32.33	46.00	-13.67	QP
5	434.0649	16.72	17.65	34.37	46.00	-11.63	QP
6	714.1734	16.81	22.10	38.91	46.00	-7.09	QP

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level Limit (dBuV/m) (dBuV/m)		Margin (dB)	Remark
1	36.5092	19.73	13.36	33.09	40.00	-6.91	QP
2	61.7781	24.02	13.60	37.62	40.00	-2.38	QP
3	124.1330	17.76	14.29	32.05	43.50	-11.45	QP
4	160.9088	11.81	15.90	27.71	43.50	-15.79	QP
5	434.0651	18.87	17.65	36.52	46.00	-9.48	QP
6	714.1734	20.08	22.10	42.18	46.00	-3.82	QP

Above 1GHz:

Report No.: GTSL202208000154F01

802.11a 5180MHz (worst case: Antenna1)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	34.62	38.96	8.27	35.64	46.21	68.2	-21.99	Vertical
15540	31.76	38.4	10.57	35.35	45.38	68.2	-22.82	Vertical
10360	35.87	38.96	8.27	35.64	47.46	68.2	-20.74	Horizontal
15540	31.81	38.4	10.57	35.35	45.43	68.2	-22.77	Horizontal

802.11a 5200MHz (worst case: Antenna1)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	33.84	39.01	8.29	35.67	45.47	68.2	-22.73	Vertical
15600	30.17	38.3	10.62	35.36	43.73	68.2	-24.47	Vertical
10400	31.66	39.01	8.29	35.67	43.29	68.2	-24.91	Horizontal
15600	27.07	38.3	10.62	35.36	40.63	68.2	-27.57	Horizontal

802.11a 5240MHz (worst case: Antenna1)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	34.51	39.15	8.32	35.78	46.2	68.2	-22	Vertical
15720	31.64	38	10.72	35.37	44.99	68.2	-23.21	Vertical
10480	35.62	39.15	8.32	35.78	47.31	68.2	-20.89	Horizontal
15720	31.92	38	10.72	35.37	45.27	68.2	-22.93	Horizontal

802.11n(HT20) 5180MHz (worst case:MIMO)

Report No.: GTSL202208000154F01

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	33	38.96	8.27	35.64	44.59	68.2	-23.61	Vertical
15540	30.66	38.4	10.57	35.35	44.28	68.2	-23.92	Vertical
10360	34.71	38.96	8.27	35.64	46.3	68.2	-21.9	Horizontal
15540	30.44	38.4	10.57	35.35	44.06	68.2	-24.14	Horizontal

802.11n(HT20) 5200MHz (worst case:MIMO)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	33	39.01	8.29	35.67	44.63	68.2	-23.57	Vertical
15600	29.19	38.3	10.62	35.36	42.75	68.2	-25.45	Vertical
10400	31.16	39.01	8.29	35.67	42.79	68.2	-25.41	Horizontal
15600	26.35	38.3	10.62	35.36	39.91	68.2	-28.29	Horizontal

802.11n(HT20) 5240MHz (worst case: MIMO)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	34.27	39.15	8.32	35.78	45.96	68.2	-22.24	Vertical
15720	31.28	38	10.72	35.37	44.63	68.2	-23.57	Vertical
10480	34.89	39.15	8.32	35.78	46.58	68.2	-21.62	Horizontal
15720	31.01	38	10.72	35.37	44.36	68.2	-23.84	Horizontal

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)							
Test Method:	ANSI C63.10, FCC Part 2.1055							
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified							
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.							
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector							
Test Instruments:	Refer to section 6 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

	iviea	surement o	iata:										
						ncy stabilit							
				W	orst Case (Operating F	requer	ncy: 5180N	ЛHz				
	Power		0 minute		2 minute 5 minute					10 minute			
Temp.	Supply	Measured	Frequency	Pass	Measured	Frequency	Pass	Measured	Frequency	Pass	Measured	Frequency	Pass
(°C)	(VDC)	Frequency	Error	/	Frequency	Error	/Fail	Frequency	Error	/Fail	Frequency	Error	/Fail
00	10.0	(MHz)	(ppm)	Fail P	(MHz)	(ppm)	Р	(MHz)	(ppm)		(MHz)	(ppm)	D
-30	12.0 12.0	5180.0298 5179.9935	5.75	P	5180.0284	5.48	P	5180.028	5.41	P P	5180.0268 5179.9932	5.17	Pass
-20 -10	12.0	5179.9935	-1.25 -4.25	P	5179.9906 5179.9768	-1.81 -4.48	P	5179.9846 5179.9809	-2.97 -3.69	P	5179.9932	-1.31 -3.01	Pass
0	12.0	5179.978	4.65	P	5179.9768	4.38	P	5179.9809	3.63	P	5179.9844	4.75	Pass Pass
10	12.0	5179.9624	-7.26	P	5179.9534	-9	P	5179.9566	-8.38	P	5179.959	-7.92	Pass
20	12.0	5179.9515	-9.36	P	5179.951	-9.46	Р	5179.9496	-9.73	Р	5179.9513	-9.4	Pass
30	12.0	5180.0238	4.59	P	5180.0187	3.61	Р	5180.0222	4.29	P	5180.0189	3.65	Pass
40	12.0	5180.0002	0.04	P	5180.0006	0.12	P	5180.0042	0.81	P	5180.0093	1.8	Pass
50	12.0	5179.9807	-3.73	Р	5179.9787	-4.11	P	5179.9798	-3.9	P	5179.9774	-4.36	Pass
	Frequency stability versus Voltage.												
				١٨٨					/ILI->				
Worst Case Operating Frequency: 5180MHz 2 minute 5 minute 10 minute													
Temp.	Power	Measured	Frequency	200	Measured	Frequency		Measured	Frequency		Measured	Frequency	
(°C)	Supply	Frequency	Error	Pass	Frequency	Error	Pass	Frequency	Error	Pass	Frequency	Error	Pass
	(VDC)	(MHz)	(ppm)	/Fail	(MHz)	(ppm)	/Fail	(MHz)	(ppm)	/Fail	(MHz)	(ppm)	/Fail
25	6.3	5180.0356	6.87	Р	5180.0343	6.62	Р	5180.0265	5.12	Р	5180.0327	6.31	Pass
25	12.0	5179.9922	-1.51	Р	5179.9937	-1.22	Р	5179.9855	-2.8	Р	5179.9913	-1.68	Pass
25	18.7	5179.9832	-3.24	Р	5179.9754	-4.75	Р	5179.9755	-4.73	Р	5179.9786	-4.13	Pass
						ncy stabilit							
				W	orst Case (requer	ncy: 5200N	ЛHz				
	Power		0 minute			2 minute		5 minute			10 minute		
Temp.	Supply	Measured	Frequency	Pass	Measured	Frequency	Pass	Measured	Frequency	Pass	Measured	Frequency	Pass
(°C)	(VDC)	Frequency	Error	/	Frequency	Error	/Fail	Frequency	Error	/Fail	Frequency	Error	/Fail
		(MHz)	(ppm)	Fail	(MHz)	(ppm)		(MHz)	(ppm)		(MHz)	(ppm)	
-30 -20	12.0	5200.0092	1.77 -2.77	P P	5200.0102	1.96 -2.19	P	5200.0169	3.25 -2.63	P	5200.0194	3.73 -1.63	Pass
-20	12.0 12.0	5199.9856 5199.9817	-3.52	P	5199.9886 5199.9764	-2.19 -4.54	P	5199.9863 5199.9761	-2.63	P	5199.9915 5199.9798	-3.88	Pass Pass
0	12.0	5200.0237	4.56	P	5200.0193	3.71	P	5200.016	3.08	P	5200.0194	3.73	Pass
10	12.0	5199.9627	-7.17	P	5199.9568	-8.31	P	5199.9607	-7.56	P	5199.9592	-7.85	Pass
20	12.0	5199.9509	-9.44	P	5199.95	-9.62	P	5199.9481	-9.98	P	5199.9484	-9.92	Pass
30	12.0	5200.0183	3.52	P	5200.019	3.65	P	5200.0173	3.33	P	5200.017	3.27	Pass
40	12.0	5199.9979	-0.4	P	5200.001	0.19	Р	5199.9999	-0.02	P	5199.9977	-0.44	Pass
50	12.0	5199.9808	-3.69	Р	5199.9775	-4.33	Р	5199.9797	-3.9	Р	5199.9775	-4.33	Pass
					Frequenc	cy stability	versu	s Voltage.					
				W	orst Case (ЛHz				
	Power		0 minute	11/2/19		2 minute			5 minute	The same		10 minute	DOM:
Temp.	Supply	Measured	Frequency	Pass	Measured	Frequency	Pass	Measured	Frequency	Pass	Measured	Frequency	Pass
(°C)	(VDC)	Frequency	Error	/Fail	Frequency	Error	/Fail	Frequency	Error	/Fail	Frequency	Error	/Fail
0.5		(MHz)	(ppm)	"-"-"	(MHz)	(ppm)		(MHz)	(ppm)	1200	(MHz)	(ppm)	
25	6.3	5200.0149	2.87	Р	5200.011	2.12	P	5200.0121	2.33	P	5200.0136	2.62	Pass
25 25	12.0 18.7	5199.9933	-1.29 -3.62	P	5199.9899	-1.94 -3.96	P	5199.9944	-1.08 -4.38	P	5199.9886	-2.19 -4.9	Pass
∠5	18.7	5199.9812	-3.62	۲_	5199.9794	-3.96	L. P.	5199.9772	-4.38	P	5199.9745	-4.9	Pass

	Frequency stability versus Temp.												
	Worst Case Operating Frequency: 5240MHz												
	0 minute 2 minute								5 minute			10 minute	
Temp. (°C)	Power Supply (VDC)	Measured Frequency (MHz)	Frequency Error (ppm)	Pass / Fail	Measured Frequency (MHz)	Frequency Error (ppm)	Pass /Fail	Measured Frequency (MHz)	Frequency Error (ppm)	Pass /Fail	Measured Frequency (MHz)	Frequency Error (ppm)	Pass /Fail
-30	12.0	5240.0112	5.21	Р	5240.011	6.79	Р	5240.0066	6.43	Р	5240.0122	5.95	Pass
-20	12.0	5239.9849	-1.34	Р	5239.99	-2.21	Р	5239.9878	-2.31	Р	5239.9925	-1.98	Pass
-10	12.0	5239.9797	-3.99	Р	5239.9834	-4.01	Р	5239.9768	-3.89	Р	5239.9786	-3.57	Pass
0	12.0	5240.0234	4.08	Р	5240.0169	3.61	Р	5240.0161	4.54	Р	5240.02	4.12	Pass
10	12.0	5239.9582	-8.89	Р	5239.9614	-8.89	Р	5239.9558	-7.6	Р	5239.9614	-7.94	Pass
20	12.0	5239.9492	-9.33	Р	5239.9504	-9.5	Р	5239.9527	-9.56	Р	5239.9507	-9.52	Pass
30	12.0	5240.0182	4.35	Р	5240.0239	4.9	Р	5240.026	4.45	Р	5240.0262	3.05	Pass
40	12.0	5240.0078	0.67	Р	5240.0062	1.95	Р	5240.0045	-0.04	Р	5239.998	-0.55	Pass
50	12.0	5239.9813	-3.87	Р	5239.9822	-3.7	Р	5239.9807	-3.4	Р	5239.9808	-4.08	Pass
					Frequenc	cy stability	versu	s Voltage.					
				W	orst Case C	Operating F	requer	ncy: 5240N	ЛHz				
	Power		0 minute			2 minute			5 minute			10 minute	1000
Temp. (°C)	Supply (VDC)	Measured Frequency (MHz)	Frequency Error (ppm)	Pass /Fail	Measured Frequency (MHz)	Frequency Error (ppm)	Pass /Fail	Measured Frequency (MHz)	Frequency Error (ppm)	Pass /Fail	Measured Frequency (MHz)	Frequency Error (ppm)	Pass /Fail
25	6.3	5239.9741	-4.43	Р	5239.9741	-4.87	Р	5239.9758	0	Р	5239.9777	-4.2	Pass
25	12.0	5240.0161	3.72	Р	5240.0179	3.89	Р	5240.0243	3.68	Р	5240.0239	4.94	Pass
25	18.7	5239.9958	1.3	Р	5240.0009	1.34	Р	5240.0097	1.66	Р	5240.008	-0.36	Pass

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---