

Page 1 of66

TEST REPORT

Product Name	:	Smart Fairy Lights
Brand Mark	:	N/A
Model No.	:	50597
Report Number	:	BLA-EMC-202206-A12701
FCC ID	:	2AQUQGE50597
Date of Sample Receipt	:	2022/6/29
Date of Test	:	2022/6/29 to 2022/7/18
Date of Issue	:	2022/7/18
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Globe Electric Company Inc.

150 Oneida, Montreal, Quebec, Canada, H9R 1A8

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Approved by:

Jozu Bive hong

Review by: Date:

REPORT REVISE RECORD

Version No. Date		Description	
00	2022/7/18	Original	

TABLE OF CONTENTS

1	TES	T SUMMARY	5
2	GEN	IERAL INFORMATION	6
3	GEN	IERAL DESCRIPTION OF E.U.T.	6
4	TES	T ENVIRONMENT	7
-			
5		T MODE	
6		ASUREMENT UNCERTAINTY	
7	DES	CRIPTION OF SUPPORT UNIT	
8		ORATORY LOCATION	
9	TES	T INSTRUMENTS LIST	9
10	CON	NDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	. 12
	.0.1 .0.2	BLOCK DIAGRAM OF TEST SETUP	
	.0.2	PROCEDURE	
	0.4	TEST DATA	
11	CO	NDUCTED BAND EDGES MEASUREMENT	
	1.1	LIMITS BLOCK DIAGRAM OF TEST SETUP	
	1.2	BLOCK DIAGRAM OF TEST SETUP TEST Data	
1	1.3		
12	RAD	DIATED SPURIOUS EMISSIONS	18
1	2.1	LIMITS	18
1	2.2	BLOCK DIAGRAM OF TEST SETUP	19
1	.2.3	PROCEDURE	
1	.2.4	TEST DATA	21
13	RAD	DIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	. 29
1	.3.1	LIMITS	29
1	3.2	BLOCK DIAGRAM OF TEST SETUP	30
1	3.3	PROCEDURE	30
1	3.4	ТЕЅТ DATA	32
14	CON	NDUCTED SPURIOUS EMISSIONS	36
1	4.1	LIMITS	36

2	14.2	BLOCK DIAGRAM OF TEST SETUP	6
-	14.3	TEST DATA	7
15	POW	VER SPECTRUM DENSITY	8
-	15.1	LIMITS	8
-	15.2	BLOCK DIAGRAM OF TEST SETUP	8
-	15.3	TEST DATA	8
16	CON	IDUCTED PEAK OUTPUT POWER	
-	16.2	BLOCK DIAGRAM OF TEST SETUP	
-	16.3	TEST DATA	
-		MUM 6DB BANDWIDTH	
17	MINI		
-	17.1	LIMITS	
-	17.2	BLOCK DIAGRAM OF TEST SETUP	
-	17.3	TEST DATA	
18	ANT	ENNA REQUIREMENT	
-	18.1	CONCLUSION	.2
19		ENDIX	
AP	PENDI	X A: PHOTOGRAPHS OF TEST SETUP5	8
AP	PENDI	X B: PHOTOGRAPHS OF EUT6	0

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	1// CEP Dart 16 Subpart (
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

2 GENERAL INFORMATION

Applicant	Globe Electric Company Inc.
Address	150 Oneida, Montreal, Quebec, Canada, H9R 1A8
Manufacturer	Globe Electric Company Inc.
Address	150 Oneida, Montreal, Quebec, Canada, H9R 1A8
Factory	Globe Electric Company Inc.
Address	150 Oneida, Montreal, Quebec, Canada, H9R 1A8
Product Name	Smart Fairy Lights
Test Model No.	50597

3 GENERAL DESCRIPTION OF E.U.T.

N

Hardware Version	ANT_RGB_V5.5
Software Version	V1.0
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	2.21dBi (Provided by the applicant)

TEST ENVIRONMENT 4

Environment	Temperature	Voltage	
Normal	25°C	DC5V	

5 **TEST MODE**

TEST MODE	TEST MODE DESCRIPTION			
ТХ	Keep the EUT in transmitting mode with modulation			
6 MEASU				

MEASUREMENT UNCERTAINTY 6

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

2

7 DESCRIPTION OF SUPPORT UNIT

Device Type Manufacturer		Model Name Serial No.		Remark	
Note:					
"" means no any support device during testing.					

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

TEST INSTRUMENTS LIST 9

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Shield room	SKET	833	N/A	25/11/2020	24/11/2023
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A

Test Equipment Of Conducted Band Edges Measurement						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022	
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022	
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022	
					<u> </u>	

Test Equipment Of Radiated Spurious Emissions							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Chamber	SKET	966	N/A	10/11/2020	9/11/2023		
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022		
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022		
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022		
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022		

Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022
				·	

Test Equipment Of Conducted Spurious Emissions							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022		
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022		
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022		
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022		

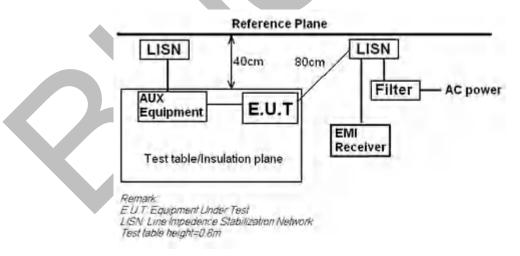
Test Equipment Of Power Spectrum Density					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of	Conducted Peak C				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022
	•			•	•

Test Equipment Of Minimum 6dB Bandwidth						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022	
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022	
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022	

10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 6.2			
Test Mode (Pre-Scan)	ТХ			
Test Mode (Final Test)	ТХ			
Tester	Jozu			
Temperature	25 ℃			
Humidity	60%			

10.1 LIMITS

Frequency of	Conducted limit(dBµV)			
emission(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

10.2 BLOCK DIAGRAM OF TEST SETUP

10.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

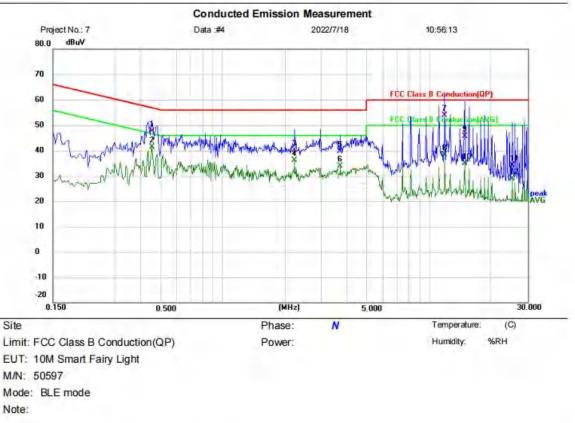
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

10.4 TEST DATA


	T		
	Iranemitting	modal II Ina	$r \Delta r \Delta$
i icaliviouc.	TIANSIIIIUIIU		er:AC120V/60Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	_
1		0.4540	39.11	9.87	48.98	56.80	-7.82	QP		
2	*	0.4540	30.91	9.87	40.78	46.80	-6.02	AVG		
3		1.6740	30.67	9.93	40.60	56.00	-15.40	QP		
4		1.6740	24.30	9.93	34.23	46.00	-11.77	AVG		_
5		4.4580	32.80	9.94	42.74	56.00	-13.26	QP		
6		4.4580	29.66	9.94	39.60	46.00	-6.40	AVG		
7		8.9060	32.42	10.45	42.87	60.00	-17.13	QP		
8		8.9060	28.50	10.45	38.95	50.00	-11.05	AVG		
9		11.8820	42.66	10.27	52.93	60.00	-7.07	QP		
10		11.8820	33.58	10.27	43.85	50.00	-6.15	AVG		
11		18.5660	34.30	10.42	44.72	60.00	-15.28	QP		
12		18.5660	20.71	10.42	31.13	50.00	-18.87	AVG		
_										_

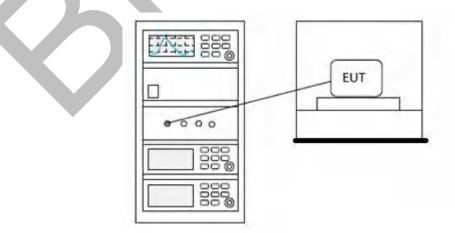
*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: Transmitting mode]; [Line: Neutral] ;[Power:AC120V/60Hz]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
-	_	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4500	37.81	9.79	47.60	56.88	-9.28	QP	
2	*	0.4500	31.59	9.79	41.38	46.88	-5.50	AVG	
3		2.2300	30.24	9.87	40.11	56.00	-15.89	QP	
4		2.2300	26.34	9.87	36.21	46.00	-9.79	AVG	
5		3.7100	29.65	9.91	39.56	56.00	-16.44	QP	
6		3.7100	24.07	9.91	33.98	46.00	-12.02	AVG	
7		11.8820	43.63	10.23	53.86	60.00	-6.14	QP	
8		11.8820	28.15	10.23	38.38	50.00	-11.62	AVG	
9		14.8580	35.31	10.32	45.63	60.00	-14.37	QP	
10		14.8580	24.61	10.32	34.93	50.00	-15.07	AVG	
11		25.2660	23.70	10.47	34.17	60.00	-25.83	QP	
12		25.2660	18.46	10.47	28.93	50.00	-21.07	AVG	

*:Maximum data x:Over limit !:over margin

(Reference Only


11 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

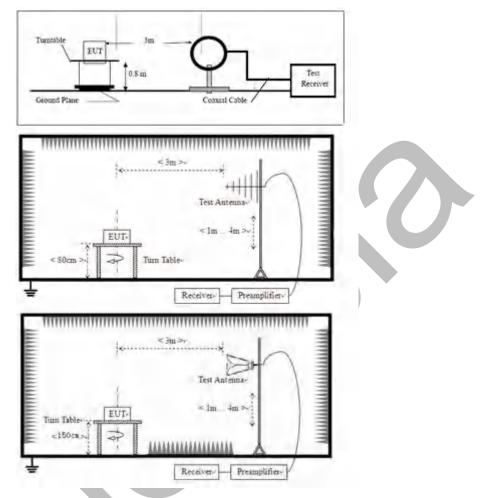
Report No.: BLA-EMC-202206-A12701 Page 17 of 66

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%


12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

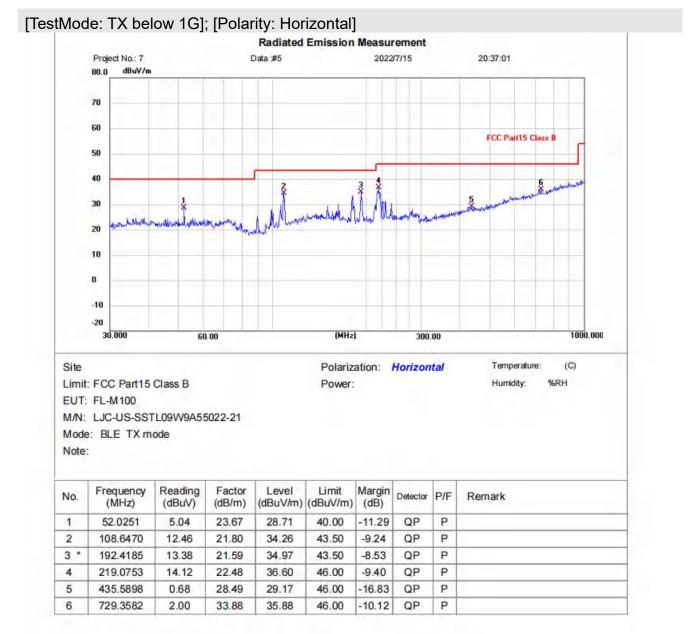
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

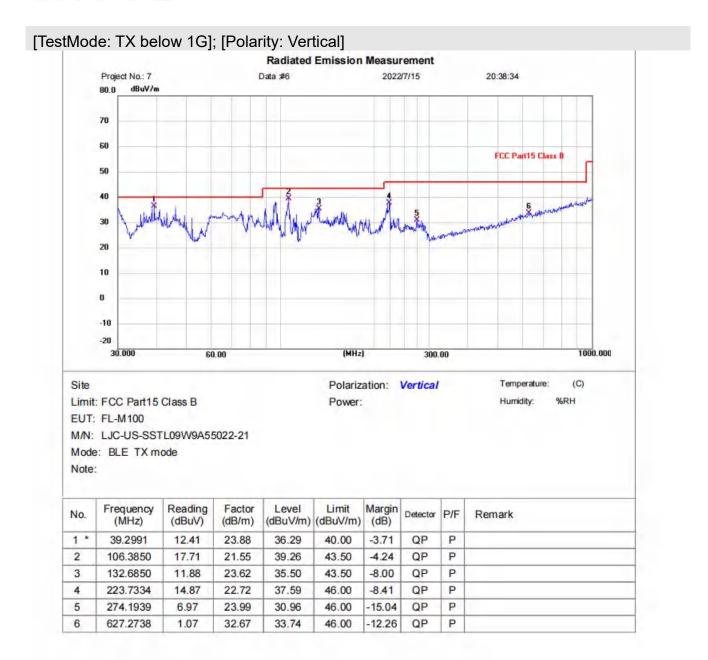
1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

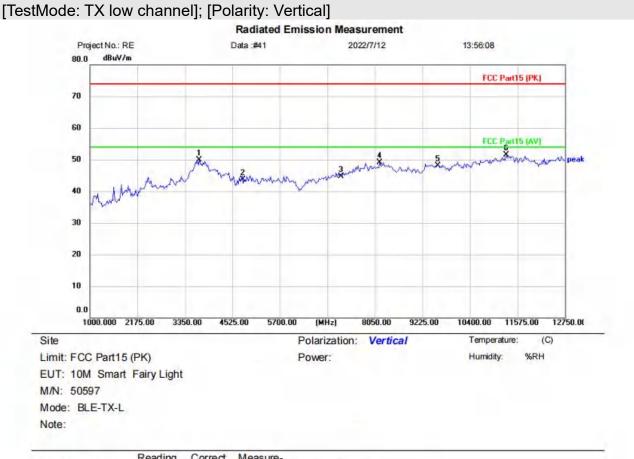

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

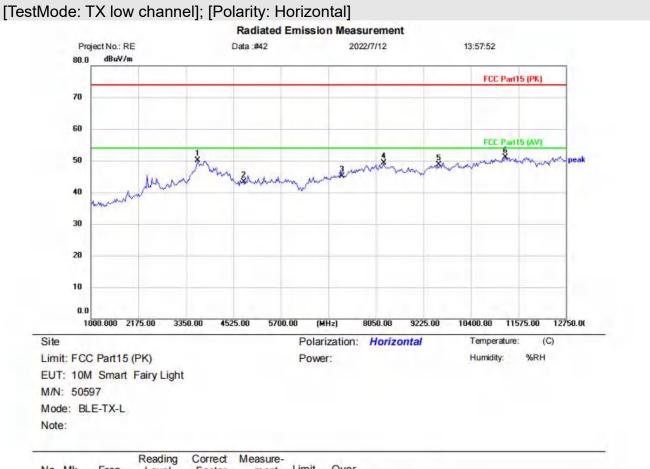
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



12.4 TEST DATA


*:Maximum data x:Over limit !:over margin

Above 1GHz:



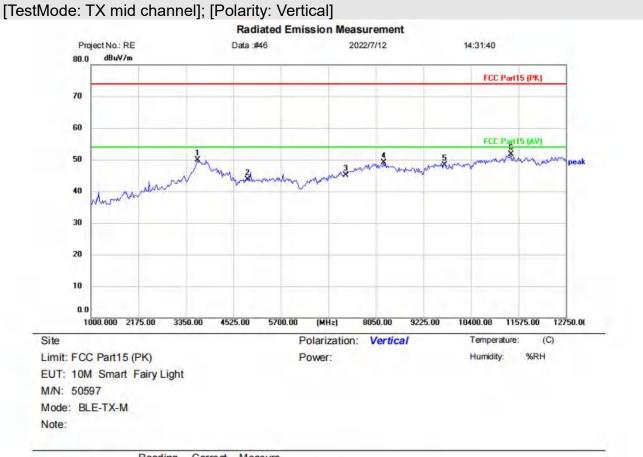
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3702.500	42.21	7.72	49.93	74.00	-24.07	peak		
2		4804.000	40.04	3.71	43.75	74.00	-30.25	peak		
3		7206.000	38.78	5.96	44.74	74.00	-29.26	peak		
4		8167.500	40.99	8.17	49.16	74.00	-24.84	peak		
5		9608.000	38.72	9.29	48.01	74.00	-25.99	peak		
6	*	11293.000	39.54	11.91	51.45	74.00	-22.55	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3632.000	42.24	7.77	50.01	74.00	-23.99	peak		
2		4804.000	39.50	3.71	43.21	74.00	-30.79	peak		
3	-	7206.000	39.22	5.96	45.18	74.00	-28.82	peak		
4		8238.000	41.09	8.22	49.31	74.00	-24.69	peak		
5		9608.000	39.32	9.29	48.61	74.00	-25.39	peak		
6	*	11246.000	39.14	11.98	51.12	74.00	-22.88	peak		

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3843.500	41.45	7.12	48.57	74.00	-25.43	peak		
2		4880.000	39.45	3.36	42.81	74.00	-31.19	peak		
3		7320.000	37.65	6.41	44.06	74.00	-29.94	peak		
4		8449.500	39.28	8.20	47.48	74.00	-26.52	peak		
5		9760.000	36.24	9.62	45.86	74.00	-28.14	peak		
6	*	11363.500	38.06	11.81	49.87	74.00	-24.13	peak		

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3632.000	42.20	7.77	49.97	74.00	-24.03	peak		
2		4880.000	40.34	3.36	43.70	74.00	-30.30	peak		
3		7320.000	38.71	6.41	45.12	74.00	-28.88	peak		
4		8238.000	40.98	8.22	49.20	74.00	-24.80	peak		
5		9760.000	38.70	9.62	48.32	74.00	-25.68	peak		
6	*	11387.000	39.88	11.78	51.66	74.00	-22.34	peak		

(Reference Only

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3843.500	42.24	7.12	49.36	74.00	-24.64	peak		
2		4960.000	39.30	3.75	43.05	74.00	-30.95	peak		
3	-	7440.000	38.77	6.86	45.63	74.00	-28.37	peak		
4		8379.000	40.76	8.27	49.03	74.00	-24.97	peak		
5		9920.000	36.61	10.16	46.77	74.00	-27.23	peak		
6	*	11387.000	39.21	11.78	50.99	74.00	-23.01	peak		

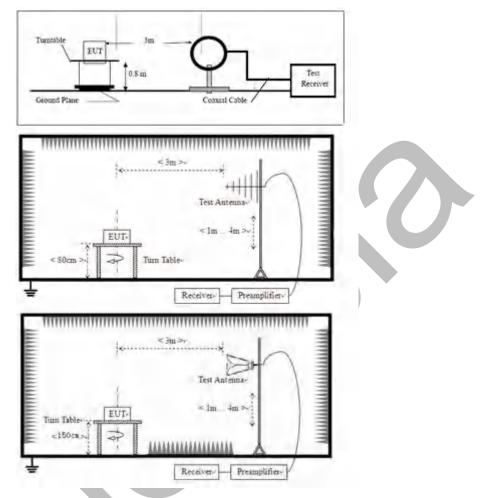
(Reference Only

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3843.500	42.79	7.12	49.91	74.00	-24.09	peak		
2		4960.000	39.42	3.75	43.17	74.00	-30.83	peak		
3	-	7440.000	38.52	6.86	45.38	74.00	-28.62	peak		
4		7862.000	41.07	7.77	48.84	74.00	-25.16	peak		
5	1	9920.000	37.34	10.16	47.50	74.00	-26.50	peak		
6	*	11340.000	40.23	11.85	52.08	74.00	-21.92	peak		
-										

(Reference Only

13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

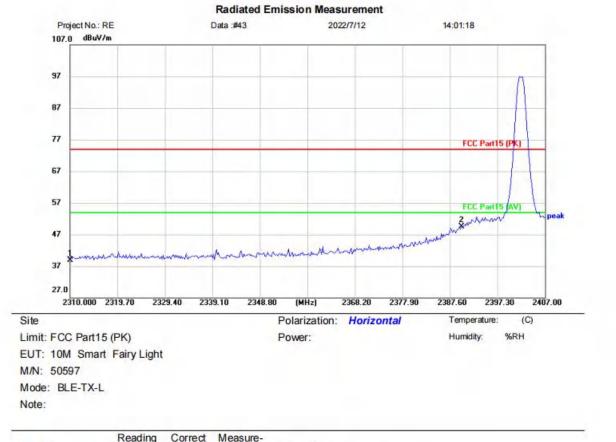
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

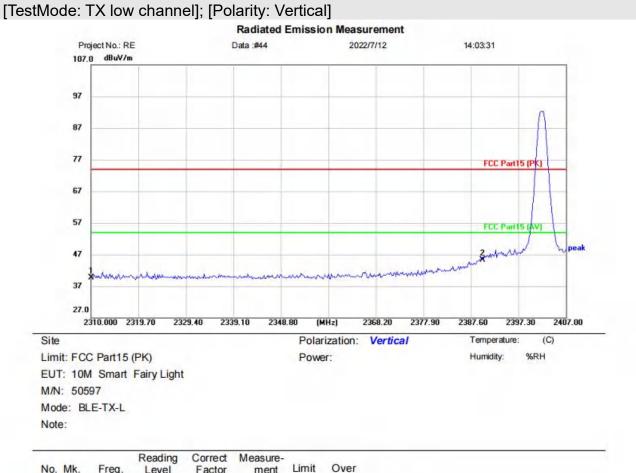
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

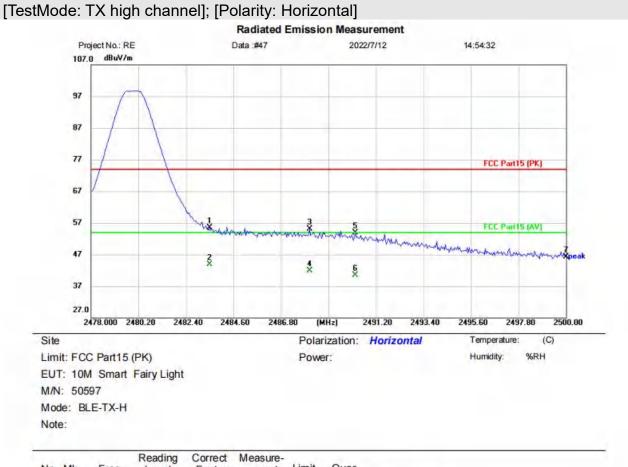
13.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	AHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	42.90	-3.93	38.97	74.00	-35.03	peak		
2	*	2390.000	53.00	-3.58	49.42	74.00	-24.58	peak		

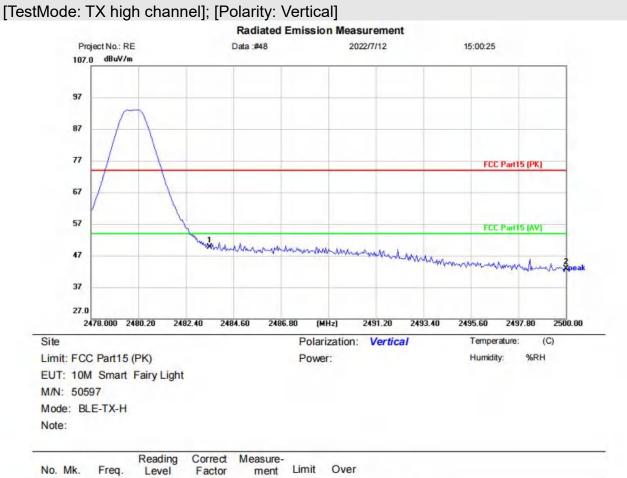
*:Maximum data x:Over limit !:over margin

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	43.62	-3.93	39.69	74.00	-34.31	peak		
2	*	2390.000	48.93	-3.58	45.35	74.00	-28.65	peak		

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2483.500	58.63	-3.14	55.49	74.00	-18.51	peak		
2	*	2483.500	47.14	-3.14	44.00	54.00	-10.00	AVG		
3	-	2488.120	58.18	-3.13	55.05	74.00	-18.95	peak		
4		2488.120	45.12	-3.13	41.99	54.00	-12.01	AVG		
5		2490.232	57.05	-3.11	53.94	74.00	-20.06	peak		
6		2490.232	43.65	-3.11	40.54	54.00	-13.46	AVG		
7		2500.000	49.47	-3.08	46.39	74.00	-27.61	peak		

(Reference Only

(Reference Only

Test Result: Pass

MHz

2483.500

2500.000

1 *

2

dBuV

52.94

46.02

dB/m

-3.14

-3.08

dBuV/m

49.80

42.94

dBuV/m

74.00

74.00

dB

-24.20

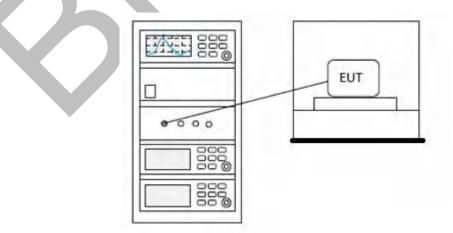
-31.06

Detector

peak

peak

Comment


14 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11						
Test Mode (Pre-Scan)	ТХ						
Test Mode (Final Test)	ТХ						
Tester	Jozu						
Temperature	25°C						
Humidity	60%						

14.1 LIMITS

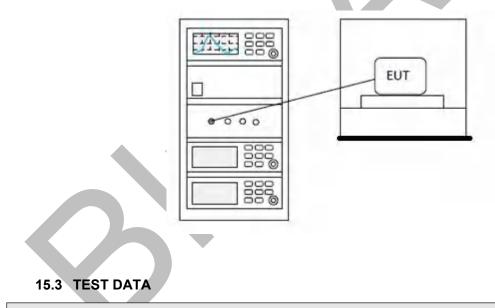
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

14.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202206-A12701 Page 37 of 66

14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


15 POWER SPECTRUM DENSITY

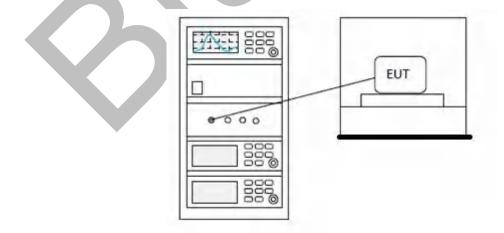
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

15.1 LIMITS

Limit: ≤ 8 dBm in any 3 kHz band during any time interval of continuous transmission

15.2 BLOCK DIAGRAM OF TEST SETUP

Pass: Please Refer To Appendix: Appendix1 For Details


16 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%
16.1 LIMITS	

16.1 LIMITS

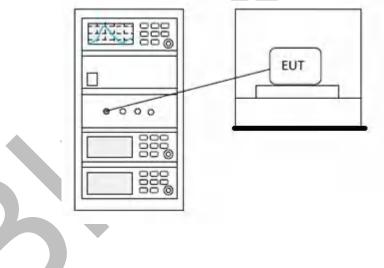
Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for \geq 50 hopping channels
902-928	0.25 for $25 \le$ hopping channels $<$ 50
	1 for digital modulation
	1 for \geq 75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5705 5050	1 for frequency hopping systems and digital
5725-5850	modulation

16.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202206-A12701 Page 40 of 66

16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


17 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

17.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

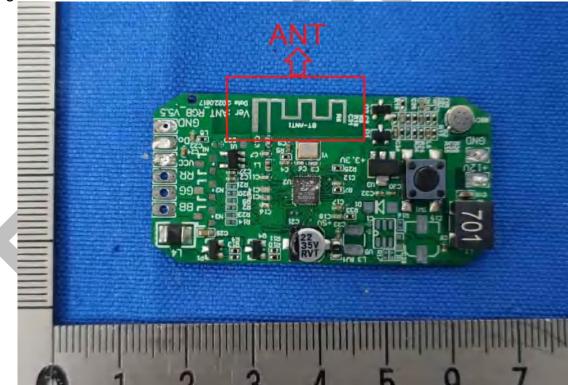
17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

18 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


18.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.21dBi.

19 APPENDIX

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	1.194	30	Pass
NVNT	BLE	2440	Antl	1.233	30	Pass
NVNT	BLE	2480	Ant1	-1.268	30	Pass

Power NVNT BLE 2402MHz Ant1

Power NVNT BLE 2440MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.726	0.5	Pass
NVNT	BLE	2440	Ant1	0.721	0.5	Pass
NVNT	BLE	2480	Ant1	0.728	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1



-6dB Bandwidth NVNT BLE 2440MHz Ant1

R T RF 50 2 AC Center Freq 2.440000000	GHz #IFGain:Low	Center Freq: 2.4400000 Trig: Free Run #Atten: 30 dB	ALIGNAUTO 000 GHz Avg Hold: 100/100	07:47:01 PM 3d 12, 2 Radio Std: None Radio Device: BTS	022
Ref Offset 2.03 d Ref 22.03 dBn			_	Mkr1 2.44 G -1.0658 dE	
.og					
2 03		↓			-
.97	- m		The second secon		_
18.0					_
0.0				The and	Va
18,0					
18.0					
58.0					-
					-
Center 2.44 GHz Res BW 100 kHz		#VBW 300 k	Hz	Span 2 N Sweep 1.333	
Occupied Bandwidt 1.	^ь 0479 MHz	Total Power	6.72 dBm		
Transmit Freq Error	-38.580 kHz	OBW Power	99.00 %		
x dB Bandwidth	721.0 kHz	x dB	-6.00 dB		
SG			STATUS		

-6dB Bandwidth NVNT BLE 2480MHz Ant1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.0457
NVNT	BLE	2440	Ant1	1.0450
NVNT	BLE	2480	Ant1	1.0452

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2440MHz Ant1

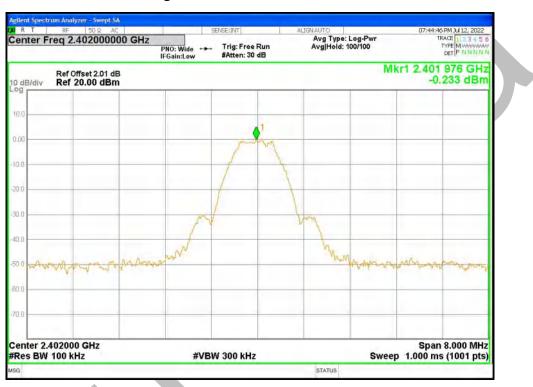
OBW NVNT BLE 2480MHz Ant1

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-0.171	8	Pass
NVNT	BLE	2440	Ant1	-0.127	8	Pass
NVNT	BLE	2480	Ant1	-2.613	8	Pass

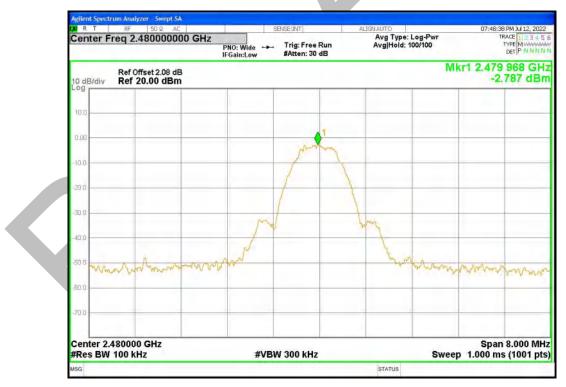
PSD NVNT BLE 2402MHz Ant1

PSD NVNT BLE 2440MHz Ant1


PSD NVNT BLE 2480MHz Ant1

Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-51.59	-30	Pass
NVNT	BLE	2480	Ant1	-47.44	-30	Pass


Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission

gilent Spect	rum Analyzer - Swe RF 50 Q		SENSE:INT		ALIGNAUTO		07:444	9 PM 3J/ 12, 2022
	req 2.35600	0000 GHz	D: Fast +++ Trig: Fr in:Low #Atten:		Avg Type: Avg Hold: 1	Log-Pwr 100/100		RACE 1 3 4 5 6 TYPE M WINNIN DET P N N N N N
0 dB/div	Ref Offset 2.0 Ref 20.00 c							02 2 GHz .088 dBm
10.0				-			-	A1-
0.01				-				2
10.0				-			-	- 11 -
20.0		_						
30.0		_		-	-			-30.28 dBm
40,0		-		-	-		A4	02
50 (3				1			Dene	your the
-60.0 -60.0	hand the hand the hand	how work a how to pale the	and the second	-introduction	an ship and when	and the second second		-
70.0		_						
	0600 GHz / 100 kHz		#VBW 300 kl	łz		Swee		.40600 GHz s (1001 pts)
MKR MODE 1	f	× 2.402 2 GHz	-0.088 dBm	UNCTION	FUNCTION WIDTH		FUNCTION VALUE	~
	f f f	2.400 0 GHz 2.390 0 GHz 2.389 6 GHz	-47.844 dBm -54.385 dBm -51.821 dBm					
2345678910								
11 <								2
					STATUS			
ISG				_	STATUŚ			

Band Edge NVNT BLE 2480MHz Ant1 Ref

Band Edge NVNT BLE 2480MHz Ant1 Emission

nt Spectr	am Analyzer - Sw RF 50 Q		5ENSE:IN		ALIGNAUTO		07-49-4	PM 3/ 12 2022
	eq 2.52600	DOODO GHZ	:Fast ++ Trig:	Free Run en: 30 dB	Avg Type: Avg Hold:		TI	TYPE M 12, 2022
B/div	Ref Offset 2.0 Ref 20.00						Mkr1 2.4 -2.	80 0 GHz 390 dBm
	-							
1		-						
	_	_		_				-32.79 dEm
T	$Q^2 Q^4$	03						
		man and all man artes	nothed and the second second second	unerserver when the server we have	and the state of the second	and a stand of the stand and a state of the	King and the second	Mi gilatare constrainta
	600 GHz 100 kHz		#VBW 300	kHz		Swee	Stop 2. 9.600 ms	57600 GHz (1001 pts)
MODE TE NN NN NN NN	C SCL f f f f	2.480 0 GHz 2.483 5 GHz 2.500 0 GHz 2.486 8 GHz	-2.390 dBm -51.825 dBm -57.272 dBm -50.234 dBm	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	<u>^</u>
								*
					STATUŚ			

SV.

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-38.64	-30	Pass
NVNT	BLE	2440	Ant1	-45.21	-30	Pass
NVNT	BLE	2480	Ant1	-42.8	-30	Pass

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

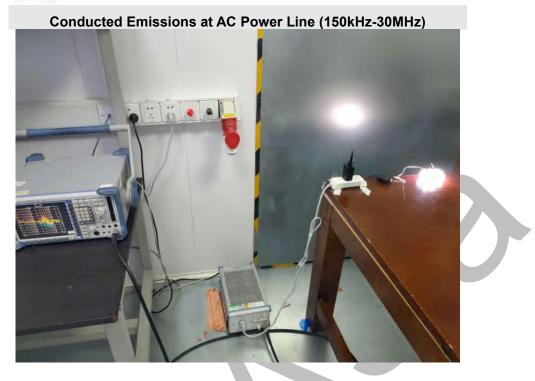
gilent Spectru	um Analyzer – Swept S	4						
enter Fr	RF 50 Q A0 eq 13.265000		SENSE:INT I: Fast ++ Trig: F in:Low #Atten	ree Run : 30 dB	ALIGNAUTO Avg Type: I Avg Hold: 10	.og-Pwr 0/10	TRA TY	M 30 12, 2022 CE 1 2 3 4 5 6 PE M N N N N N 6T P N N N N N
0 dB/div	Ref Offset 2.01 d Ref 20.00 dBn						Mkr1 2.4 -0.3	12 GHz 67 dBm
10.0	A1			_				
1.07	•				-			
0.0	_				_			
20.0					_			100
30.0	$\langle \rangle^2$							-30.21 dBm
40.0	1 03	04				0.00		and a real of the second
50.0	Jacon and	mandan	D5		and the section of	a service of a ser	State of the second sec	
70.0								
				1.0	1.1			
Start 30 N Res BW			#VBW 300 k	Hz		Swee	Stop 2 ep 2.530 s (6.50 GHz (1001 pts)
IKR MODE TH		2.412 GHz	-0.367 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	~
	f	1.724 GHz 4.768 GHz	-38.848 dBm -56.473 dBm					
2 3 4 5 6 7 8 9 10 11	f	7.177 GHz	-55.838 dBm					
5 N	f	9.718 GHz	-56.560 dBm					
7								
9								
11								2
SG					STATUŚ			
30				_	STATUS			

Tx. Spurious NVNT BLE 2440MHz Ant1 Emission

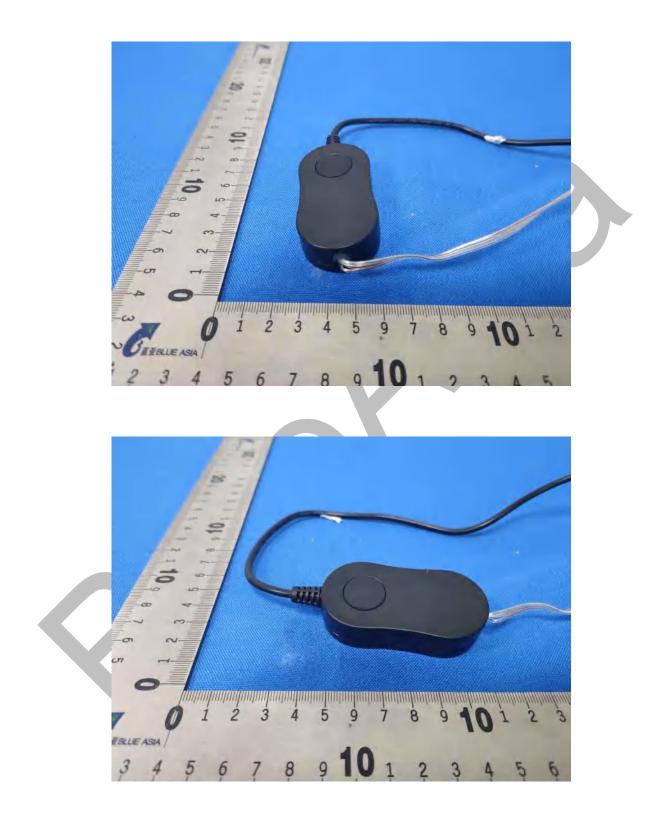
gilent Spectrum Analyzer - Sw R T RF 50.9	ept SA					22.42.40.2	
Center Freq 13.265	000000 GHz	SENSE:INT Fast +++ Trig: Fr in:Low #Atten:	ee Run 30 dB	ALIGNAUTO Avg Type: Lo Avg Hold: 10/	og-Pwr 10	TRAC	M Jul 12, 2022 2 1 2 3 4 5 6 PE M WWWWWWWW ET P N N N N N
Ref Offset 2. 0 dB/dlv Ref 20.00							39 GHz 51 dBm
100							
101			-				_
10.0				_			
20.0	_						-
30.0			-				-30.13 cem
40.0	1 14						
50 C	0 0	2 Dansen	and and and	print stately formert	the set of the set	- protoco and	
60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1				
70.0			-				
Start 30 MHz #Res BW 100 kHz		#VBW 300 k	Hz		Sweep	Stop 2 2.530 s (6.50 GHz 1001 pts)
MODE TRC SCL I N f 3 N f 3 N f 5 N f 6 f f 7 8 9 10 10 10	× 2.439 GHz 26.500 GHz 4.953 GHz 7.362 GHz 9.930 GHz	-0.651 dBm -45.346 dBm -56.559 dBm -56.112 dBm -56.966 dBm	FUNCTION	UNCTION WIDTH	FUNC	TION VALUE	<u>e</u>
8 9 10 11							8
<				STATUŠ			1
ISG				STATUS			

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

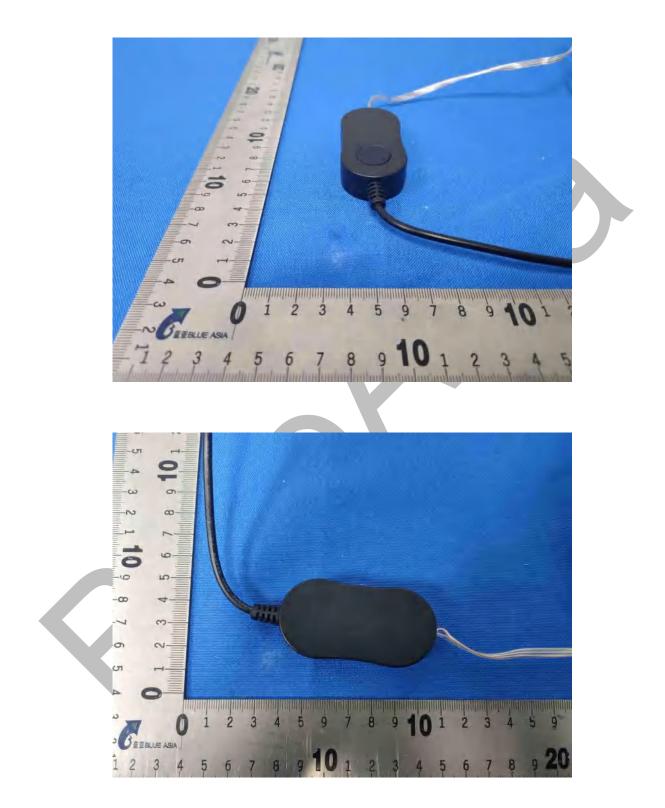
Spectrum Analyzer - Sw	ept SA	SENSE(IN		ALIGNAUTO		07:40:16	PM 3./ 12, 2022
T RF 50 £ er Freq 13.2650	PNO) Fast Trig:	Free Run en: 30 dB	Avg Type: Avg Hold: 1		TR	ACE 1 2 3 4 5 6 YPE MUMUMUM DET P N N N N N
Ref Offset 2.0							492 GHz 396 dBm
			_				
\ '			_	-			
	-						
							22 60 60
	A8 A4	05		-		marine	an an province
- martinger - martinger		marken	putintino	- Adamphic and a			
30 MHz BW 100 kHz		#VBW 300	kHz		Swee	Stop ep 2.530 s	26.50 GHz (1001 pts)
DDE TRC SCL	× 2.492 GHz	-3.396 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	~
N F N F N F	23.853 GHz 4.980 GHz 7.442 GHz 9.797 GHz	-45.406 dBm -55.923 dBm -55.819 dBm -55.370 dBm					
							121
				STATUS			

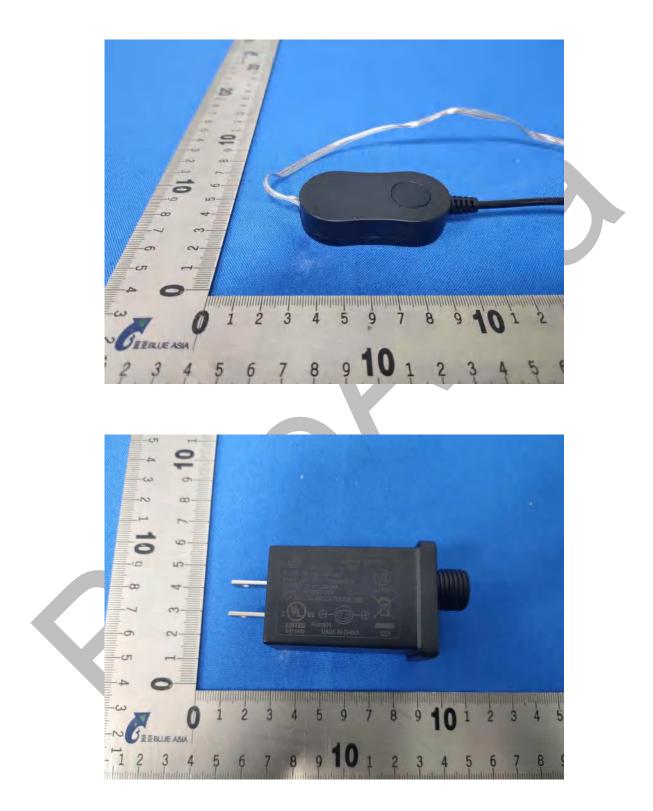

S

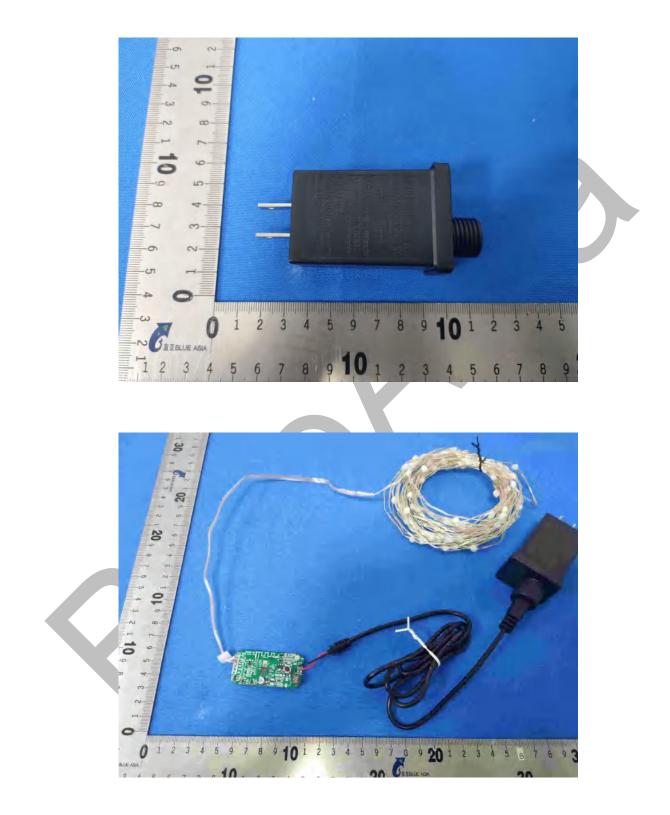
APPENDIX A: PHOTOGRAPHS OF TEST SETUP

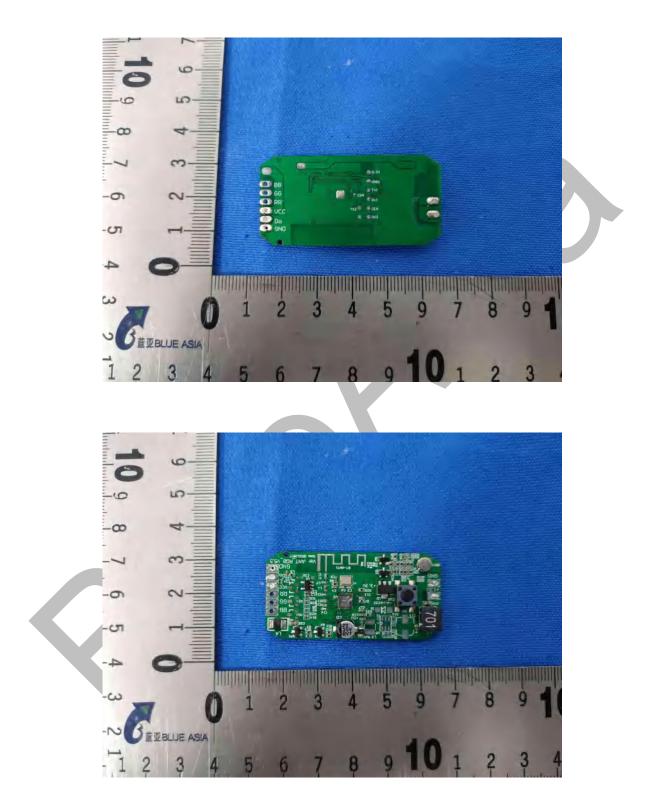


Report No.: BLA-EMC-202206-A12701 Page 60 of 66


APPENDIX B: PHOTOGRAPHS OF EUT







----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.