

SAR EVALUATION REPORT

Report No. : 25IE0245-HO-6

Applicant	:	Sony Corporation
Type of Equipment	:	Wireless LAN Module
Model No.	:	IRF303JU
FCC ID	:	AK8IRF303
Test standard	:	FCC47CFR 2.1093 FCC OET Bulletin 65, Supplement C
Test Result	:	Complied (IEEE 802.11a)
Max. SAR Measured	:	0.445W/kg (Body 5320MHz)

1. This test report shall not be reproduced except full or partial, without the written approval of UL Apex Co., Ltd.

2. The results in this report apply only to the sample tested.

3. This equipment is in compliance with above regulation. We hereby certify that the data contain a true representation of the SAR profile.

4. The test results in this test report are traceable to the national or international standards.

Date of test

June 13, 15 and 16, 2005

Tested by

Miyo Ikuta EMC Lab.Head Office

Approved by

laen

Tetsuo Maeno Site Manager of Head Office EMC Lab.

UL Apex Co., Ltd. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

CONTENTS

PAGE

Test report No.:25IE0245-HO-6Page:3 of 96Issued date:July 07, 2005FCC ID:AK8IRF303

<u>SECTION 1 : Client information</u>

Company Name	:	Sony Corporation
Brand Name	:	SONY
Address	:	Gate City Osaki West Tower Osaki East Tec. 1-11-1 Osaki Shinagawa-ku, Tokyo, 141-0032 Japan
Telephone Number	:	+81-3-5435-3977
Facsimile Number	:	+81-3-5435-3963
Contact Person	:	Masaki Nishimura

Test report No.:25IE0245-HO-6Page:4 of 96Issued date:July 07, 2005FCC ID:AK8IRF303

<u>SECTION 2 : Equipment under test</u>

2.1 Identification of EUT

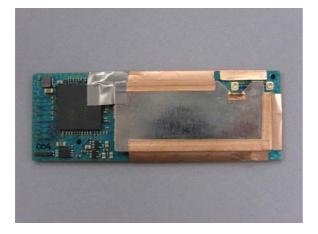
Type of Equipment	:	Wireless LAN Module
Model No.	:	IRF303JU
Serial No.	:	003
Country of Manufacture	:	Japan
Condition of EUT	:	Engineering prototype (Not for Sale: This sample is equivalent to mass-produced items.)
Rating	:	DC3.3V, 0.81A
Receipt Date of Sample	:	June 13, 2005
Category Identified	:	Portable device

 Test report No.
 :
 251E0245-HO-6

 Page
 :
 5 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK81RF303


2.2 Product Description of EUT

This EUT has IEEE.802.11a/b/g. The description only of the IEEE.802.11a mode is shown below.

Frequency of operation	: 5180-5320MHz (IEEE802.11a)
Modulation	: OFDM
May Output Dowar Tostad	

Max.Output Power Tested (5180MHz, Antenna Port 2)

: 12.64 dBm Peak Conducted

2.3 Product description of Antenna

Antenna Type

: Pattern Antenna (M/N : LFANT103)

Antenna Gain (LFANT103)

: 2.93dBi (MAX)

Antenna Connector Type

: U.FL

Test report No.	:	25IE0245-HO-6
Page	:	6 of 96
Issued date	:	July 07, 2005
FCC ID	:	AK8IRF303

SECTION 3 : Requirements for compliance testing defined by the FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at

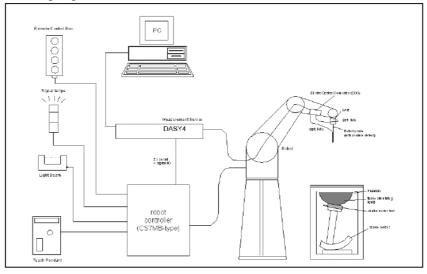
maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).
 IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

SECTION 4 : Dosimetry assessment setup

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than +/- 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probe EX3DV3, SN: 3507 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [2] with accuracy of better than +/-10%. The spherical isotropy was evaluated with the procedure described in [3] and found to be better than +/-0.25 dB. The phantom used was the

SAM Twin Phantom as described in FCC supplement C, IEEE P1528 and CENELEC EN50361.


 Test report No.
 :
 251E0245-HO-66

 Page
 :
 7 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK81RF303

4.1 Configuration and peripherals

The DASY4 system for performing compliance tests consist of the following items:

1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

3. A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows 2000.
- 8. DASY4 software.
- 9. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

Test report No.:25IE0245-HO-6Page:8 of 96Issued date:July 07, 2005FCC ID:AK8IRF303

4.2 System components

4.2.1 EX3DV3 Probe Specification

Construction:

Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycol ether)

Calibration:

Conversion Factors (CF) for 900MHz, 1800MHz, 2400MHz, 5200MHz, 5800MHz (Head and Body)

Frequency:

10 MHz to > 6GHz; Linearity: +/-0.2 dB(30 MHz to 3 GHz)

Directivity:

+/-0.3 dB in HSL (rotation around probe axis) +/-0.5 dB in tissue material (rotation normal probe axis)

Dynamic Range:

10uW/g to > 100 mW/g;Linearity: +/-0.2 dB(noise: typically < 1uW/g)

Dimensions:

Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm

Application:

Highprecision dosimetric measurement in any exposure scenario (e.g., very strong gradient fields).Only probe which enables compliance testing for frequencies up to 6GHz with precision of better 30%.

EX3DV3 E-field Probe

 Test report No.
 : 25IE0245-HO-6

 Page
 : 9 of 96

 Issued date
 : July 07, 2005

 FCC ID
 : AK8IRF303

4.2.2 SAM Twin Phantom

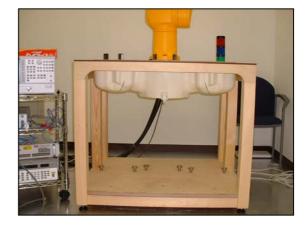
Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC EN 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness:

2 +/-0.2 mm Filling Volume: Approx. 25 liters Dimensions: (H x L x W): 810 x 1000 x 500 mm

4.2.3 Device Holder for Transmitters


In combination with the SAM Twin Phantom V4.0, the Mounting Device enables the rotation of the mounted transmitter

in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations.

To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Device holder couldn't be used at this SAR measurement.

SAM Twin Phantom

Device Holder

 Test report No.
 :
 25IE0245-HO-6

 Page
 :
 10 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK8IRF303

SECTION 5 : Test system specifications

Robot RX60L		
Number of Axes	:	6
Payload	:	1.6 kg
Reach	:	800mm
Repeatability	:	+/-0.025mm
Control Unit	:	CS7M
Programming Language	:	V+
Manuafacture	:	Stäubli Unimation Corp. Robot Model: RX60
		······································
DASY4 Measurement server		
Features	:	166MHz low power Pentium MMX
		32MB chipdisk and 64MB RAM Serial link to DAE (with watchdog supervision)
		16 Bit A/D converter for surface detection system
		Two serial links to robot (one for real-time communication which is supervised by
		watchdog)
		Ethernet link to PC (with watchdog supervision)
		Emergency stop relay for robot safety chainTwo expansion slots for future
		applications
Manufacture	:	Schimid & Partner Engineering AG
Data Agaziaitian Flastuania (DA	E)	
Data Acquisition Electronic (DA Features	<u>.</u>	Signal amplifier, multiplexer, A/D converter and control logic
I catul es	•	Serial optical link for communication with DASY4 embedded system (fully remote
		controlled) 2 step probe touch detector for mechanical surface detection and
		emergency robot stop (not in -R version)
Moosurement Dange		
Measurement Range	:	1 μ V to > 200 mV (16 bit resolution and two range settings: 4mV,
Innut Officit violtage		400 mV
Input Offset voltage	:	$< 1 \mu V$ (with auto zero)
Input Resistance	:	$200 \text{ M}\Omega$
Battery Power	:	> 10 h of operation (with two 9 V battery)
Dimension	:	60 x 60 x 68 mm
Manufacture	:	Schimid & Partner Engineering AG
Software		
Item	:	Dosimetric Assesment System DASY4
Type No.	:	SD 000 401A, SD 000 402A
Software version No.	:	4.5
Manufacture / Origin	:	Schimid & Partner Engineering AG
E-Field Probe		
Model	:	EX3DV3
Serial No.	:	3507
Construction	:	Symmetrical design with triangular core
Frequency	:	10 MHz to 6 GHz
Linearity	:	+/-0.2 dB (30 MHz to 3 GHz)
Manufacture	:	Schimid & Partner Engineering AG
Phantom		
<u>тиансош</u> Туре	:	SAM Twin Phantom V4.0
Shell Material	:	Fiberglass
Thickness	:	2.0 +/-0.2 mm
Volume	•	Approx. 25 liters
Manufacture	:	Schimid & Partner Engineering AG
manufacture	•	Somma & Laturer Englisering AO

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

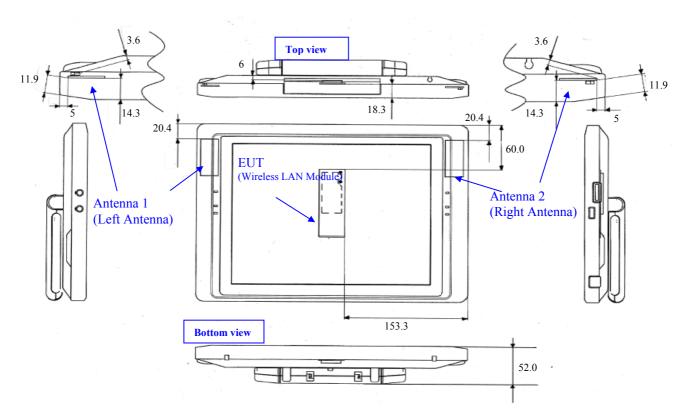
 Test report No.
 :
 25IE0245-HO-6

 Page
 :
 11 of 96

 Issued date
 :
 July 07, 2005

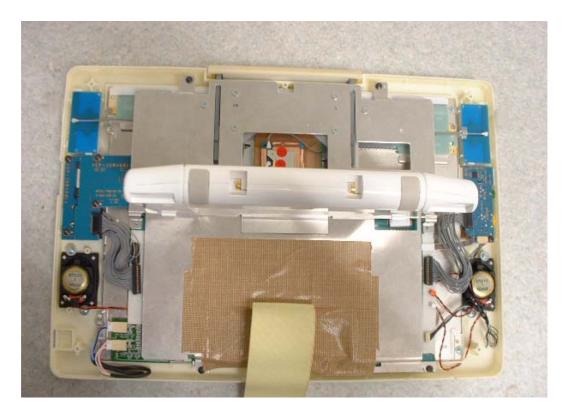
 FCC ID
 :
 AK8IRF303

SECTION 6 : Measurement outline


We tested with this EUT was inserted into the limited host device. (Location Free TV, model : LF-X11) The test operation of the EUT was controlled by the PC. Therefore, we tested connecting the PC and the Location Free TV which inserted in the EUT.

The detail of the Location Free TV that we used for SAR testing is showing in the following. The shortest distance between the surface of this Location Free TV and antenna is 3.6 mm.

6.1 Information of host device


Type of Equipment	:	Location Free TV
Model name	:	LF-X11
Manufacture	:	SONY
Battery	:	Only one type Model name : BP-LX1A V / mAh : 10.8V / 4400mAh
Position of Antenna	:	See figure and photograph of berrow

Note : There are no accessories attached to this EUT.

Test report No.	: 25IE0245-HO-6
Page	: 12 of 96
Issued date	: July 07, 2005
FCC ID	: AK8IRF303

Back view

Antenna 2 (Right Antenna)

Antenna 1 (Left Antenna)

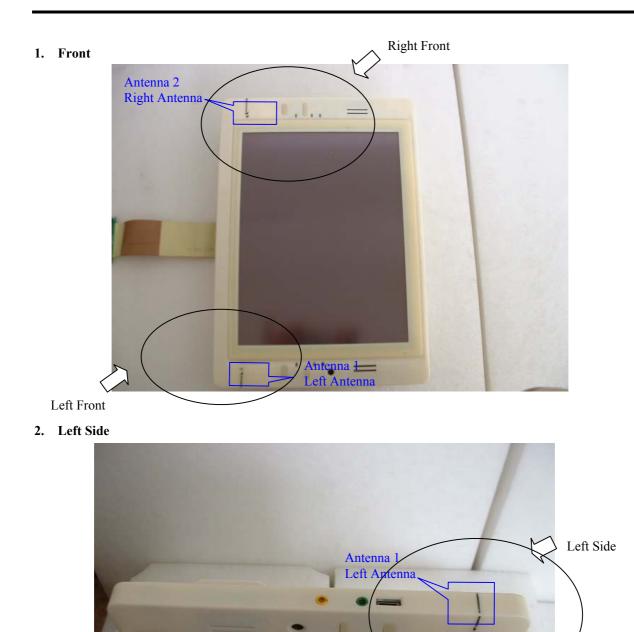
UL Apex Co., Ltd. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

SECTION 7 : Test setup of EUT

7.1 Photographs of test setup

This EUT is inserted into the Location Free TV.(model : LF-X11).

When users operate or carry the Location Free TV, it could be considered to touch or get close to their bodies. In order to assume this situation, we performed the test at the following positions. Please refer to "APPENDIX 1" for more details.


- 1.Left Front : The test was performed in touch with left front surface (ANT.1) of the Location Free TV to the flat section of SAM phantom.
- 2.Right Front : The test was performed in touch with right front surface (ANT.2) of the Location Free TV to the flat section of SAM phantom.
- 3.Left Side : The test was performed in touch with left side (ANT.1) of the Location Free TV to the flat section of SAM phantom.
- 4.Right Side : The test was performed in touch with right side (ANT.2) of the Location Free TV to the flat section of SAM phantom.
- 5.Left Back : The test was performed in touch with left back surface (ANT.1) of the Location Free TV to the flat section of SAM phantom
- 6.Right Back : The test was performed in touch with right back surface (ANT.2) of the Location Free TV to the flat section of SAM phantom.
- 7.Left Top : The test was performed in touch with left top surface (ANT.1) of the Location Free TV to the flat section of SAM phantom
- 8.Right Top : The test was performed in touch with right top surface (ANT.2) of the Location Free TV to the flat section of SAM phantom

 Test report No.
 :
 251E0245-HO-6

 Page
 :
 14 of 96

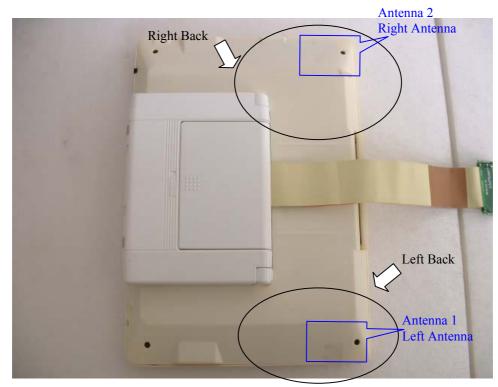
 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK81RF303

UL Apex Co., Ltd. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

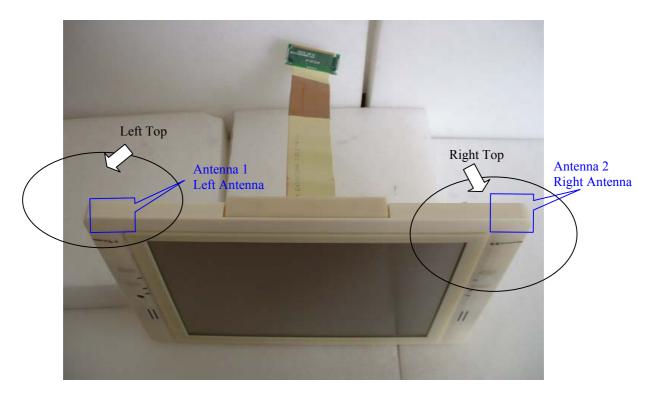
 Test report No.
 : 25IE0245-HO-6

 Page
 : 15 of 96


 Issued date
 : July 07, 2005

 FCC ID
 : AK8IRF303

3. Right Side


4. Back

UL Apex Co., Ltd. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

Test report No.	:	25IE0245-HO-6
Page	:	16 of 96
Issued date	:	July 07, 2005
FCC ID	:	AK8IRF303

5. Top

7.2 EUT Tune-up procedure

The Wireless LAN module has IEEE.802.11a/b/g. The frequency band and the modulation used in the testing of IEEE.802.11a are shown as a following.

1. IEEE 802.11a

Frequency band	: 5150-5350MHz
Channel	: 36ch(5180MHz),52ch(5260MHz),64ch(5320MHz)
Modulation	: OFDM(BPSK,QPSK,16QAM,64QAM)
Crest factor	:1

 Test report No.
 :
 251E0245-HO-6

 Page
 :
 17 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK81RF303

7.3 Method of measurement

- Step1. The data rate in the higher peak power of each modulation was decided, then the worst modulation was searched in the SAR testing.
- Step2. The searching of the worst position This test was performed at the worst modulation of Step1.
- Step3. The changing of the frequency This test was performed at the worst conditions of Step2.

Distance between Location Free TV and Phantom

After we measure Antenna 1 and Antenna 2,

the measurement was performed with the distance 5mm and 10mm to check if the distance 0mm may not have the worst value at the conditions of the highest SAR value of this EUT. As result, the distance 0mm had the worst value.

 Test report No.
 :
 251E0245-HO-6

 Page
 :
 18 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK81RF303

SECTION 8 : Measurement uncertainty

8.1 Uncertainty of 802.11a modes testing

The uncertainty budget has been determined for the DASY4 measurement system according to the APPENDIX 6 documents and is given in the following Table.

Error Description	Uncertainty value ± %	-		(ci) 1g	Standard Uncertainty (1g)	vi or veff	
Measurement System							
Probe calibration	±6.8	Normal	1	1	±6.8	∞	
Axial isotropy of the probe	±4.7	Rectangular	$\sqrt{3}$	$(1-cp)^{1/2}$	±1.9	∞	
Spherical isotropy of the probe	±9.6	Rectangular	$\sqrt{3}$	(cp) ^{1/2}	±3.9	∞	
Boundary effects	±2.0	Rectangular	$\sqrt{3}$	1	±1.2	∞	
Probe linearity	±4.7	Rectangular	$\sqrt{3}$	1	±2.7	∞	
Detection limit	±1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞	
Readout electronics	±1.0	Normal	1	1	±1.0	∞	
Response time	±0.8	Rectangular	$\sqrt{3}$	1	±0.5	∞	
Integration time	±2.6	Rectangular	$\sqrt{3}$	1	±1.5	∞	
RF ambient conditions	±3.0	Rectangular	$\sqrt{3}$	1	±1.7	∞	
Mech. constraints of robot	±0.8	Rectangular	$\sqrt{3}$	1	±0.5	∞	
Probe positioning	±5.7	Rectangular	$\sqrt{3}$	1	±5.7	∞	
Extrap. and integration	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	∞	
Test Sample Related							
Device positioning	±2.9	Rectangular	$\sqrt{3}$	1	±2.9	17	
Device holder uncertainty	±3.6	Rectangular	$\sqrt{3}$	1	±3.6	7	
Power drift	±10.0	Rectangular	$\sqrt{3}$	1	±5.8	∞	
Phantom and Setup							
Phantom uncertainty	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	∞	
Liquid conductivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.64	±1.8	∞	
Liquid conductivity (meas.)	±5.0	Normal	1	0.64	±3.2	∞	
Liquid permittivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.6	±1.7	x	
Liquid permittivity (meas.)	±5.0	Normal	1	0.6	±3.0	∞	
Combined Standard Uncertaint	y				±14.30	-	
Expanded Uncertainty (k=2)					±28.6		

The result of some test showed that the power drift has exceeded $\pm 5\%$. Therefore, the uncertainty of power drift expanded to $\pm 10\%$. However, the extended uncertainty (k= 2) of a test is less than $\pm 30\%$.

 Test report No.
 :
 251E0245-HO-6

 Page
 :
 19 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK81RF303

SECTION 9: Simulated tissue liquid parameter

9.1 Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the HP85070D dielectric probe kit. The dielectric parameters measurement are reported in each correspondent section.

9.1.1 Muscle 5GHz

Type of liquid	:	Muscle 5GHz
Liquid depth (cm)	:	15.2
Ambient temperature (deg.c.)	:	25.0(June 15 and 16)
Relative Humidity (%)	:	58(June 15),60(June 16)

	Measured By : Miyo Ikuta								
DIELECTRIC PARAMETERS MEASUREMENT RESULTS									
Date	Frequency	Liquid Temp [deg.c]		Parameters	Target Value	Measured	Deviation [%]	Limit [%]	
Date	[MHz]	Before	After						
15 Jun	5200	24.0	24.9	Relative Permittivity Er	49.0	46.8	-4.5	+/-5	
15-Jun 5200 24.9	24.9	24.9	Coductivity σ [mho/m]	5.30	5.41	2.1	+/-5		
16-Jun	5200	24.9	24.9	Relative Permittivity Er	49.0	46.8	-4.5	+/-5	
10-Juli	5200	24.9	24.9	Coductivity σ [mho/m]	5.30	5.32	0.4	+/-5	

9.2 Simulated Tissues Composition of 5GHz

Ingredient	MIXTURE(%)				
	Head 5GHz	Muscle 5GHz			
Water	64.0	78.0			
Mineral Oil	18.0	11.0			
Emulsifiers	15.0	9.0			
Additives and salt	3.0	2.0			

 Test report No.
 :
 251E0245-HO-6

 Page
 :
 20 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK81RF303

9.3 Decision on Simulated Tissues of 5200MHz

In the current standards (e.g., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given at 3000MHz and 5800MHz. As an intermediate solution, dielectric parameters for the frequencies between 5000to 5800 MHz were obtained using linear interpolation. Therefore the dielectric parameters of 5200MHz were decided as following.

(5200MHz Body Tissue/ Relative Permittivity $\epsilon r: 49.0$, Conductivity $\sigma : 5.30$)

f (MHz)	Head Tissue		Body	Tissue	Reference
	εr	σ	εr	σ	
		[mho/m]		[mho/m]	
3000	38.5	2.40	52.0	2.73	Standard
5800	35.3	5.27	48.2	6.00	Standard
5000	36.2	4.45	49.3	5.07	Interpolated
5100	36.1	4.55	49.1	5.18	Interpolated
5200	36.0	4.66	49.0	5.30	Interpolated
5300	35.9	4.76	48.9	5.42	Interpolated
5400	35.8	4.86	48.7	5.53	Interpolated
5500	35.6	4.96	48.6	5.65	Interpolated
5600	35.5	5.07	48.5	5.77	Interpolated
5700	35.4	5.17	48.3	5.88	Interpolated

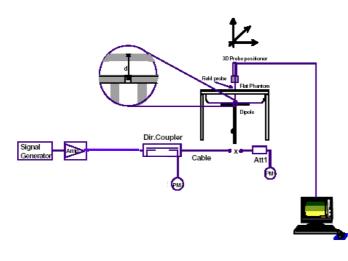
Standard and interpolated dielectric parameters for head and body tissue simulating liquidin the frequency range 3000 to 5800MHz.

 Test report No.
 :
 251E0245-HO-6

 Page
 :
 21 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK81RF303


SECTION 10 : System validation data

The target values of 5GHz were not defied by IEEE 1528. So, the target values were made into the calibration values of SPEAG. And each of the validation results of 5200MHz checked (Evaluation of muscle) that it was within +/-10% as compared with the calibration values of SPEAG. The validation results are in the table below. Please refer to APPENDIX5.

Type of liquid	: Muscle 5GHz
Dipole	: D5GHzV2 SN:1020
Power	: 250mW
Ambient temperature (deg.c.)	: 25.0(June 15 and 16)
Relative Humidity (%)	: 58(June 15),60(June 16)

_	Measured B							red By	: Miyo	Ikuta	
				Relative Permittivity		Conductivity				Deviation	Limit
		Liquid Ter	np [deg.c.]	٤	er	σ[m	ho/m]	SAR 1g [W/kg]		[%]	[%]
Date	Frequency	Before	After	Target	Measured	Target	Measured	Target	Measured		
15-Jun	5200	24.9	24.9	49.0	46.8	5.30	5.41	20.5	19.3	-5.9	+/-10
16-Jun	5200	24.9	24.9	49.0	46.8	5.30	5.32	20.5	19.1	-6.8	+/-10

Note: Please refer to Attachment for the result representation in plot forma

5100-5800MHz Systemperformance check setup

Test system for the system performance check setup diagram

UL Apex Co., Ltd. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

 Test report No.
 : 25IE0245-HO-6

 Page
 : 22 of 96

 Issued date
 : July 07, 2005

 FCC ID
 : AK8IRF303

SECTION 11 : Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the wireless LAN antenna and the horizontal grid spacing was 10mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of $30\text{mm x } 30\text{mm x } 21\text{mm was assessed by measuring 7 x 7 x 8 points. And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:$

1. The data at the surface were extrapolated, since the center of the dipoles is 1 mm mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

SECTION 12 : Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average	Spatial Peak	Spatial Peak
(averaged over the whole body)	(averaged over any 1g of tissue)	(hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Í	Spatial Average	Spatial Peak	Spatial Peak
	1 8	. F	- I
	(averaged over the whole body	(averaged over any 1g of tissue)	(hands/wrists/feet/ankles averaged over 10g)
	0.08	1.6	4.0
		1.0	

Occupational/Controlled Environments: are defined as locations where there is exposure

that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg

 Test report No.
 :
 25IE0245-HO-6

 Page
 :
 24 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK8IRF303

SECTION 13 : SAR Measurement results

13.1 Antenna 1

13.1.1 Conducted power of Antenna Port 1

[IEEE802.1	[IEEE802.11a 5150-5350MHz : Antenna Port 1 (by the data rate)]									
Ch	Modulation	S/A	Cable	Atten.	Result	Converted				
		Reading	Loss							
	(Data rate[Mbps])	[dBm]	[dB]	[dB]	[dBm]	[mW]				
52	BPSK(6Mbps)	0.65	1.23	10.00	11.88	15.42				
52	BPSK(9Mbps)	0.51	1.23	10.00	11.74	14.93				
52	QPSK(12Mbps)	0.68	1.23	10.00	11.91	15.52				
52	QPSK(18Mbps)	0.57	1.23	10.00	11.80	15.14				
52	16QAM(24Mbps)	0.68	1.23	10.00	11.91	15.52				
52	16QAM(36Mbps)	0.65	1.23	10.00	11.88	15.42				
52	64QAM(48Mbps)	0.50	1.23	10.00	11.73	14.89				
52	64QAM(54Mbps)	0.70	1.23	10.00	11.93	15.60				

[The worst data rate in SAR result]

[IEEE802.1	[IEEE802.11a 5150-5350MHz: Antenna Port 1 (12Mbps)]									
Ch	Freq.	S/A	Cable	Atten.	Result	Converted				
		Reading	Loss							
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
36	5180	1.32	1.23	10.00	12.55	17.99				
52	5260	0.68	1.23	10.00	11.91	15.52				
64	5320	0.49	1.23	10.00	11.72	14.84				

[IEEE802.1	[IEEE802.11a 5150-5350MHz: Antenna Port 1 (54Mbps)]									
Ch	Freq.	S/A	S/A Cable Atten.		Result	Converted				
		Reading	Loss							
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
36	5180	1.36	1.23	10.00	12.59	18.16				
52	5260	0.70	1.23	10.00	11.93	15.60				
64	5320	0.50	1.23	10.00	11.73	14.89				

 Test report No.
 :
 25IE0245-HO-6

 Page
 :
 25 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK8IRF303

13.1.2 Body 5150-5350MHz SAR of Antenna 1

Liquid Depth (cm)	:	15.2	Model	:	IRF303JU
Parameters	:	εr = 46.8 , σ = 5.41	Serial No.	:	003
Ambient temperature (deg.c.)	:	25.0	Modulation	:	OFDM
Relative Humidity (%)	:	58	Crest factor	:	1

							Date Measure	ed By	: June 15,2 : Miyo Iku	
		BODY SA	R MEASUREMEN	NT RESULTS	S OF ANTEN	NA 1 (IEEE	802.11a 5150-	-5350MHz)		-
	Frequency		Modulation	Dhontona	EUI	Set-up Cond	itions	Liquid Te	emp.[deg.c]	SAR(1g) [W/kg]
Band	Channel	[MHz]	(Data rate [bps])	Phantom Section	Antenna	Position	Separation [mm]	Before	After	Maximum value of multi-peak
5150-	Step 1 Mod	ulation searcl	h							
5350MHz	52	5260	BPSK(6Mbps)	Flat	ANT.1	Left Front	0	24.0	24.0	0.216
	52	5260	QPSK(12Mbps)	Flat	ANT.1	Left Front	0	24.0	24.0	0.356
	52	5260	16QAM(24Mbps)	Flat	ANT.1	Left Front	0	24.1	24.2	0.257
	52	5260	64QAM(54Mbps)	Flat	ANT.1	Left Front	0	24.2	24.3	0.336
	Step 2 Positi	on search								
	52	5260	QPSK(12Mbps)	Flat	ANT.1	Left Side	0	24.2	24.3	0.094
	52	5260	QPSK(12Mbps)	Flat	ANT.1	Left Back	0	24.6	24.6	0.038
	52	5260	QPSK(12Mbps)	Flat	ANT.1	Left Top	0	24.3	24.2	0.012
	Step 3 Frequ	ency Change	2							
	36	5180	QPSK(12Mbps)	Flat	ANT.1	Left Front	0	24.2	24.3	0.222
	64	5320	QPSK(12Mbps)	Flat	ANT.1	Left Front	0	24.3	24.4	0.445
	E C95.1 1992 A Uncontrolle		IMIT General Population					Body SAR: (averaged or		

 Test report No.
 : 25IE0245-HO-6

 Page
 : 26 of 96

 Issued date
 : July 07, 2005

 FCC ID
 : AK8IRF303

13.2 Antenna 2

13.2.1 Conducted power of Antenna Port 2

[IEEE802.1	[IEEE802.11a 5150-5350MHz: Antenna Port 2 (by the data rate)]										
Ch	Modulation	S/A	Cable	Atten.	Result	Converted					
		Reading	Loss								
	(Data rate[Mbps])	[dBm]	[dB]	[dB]	[dBm]	[mW]					
52	BPSK(6Mbps)	0.73	1.23	10.00	11.96	15.70					
52	BPSK(9Mbps)	0.73	1.23	10.00	11.96	15.70					
52	QPSK(12Mbps)	0.71	1.23	10.00	11.94	15.63					
52	QPSK(18Mbps)	0.62	1.23	10.00	11.85	15.31					
52	16QAM(24Mbps)	0.61	1.23	10.00	11.84	15.28					
52	16QAM(36Mbps)	0.72	1.23	10.00	11.95	15.67					
52	64QAM(48Mbps)	0.69	1.23	10.00	11.92	15.56					
52	64QAM(54Mbps)	0.76	1.23	10.00	11.99	15.81					

[The worst data rate in SAR result]

[IEEE802.1	[IEEE802.11a 5150-5350MHz: Antenna Port 2 (12Mbps)]										
Ch	Freq.	S/A	Cable	Atten.	Result	Converted					
		Reading	Loss								
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]					
36	5180	1.04	1.23	10.00	12.27	16.85					
52	5260	0.71	1.23	10.00	11.94	15.63					
64	5320	0.43	1.23	10.00	11.66	14.66					

[IEEE802.1	[IEEE802.11a 5150-5350MHz: Antenna Port 2 (54Mbps)]											
Ch	Freq.	S/A	Cable	Atten.	Result	Converted						
		Reading	Loss									
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]						
36	5180	1.41	1.23	10.00	12.64	18.37						
52	5260	0.76	1.23	10.00	11.99	15.81						
64	5320	0.49	1.23	10.00	11.72	14.86						

 Test report No.
 :
 25IE0245-HO-6

 Page
 :
 27 of 96

 Issued date
 :
 July 07, 2005

 FCC ID
 :
 AK8IRF303

13.2.2 Body 5150-5350MHz SAR of Antenna 2

Liquid Depth (cm)	:	15.2	Model	:	IRF303JU
Parameters	:	εr = 46.8 , σ = 5.32	Serial No.	:	003
Ambient temperature (deg.c.)	:	25.0	Modulation	:	OFDM
Relative Humidity (%)	:	60	Crest factor	:	1

							Date Measur		: June 16,2 : Miyo Iku	
		BODY SA	AR MEASUREMEN	NT RESULT	S OF ANTEN	NA2 (IEEE8	802.11a 5150-	5350MHz)		
	Frequency		Modulation	Dhoutour	EUI	Set-up Cond	itions	Liquid Te	emp.[deg.c]	SAR(1g) [W/kg]
Band	Channel	[MHz]	(Data rate [bps])	Phantom Section	Antenna	Position	Separation [mm]	Before	After	Maximum value of multi-peak
5150-	Step 1 Mod	ulation searcl	h							
5350MHz	52	5260	BPSK(6Mbps)	Flat	ANT.2	Right Front	0	24.9	24.9	0.155
	52	5260	QPSK(12Mbps)	Flat	ANT.2	Right Front	0	24.9	24.9	0.244
	52	5260	16QAM(36Mbps)	Flat	ANT.2	Right Front	0	24.9	24.8	0.237
	52	5260	64QAM(54Mbps)	Flat	ANT.2	Right Front	0	24.8	24.9	0.240
	Step 2 Posit	ion search								
	52	5260	QPSK(12Mbps)	Flat	ANT.2	Right Side	0	25.0	24.9	0.059
	52	5260	QPSK(12Mbps)	Flat	ANT.2	Right Back	0	24.8	24.7	0.062
	52	5260	QPSK(12Mbps)	Flat	ANT.2	Right Top	0	24.9	24.8	0.015
	Step 3 Freq	uency Chang	e							
	36	5180	QPSK(12Mbps)	Flat	ANT.2	Right Front	0	24.9	25.0	0.357
	64	5320	QPSK(12Mbps)	Flat	ANT.2	Right Front	0	25.0	25.0	0.226
ANSI / IEE	E C95.1 1992	- SAFETY L	IMIT					Body SAR:	1.6 W/kg	
Spatial Peal	k Uncontrolle	d Exposure /	General Population	l				(averaged or	ver 1 gram)	

13.3 Distance between Location Free TV and Phantom

This measurement opened the distance of Location Free TV and Phantom. This test was performed at the conditions of the highest SAR value.

Date	: June 16,2005
Measured By	: Miyo Ikuta

								-	-	
		BODY SA	R MEASUREMEN	VT RESULTS	5 OF ANTEN	NA 1 (IEEE8	302.11a 5150-	-5350MHz)		
Frequency			DI (EUT Set-up Conditions			Liquid Te	SAR(1g) [W/kg]		
Band	Channel	[MHz]	Modulation	Phantom Section	Antenna	Position	Separation [mm]	Before	After	Maximum value of multi-peak
5150-	Distance Ch	ange			-					
5350MHz	64	5320	QPSK(12Mbps)	Flat	ANT.1	Left Front	5	24.8	24.8	0.210
	64	5320	QPSK(12Mbps)	Flat	ANT.1	Left Front	10	24.8	24.7	0.142
ANSI / IEEI	E C95.1 1992	- SAFETY L	IMIT					Body SAR:	1.6 W/kg	
Spatial Peak	x Uncontrolle	d Exposure /	General Population	1				(averaged ov	ver 1 gram)	

 Test report No.
 : 251E0245-HO-6

 Page
 : 28 of 96

 Issued date
 : July 07, 2005

 FCC ID
 : AK81RF303

SECTION 14 : Equ	ipment & calibration	information

Name of Equipment	Manufacture	Model number	Serial number	Calibration	
-1				Last Cal	due date
Power Meter	Agilent	E4417A	GB41290639	2004/11/09	2005/11/08
Power Sensor	Agilent	E9300B	US40010300	2004/11/15	2005/11/14
Power Sensor	Agilent	E9327A	US40440545	2004/11/23	2005/11/22
Spectrum Analyzer	Agilent	E4448A	MY44020357	2005/06/03	2006/06/02
S-Parameter Network Analyzer	Agilent	8753ES	US39174808	2003/10/23	2006/10/22
Signal Generator	Rohde&Schwarz	SML40	100023	2005/01/05	2006/01/04
RF Amplifier	TSJ	TCBP0206	-	2005/2/24	2006/2/23
Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV3	3507	2005/4/12	2006/4/11
Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE3	516	2005/3/10	2006/3/09
Robot,SAM Phantom	Schmid&Partner Engineering AG	DASY4	1021834	N/A	N/A
Attenuator	Agilent	US40010300	08498-60012	2004/12/16	2005/12/15
Attenuator	Orient Microwave	BX10-0476-00	-	2005/03/16	2006/03/15
5GHz System Validation Dipole	Schmid&Partner Engineering AG	D5GHzV2	1020	2004/2/23	2006/2/22
Dual Directional Coupler	N/A	Narda	3702	N/A	N/A
Body 5800MHz	N/A	N/A	N/A	N/A	N/A
Ambient Noise <0.012W/kg	SAR room	-		2005/6/15 2005/6/16	-

SECTION 15 : References

- [1]ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [2] Katja Pokovic, Thomas Schmid, and Niels Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM '97, Dubrovnik, October 15-17, 1997, pp. 120-124.
- [3] Katja Pokovic, Thomas Schmid, and Niels Kuster, "E-_field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [4] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992.
- [6] Barry N. Taylor and Christ E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994.