

FCC RF EXPOSURE REPORT

FCC ID: 2BH7FBE4800

Project No. : 2502G003

Equipment: BE4800 Dual-Band Wi-Fi 7 Router

Brand Name : tp-link

Test Model: Archer BE4800

Series Model : N/A

Applicant: TP-Link Systems Inc.

Address : 10 Mauchly, Irvine, CA 92618

Manufacturer : TP-Link Systems Inc.

Address : 10 Mauchly, Irvine, CA 92618

Date of Receipt : Feb. 07, 2025

Date of Test: Feb. 07, 2025 ~ Mar. 25, 2025

Issued Date: May 13, 2025

Report Version : R01

Test Sample : Engineering Sample No.: DG2025020741

Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091

FCC Title 47 Part 2.1091 & KDB 447498 D01 v06

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Dongguan)

Prepared by

Chella Zheng

Approved by

Chav Cai

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-5-2502G003	R00	Original Report.	Apr. 18, 2025	Invalid
BTL-FCCP-5-2502G003	R01	Revised report to address comments.	May 13, 2025	Valid

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

2. ANTENNA SPECIFICATION

For 2.4GHz:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	
1	tp-link	N/A	Dipole	weld	6.43	
2	tp-link	N/A	Dipole	weld	5.26	

Note:

- This EUT supports CDD, and all antenna gains are not equal, Directional gain = G_{ANT}+Array Gain. For power measurements, Array Gain=0dB (N_{ANT}≤4), so the Directional gain=6.43. For power spectral density measurements, Directional gain(each angle)= $10\log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})^2/N]dBi=10\log[(10^{6.43/20}+10^{1.03/20})^2/2]=7.15dBi$,
- Beamforming gain is 3dB.
- The antenna gain and beamforming gain are provided by the manufacturer.

For 5GHz:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Note	
1	tp-link	N/A	Dipole	weld	5.89	UNII-1	
2	tp-link	N/A	Dipole	weld	5.50	OMII-1	
1	tp-link	N/A	Dipole	weld	6.65	UNII-2A	
2	tp-link	N/A	Dipole	weld	6.35		
1	tp-link	N/A	Dipole	weld	6.43	UNII-2C	
2	tp-link	N/A	Dipole	weld	6.76	UNII-2C	
1	tp-link	N/A	Dipole	weld	5.17	1 INIII 2/LINIII 4	
2	tp-link	N/A	Dipole	weld	6.61	UNII-3/UNII-4	

Note:

1) This EUT supports CDD, and all antenna gains are not equal, Directional gain = G_{ANT}+Array Gain. For power measurements, Array Gain=0dB (N_{ANT}≤4), so the UNII-1 Directional gain=5.89, the UNII-2A Directional gain=6.65, the UNII-2C Directional gain=6.76, the UNII-3/UNII-4 Directional gain=6.61. For power spectral density measurements, Directional gain(each angle)=10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})²/N]dBi.

So the UNII-1 Directional gain(each angle)= $10\log[(10^{+10^{-10}}]^{-10}]^{-10}]$ dBi=8.20, the UNII-2A Directional gain(each angle)= $10\log[(10^{6.65/20}+10^{4.60/20})^2/2]$ dBi=8.60, the UNII-2C Directional gain(each angle)= $10\log[(10^{6.65/20}+10^{4.38/20})^2/2]$ dBi=8.13, the UNII-3 Directional gain(each angle)= $10\log[(10^{4.89/20}+10^{3.99/20})^2/2]$ dBi=7.46.

- 2) Beamforming Gain: 3 dB.
- 3) The antenna gain and beamforming gain are provided by the manufacturer.

3. CALCULATED RESULT

For 2.4GHz:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
6.43	4.3954	28.09	644.1693	0.3607	1	Complies

For 5GHz (UNII-1 Indoor access point device):

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
5.89	3.8815	25.87	386.3670	0.1910	1	Complies

For 5GHz (UNII-1 Client device):

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
5.89	3.8815	23.88	244.3431	0.1208	1	Complies

For 5GHz (UNII-2A):

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
6.65	4.6238	19.99	99.7700	0.0588	1	Complies

For 5GHz (UNII-2C):

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
6.76	4.7424	23.18	207.9697	0.1256	1	Complies

For 5GHz (UNII-3):

Direct Ga (dE	in	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
6.6	31	4.5814	28.69	739.6053	0.4316	1	Complies

For 5.9GHz (UNII-4 Indoor access point device):

Max. e.i.r.p. (dBm)	Max. e.i.r.p. (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
34.89	3083.1880	0.3928	1	Complies

For 5.9GHz (UNII-4 Client device):

Max. e.i.r.p. (dBm)	Max. e.i.r.p. (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
29.72	937.5620	0.1194	1	Complies

For the max simultaneous transmission MPE:

TOT THE HIGH SITHAITANCOUS TI				
Ra	atio	Total	Limit of Ratio	Test Result
2.4GHz	5GHz	IUlai	LITTIL OF RALIO	rest Result
0.3607	0.4316	0.7923	1	Complies

Note:

- (1) The calculated distance is 25 cm. (2) Ratio=Power Density (S) (mW/cm 2)/Limit of Power Density (S) (mW/cm 2)

End of Test Report