DASY5 Validation Report for Head TSL Date: 06.30.2017 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d193 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f=1900 MHz; $\sigma=1.385$ S/m; $\epsilon r=40.51$; $\rho=1000$ kg/m3 Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.26, 8.26, 8.26); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.36 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 9.88 W/kg; SAR(10 g) = 5.1 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 06.30.2017 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d193 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.509$ S/m; $\varepsilon_r = 53.02$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.95, 7.95, 7.95); Calibrated: 1/23/2017; - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.05 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.24 W/kg Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.85 dBW/kg # Impedance Measurement Plot for Body TSL Add: No.51 Xueyuun Rond, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinatt.com http://www.chinattl.cn baluntek Client Certificate No: Z19-60177 **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 952 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 10, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|--| | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | 106277
104291
SN 7514
SN 1556
ID #
MY49071430 | 106277 20-Aug-18 (CTTL, No.J18X06862) 104291 20-Aug-18 (CTTL, No.J18X06862) SN 7514 27-Aug-18(SPEAG,No.EX3-7514_Aug18) SN 1556 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) ID # Cal Date(Calibrated by, Certificate No.) MY49071430 23-Jan-19 (CTTL, No.J19X00336) | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是私 | | Reviewed by: | Lin Hao | SAR Test Engineer | # 26 | | Approved by: | Qi Dianyuan | SAR Project Leader | 200 | Issued: June 14, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60177 Page 1 of 8 e p CALIBRATION LABORATORY dd: No.51 Xueynan Road, Haidian District, Beijing, 100191, China ct. +86-10-62304633-2079 Fax: +86-10-62304633-2204 -mail: ettl@chinatt.com http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)*, March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook - Methods Applied and Interpretation of Parameters: Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required, - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - connector. SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60177 Page 2 mi 8 S P E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, Chrun Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # Measurement Conditions | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | | | | | # Head TSL parameters | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.6 ± 6 % | 1.83 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1 | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22,0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 1.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | - | Single | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.9 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.94 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60177 Page 3 of 8 In Collaboration with Add: No.51. Kneynav Road, Haidiau District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2304 http://www.chinart.cn http://www.chinart.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.1Ω+ 2.51 JΩ | |--------------------------------------|----------------| | Return Loss | - 26 8dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.3Ω+ 3.40 μΩ | | |--------------------------------------|----------------|--| | Return Loss | - 27 9dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.020 ns | |----------------------------------|-----------| | Linearies Delay (ette direction) | 1.020 113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | SPEAG | |-------| | | Certificate No: Z19-60177 Page 4:018 In Collaboration with s p e a CALIBRATION LABORATORY | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2979 | Fax: +86-10-62304633-2504 | E-mail: ettl@chinattl.com | http://www.chinattl.cn DASY5 Validation Report for Head TSL Date: 06.10.2019 DAS15 Validation Report for Heat 1312 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.825 S/m; ε_t = 39.75; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.66 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 22.3 W/kg 0 dB = 22.3 W/kg = 13.48 dBW/kg # Impedance Measurement Plot for Head TSL DASY5 Validation Report for Body TSL Date: 06.10.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.962 S/m; ϵ_r = 52.06; ρ = 1000 kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(7.13, 7.13, 7.13) @ 2450 MHz; Calibrated: - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid; dx=5mm, dy=5mm, dz=5mm Reference Value = 89.63 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.94 W/kgMaximum value of SAR (measured) = 21.3 W/kg 0 dB = 21.3 W/kg = 13.28 dBW/kg #### Impedance Measurement Plot for Body TSL # F.7 2600 MHz Dipole Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client baluntek(Auden) Certificate No: D2600V2-1095_Jul17 #### **CALIBRATION CERTIFICATE** D2600V2 - SN:1095 Object Calibration procedure(s) **QA CAL-05.v9** Calibration procedure for dipole validation kits above 700 MHz July 10, 2017 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID# Cal Date (Certificate No.) Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 SN: 103245 04-Apr-17 (No. 217-02522) Power sensor NRP-Z91 Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18 Apr-18 Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) SN: 7349 31-May-17 (No. EX3-7349_May17) May-18 Reference Probe EX3DV4 SN: 601 28-Mar-17 (No. DAE4-601_Mar17) Mar-18 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 SN: US37292783 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-16) In house check: Oct-17 Name Function Calibrated by: Jeton Kastrati Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: July 11, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates # Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook # **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # Measurement Conditions DASY system configuration, as | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.2 ± 6 % | 2.04 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.2 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.6 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.4 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) # **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.2 Ω - 7.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.9 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.6 Ω - 5.9 jΩ | | |--------------------------------------|-------------------|--| | Return Loss | - 21.5 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.150 ns | |-----------------------------------|-----------| | Liectrical Delay (Orie direction) | 1.100 113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 12, 2016 | #### **DASY5 Validation Report for Head TSL** Date: 10.07.2017 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1095 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.04 S/m; ϵ_r = 37.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 28.03.2017 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.1 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.4 W/kgMaximum value of SAR (measured) = 24.2 W/kg 0 dB = 24.2 W/kg = 13.84 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 10.07.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1095 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.9 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.15 W/kgMaximum value of SAR (measured) = 22.1 W/kg 0 dB = 22.1 W/kg = 13.44 dBW/kg # Impedance Measurement Plot for Body TSL In Collaboration with Add: No.51 Xueyuan Road, Haidian District. Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Client baluntek Certificate No: Z17-97083 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1200 Calibration Procedure(s) FD-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 29, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRVD | 102083 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | Power sensor NRV-Z5 | 100595 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | ReferenceProbe EX3DV4 | SN 7433 | 26-Sep-16(SPEAG,No.EX3-7433_Sep16) | Sep-17 | | DAE4 | SN 1331 | 19-Jan-17(CTTL-SPEAG,No.Z17-97015) | Jan-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | NetworkAnalyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 表表 | | Reviewed by: | Lin Hao | SAR Test Engineer | # 345 | | Approved by: | Qi Dianyuan | SAR Project Leader | and | Issued: July 1, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97083 Page 1 of 14 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97083 Page 2 of 14 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|----------------------------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 4.63 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | - | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.63 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 76.2 mW /g ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.18 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 21.8 mW /g ± 24.2 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.2 ± 6 % | 4.96 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | / | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 8.23 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 82.6 mW /g ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.35 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 mW /g ± 24.2 % (k=2) | Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.2 ± 6 % | 5.11 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | 100 | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 8.05 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 80.8 mW /g ± 24.4 % (k=2) | | SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.28 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 mW /g ± 24.2 % (k=2) | # Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.1 ± 6 % | 5.42 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | *** | | SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7,54 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 75.2 mW /g ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.13 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 mW /g ± 24.2 % (k=2) | Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.6 ± 6 % | 5.77 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 944 | 1,554 | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.82 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 77.9 mW /g ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.20 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.9 mW /g ± 24.2 % (k=2) | Certificate No: Z17-97083 Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|--| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.5 ± 6 % | 5.84 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | (American Control of C | # SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.53 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 75.0 mW /g ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.12 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.1 mW /g ± 24.2 % (k=2) | # Appendix (Additional assessments outside the scope of CNAS L0570) # Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 48.2Ω - 4.57jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 26.0dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $55.2\Omega + 2.14j\Omega$ | | |--------------------------------------|----------------------------|--| | Return Loss | - 25.4dB | | # Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 50.6Ω - 3.25jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 29.7dB | | # Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 47.9Ω - 2.79jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 29.0dB | | # Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 55.3Ω + 3.88jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 24.1dB | | # Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 51.9Ω - $2.20j\Omega$ | | |--------------------------------------|------------------------------|--| | Return Loss | - 30.9dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.315 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |--|-------| | - 10 Ct (- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | Date: 06.29.2017 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 4.633 mho/m; ϵ r = 35.82; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.957 mho/m; ϵ r = 36.23; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.107 mho/m; ϵ r = 36.17; ρ = 1000 kg/m3, Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: - Probe: EX3DV4 SN7433; ConvF(5.13,5.13,5.13); Calibrated: 2016/9/26, ConvF(4.59,4.59,4.59); Calibrated: 2016/9/26, ConvF(4.66,4.66,4.66); Calibrated: 2016/9/26, - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2017/1/19 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.36 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.0 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 19.4 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.85 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.6 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 19.7 W/kg 0 dB = 19.7 W/kg = 12.94 dBW/kg #### Impedance Measurement Plot for Head TSL Date: 06.28.2017 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 5.418 mho/m; ϵ r = 48.07; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.767 mho/m; ϵ r = 47.59; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.844 mho/m; ϵ r = 47.51; ρ = 1000 kg/m3, Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: - Probe: EX3DV4 SN7433; ConvF(4.68,4.68,4.68); Calibrated: 2016/9/26, ConvF(3.98,3.98,3.98); Calibrated: 2016/9/26,ConvF(4.35,4.35,4.35); Calibrated: 2016/9/26, - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2017/1/19 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 39.45 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 17.7 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.62 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 18.7 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.40 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.12 W/kgMaximum value of SAR (measured) = 18.5 W/kg 0 dB = 18.5 W/kg = 12.67 dBW/kg # Impedance Measurement Plot for Body TSL Certificate No: Z17-97083 Page 14 of 14