

WiFi Dual Band Ceramic Chip Antenna Model: AA077 TELA Series Product Number: H2U84W1H1S0300

REFERENCE SPECIFICATION

Unique Electronics You Need

Downloaded from Arrow.com.

Version: 10702A_rev-J

Radiation Pattern

Packing Tuning

Notes

Table of Contents

1 In	troduction
2 El	ectrical Characteristics 4
2.1	Table with electrical properties: 4
2.2	Return Loss (S ₁₁) 5
2.3	VSWR (S ₁₁)
2.4	Efficiency Table6
2.5	Efficiency vs. Frequency7
2.6	Radiation Pattern (with 80x40mm ² Evaluation Board)8
3 L	ayout12
3.1	Antenna Dimensions 12
3.2	Evaluation Board with Antenna13
3.3	Solder Land Pattern
4 F	requency tuning
5 Pa	acking
5.1	Packing process
6 N	otes 19
6.1	Typical Soldering Profile for Lead-free Process
6.2	Operating and storage conditions:
6.3	Installation guide:
6.4	Reminders for users of Unictron's AA077 ceramic chip antennas

1 Introduction

Unictron's AA077 ceramic chip antenna is designed for Wi-Fi CERTIFIED ac applications, covering both 2400~2484 MHz & 5150~5850 MHz frequency bands. Fabricated with proprietary design and processes, AA077 shows excellent performance and is fully compatible with SMT processes which can decrease the assembly cost and improve device's quality and consistency.

Features

*Stable and reliable performances in both 2.4 and 5 GHz bands

*Low profile and compact size

*RoHS compliance

*SMT processes compatible

Applications

*Wi-Fi CERTIFIED ac applications

Tuning

* Wireless communication devices when IEEE802.11 a/b/g/n/ac functions are needed.

*IoT applications

* Wireless PCMCIA cards or USB dongles

Introduction Electrical Characteristics

Radiation Pattern La

Layout Tuning Packing

Notes

2 Electrical Characteristics

2.1 Table with electrical properties:

Electrical Table (2400~2500 MHz Band)

Char	acteristics	Specifications	Unit
Outline Dimensi	ons	3.2x1.6x0.5	mm
Ground Plane Di	mensions	80x40	mm
Working Freque	ncy	2400~2500	MHz
VSWR (@center fr	requency)*	2 Max.	
Characteristic Im	npedance	50	Ω
Polarization		Linear Polarization	
Peak Gain		1.7 (typical)	dBi
Efficiency	(@2442MHZ)	78 (typical)	%

* Center frequency means the frequency with the lowest value in return loss of the chip antenna on the evaluation board.

Electrical Table (5150~5850 MHz Band)

Char	acteristics	Specifications	Unit
Outline Dimensi	ons	3.2x1.6x0.5	mm
Ground Plane		80x40	mm
Working Freque	ncy	5150~5850	MHz
VSWR (@center fr	equency)*	2 Max.	
Characteristic Im	pedance	50	Ω
Polarization		Linear Polarization	
Peak Gain		2.3 (typical)	dBi
Efficiency	(@55001VIHZ)	67 (typical)	%

* Center frequency means the frequency with the lowest value in return loss of the chip antenna on the evaluation board.

Introduction Electrical Characteristics

Radiation Pattern La

Layout Tuning Packing

cking Notes

2.2 Return Loss (S₁₁)

2.3 VSWR (S₁₁)

Layout

Tuning Packing Notes

2.4 Efficiency Table

2400~2500 MHz

Frequency(MHz)	2400	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472	2484	2500
Efficiency(dB)	-1.7	-1.4	-1.2	-1.0	-1.0	-1.0	-1.1	-1.1	-1.2	-1.1	-1.1	-1.0	-1.0	-1.1	-1.5	-1.8
Efficiency(%)	67.9	73.2	76.1	78.7	79.9	78.8	77.4	76.8	76.8	77.2	78.1	79.3	79.2	78.1	71.5	65.5
Peak Gain(dBi)	0.8	1.2	1.3	1.4	1.4	1.3	1.3	1.4	1.5	1.5	1.4	1.5	1.4	1.3	1.2	0.8

5150~5850 MHz

Frequency(MHz)	5150	5200	5250	5300	5350	5400	5450	5500	5550	5600	5650	5700	5750	5800	5850
Efficiency(dB)	-1.5	-1.4	-1.8	-1.5	-1.4	-1.8	-2.0	-1.6	-1.7	-1.6	-1.4	-1.6	-1.8	-1.5	-1.9
Efficiency(%)	71.5	71.9	65.7	71.6	71.9	65.8	63.2	69.9	67.3	69.6	71.7	68.9	66.6	70.1	64.6
Gain(dBi)	2.2	2.3	2.0	2.3	2.1	2.1	2.0	2.4	2.3	2.8	2.9	2.6	2.5	2.6	2.2

2.5 Efficiency vs. Frequency

Radiation Pattern

Notes

Packing

2.6 Radiation Pattern (with 80x40mm² Evaluation Board)

-2 --0 --2 --5 --7 --9 --12 --14 --16 --18 --21

3D Gain Pattern @ 2442 MHz (unit: dBi)

Tuning

Introduction Electrical Characteristics

Radiation Pattern

Layout Tuning

3D Gain Pattern @ 5150 MHz (unit: dBi)

Unictron Technologies Corp.

Introduction Electrical Characteristics

Radiation Pattern

Layout Tuning Packing

3D Gain Pattern @ 5500 MHz (unit: dBi)

Radiation Pattern

g Notes

3D Gain Pattern @ 5850 MHz (unit: dBi)

<mark>it Tuning Pack</mark>

Packing Notes

3 Layout

3.1 Antenna Dimensions

PIN Definitions

Item	PIN1	PIN 2
Terminal	Signal	Tuning/Ground

Introduction Electrical Characteristics

Radiation Pattern Layout

Tuning Packing

Notes

3.2 Evaluation Board with Antenna

3.3 Solder Land Pattern

For solder land pattern, please contact Unictron representative at e-sales@unictron.com for layout details and more technical information.

Electrical Characteristics Introduction

Layout

Tuning

Packing Notes

Frequency tuning 4

Regarding the frequency tuning, please contact Unictron representative at e-sales@unictron.com for layout details and more technical information

With the following recommended values of matching and tuning components, the center frequencies will be about 2442 MHz for lower band & 5500 MHz for higher band at our standard 80x40 mm2 evaluation board. However, these are typical reference values which may need to be changed when circuit boards or part vendors are different.

System Matching Circuit Component							
Location	Description	Vendor	Tolerance				
1	N/A	-	-				
2	1 nH <i>,</i> (0402)	DARFON	±0.3 nH				
3	0.2 pF, (0402)	DARFON	±0.05 pF				
4	22 pF, (0402)	DARFON	±5%				
5 Fine tuning element	1 pF, (0402)	DARFON	±0.05 pF				
6 Fine tuning element	0.2 pF, (0402)	DARFON	±0.05 pF				

Packing

Notes

5 Packing

- 1. Quantity/Reel: 5000 pcs/Reel
- 2. Plastic tape:
 - a) Tape drawing:

b) Tape dimensions (unit: mm)

Layout

Tuning

Radiation Pattern

Feature	Specifications	Tolerances
W	12.00	±0.30
Р	4.00	±0.10
E	1.75	±0.10
F	5.50	±0.10
P2	2.00	±0.10
D	1.50	+0.10
		-0.00
Ро	4.00	±0.10
10Po	40.00	±0.20

c) Reel drawing

Electrical Characteristics Introduction

Radiation Pattern

Layout

Tuning

Notes Packing

d) Drawing of small size carton in developed view

e) Drawing of middle size carton in developed view

Introduction | Electrical Characteristics

Radiation Pattern Layout

Tuning Packing

Notes

f) Drawing of large size carton in developed view

g) Picture of a label

Unict	ron Technologies Corporation
CUST P/N	
DESC	
P/N	
L/N	
Q"TY	
DATE	

h) Reel with the label

Packing

Electrical Characteristics Introduction

Radiation Pattern

Layout

Notes

i) Small size carton with label

j) Middle size carton with label

Tuning

5.1 Packing process

1 reel includes max 5000 pieces chip antennas

1 small size carton includes max 2 reels

1 middle size carton includes max 5pcs of small carons

1 large size carton includes max 2 pcs of middle size cartons

6 Notes

6.1 Typical Soldering Profile for Lead-free Process

Time (s)

Radiation Pattern

Lavout

Tuning Packing

Notes

6.2 Operating and storage conditions:

Operating:	Storage:
Maximum Input Power: 2W	Storage Temperature -5C to 40 C
Operating Temperature: -40 C to 85 C	Relative Humidity: 20% to 70%
	Shelf Life: 1 year

6.3 Installation guide:

Request Unictron's application notes "General guidelines for the installation of Unictron's chip antennas" for further information at e-sales@unictron.com.

6.4Reminders for users of Unictron's AA077 ceramic chip antennas

6.4.1 This chip antenna is made of ceramic materials which are relatively more rigid and brittle compared to printed circuit board materials. Bending of circuit board at the locations where chip antenna is mounted may cause the cracking of solder joints or antenna itself.

6.4.2 Punching/cutting of the break-off tab of PCB panel may cause severe bending of the circuit board which may result in cracking of solder joints or chip antenna itself. Therefore break-off tab shall be located away from the installation site of chip antenna.

6.4.3 Be cautious when ultrasonic welding process needs to be used near the locations where chip antennas are installed. Strong ultrasonic vibration may cause the cracking of chip antenna solder joints.

Packing

Tuning

Introduction | Electrical Characteristics

Radiation Pattern Layout

Notes

Presented data were measured on reference PCB (ground) as shown in this specification. When the antenna placement or size of the PCB is changed, antenna performance and values of matching components may differ from data shown here.

Information presented in this Reference Specification is believed to be correct as of the date of publishing. Unictron Technologies Corporation reserves the rights to change the Reference Specification without notice due to technical improvements, etc. Please consult with Unictron's engineering team about the latest information before using this product. Per request, we may provide advice and assistance in implementing this antenna to a customer's device by simulation or real measurement of the interested device in our testing facilities.

Unictron Technologies Corporation

No. 41 Shuei-Keng, Guan-SiTel: +886-3-547-5550Hsinchu 30648Email: e-sales@unictron.comTaiwan (R.O.C.)Web: www.unictron.com