SAR EVALUATION REPORT For # QIXIANG ELECTRON SCIENCE& TECHNOLOGY CO., LTD Qixiang Building, Tangxi Industrial Zone, Luojiang District, Quanzhou, Fujian, China FCC ID: T4K3308 This Report Concerns: **Equipment Type:** Original Report Two-way Radio Hong **Test Engineer:** Eric Hong **Report No.:** R0603309S **Report Date:** 2006-04-11 **Reviewed By:** Snell Leong Prepared By: Bay Area Compliance Laboratory Corporation 1274 Anvilwood Ave Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164 **Note:** This test report is specially limited to the above client company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. Government. | DECLARATION OF CO | DECLARATION OF COMPLIANCE SAR EVALUATION | | | | | | |------------------------------|--|--|--|--|--|--| | Rule Part(s): | FCC §2.1093 & IEEE 1528 | | | | | | | Test Procedure(s): | FCC OET Bulletin 65 Supplement C & IEEE 1528 | | | | | | | Device Type: | Two-way Radio | | | | | | | Model Number: | 3308 | | | | | | | Modulation: | FM | | | | | | | TX Frequency Range: | 421MHz-430MHz | | | | | | | Max. Conducted Power Tested: | 4.83W | | | | | | | Antenna Type(s): | External Antenna | | | | | | | Body-Worn Accessories: | Earphone & Microphone, Belt clip | | | | | | | Face-Head Accessories: | None | | | | | | | 2.00 W//~ (1~ 420MH- Da | dy Warn) 1 47 mW/g (1g 420MHg Head) | | | | | | 2.88 mW/g (1g, 420MHz, Body-Worn) 1.47 mW/g (1g, 420MHz, Head) BACL Corp. declares under its sole responsibility that this wireless portable device has been determined to be in compliance for localized specific absorption rate (SAR) for uncontrolled exposure and general population exposure limits specified in FCC OET Bulletin 65 Supplement C and has been tested in accordance with the measurement procedures specified in ANSI IEEE C95.3:2002 & IEEE 1528. All measurements reported herein were performed under my supervision and believed to be accurate to the best of my knowledge. I further attest for the completeness of these measurements and vouch for the qualifications any and all personnel performing such measurements. The results and statements contained in this report pertain only to the device(s) evaluated. /signature/ **Eric Hong** Bay Area Compliance Laboratory Corp. Hona ## **TABLE OF CONTENTS** | REFERENCE, STANDARDS, AND GUILDELINES | 4 | |---|-----| | SAR LIMITS | | | EUT DESCRIPTION | 6 | | DESCRIPTION OF TEST SYSTEM | | | Measurement System Diagram | g | | SYSTEM COMPONENTS | | | TESTING EQUIPMENT | | | EQUIPMENTS LIST & CALIBRATION INFO | | | SAR MEASUREMENT SYSTEM VERIFICATION | 20 | | System Accuracy Verification | 20 | | EUT TEST STRATEGY AND METHODOLOGY | 21 | | SAR EVALUATION PROCEDURE | 21 | | CONCLUSION | 22 | | SAR BODY WORST-CASE TEST DATA | 22 | | APPENDIX A – MEASUREMENT UNCERTAINTY | 23 | | APPENDIX B – PROBE CALIBRATION CERTIFICATES | 25 | | APPENDIX C – DIPOLE CALIBRATION CERTIFICATES | 36 | | APPENDIX D - TEST SYSTEM VERIFICATIONS SCANS | 42 | | LIQUID MEASUREMENT RESULT | 42 | | APPENDIX E - EUT SCANS | 45 | | APPENDIX F – CONDUCTED OUTPUT POWER MEASUREMENT | 47 | | Provision Applicable | | | TEST PROCEDURE | | | TEST EQUIPMENTTEST RESULTS | | | APPENDIX G – Z-AXIS PLOT | | | APPENDIX H – EUT TEST POSITION PHOTOS | | | BODY POSITION | | | FACE 2.5CM POSITION | | | APPENDIX I – EUT & ACCESSORIES PHOTOS | | | MODEL 3308: EUT – FRONT VIEW | 50 | | MODEL 3308: EUT – REAR VIEW | | | EUT - UNCOVERED VIEW | | | EUT – Uncovered View
EUT – Uncover View | | | EUT – UNCOVER VIEW. | | | EUT – MAIN PCB SITE 2 VIEW. | | | ADDENDIV I INFODMATIVE DEFEDENCES | 5.4 | ## REFERENCE, STANDARDS, AND GUILDELINES #### FCC: The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass. #### CE: The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by the EN50360 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass. The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device. There was no SAR of any concern measured on the device for any of the investigated configurations. ## **SAR Limits** ## FCC Limit (1g) | | SAR (W/kg) | | | | | | |--|--|--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | | Spatial Peak
(averaged over any 1 g of tissue) | 1.60 | 8.0 | | | | | | Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) | 4.0 | 20.0 | | | | | ## CE Limit (10g) | | SAR (W/kg) | | | | | | |--|--|--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | | Spatial Peak
(averaged over any 1 g of tissue) | 2.0 | 10 | | | | | | Spatial Peak
(hands/wrists/feet/ankles
averaged over 10 g) | 4.0 | 20.0 | | | | | Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). Occupational/controlled environments Spatial Peak limit 8 w/kg (FCC) & 10 w/kg (CE) applied to the EUT. ## **EUT DESCRIPTION** The *Qixiang Electron Science & Technology Co., Ltd*'s product, model number: 3308, Version: 1.0 or the "EUT" as referred to in this report is a TWO-WAY-RADIO. The EUT is measured approximately 14.2 cmL x 5.3 cmW x 3.8 cmH, rated input voltage: DC 7.5 V Battery, with detachable Antenna 8.0cm. The series products, model 3308/720/3508/9759/327. For the test model 3308 was selected. * The test data gathered are from production sample model 3308, serial number: 0603026, Revision: Rev1.0, provided by the manufacturer. ## **DESCRIPTION OF TEST SYSTEM** These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG) which is the fourth generation of the system shown in the figure hereinafter: The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe ET3DV6 SN: 1604 (manufactured by SPEAG), designed in the classical triangular
configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. The phantom used was the Generic Twin Phantom". The ear was simulated as a spacer of 4 mm thickness between the earpiece of the phone and the tissue simulating liquid. The Tissue simulation liquid used for each test is in according with the FCC OET65 supplement C as listed below. | Ingredients | Frequency (MHz) | | | | | | | | | | |---------------------|-----------------|-------|-------|------|-------|-------|-------|------|------|------| | (% by weight) | 45 | 0 | 83 | 35 | 9 | 15 | 19 | 00 | 24: | 50 | | Tissue Type | Head | Body | | Water | 38.56 | 51.16 | 41.45 | 52.4 | 41.05 | 56.0 | 54.9 | 40.4 | 62.7 | 73.2 | | Salt (Nacl) | 3.95 | 1.49 | 1.45 | 1.4 | 1.35 | 0.76 | 0.18 | 0.5 | 0.5 | 0.04 | | Sugar | 56.32 | 46.78 | 56.0 | 45.0 | 56.5 | 41.76 | 0.0 | 58.0 | 0.0 | 0.0 | | HEC | 0.98 | 0.52 | 1.0 | 1.0 | 1.0 | 1.21 | 0.0 | 1.0 | 0.0 | 0.0 | | Bactericide | 0.19 | 0.05 | 0.1 | 0.1 | 0.1 | 0.27 | 0.0 | 0.1 | 0.0 | 0.0 | | Triton x-100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 36.8 | 0.0 | | DGBE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 44.92 | 0.0 | 0.0 | 26.7 | | Dielectric Constant | 43.42 | 58.0 | 42.54 | 56.1 | 42.0 | 56.8 | 39.9 | 54.0 | 39.8 | 52.5 | | Conductivity (s/m) | 0.85 | 0.83 | 0.91 | 0.95 | 1.0 | 1.07 | 1.42 | 1.45 | 1.88 | 1.78 | **IEEE SCC-34/SC-2 P1528 Recommended Tissue Dielectric Parameters** | Frequency | He | ad | В | Body | |-----------|-------------------|---------|-------------------|----------| | (MHz) | $\epsilon_{ m r}$ | O'(S/m) | $\epsilon_{ m r}$ | O' (S/m) | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800-2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | ## **Measurement System Diagram** The DASY4 system for performing compliance tests consists of the following items: - A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the (absolute) accuracy of the probe positioning. - A computer operating Windows 2000 or Windows XP. - DASY4 software. - Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. - The SAM twin phantom enabling testing left-hand and right-hand usage. - The device holder for handheld mobile phones. - Tissue simulating liquid mixed according to the given recipes. - Validation dipole kits allowing to validate the proper functioning of the system. ## **System Components** - DASY4 Measurement Server - Data Acquisition Electronics - Probes - · Light Beam Unit - Medium - SAM Twin Phantom - Device Holder for SAM Twin Phantom - System Validation Kits - Robot ## **DASY4** Measurement Server The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. ## **Data Acquisition Electronics** The data acquisition electronics DAE3 consists of a highly sensitive electrometergrade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. #### **Probes** The DASY system can support many different probe types. **Dosimetric Probes:** These probes are specially designed and calibrated for use in liquids with high permittivity. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies. **Free Space Probes:** These are electric and magnetic field probes specially designed for measurements in free space. The z-sensor is aligned to the probe axis and the rotation angle of the x-sensor is specified. This allows the DASY system to automatically align the probe to the measurement grid for field component measurement. The free space probes are generally not calibrated in liquid. (The H-field probes can be used in liquids without any change of parameters.) **Temperature Probes:** Small and sensitive temperature probes for general use. They use a completely different parameter set and different evaluation procedures. Temperature rise features allow direct SAR evaluations with these probes. #### **ET3DV6 Probe Specification** Construction Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges Calibration In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy \pm 8%) Frequency 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity \pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal probe axis) Dynamic 5 mW/g to > 100 mW/g; Range Linearity: $\pm 0.2 \text{ dB}$ Surface ± 0.2 mm repeatability in air and clear liquids Detection over diffuse reflecting surfaces. Dimensions Overall length: 330 mm Tip length: 16 mm Photograph of the probe Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm Application General dosimetric up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms The SAR measurements were conducted with the dosimetric probe ET3DV6 designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY3 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum. Inside view of ET3DV6 E-field Probe #### **E-Field Probe Calibration Process** Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees. E-field temperature correlation calibration is performed in a
flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. #### **Data Evaluation** The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: - Sensitivity Normi, ai0, ai1, ai2 Conversion factor ConvFiDiode compression point dcpi Device parameters: - Frequency f - Crest factor cf Media parameters: - Conductivity σ - Density These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ With Vi = compensated signal of channel i (i =x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals the primary field data for each channel can be evaluated: E – field probes : $$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ H – field probes : $$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$ With Vi = compensated signal of channel i (i = x, y, z) $Norm_i$ = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)^2$ for E-field probes ConF = sensitivity enhancement in solution a_{ii} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strenggy of channel i in V/m H_i = diode compression point (DASY parameter) The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$ With SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is normally set to 1, to account for actual brain density rather than the density of the simulation liquid. ## **Light Beam Unit** The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. #### Medium #### **Parameters** The parameters of the tissue simulating liquid strongly influence the SAR in the liquid. The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., EN 50361, IEEE 1528-2003). #### Parameter measurements Several measurement systems are available for measuring the dielectric parameters of liquids: - The open coax test method (e.g., HP85070 dielectric probe kit) is easy to use, but has only moderate accuracy. It is calibrated with open, short, and deionized water and the calibrations a critical process. - The transmission line method (e.g., model 1500T from DAMASKOS, INC.) measures the transmission and reflection in a liquid filled high precision line. It needs standard two port calibration and is probably more accurate than the open coax method. - The reflection line method measures the reflection in a liquid filled shorted precision lined. The method is not suitable for these liquids because of its low sensitivity. - The slotted line method scans the field magnitude and phase along a liquid filled line. The evaluation is straight forward and only needs a simple response calibration. The method is very accurate, but can only be used in high loss liquids and at frequencies above 100 to 200MHz. Cleaning the line can be tedious. #### **SAM Twin Phantom** The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas: - Left hand - Right hand - Flat phantom The phantom table comes in two sizes: A $100 \times 50 \times 85$ cm (L x W x H) table for use with free standing robots (DASY4 professional system option) or as a second phantom and a $100 \times 75 \times 85$ cm(L x W x H) table with reinforcements for table mounted robots (DASY4 compact system option). The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids) A white cover is provided to tap the phantom during o_periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. The phantom can be used with the following tissue simulating liquids: - Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not used, otherwise the parameters will change due to water evaporation. - Glycol based liquids should be used with care. As glycol is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not used (desirable at least once a week). - Do not use other organic solvents without previously testing the phantom resistiveness. #### **Device Holder for SAM Twin Phantom** The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. #### **System Validation Kits** Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. For that purpose a well defined SAR distribution in the flat section of the SAM twin phantom is produced. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. Dipoles are available for the variety of frequencies between 300MHz and 6 GHz (dipoles for other frequencies or media and other calibration conditions are available upon request). The dipoles are highly symmetric and matched at the center frequency for the specified liquid and distance to the flat phantom (or flat section of the SAM-twin phantom). The accurate distance between the liquid surface and the dipole center is achieved with a distance holder that snaps on the dipole. #### Robot The DASY4 system uses the high precision industrial robots RX60L, RX90 and RX90L, as well as the RX60BL and RX90BL types out of the newer series from Stäubli SA (France). The RX robot series offers many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance-free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchron motors; no stepper motors) - Low ELF interference (the closed metallic construction shields against motor control fields) For the newly delivered DASY4 systems as well as for the older DASY3 systems delivered since 1999, the CS7MB robot controller version from Stäubli is used. Previously delivered systems have either a CS7 or CS7M controller; the differences to the CS7MB are mainly in the hardware, but some procedures in the robot software from Stäubli are also not completely the same. The following
descriptions about robot hardand software correspond to CS7MB controller with software version 13.1 (edit S5). The actual commands, procedures and configurations, also including details in hardware, might differ if an older robot controller is in use. In this case please also refer to the Stäubli manuals for further information. # TESTING EQUIPMENT # **Equipments List & Calibration Info** | Type / Model | Cal. Date | S/N: | |--------------------------------------|------------|-----------------| | DASY4 Professional Dosimetric System | N/A | N/A | | Robot RX60L | N/A | CS7MBSP / 467 | | Robot Controller | N/A | F01/5J72A1/A/01 | | Dell Computer Dimension 3000 | N/A | N/A | | SPEAG EDC3 | N/A | N/A | | SPEAG DAE3 | 2005-10-18 | 456 | | DASY4 Measurement Server | N/A | 1176 | | SPEAG E-Field Probe ET3DV6 | 2005-03-18 | 1604 | | SPEAG Generic Twin Phantom | N/A | N/A | | SPEAG Light Alignment Sensor | N/A | 278 | | D450V2-SN: 1010 | 2005-10-26 | 1004 | | 450 MHz Head Liquid | Each Use | N/A | | 450 MHz Body Liquid | Each Use | N/A | | Robot Table | Each Use | N/A | | Phone Holder | Each Use | N/A | | Phantom Cover | Each Use | N/A | | HP Spectrum Analyzer HP8566A | N/A | 2240A01930 | | Microwave Amp. 8349A | N/A | 2644A02662 | | Power Meter Agilent E4919B | 2005-08-31 | MY4121511 | | Power Sensor Agilent E4412A | 2005-09-08 | US38488542 | | Network Analyzer HP-8752C | 2005-02-22 | 3410A02356 | | Dielectric Probe Kit HP85070A | Each Use | US99360201 | | Signal Generator HP-83650B | 2005-05-10 | 3614A002716 | | Amplifier, ST181-20 | N/R | E012-0101 | # SAR MEASUREMENT SYSTEM VERIFICATION ## **System Accuracy Verification** Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. Corresponding SAR plot is attached as well in the SAR plots files. IEEE P1528 recommended reference value for head | Frequency (MHz) | 1 g SAR | 10 g SAR | Local SAR at surface (above feed point) | Local SAR at surface (v=2cm offset from feed point) | |-----------------|---------|----------|---|---| | 300 | 3.0 | 2.0 | 4.4 | 2.1 | | 450 | 4.9 | 3.3 | 7.2 | 3.2 | | 835 | 9.5 | 6.2 | 14.1 | 4.9 | | 900 | 10.8 | 6.9 | 16.4 | 5.4 | | 1450 | 29.0 | 16.0 | 50.2 | 6.5 | | 1800 | 38.1 | 19.8 | 69.5 | 6.8 | | 1900 | 39.7 | 20.5 | 72.1 | 6.6 | | 2000 | 41.1 | 21.1 | 74.6 | 6.5 | | 2450 | 52.4 | 24.0 | 104.2 | 7.7 | | 3000 | 63.8 | 25.7 | 140.2 | 9.5 | ## Validation Dipole SAR Reference Test Result for Body (450 MHz) | Validation
Measurement | SAR @ 9.225mW Input
averaged over 1g | SAR @ 1W Input
averaged over 1g | SAR @ 9.225mW Input
averaged over 10g | SAR @ 1W Input
averaged over 10g | |---------------------------|---|------------------------------------|--|-------------------------------------| | Test 1 | 0.0451 | 0.89 | 0.0315 | 3.4 | | Test 2 | 0.0447 | 4.85 | 0.0312 | 3.38 | | Test 3 | 0.0448 | 4.86 | 0.0313 | 3.39 | | Test 4 | 0.0450 | 4.88 | 0.0313 | 3.39 | | Test 5 | 0.0451 | 4.89 | 0.0313 | 3.39 | | Test 6 | 0.0450 | 4.88 | 0.0315 | 3.4 | | Test 7 | 0.0451 | 4.89 | 0.0314 | 3.4 | | Test 8 | 0.0449 | 4.87 | 0.0312 | 3.38 | | Test 9 | 0.0449 | 4.87 | 0.0312 | 3.38 | | Test 10 | 0.0448 | 4.86 | 0.0311 | 3.37 | | Average | 0.0449 | 4.874 | 0.0313 | 3.388 | ## **EUT TEST STRATEGY AND METHODOLOGY** #### **SAR Evaluation Procedure** The evaluation was performed with the following procedure: - **Step 1:** Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. - **Step 2**: The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 20 mm x 20 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. - **Step 3**: Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - 1. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm [11]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three onedimensional splines with the "Not a knot"-condition (in x, y and z-directions) [11], [12]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average. - 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - **Step 4**: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated. # **CONCLUSION** This page summarizes the results of the performed dosimetric evaluation. The plots with the corresponding SAR distributions, which reveal information about the location of the maximum SAR with respect to the device could be found in Appendix E. ## **SAR Body Worst-Case Test Data** ## **Environmental Conditions** | Ambient Temperature: | 19° C | |----------------------|-----------| | Relative Humidity: | 54% | | ATM Pressure: | 1021 mbar | ^{*} Testing was performed by Daniel Deng on 2006-04-07. | EUT position | Frequency Conducted | Test Ante | Antenna | Antenna Liquid | Phantom | Notes /
Accessories | Measured (mW/g) | | Limit | Plot # | | | |-----------------------------------|---------------------|-----------|---------------|----------------|---------|------------------------|----------------------------------|--------------|-------|----------------|--------|---------| | 201 position | (MHz) | Power (W) | Type | Type | Liquid | Eiquiu T nantom | | 110000001100 | 100% | 50% duty cycle | (mW/g) | 1100 11 | | back in touch with phantom | 420.125 | 4.83 | Body
worn | External | body | flat | Earphone, microphone & belt clip | 5.75 | 2.88 | 8 | 1 | | | 2.5 cm head separation to phantom | 420.125 | 4.83 | Face-
held | External | head | flat | none | 2.94 | 1.47 | 8 | 2 | | System Detection Limits RF Ambient Conditions Combined Std. Uncertainty Expanded STD Uncertainty Readout Electronics Response Time Integration Time (v_i) v_{eff} ∞ 330 $\pm 0.6 \%$ $\pm 0.3 \%$ $\pm 0.5\,\%$ $\pm 1.5\,\%$ $\pm 1.7 \%$ $\pm 21.1 \%$ $\pm 0.6 \%$ $\pm 0.3 \%$ $\pm 0.5 \%$ $\pm 1.5\%$ $\pm 1.7 \%$ $\pm 21.6 \%$ ## APPENDIX A – MEASUREMENT UNCERTAINTY The uncertainty budget has been determined for the DASY4 measurement system and is given in the following Table. | $\begin{array}{c} {\rm DASY4~Uncertainty~Budget} \\ {\rm \tiny According~to~IEEE~1528~[1]} \end{array}$ | | | | | | | | | | | |---|---|-------|------------|-----|-----|--------------|--------------|--|--|--| | | Uncertainty Prob. Div. (c_i) (c_i) Std. Unc. Std. Unc | | | | | | | | | | | Error Description | value | Dist. | | 1g | 10g | (1g) | (10g) | | | | | Measurement System | | | | | | | | | | | | Probe Calibration | ±5.9 % | N | 1 | 1 | 1 | ±5.9 % | $\pm 5.9 \%$ | | | | | Axial Isotropy | ±4.7 % | R | $\sqrt{3}$ | 0.7 | 0.7 | ±1.9 % | $\pm 1.9 \%$ | | | | | Hemispherical Isotropy | ±9.6 % | R | $\sqrt{3}$ | 0.7 | 0.7 | $\pm 3.9 \%$ | $\pm 3.9 \%$ | | | | | Boundary Effects | ±1.0 % | R | $\sqrt{3}$ | 1 | 1 | ±0.6 % | ±0.6 % | | | | | Linearity | ±4.7 % | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.7 \%$ | $\pm 2.7 \%$ | | | | R Ν R R R $\pm 1.0 \%$ $\pm 0.3 \%$ $\pm 0.8\%$ $\pm 2.6 \%$ $\pm 3.0 \%$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ 1 1 1 1 1 1 1 1 1 # DASY4 Uncertainty Budget According to CENELEC EN 50361 [2] | | Uncertainty | Prob. | Div. | (c_i) | (c_i) | Std. Unc. | Std. Unc. | (v_i) | |------------------------------|--------------|-------|------------|---------|---------|--------------|---------------|-----------| | Error Description | value | Dist. | | 1g | 10g | (1g) | (10g) | v_{eff} | | Measurement Equipment | | | | | | | | | | Probe Calibration | $\pm 5.9 \%$ | N | 1 | 1 | 1 | $\pm 5.9 \%$ | ±5.9 % | ∞ | | Axial Isotropy | $\pm 4.7 \%$ | R | $\sqrt{3}$ | 0.7 | 0.7 | $\pm 1.9\%$ | $\pm 1.9 \%$ | ∞ | | Spherical Isotropy | $\pm 9.6 \%$ | R | $\sqrt{3}$ | 0.7 | 0.7 | ±3.9% | ±3.9 % | ∞ | | Probe Linearity | ±4.7% | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.7\%$ | ±2.7 % | ∞ | | Detection Limit | ±1.0 % | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.6\%$ | $\pm 0.6 \%$ | ∞ | | Boundary Effects | $\pm 1.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.6\%$ | $\pm 0.6 \%$ | ∞ | | Readout Electronics | $\pm 0.3 \%$ | N | 1 | 1 | 1 | $\pm 0.3\%$ | $\pm 0.3 \%$ | ∞ | | Response Time | ±0.8 % | N | 1 | 1 | 1 | ±0.8% | $\pm 0.8 \%$ | ∞ | | Noise | ±0% | N | 1 | 1 | 1 | ±0% | ±0% | ∞ | | Integration Time | $\pm 2.6 \%$ | N | 1 | 1 | 1 | $\pm 2.6 \%$ | $\pm 2.6,\%$ | ∞ | | Mechanical Constraints | | | | | | | | | | Scanning System | $\pm 0.4 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.2\%$ | $\pm 0.2 \%$ | ∞ | | Phantom Shell | $\pm 4.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.3\%$ | $\pm 2.3 \%$ | ∞ | | Probe
Positioning | $\pm 2.9 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 1.7\%$ | ±1.7% | ∞ | | Device Positioning | $\pm 2.9 \%$ | N | 1 | 1 | 1 | $\pm 2.9,\%$ | $\pm 2.9 \%$ | 145 | | Physical Parameters | | | | | | | | | | Liquid Conductivity (target) | $\pm 5.0 \%$ | R | $\sqrt{3}$ | 0.7 | 0.5 | $\pm 2.0 \%$ | ±1.4% | ∞ | | Liquid Conductivity (meas.) | $\pm 4.3 \%$ | R | $\sqrt{3}$ | 0.7 | 0.5 | $\pm 1.7\%$ | $\pm 1.2 \%$ | ∞ | | Liquid Permittivity (target) | $\pm 5.0 \%$ | R | $\sqrt{3}$ | 0.6 | 0.5 | $\pm 1.7\%$ | ±1.4% | ∞ | | Liquid Permittivity (meas.) | $\pm 4.3 \%$ | R | $\sqrt{3}$ | 0.6 | 0.5 | $\pm 1.5\%$ | $\pm 1.2 \%$ | ∞ | | Power Drift | $\pm 5.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.9 \%$ | $\pm 2.9 \%$ | ∞ | | RF Ambient Conditions | ±3.0 % | R | $\sqrt{3}$ | 1 | 1 | $\pm 1.7\%$ | $\pm 1.7 \%$ | ∞ | | Post-Processing | | | | | | | | | | Extrap. and Integration | $\pm 1.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.6 \%$ | $\pm 0.6 \%$ | ∞ | | Combined Std. Uncertainty | | | | | | $\pm~10.9\%$ | $\pm~10.6\%$ | 18125 | | Expanded Std. Uncertaint | У | | | | | $\pm 21.7\%$ | $\pm 12.1~\%$ | | # **APPENDIX B – PROBE CALIBRATION CERTIFICATES** ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, 3witzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | | | Certificate No: E | ET3-1604_Mar05 | |--|---|--|---| | CALIBRATION | CERTIFICAT | E | | | Object | ET3DV6 - SN:1 | 604 | | | Calibration procedure(s) | | and QA CAL-12.v4
redure for dosimetric E-field probes | | | Calibration date: | March 18, 2005 | | | | Condition of the calibrated item | In Tolerance | - April 1 (Market 1) | u u u | | The measurements and the unco | ertainties with confidence | ational standards, which realize the physical units of
probability are given on the following pages and ar-
tory facility: environment temperature (22 ± 3)°C and | re part of the certificate. | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | | | | | | Scheduled Calibration | | | GB41293874 | | Scheduled Calibration
May-05 | | ower meter E4419B | GB41293874
MY41495277 | 5-May-04 (METAS, No. 251-00388) | May-05 | | ower meter E4419B
ower sensor E4412A | | | May-05
May-05 | | Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator | MY41495277 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388) | May-05 | | Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator | MY41495277
SN: S5054 (3c) | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
10-Aug-04 (METAS, No. 251-00403) | May-05
May-05
Aug-05 | | Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Reference 30 dB Attenuator | MY41495277
SN: S5054 (3c)
SN: S5066 (20b) | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
10-Aug-04 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389) | May-05
May-05
Aug-05
May-05 | | Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 | MY41495277
SN: S5054 (3c)
SN: S5066 (20b)
SN: S5129 (30b) | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
10-Aug-04 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
10-Aug-04 (METAS, No. 251-00404) | May-05
May-05
Aug-05
May-05
Aug-05 | | Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 | MY41495277
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN: 3013 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
10-Aug-04 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
10-Aug-04 (METAS, No. 251-00404)
7-Jan-05 (SPEAG, No. ES3-3013_Jan05) | May-05
May-05
Aug-05
May-05
Aug-05
Jan-06 | | Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards | MY41495277
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN: 3013
SN: 617 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
10-Aug-04 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00404)
10-Aug-04 (METAS, No. 251-00404)
17-Jan-05 (SPEAG, No. ES3-3013_Jan05)
19-Jan-05 (SPEAG, No. DAE4-617_Jan05) | May-05
May-05
Aug-05
May-05
Aug-05
Jan-06
Jan-06 | | Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A | MY41495277
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN: 3013
SN: 617 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
10-Aug-04 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
10-Aug-04 (METAS, No. 251-00404)
7-Jan-05 (SPEAG, No. ES3-3013_Jan05)
19-Jan-05 (SPEAG, No. DAE4-617_Jan05)
Check Date (in house) | May-05
May-05
Aug-05
May-05
Aug-05
Jan-06
Jan-06
Scheduled Check | | Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C | MY41495277
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN: 3013
SN: 617 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
10-Aug-04 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
10-Aug-04 (METAS, No. 251-00404)
7-Jan-05 (SPEAG, No. ES3-3013_Jan05)
19-Jan-05 (SPEAG, No. DAE4-617_Jan05)
Check Date (in house)
18-Sep-02 (SPEAG, in house check Oct-03) | May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check | | Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E | MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390685 Name | 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03) | May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Dec-05 | | Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Brobe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E | MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390685 | 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-09 (SPEAG, in house check Nov-04) | May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Nov 05 | | Power meter E4419B Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: | MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390685 Name | 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. E83-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-04) Function | May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 05 | Certificate No: ET3-1604_Mar05 Page 1 of 9 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 #### Glossary: TSL
tissue simulating liquid NORMx,y,z sensitivity in free space ConF sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: ET3-1604_Mar05 Page 2 of 9 ET3DV6 SN:1604 March 18, 2005 # Probe ET3DV6 SN:1604 Manufactured: July 30, 2001 Last calibrated: July 10, 2004 Recalibrated: March 18, 2005 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ET3-1604_Mar05 Page 3 of 9 # DASY - Parameters of Probe: ET3DV6 SN:1604 | Sensitivity in Free Space ^A | Diode Compression ^t | |--|--------------------------------| |--|--------------------------------| | NormX | 1.88 ± 10.1% | $\mu V/(V/m)^2$ | DCP X | 93 mV | |-------|--------------|-----------------------|-------|-------| | NormY | 1.79 ± 10.1% | μV/(V/m) ² | DCP Y | 93 mV | | NormZ | 1.91 ± 10.1% | $\mu V/(V/m)^2$ | DCP Z | 93 mV | | HOHHE | | | | | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. ## Boundary Effect TSL 900 MHz Typical SAR gradient: 5 % per mm | Sensor Conter | to Phantom Surface Distaince | 3.7 mm | 4.7 mm | |-----------------------|------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 8.5 | 4.5 | | SAR. [%] | With Correction Algorithm | 0.0 | 0.2 | TSL 1810 MHz Typical SAR gradient: 10 % per mm | Sensor Center | to Phantom Surface Distance | 3.7 mm | 4.7 mm | |-----------------------|------------------------------|--------|--------| | | Without Correction Algorithm | 13.2 | 9.0 | | SAR _{be} [%] | With Correction Algorithm | 1.0 | 0.0 | ## Sensor Offset Probe Tip to Sensor Center 2.7 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1604_Mar05 Page 4 of 9 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ⁸ Numerical linearization parameter: uncertainty not required. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ET3-1604_Mar05 Page 5 of 9 Uncertainty of Axial Is-otropy Assessment: ± 0.5% (k=2) Certificate No: ET3-1604_Mar05 Page 6 of 9 # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ET3-1604_Mar05 Page 7 of 9 #### ET3DV6 SN:1604 ## March 18, 2005 ## **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^G | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|----------------|-------------------------|-------|-------|--------------------| | 300 | ± 50 / ± 100 | Head | 45.3 ± 5% | 0.87 ± 5% | 0.10 | 1.14 | 8.44 ± 13.3% (k=2) | | 450 | ± 50 / ± 100 | Head | $43.5 \pm 5\%$ | $0.87 \pm 5\%$ | 0.10 | 1.10 | 8.10 ± 13.3% (k=2) | | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | $0.97 \pm 5\%$ | 0.63 | 1.78 | 6.62 ±11.0% (k=2) | | 1810 | ± 50 / ± 100 | Head | 40.0 ± 5% | $1.40 \pm 5\%$ | 0.58 | 2.40 | 5.19 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | 39.2 ± 5% | $\textbf{1.80} \pm 5\%$ | 0.66 | 2.25 | 4.58 ± 11.8% (k=2) | 450 | ±50/±100 | Body | $56.7 \pm 5\%$ | $0.94 \pm 5\%$ | 0.06 | 1.40 | 7.54 ± 13.3% (k=2) | | 900 | ±50/±100 | Body | $55.0 \pm 5\%$ | $1.05 \pm 5\%$ | 0.53 | 2.02 | 6.27 ± 11.0% (k=2) | | 1810 | ±50/±100 | Body | $53.3\pm5\%$ | $1.52 \pm 5\%$ | 0.55 | 2.75 | 4.79 ± 11.0% (k=2) | | 2450 | ±50/±100 | Body | $52.7 \pm 5\%$ | $1.95 \pm 5\%$ | 0.70 | 2.13 | 4.24 ± 11.8% (k=2) | Certificate No: ET3-1604_Mar05 Page 8 of 9 ^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ET3DV6 SN:1604 March 18, 2005 # Deviation from Isotropy in HSL Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: ET3-1604_Mar05 Page 9 of 9 Schmid & Partner Engineering AG S P E A G Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com ## **Additional Conversion Factors** for Dosimetric E-Field Probe Type: ET3DV6 Serial Number: 1604 Place of Assessment: Zurich Date of Assessment: March 21, 2005 Probe Calibration Date: March 18, 2005 Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz. Assessed by: Mont Kity ET3DV6-SN:1604 Page 1 of 2 March 21, 2005 Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@spaag.com, http://www.spaag.com #### Dosimetric E-Field Probe ET3DV6 SN:1604 Conversion factor (± standard deviation) f = 150 MHz ConvF $9.0 \pm 10\%$ $\varepsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue) f = 150 MHz ConvF $8.6 \pm 10\%$ $\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\%$ mho/m (body tissue) f = 300 MHz ConvF $7.9 \pm 9\%$ $\epsilon_r = 58.2 \pm 5\%$ $\sigma = 0.92 \pm 5\% \text{ mho/m}$ (body tissue) #### Important Note: For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1. Please see also Section 4.7 of the DASY4 Manual. ET3DV6-SN:1604 Page 2 of 2 March 21, 2005 ## APPENDIX C – DIPOLE CALIBRATION CERTIFICATES Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Bay Area (BACL) Accreditation No.: SCS 108 Certificate No: D450V2-1010_Oct05 CALIBRATION CERTIFICATE D450V2 - SN: 1010 Object QA CAL-15.v4 Calibration procedure(s) Calibration Procedure for dipole validation kits below 800 MHz October 26, 2005 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Calibrated by, Certificate No.) Scheduled Calibration ID# Primary Standards 3-May-05 (METAS, No. 251-00466) May-06 GB41293874 Power meter E4419B May-06 3-May-05 (METAS, No. 251-00466) MY41495277 Power sensor E4412A 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41498087 11-Aug-05 (METAS, No. 251-00499) Aug-06 Reference 3 dB Attenuator SN:
S5054 (3c) May-06 SN: S5086 (20b) 3-May-05 (METAS, No. 251-00467) Reference 20 dB Attenuator 11-Jul-05 (SPEAG, No. ET3-1507_Jul05) Jul-06 Reference Probe ET3DV6 SN 1507 Jan-06 SN: 601 7-Jan-05 (SPEAG, No. DAE4-601_Jan05) DAE4 Scheduled Check Check Date (in house) ID# Secondary Standards US3642U01700 4-Aug-99 (SPEAG, in house check Dec-03) In house check: Dec-05 RF generator HP 8648C In house check: Nov 05 18-Oct-01 (SPEAG, in house check Nov-04) Network Analyzer HP 8753E US37390585 Name Function Katja Pokovic Technical Manager Calibrated by: R&D Director Approved by: Fin Bomholt Issued: October 26, 2005 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D450V2-1010_Oct05 Page 1 of 6 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D450V2-1010_Oct05 Page 2 of 6 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.6 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Flat Phantom V4.4 | Shell thickness: 6 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Area Scan resolution | dx, dy = 15 mm | | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 43.5 | 0.8 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 44.6 ± 6 % | 0.86 mho/m ± 6 % | | Head TSL temperature during test | (22.0 ± 0.2) °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 398 mW input power | 2.04 mW / g | | SAR normalized | normalized to 1W | 5.13 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 5.21 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 398 mW input power | 1.37 mW / g | | SAR normalized | normalized to 1W | 3.44 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 3.48 mW / g ± 17.6 % (k=2) | Certificate No: D450V2-1010_Oct05 Orrection to nominal TSL parameters according to d), chapter "SAR Sensitivities" ## Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.4 Ω - 10.4 jΩ | | |--------------------------------------|------------------|--| | Return Loss | - 19.7 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 0.995 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 18, 2002 | #### DASY4 Validation Report for Head TSL Date/Time: 26.10.2005 13:50:47 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1010 Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450; Medium parameters used: f = 450 MHz; $\sigma = 0.86 \text{ mho/m}$; $\varepsilon_r = 44.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507 (LF); ConvF (6.59, 6.59, 6.59); Calibrated: 11.07.2005 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 07.01.2005 Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4 Measurement SW: DASY4, V4.6 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 159 d=15mm, Pin=398mW/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.18 mW/g d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.8 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 2.98 W/kg SAR(1 g) = 2.04 mW/g; SAR(10 g) = 1.37 mW/g Maximum value of SAR (measured) = 2.21 mW/g Certificate No: D450V2-1010_Oct05 Page 5 of 6