

Boss Snowplow A Division of the Toro Company

Sprayer Controls, Model: 143-7443 FCC 15.247:2022 RSS-247 Issue 2:2017 902-928 MHz Other Wideband (DTS) Transceiver Radio

Report: BONY0001.0 Rev. 1, Issue Date: June 27, 2023

CERTIFICATE OF TEST

Last Date of Test: September 28, 2022 Boss Snowplow A Division of the Toro Company EUT: Sprayer Controls, Model: 143-7443

Radio Equipment Testing

Standards

Specification	Method	
FCC 15.247:2022	ANSI C63.10:2013	
RSS-247 Issue 2:2017, RSS-Gen Issue 5:2018+A1:2019+A2:2021		

Results

Test Description	Result	FCC Section(s)	RSS Section(s)	ANSI C63.10 Section(s)	Comments
Band Edge Compliance - Hopping Mode	N/A	15.247(d)	RSS-247 5.5	7.8.6	Not required for DTS devices.
Band Edge Compliance	Pass	15.247(d), KDB 558074 -8.5	RSS-247 5.5	11.11	
Carrier Frequency Separation	N/A	15.247(a)(1)	RSS-247 5.1(b)	7.8.2	Not required for DTS devices.
Duty Cycle	Pass	15.247	RSS-Gen 3.2	7.5	
Dwell Time	N/A	15.247(a)(1)	RSS-247 5.1(d)	7.8.4	Not required for DTS devices.
Emissions Bandwidth (6 dB)	Pass	15.247(a)	RSS-247 5.2(a)	7.8.7	
Equivalent Isotropic Radiated Power (EIRP)	Pass	15.247(b)	RSS-247 5.4(d)	7.8.5	
Number of Hopping Frequencies	N/A	15.247(a)(1)	RSS-247 5.1(d)	7.8.3	Not required for DTS devices.
Occupied Bandwidth (99%)	Pass	15.247(a)	RSS-Gen 6.7	7.8.7	
Output Power	Pass	15.247(b)	RSS-247 5.4(d)	7.8.5	
Power Spectral Density	N/A	15.247(e)	RSS-247 5.2(b)	11.10.2	Not required for FHSS devices.
Powerline Conducted Emissions (Receiver)	N/A	15.101, 15.107	RSS-Gen 5.2	ANSI C63.4 - 12.2.4	Not requested.
Powerline Conducted Emissions (Transmitter)	N/A	15.207	RSS-Gen 8.8	6.2	
Radiated Emissions for Receiver	N/A	15.101, 15.109	RSS-Gen 5.2	ANSI C63.4 - 12.2.5	Separate Report
Spurious Conducted Emissions	Pass	15.247(d)	RSS-247 5.5	7.8.8	
Spurious Radiated Emissions	Pass	15.247(d)	RSS-247 5.5	6.5, 6.6	
Deviations From Test Star	ndards				

None

Approved By:

James & Morris

James Morris, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Updated which data rates were used along with modulation type.	2023-06-27	12
	Updated EUT name to "Sprayer Controls, Model: 143-7443."	2023-06-27	1, 2, 10, 12, 13, 15, 18, 21, 24, 27, 30, 33, 36, 39
01	Updated radio on cover to "902-928 MHz LoRa (DTS) Transceiver Radio."	2023-06-27	1
	Updated certificate of test.	2023-06-27	2
	Updated functional description.	2023-06-27	10
	Updated power settings table.	2023-06-27	11
	Removed Configuration BONY0001-3.	2023-06-27	13

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

		SCOPE				
For details on the Scopes of our Accreditations, please visit:						
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington		

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600					
		A2LA							
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06					
	Innovation, Science and Economic Development Canada								
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1					
		BSMI							
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R					
	VCCI								
A-0029	A-0109	A-0108	A-0201	A-0110					
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	US0017	US0191	US0157					

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	equency Range Peak Data (MHz) (kHz)		Average Data (kHz)	
0.01 - 0.15	1.0	0.2	0.2	
0.15 - 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

42.6

+

=

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Boss Snowplow A Division of the Toro Company
Address:	2010 The Boss Way
City, State, Zip:	Iron Mountain, MI 49801
Test Requested By:	Derek Meyer
EUT:	Sprayer Controls, Model: 143-7443
First Date of Test:	September 20, 2022
Last Date of Test:	September 28, 2022
Receipt Date of Samples:	September 20, 2022
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Sprayer Control, Battery powered device containing pre-approved radios: Wi-Fi (802.11b/g/n) (FCC ID: 2AEMIARGN; IC: 20127-ARGN), a LoRa module (915MHz), and a GPS Module (Sierra Wireless XM1110; GPS L1 1575.42MHz, GLONASS L1 (1598.0625MHz – 1605.375MHz))

Testing Objective:

Seeking to demonstrate compliance in the 902 - 928 MHz band for operation under FCC 15.247:2022 and RSS-247 Issue 2:2017, RSS-Gen Issue 5:2018+A1:2019+A2:2021 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit at during normal operation.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
Dielectric Resonator	Abracon (Model ACAG1204-915-T)	915 MHz	3.42

The EUT was tested using the power settings provided by the manufacturer which were based upon:

- \boxtimes Test software settings
- Test software/firmware installed on EUT: Firmware V1
- □ Rated power settings

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types	Position (if multiple chappels)	Power Setting
Modulation Types	(in multiple channels)	i ower Setting
	Low Channel	23
Single Data Rate / Modulation	Mid Channel	23
	High Channel	23

Configuration BONY0001-1

EUT										
Description	Manufacturer	Model/Part Number	Serial Number							
Sprayer Controls	Boss Snowplow A Division of the Toro Company	143-7443	22100007							

Configuration BONY0001-2

EUT											
Description	Manufacturer	Model/Part Number	Serial Number								
Sprayer Controls	Boss Snowplow A Division of the Toro Company	143-7443	22100007								

Peripherals in Test Setup Boundary									
Description Manufacturer Model/Part Number Serial Number									
WiFi/BT Antenna (Omni)	L-Com	HGV-2404U	None						

Remote Equipment Outside of Test Setup Boundary									
Description Manufacturer Model/Part Number Serial Number									
12V Lead Acid Battery	Interstate	HD-24DP	None						

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Antenna Cable (WiFi/BT)	Yes	7.6 m	No	Sprayer Controls	WiFi/BT Antenna
Battery Cable	No	1.8 m	No	Battery	Sprayer Controller
Wiring Harness (3x bundles)	No	1 m	No	Sprayer Controls	Unterminated

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-09-20	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2022-09-20	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2022-09-20	Equivalent Isotropic Radiated Power (EIRP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2022-09-20 Band Edge Compliance		Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2022-09-20	DTS Bandwidth (6 Db)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2022-09-20	Occupied Bandwidth (99%)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2022-09-20	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	2022-09-20	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
9	2022-09-28	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

SPURIOUS RADIATED EMISSIONS

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Double Ridge	ETS Lindgren	3115	AJQ	2021-01-25	2023-01-25
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	2022-01-18	2023-01-18
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2022-01-18	2023-01-18
Filter - High Pass	Micro-Tronics	HPM50108	LFM	2022-08-27	2023-08-27
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	NCR
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	2022-01-18	2023-01-18
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	2022-01-18	2023-01-18
Antenna - Biconilog	ETS Lindgren	3142D	AXO	2021-09-14	2023-09-14
Cable	ESM Cable Corp.	Bilog Cables	MNH	2021-10-13	2022-10-13
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	2021-10-13	2022-10-13
Filter - Low Pass	Micro-Tronics	LPM50004	LFK	2022-08-27	2023-08-27
Filter - Low Pass	Micro-Tronics	LPM50003	LFJ	2022-08-27	2023-08-27
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	2022-06-10	2023-06-10
Filter - Band Pass/Notch	K&L Microwave	3TNF-500/1000-N/N	HGS	2022-06-22	2023-06-22

TEST EQUIPMENT

MEASUREMENT UNCERTAINTY

Description

5.2 dB

Expanded k=2 FREQUENCY RANGE INVESTIGATED

30 MHz TO 12400 MHz

POWER INVESTIGATED

Battery (12VDC)

CONFIGURATIONS INVESTIGATED

BONY0001-2

MODES INVESTIGATED

Transmitting LoRa 915 MHz, Modulated, 500 kHz Bandwidth

-5.2 dB

SPURIOUS RADIATED EMISSIONS

EI IT.	Spraver Controls	Model: 1/3-7//2			Work Order:	
EUT. Sorial Number:		, Model. 143-7443	Dete:	2022.00.29		
Customor:	ZZ100007	A Division of the Tore C	Dale.	2022-09-20		
Attendees:	Derek Meyer		umpan	у	Pelative Humidity:	34%
Customer Project	None				Bar Pressure (PMSL)	1035 mb
Tostod By:	Christophor Hoin	tzolmon			Ich Sito:	MNIO5
Power:	Battery (12)/DC)	lizeiman			Configuration:	BONV0001-2
I Uwei.					Configuration.	DOINT0001-2
TEST SPECIFIC	CATIONS					
Specification:				Method:		
FCC 15.247:2022				ANSI C63	.10:2013	
RSS-247 Issue 2:2	017, RSS-Gen Issu	le 5:2018+A1:2019+A2:	2021	ANSI C63	.10:2013	
TEST PARAME	TERS					
Run #:	5	Test Distance (m):	3		Ant. Height(s) (m):	1 to 4(m)
COMMENTS						
External BT antenn	a cable is bulky, wi	Ill not make a standard o	cable bu	undle. Test	mode is 91.7%. An upwa	ards duty cycle
correction factor (D	CCF) was applied,	DCCF=10 ¹ log(1/duty cy	/cle)=0.	.4.		
EUT OPERATI						
Transmitting LoRa	915 MHz, Modulate	ed, 500 kHz Bandwidth				
DEVIATIONS F	ROM TEST ST	ANDARD				
None						
80						
70						
60						
						+
50						
]	≜		
10						
40				•		
30						

1,000

10,000

AV

Run #: 5

100

20

10

0 + 10

100,000

QP

SPURIOUS RADIATED EMISSIONS

RESULTS - Run #5

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Tvne	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7320.217	38.4	11.3	2.4	94.0	0.4	0.0	Vert	AV	0.0	50.1	54.0	-3.9	EUT On Side
7321.380	37.8	11.3	1.5	85.9	0.4	0.0	Horz	AV	0.0	49.5	54.0	-4.5	EUT Vert
4574.620	45.3	3.7	1.4	108.0	0.4	0.0	Horz	AV	0.0	49.4	54.0	-4.6	EUT Vert
2745.120	51.4	-2.6	3.0	117.0	0.4	0.0	Horz	AV	0.0	49.2	54.0	-4.8	EUT Vert
4575.192	43.9	3.7	1.2	126.0	0.4	0.0	Vert	AV	0.0	48.0	54.0	-6.0	EUT On Side
2744.960	49.2	-2.6	3.8	227.0	0.4	0.0	Horz	AV	0.0	47.0	54.0	-7.0	EUT Horz
2745.000	48.4	-2.6	2.6	67.9	0.4	0.0	Horz	AV	0.0	46.2	54.0	-7.8	EUT On Side
2745.040	48.4	-2.6	1.5	167.9	0.4	0.0	Vert	AV	0.0	46.2	54.0	-7.8	EUT On Side
2745.000	48.2	-2.6	1.8	282.0	0.4	0.0	Vert	AV	0.0	46.0	54.0	-8.0	EUT Horz
9151.380	45.1	-1.6	1.2	80.0	0.4	0.0	Vert	AV	0.0	43.9	54.0	-10.1	EUT On Side
2745.080	42.1	-2.6	1.5	264.9	0.4	0.0	Vert	AV	0.0	39.9	54.0	-14.1	EUT Vert
7319.517	46.4	11.3	2.4	94.0	0.0	0.0	Vert	PK	0.0	57.7	74.0	-16.3	EUT On Side
9151.790	38.8	-1.6	2.1	192.9	0.4	0.0	Horz	AV	0.0	37.6	54.0	-16.4	EUT Vert
7321.250	45.6	11.3	1.5	85.9	0.0	0.0	Horz	PK	0.0	56.9	74.0	-17.1	EUT Vert
3660.000	35.3	0.4	2.7	41.0	0.4	0.0	Horz	AV	0.0	36.1	54.0	-17.9	EUT Vert
3660.267	34.9	0.4	2.8	109.0	0.4	0.0	Vert	AV	0.0	35.7	54.0	-18.3	EUT On Side
4574.250	49.9	3.7	1.4	108.0	0.0	0.0	Horz	PK	0.0	53.6	74.0	-20.4	EUT Vert
4574.375	49.6	3.7	1.2	126.0	0.0	0.0	Vert	PK	0.0	53.3	74.0	-20.7	EUT On Side
2744.880	54.8	-2.6	3.0	117.0	0.0	0.0	Horz	PK	0.0	52.2	74.0	-21.8	EUT Vert
9151.750	52.6	-1.6	1.2	80.0	0.0	0.0	Vert	PK	0.0	51.0	74.0	-23.0	EUT On Side
2744.880	53.0	-2.6	3.8	227.0	0.0	0.0	Horz	PK	0.0	50.4	74.0	-23.6	EUT Horz
2744.500	52.8	-2.6	1.8	282.0	0.0	0.0	Vert	PK	0.0	50.2	74.0	-23.8	EUT Horz
2745.460	52.4	-2.6	2.6	67.9	0.0	0.0	Horz	PK	0.0	49.8	74.0	-24.2	EUT On Side
2744.830	52.3	-2.6	1.5	167.9	0.0	0.0	Vert	PK	0.0	49.7	74.0	-24.3	EUT On Side
9147.880	47.3	-1.7	2.1	192.9	0.0	0.0	Horz	PK	0.0	45.6	74.0	-28.4	EUT Vert
2744.920	48.0	-2.6	1.5	264.9	0.0	0.0	Vert	PK	0.0	45.4	74.0	-28.6	EUT Vert
3660.017	43.9	0.4	2.8	109.0	0.0	0.0	Vert	PK	0.0	44.3	74.0	-29.7	EUT On Side
3659.500	43.7	0.4	2.7	41.0	0.0	0.0	Horz	PK	0.0	44.1	74.0	-29.9	EUT Vert

CONCLUSION Pass

CliAm Henten Tested By

DUTY CYCLE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description Manufacturer		Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	2022-01-24	2025-01-24
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2022-05-30	2023-05-30
Block - DC	Fairview Microwave	SD3379	AMI	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2022-04-25	2023-04-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.

DUTY CYCLE

								TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT:	Sprayer Controls, Model: 1	43-7443					Work Order:	BONY0001	
Serial Number:	22100007						Date:	20-Sep-22	
Customer:	Boss Snowplow A Division	of the Toro Company					Temperature:	22.3 °C	
Attendees:	Derek Meyer						Humidity:	57.6% RH	
Project:	None					I	Barometric Pres.:	1010 mbar	
Tested by:	Kyle McMullan			Power: Battery			Job Site:	MN04	
TEST SPECIFICAT	IONS			Test Method					
FCC 15.247:2022				ANSI C63.10:2013					
RSS-247 Issue 2:20)17			ANSI C63.10:2013					
COMMENTS									
None									
DEVIATIONS FROM	I TEST STANDARD								
None									
Configuration #		-	V- 0	mark. ela					
Configuration #	1 1	Cignotium	nya	manneela					
		Signature				Number of	Value	l insit	
				Dulas Width	Deried	Number of	value		Desults
				Pulse Width	Period	Puises	(%)	(%)	Results
LoRa Single Channe	el, 915 MHz			37.223 ms	40.584 ms	1	91.7	N/A	N/A
LoRa Single Channe	el, 915 MHz			N/A	N/A	5	N/A	N/A	N/A

DUTY CYCLE

.

				Nu	umber of	Value	Limit		
		Pulse Width	Period		Pulses	(%)	(%)	Results	
		37.223 ms	40.584 ms		1	91.7	N/A	N/A	
Keysight Spectrum	Analyzer	- Element Materials Technolog	,						X
LXI RL R	F 5	50 Ω AC	SE	NSE:INT		ALIGN OFF		04:10:53 PM Sep 20, 1	2022
				Trig I	Delay-10.00	ms #Avg Ty	pe: Voltage	TRACE 1 2 3	4 5 6
		P	NO: Fast +++ Gain:Low	#Atte	n: 10 dB			DET P P P	PPP
_								Mkr1 9 980 i	ms
Re 5 dB/div Pr	f Offsel of 21 1	t 21.1 dB I 0 dBm						5.91 dE	3m
Log									
16.1			فالتقافية والمتقاصية		$b^2 b^3$		ار النصانية فلينه فليناه		
11.1	→ 1−				¥ ¥				
6.10	• • · · · ·								
1.10									
-3.90									
-8.90	_				-			TRIC) LVL
-13.9	_								
-18.9	_								
-23.9									
Center 915.0	00000	MHz						Span 0	Hz
Res BW 3.0 N	AHZ		#VBM	/ 30 k	Hz		Sweep	100.5 ms (8192 p	ots)
MKR MODE TRC SC	L	Х	Y		FUNCTION	FUNCTION WIDTH	FUNC	TION VALUE	
$\begin{array}{c c} 1 \\ 2 \\ \end{array}$ $\begin{array}{c c} 1 \\ 1 \\ \end{array}$ $\begin{array}{c c} 1 \\ 1 \\ t \\ \end{array}$		9.980 ms 47.20 ms	<u>5.91 d</u> 11.98 d	Bm Bm					
3 N 1 t		50.56 ms	12.49 d	Bm					
4 5									
6									
8									
9									
10									
•					n	ex-main management			•
						STATUS			

LoRa Single Channel, 915 MHz								
	Number of Value Limit							
		Pulse Width	Period	Pulses	(%)	(%)	Results	
		N/A	N/A	5	N/A	N/A	N/A	

🧧 Keysight Sp	ectrum Ana	lyzer - Element Ma	aterials Techn	ology									
🗶 RL	RF	50 Ω AC			SENSE	E:INT		ALIGN	OFF			04:11:00	PM Sep 20, 2022
				PNO: Fast + IFGain:Low	► T #	rig: Video Atten: 10	o dB	#/	Avg Type	Voltage		T	RACE 1 2 3 4 5 6 TYPE W </th
5 dB/div Log _∢	Ref Of Ref 2	fset 21.1 dB 1.10 dBm					1			I			1
16.1													
11.1													
6.10													
1.10													
-3.90													
-8.90													
-13.9													TRIG LVL
-18.9													
-23.9													
Center 9' Res BW :	5.0000	00 MHz		#\	/BW_3	0 kHz				Swe	ep 18	2.9 ms	Span 0 Hz s (8192 <u>pts)</u>
MSG									STATUS				, , ,

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	2022-01-24	2025-01-24
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2022-05-30	2023-05-30
Block - DC	Fairview Microwave	SD3379	AMI	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2022-04-25	2023-04-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

OUTPUT POWER

				TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT: Sprayer Controls, Model: 143-7443			Work Order:	BONY0001	
Serial Number: 22100007			Date:	20-Sep-22	
Customer: Boss Snowplow A Division of the Toro Company			Temperature:	22.4 °C	
Attendees: Derek Meyer			Humidity:	57.6% RH	
Project: None			Barometric Pres.:	1010 mbar	
Tested by: Kyle McMullan	Power	Battery	Job Site:	MN04	
TEST SPECIFICATIONS		Test Method			
FCC 15.247:2022		ANSI C63.10:2013			
RSS-247 Issue 2:2017		ANSI C63.10:2013			
COMMENTS		•			
None					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration # 1 Signature	Kayla T.	mathela			
			Out Pwr (dBm)	Limit (dBm)	Result
LoRa Single Channel, 915 MHz			18.1	30	Pass

Report No. BONY0001.0 Rev. 1

OUTPUT POWER

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	2022-01-24	2025-01-24
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2022-05-30	2023-05-30
Block - DC	Fairview Microwave	SD3379	AMI	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2022-04-25	2023-04-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

						TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT: Sprayer Controls, Model: 143-7443					Work Order:	BONY0001	
Serial Number: 22100007					Date:	20-Sep-22	
Customer: Boss Snowplow A Division of the Toro Company					Temperature:	22.4 °C	
Attendees: Derek Meyer					Humidity:	57.8% RH	
Project: None				I	Barometric Pres.:	1010 mbar	
Tested by: Kyle McMullan	Powe	er: Battery			Job Site:	MN04	
TEST SPECIFICATIONS		Test Method					
FCC 15.247:2022		ANSI C63.10:2013					
RSS-247 Issue 2:2017		ANSI C63.10:2013					
COMMENTS							
None							
DEVIATIONS FROM TEST STANDARD							
None							
Configuration # 1 Signature	Kryle -	Mathela					
			Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
LoRa Single Channel, 915 MHz			18.1	3.42	21.5	36	Pass

Report No. BONY0001.0 Rev. 1

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5182A	TIF	2020-08-29	2023-08-29
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2022-05-30	2023-05-30
Block - DC	Fairview Microwave	SD3379	AMI	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2022-04-25	2023-04-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to lowest and highest transmit frequencies in each available band. Since the EUT only uses one transmit frequency, this was the same frequency.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE

							TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT	Sprayer Controls, Model: 143-7	443			Work	Order:	BONY0001	
Serial Number:	: 22100007					Date:	20-Sep-22	
Customer	Boss Snowplow A Division of	the Toro Company			Tempe	ature:	22.3 °C	
Attendees	Derek Meyer				Hur	nidity:	57.4% RH	
Project:	None				Barometric	Pres.:	1010 mbar	
Tested by:	: Kyle McMullan		Pow	er: Battery	Jo	b Site:	MN04	
TEST SPECIFICAT	TIONS			Test Method				
FCC 15.247:2022				ANSI C63.10:2013				
RSS-247 Issue 2:20	017			ANSI C63.10:2013				
COMMENTS								
None								
DEVIATIONS FROM	M TEST STANDARD							
None								
Configuration #	1	Signature	nyle .	Wathella				
					Value (dBc		Limit ≤ (dBc)	Result
LoRa Single Chann	el, 915 MHz				-73.04		-20	Pass
LoRa Single Chann	el. 915 MHz				-73.3		-20	Pass

Single Channel, 91

BAND EDGE COMPLIANCE

		Value	Limit	
		(dBc)	≤ (dBc)	Result
		-73.33	-20	Pass

DTS BANDWIDTH (6 dB)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	2022-01-24	2025-01-24
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2022-05-30	2023-05-30
Block - DC	Fairview Microwave	SD3379	AMI	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2022-04-25	2023-04-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The EUT was set to the channels and modes listed in the datasheet.

The 6dB DTS bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

DTS BANDWIDTH (6 dB)

					TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT:	Sprayer Controls, Model: 143-7443			Work Order:	BONY0001	
Serial Number:	22100007			Date:	20-Sep-22	
Customer:	Boss Snowplow A Division of the Toro Company			Temperature:	22.3 °C	
Attendees:	Derek Meyer			Humidity:	57.3% RH	
Project:	None			Barometric Pres.:	1010 mbar	
Tested by:	Kyle McMullan	Power	Battery	Job Site:	MN04	
TEST SPECIFICAT	ONS		Test Method			
FCC 15.247:2022			ANSI C63.10:2013			
RSS-247 Issue 2:20	17		ANSI C63.10:2013			
COMMENTS						
None						
DEVIATIONS FROM	TEST STANDARD					
None						
Configuration #	1 Signature	ingle to	Mathallan			
				Value	Limit (>)	Result
LoRa Single Channe	l, 915 MHz			715.085 kHz	500 kHz	Pass

Report No. BONY0001.0 Rev. 1

DTS BANDWIDTH (6 dB)

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Description Manufacturer		ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	2022-01-24	2025-01-24
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2022-05-30	2023-05-30
Block - DC	Fairview Microwave	SD3379	AMI	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2022-04-25	2023-04-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The 99% occupied bandwidth was measured with the EUT configured for continuous modulated operation.

Per ANSI C63.10:2013, 6.9.3, the spectrum analyzer was configured as follows:

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

OCCUPIED BANDWIDTH

					TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT:	Sprayer Controls, Model: 143-7443			Work Order:	BONY0001	
Serial Number:	22100007		Date:	20-Sep-22		
Customer:	Boss Snowplow A Division of the Toro Com	pany		Temperature:	22.4 °C	
Attendees:	Derek Meyer			Humidity:	57.7% RH	
Project:	None			Barometric Pres.:	1010 mbar	
Tested by:	Kyle McMullan		Power: Battery	Job Site:	MN04	
TEST SPECIFICATI	IONS		Test Method			
FCC 15.247:2022			ANSI C63.10:2013			
RSS-247 Issue 2:20	117		ANSI C63.10:2013			
COMMENTS						
None						
DEVIATIONS FROM	I TEST STANDARD					
None						
Configuration #	1 Signa	ture	mathella			
				Value	Limit	Result
LoRa Single Channe	el, 915 MHz			553.905 kHz	N/A	N/A

Report No. BONY0001.0 Rev. 1

OCCUPIED BANDWIDTH

SPURIOUS CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	2022-01-24	2025-01-24
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2022-05-30	2023-05-30
Block - DC	Fairview Microwave	SD3379	AMI	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2022-04-25	2023-04-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions were measured with the EUT set to its only transmit frequency. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.

The reference level offset for the fundamental screen capture was based on a measured value of the loss between the spectrum analyzer and the EUT which was verified at the time of test. The remaining screen capture(s) use an internal transducer factor on the analyzer to correct the displayed trace based on the cable loss over frequency. The reference level offset for the additional screen capture(s) is then based on the expected attenuator value and any other losses.

Fundamental Offset = Ref LvI Offset showing measured composite factor of all losses

Remaining Screen capture(s) Offset = "Internal" cable loss factor not shown on screen capture + Ref LvI Offset showing expected attenuator value and any other losses

SPURIOUS CONDUCTED EMISSIONS

							TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT	Sprayer Controls, Model: 1	43-7443				Work Order:	BONY0001	
Serial Number:	22100007			Date:	20-Sep-22			
Customer	Boss Snowplow A Division	of the Toro Company				Temperature:	22.4 °C	
Attendees	Derek Meyer					Humidity:	57.6% RH	
Project:	None					Barometric Pres.:	1010 mbar	
Tested by:	Kyle McMullan			Job Site:	MN04			
TEST SPECIFICAT	IONS			Test Method				
FCC 15.247:2022				ANSI C63.10:2013				
RSS-247 Issue 2:20	017			ANSI C63.10:2013				
COMMENTS								
None								
DEVIATIONS FROM	M TEST STANDARD							
None								
Configuration #	1	Signature	hyli	mathela				
				Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
LoRa Single Chann	el, 915 MHz			Fundamental	914.94	N/A	N/A	N/A
LoRa Single Chann	el, 915 MHz			30 MHz - 12.5 GHz	2744.44	-59.9	-20	Pass

SPURIOUS CONDUCTED EMISSIONS

🔤 Ke	ysight Spec	trum A	nalyzer - Eleme	nt Mat	erials Technolo	ogy							
LXI R	L	RF	50 Ω	AC	CORREC		S	ENSE:INT	<u>∧</u> ∧	ALIGN OFF		04:21:47	7 PM Sep 20, 2022
					1	PNO: Fast FGain:Low	Ģ	Trig: Free I #Atten: 10	Run dB	#Avg Type:	Voltage	TF	CACE 1 2 3 4 5 6 TYPE MWWWWW DET PPPPP
10 di	3/div	Ref (Ref	Offset 20 di 20.00 dB	B Sm								Mkr1 2.7 -4	44 4 GHz 1.83 dBm
10.0													
0.00													
-10.0													
-20.0													
-30.0					4								
-40.0					<u>'</u>								
-50.0	المناطلين والما		بالمراجع والمراجع	i i i i i i i i i i i i i i i i i i i	an a shirt an					and with a light of the local days	naise and a state of the		
-60.0													
Star #Re	t 30 M s BW 1	HZ IOO k	Hz			#	¢VBV	V 300 kHz			Swe	Stop 1 ep 1.192 s	12.500 GHz s (8192 pts)
MSG										STATUS			

POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Description Manufacturer		ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	2022-01-24	2025-01-24
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2022-05-30	2023-05-30
Block - DC	Fairview Microwave	SD3379	AMI	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2022-04-25	2023-04-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

POWER SPECTRAL DENSITY

					TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT:	Sprayer Controls, Model: 143-7443			Work Order:	BONY0001	
Serial Number:	22100007			Date:	20-Sep-22	
Customer:	Boss Snowplow A Division of the Toro Company			Temperature:	22.4 °C	
Attendees:	Derek Meyer			Humidity:	57.6% RH	
Project:	None			Barometric Pres.:	1010 mbar	
Tested by:	Kyle McMullan	P	ower: Battery	Job Site:	MN04	
TEST SPECIFICAT	ONS		Test Method			
FCC 15.247:2022			ANSI C63.10:2013			
RSS-247 Issue 2:20	17		ANSI C63.10:2013			
COMMENTS						
None						
DEVIATIONS FROM	TEST STANDARD					
None						
Configuration #	1 Signature	ngh	Wathella			
				Value dBm/3kHz	Limit < dBm/3kHz	Results
LoRa Single Channe	l, 915 MHz			5.9	8	Pass

Report No. BONY0001.0 Rev. 1

POWER SPECTRAL DENSITY

End of Test Report