

CFR 47 FCC PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

Chipper BT

MODEL NUMBER: Chipper BT, CHB70

FCC ID: 2AB7X-CHIPPERBT2

REPORT NUMBER: 4789176224-7

ISSUE DATE: December 18, 2019

Prepared for

BBPOS International Limited Suite 1903-04, Tower 2, Nina Tower, 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong

Prepared by

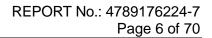
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone, Dongguan, People's Republic of China Tel: +86 769-22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	12/18/2019	Initial Issue	

Summary of Test Results						
Clause	Test Items	FCC Rules	Test Results			
1	6dB Bandwidth	FCC Part 15.247 (a) (2)	Pass			
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3)	Pass			
3	Power Spectral Density	FCC Part 15.247 (e)	Pass			
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass			
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass			
6	Conducted Emission Test For AC Power Port	FCC Part 15.207	Pass			
7	Antenna Requirement	FCC Part 15.203	Pass			
Note: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.						


TABLE OF CONTENTS

1.	AT	ESTATION OF TEST RESULTS	. 6
2.	TES	ST METHODOLOGY	. 7
3.	FAG	CILITIES AND ACCREDITATION	. 7
4.	CA	LIBRATION AND UNCERTAINTY	. 8
4	.1.	MEASURING INSTRUMENT CALIBRATION	. 8
4	.2.	MEASUREMENT UNCERTAINTY	. 8
5.	EQ	UIPMENT UNDER TEST	. 9
5	.1.	DESCRIPTION OF EUT	. 9
5	.2.	MAXIMUM OUTPUT POWER	. 9
5	.3.	CHANNEL LIST	. 9
5	.4.	TEST CHANNEL CONFIGURATION	10
5	.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5	.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5	.7.	WORST-CASE CONFIGURATIONS	10
5	.8.	TEST ENVIRONMENT	10
5	.9.	DESCRIPTION OF TEST SETUP	11
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	12
7.	AN'	TENNA PORT TEST RESULTS	14
7	.1.	ON TIME AND DUTY CYCLE	14
7	.2.	6 dB DTS BANDWIDTH AND 99% BANDWIDTH	16
7	.3.	PEAK CONDUCTED OUTPUT POWER	18
7	.4.	POWER SPECTRAL DENSITY	20
7.	.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	22
8.	RA	DIATED TEST RESULTS	24
8	.1.	RESTRICTED BANDEDGE	29
	.1. .2.	RESTRICTED BANDEDGE SPURIOUS EMISSIONS (1~3GHz)	
8	.2.		35
8. 8.	.2.	SPURIOUS EMISSIONS (1~3GHz)	35 41
8. 8. 8.	.2. .3.SI	SPURIOUS EMISSIONS (1~3GHz) PURIOUS EMISSIONS (3~18GHz)	35 41 47
8. 8. 8. 8.	.2. .3.SI .4.	SPURIOUS EMISSIONS (1~3GHz) PURIOUS EMISSIONS (3~18GHz) SPURIOUS EMISSIONS 18G ~ 26GHz	35 41 47 49
8. 8. 8. 8.	.2. .3.SI .4. .5. .6.	SPURIOUS EMISSIONS (1~3GHz) PURIOUS EMISSIONS (3~18GHz) SPURIOUS EMISSIONS 18G ~ 26GHz SPURIOUS EMISSIONS 30M ~ 1 GHz	35 41 47 49 51
8. 8. 8. 8.	.2. .3.SI .4. .5. .6. AC	SPURIOUS EMISSIONS (1~3GHz) PURIOUS EMISSIONS (3~18GHz) SPURIOUS EMISSIONS 18G ~ 26GHz SPURIOUS EMISSIONS 30M ~ 1 GHz SPURIOUS EMISSIONS BELOW 30M	35 41 47 49 51 54

REPORT No.: 4789176224-7

Appendix A): 6dB Bandwidth	58
Appendix B): Occupied Bandwidth	
Appendix C): Band-edge for RF Conducted Emissions	
Appendix D): RF Conducted Spurious Emissions	
Appendix E): Maximum Power Spectral Density	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	BBPOS International Limited
Address:	Suite 1903-04, Tower 2, Nina Tower, 8 Yeung Uk Road, Tsuen
	Wan, NT, Hong Kong

Manufacturer Information

Company Name:	BBPOS International Limited			
Address:	Suite 1903-04, Tower 2, Nina Tower, 8 Yeung Uk Road, Tsuen			
	Wan, NT, Hong Kong			

EUT Description

Product Name Model Name Series Model Model Difference Brand Sample Status Sample ID Sample Received date Date Tested Chipper BT Chipper BT CHB70 See section 5.1 of this report for detail. BBPOS Normal 2668174 November 05, 2019 November 11-December 18, 2019

APPLICABLE STANDARDS

STANDARD

PASS

CFR 47 FCC PART 15 SUBPART C

Prepared By:

Kebo. zhang.

Sherry les

Laboratory Leader

Checked By:

Shawn Wen

Kebo Zhang Engineer Project Associate

Approved By:

Aephenbus

Stephen Guo Laboratory Manager

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test	5.78dB (1GHz-18Gz)		
(1GHz to 26GHz)(include Fundamental emission)	5.23dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Chipper BT			
Model	Chipper BT			
Series Model	CHB70			
Model Difference	ce Chipper BT have the same technical construction including cir diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with CHB' The difference lies only the model number.			
	Operation Frequency	2402 MHz ~ 2480 MHz		
Product Description	Modulation Type	Data Rate		
	GFSK	1Mbps		
Supply Voltage	DC 3.7V			

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode Frequency		Channel Number	Max Output Power	EIRP
(MHz)			(dBm)	(dBm)
BLE	2402-2480	0-39[40]	1.240	1.790

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460	/	/
8	2418	19	2440	30	2462	/	/
9	2420	20	2442	31	2464	/	/
10	2422	21	2444	32	2468	/	/

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

Test Mo	ode	Test Channel Number	Test Channel
GFSI	<	CH 0, CH 19, CH 39/ Low, Middle, High	2402MHz, 2440MHz, 2480MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Se	oftware	FCC TestTool				
Modulation Type	Transmit Antenna	Test Software Setting Value				
	Number	CH 0	CH 19	CH 39		
GFSK	1	default	default	default		

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	meandered printed inverted-F antenna	0.55

Test Mode	Transmit and Receive Mode	Description
GFSK	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

5.7. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)	
BLE	DTS	GFSK	1Mbit/s	

5.8. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests			
Relative Humidity	45 ~ 70%			
Atmospheric Pressure:	1025Pa			
Temperature	TN	22 ~ 28°C		
	VL	N/A		
Voltage :	VN	DC 3.7V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

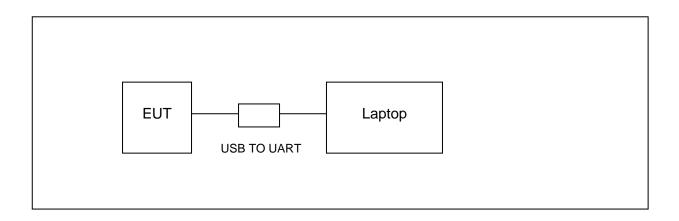
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T460S	SL10K24796 JS
2	UART	/	/	/

I/O CABLES

Cal N	ble lo	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	1	USB	/	/	1.0	/


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description	
1	/	/	/	/	

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TEST

6. MEASURING INSTRUMENT AND SOFTWARE USED

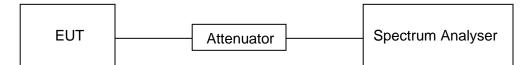
	Conducted Emissions									
	Instrument									
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Upper Last Cal.	Last Cal.	Next Cal.	
	EMI Test Receiver	R&S	ES	R3	1019	61	Dec.10,2018	Dec.05,2019	Dec.05,2020	
	Two-Line V- Network	R&S	EN∨	′216	10198	33	Dec.10,2018	Dec.05,2019	Dec.05,2020	
	Artificial Mains Networks	Schwarzbeck	NSLK	8126	81264	65	Dec.10,2018	Dec.05,2019	Dec.05,2020	
					Software					
Used		Description			Manufa	acturer	Name	Ver	sion	
V	Test Software	e for Conducte	d distu	Irbance	e Fai	ad	EZ-EMC	Ver. U	IL-3A1	
				Radia	ted Emiss	sions				
				I	nstrument					
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Upper Last Cal.	Last Cal.	Next Cal.	
	MXE EMI Receiver	KESIGHT	N90	38A	MY56400036		Dec.10,2018	Dec.06,2019	Dec.05,2020	
	Hybrid Log Periodic Antenna	TDK	HLP-3	3003C	130960		Sep.17,2018	Sep.17,2018	Sep.17,2021	
\checkmark	Preamplifier	HP	844	7D	2944A0	9099	Dec.10,2018	Dec.05,2019	Dec.05,2020	
V	EMI Measurement Receiver	R&S	ESF	ESR26 101377		77	Dec.10,2018	Dec.05,2019	Dec.05,2020	
\checkmark	Horn Antenna	TDK	HRN-	0118	13093	39	Sep.17,2018	Sep.17,2018	Sep.17,2021	
	High Gain Horn Antenna	Schwarzbeck	BBHA	-9170	691		Aug.11,2018	Aug.11,2018	Aug.11,2021	
\checkmark	Preamplifier	TDK	PA-02	-0118	TRS-305-	00067	Dec.10,2018	Dec.05,2019	Dec.05,2020	
	Preamplifier	TDK	PA-(02-2	TRS-307-	00003	Dec.10,2018	Dec.05,2019	Dec.05,2020	
	Loop antenna	Schwarzbeck	151	9B	0000	8	Jan.07,2019	Jan.07,2019	Jan.07,2022	
V	Band Reject Filter	Wainwright	WRC 2350- 248 253 40	2400- 3.5- 3.5-	4		Dec.10,2018	Dec.05,2019	Dec.05,2020	
V	High Pass Filter	Wi	WHKX10- 2700-3000- 18000- 40SS		23		Dec.10,2018	Dec.05,2019	Dec.05,2020	
					Software					
Used		scription		Manu	ufacturer	ufacturer Name		Ver	sion	
		are for Radiate	ed	F	arad	E	Z-EMC	Ver. U	IL-3A1	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

	Other instruments										
Used	Equipment	Manufacturer	Model No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.				
	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.06,2019	Dec.05,2020				
V	Power Meter	Keysight	N1911A	MY55416024	Dec.10,2018	Dec.06,2019	Dec.05,2020				
	Power Sensor	Keysight	U2021XA	MY58100022	Dec.10,2018	Dec.06,2019	Dec.05,2020				

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	52%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
BLE	0.431	0.564	0.764	76.4	1.169	2.320	3

Note:

Duty Cycle Correction Factor= $10\log(1/x)$.

Where: x is Duty Cycle(Linear)

Where: T is On Time (transmit duration)

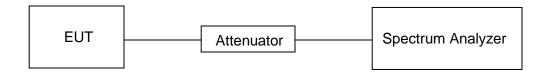
If that calculated VBW is not available on the analyzer then the next higher value should be used.

ON TIME AND DUTY CYCLE MID CH

7.2. 6 dB DTS BANDWIDTH AND 99% BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
	For 6 dB Bandwidth :100kHz For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : ≥3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

Temperature	25.5°C	Relative Humidity	52%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

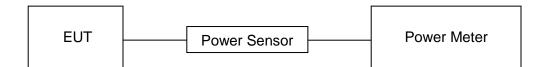
RESULTS

Please refer to appendix A and B.

7.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	52%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

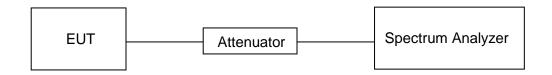
Test	Maximum Conducted Output Power(PK)	EIRP	LIMIT
Channel	(dBm)	(dBm)	dBm
Low	1.105	1.655	30
Middle	1.240	1.790	30
High	1.082	1.632	30

7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	$3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	52%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

Please refer to appendix E.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

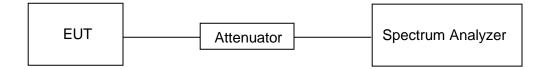
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C		
Section	Test Item	Limit
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
Span	≥1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple


Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	52%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

Please refer to appendix C and D.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10

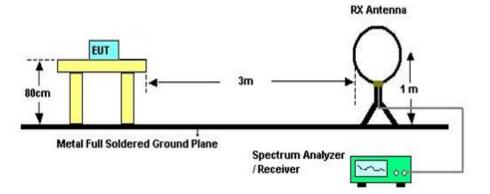
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Frequency (MHz)	dB(uV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	


Radiation Disturbance Test Limit for FCC (Above 1GHz)

About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

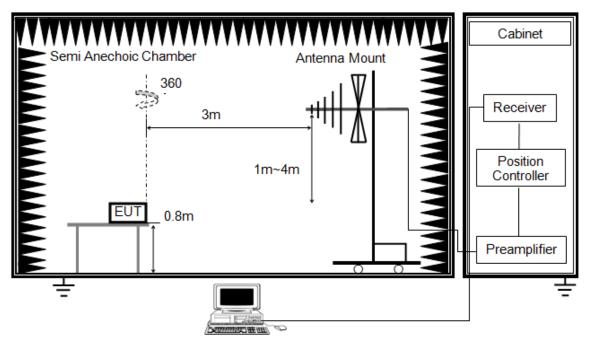
1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of 1 meter height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

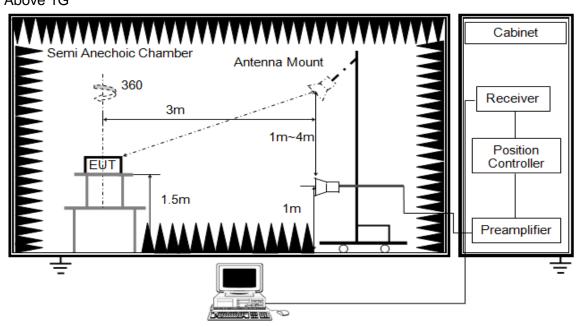
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Below 1G and above 30MHz

The setting of the spectrum analyser

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

The setting of the spectrum analyser

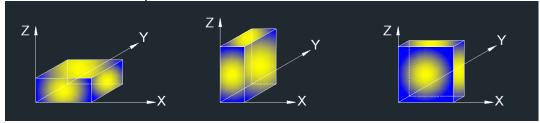
RBW	1MHz
IV BW	PEAK: 3MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

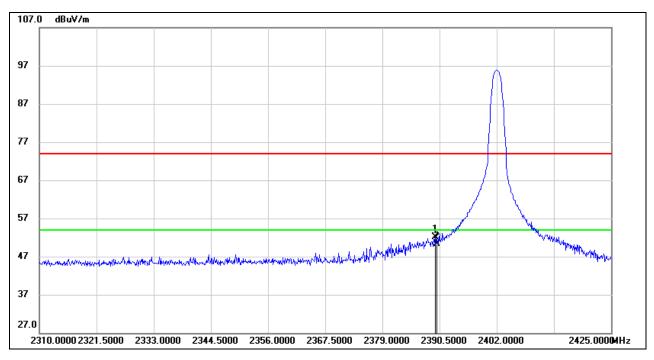
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.


TEST ENVIRONMENT

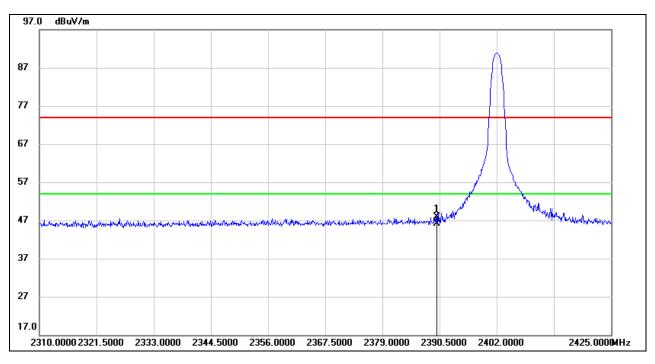
Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

8.1. RESTRICTED BANDEDGE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.695	19.19	32.94	52.13	74.00	-21.87	peak
2	2390.000	17.43	32.94	50.37	74.00	-23.63	peak

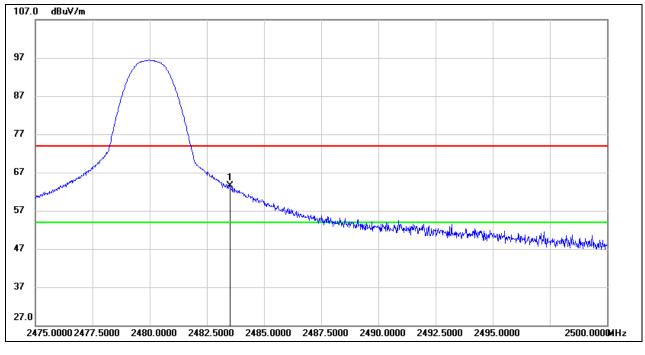

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

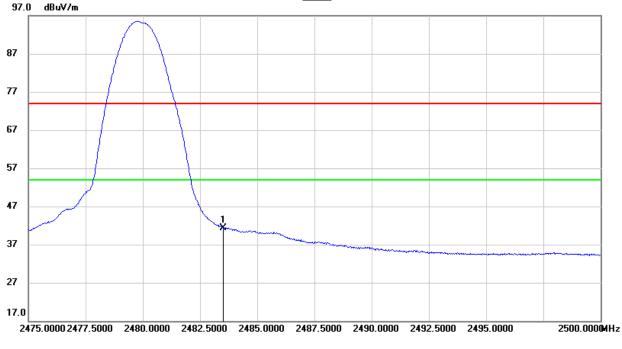
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.925	15.05	32.94	47.99	74.00	-26.01	peak
2	2390.000	13.25	32.94	46.19	74.00	-27.81	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	29.95	33.58	63.53	74.00	-10.47	peak

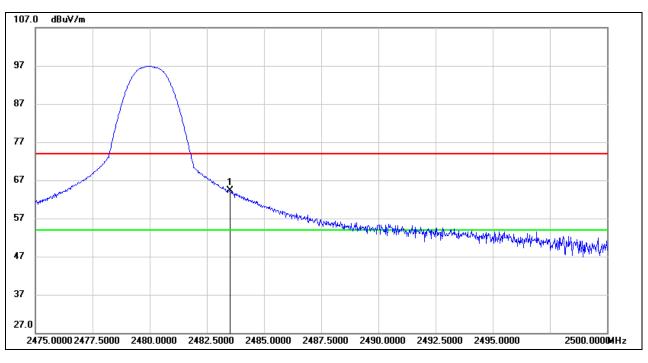
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	7.82	33.58	41.40	74.00	-32.60	AVG

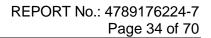
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

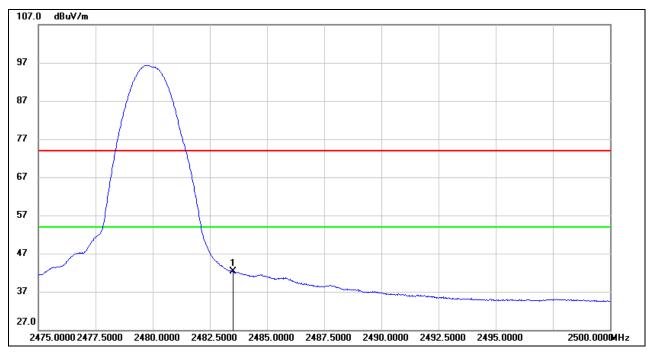
3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

4. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)


<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	30.73	33.58	64.31	74.00	-9.69	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

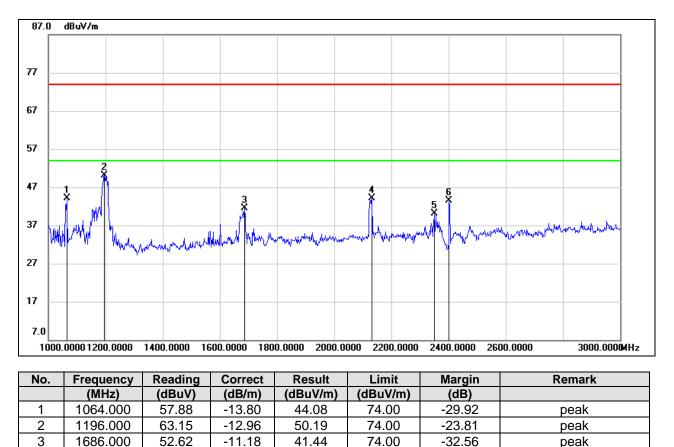
No.	Frequency Reading		Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.62	33.58	42.20	74.00	-31.80	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

4. For the transmitting duration, please refer to clause 7.1.


peak

peak

peak fundamental

8.2. SPURIOUS EMISSIONS (1~3GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

-9.15

-8.13

-7.95

53.27

48.22

51.51

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

74.00

74.00

-29.88

-33.91

1

3. Peak: Peak detector.

2132.000

2350.000

2402.000

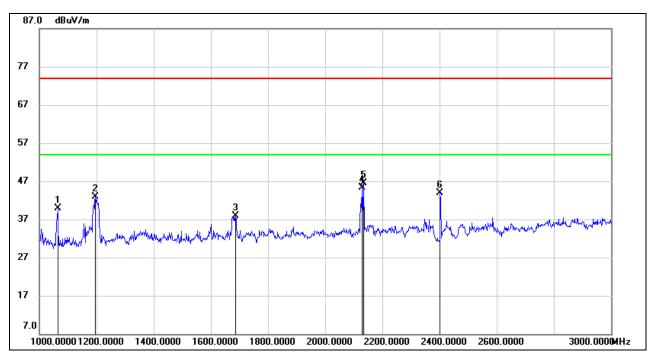
4

5

6

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

44.12

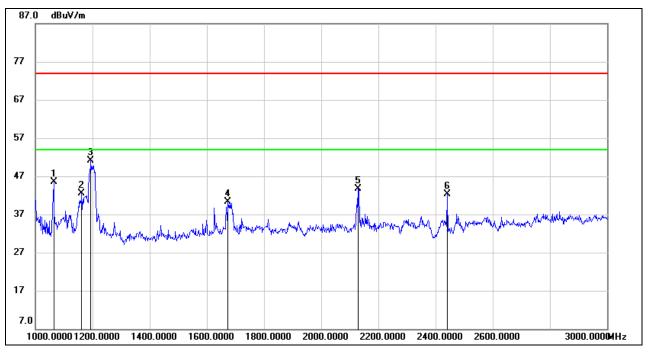

40.09

43.56

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	53.68	-13.80	39.88	74.00	-34.12	peak
2	1196.000	55.91	-12.96	42.95	74.00	-31.05	peak
3	1686.000	49.15	-11.18	37.97	74.00	-36.03	peak
4	2128.000	54.57	-9.18	45.39	74.00	-28.61	peak
5	2134.000	55.62	-9.14	46.48	74.00	-27.52	peak
6	2402.000	51.86	-7.95	43.91	/	1	fundamental

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

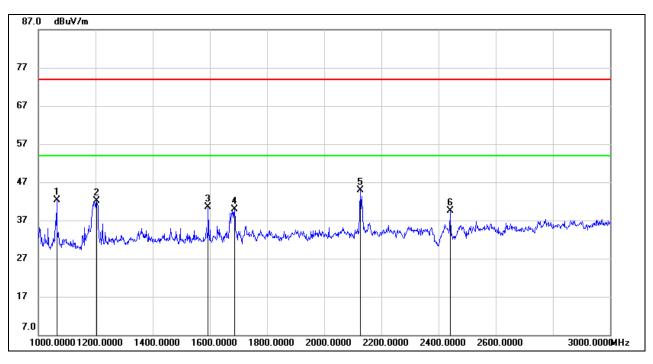
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	59.30	-13.80	45.50	74.00	-28.50	peak
2	1162.000	55.69	-13.25	42.44	74.00	-31.56	peak
3	1194.000	64.12	-12.97	51.15	74.00	-22.85	peak
4	1674.000	51.62	-11.24	40.38	74.00	-33.62	peak
5	2128.000	52.79	-9.18	43.61	74.00	-30.39	peak
6	2440.000	49.92	-7.68	42.24	/	/	fundamental

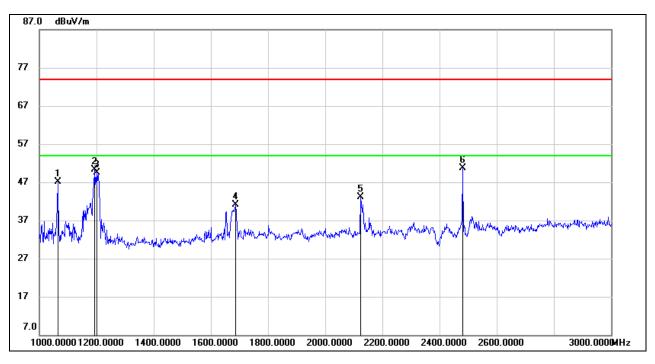
Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

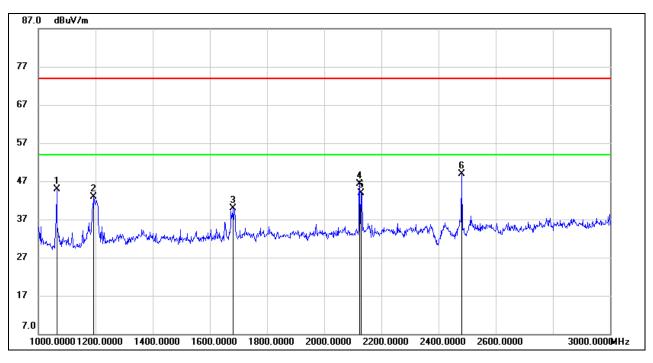
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	56.01	-13.80	42.21	74.00	-31.79	peak
2	1204.000	55.06	-12.90	42.16	74.00	-31.84	peak
3	1594.000	52.19	-11.66	40.53	74.00	-33.47	peak
4	1686.000	51.15	-11.18	39.97	74.00	-34.03	peak
5	2126.000	54.12	-9.18	44.94	74.00	-29.06	peak
6	2440.000	47.26	-7.68	39.58	/	/	fundamental


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

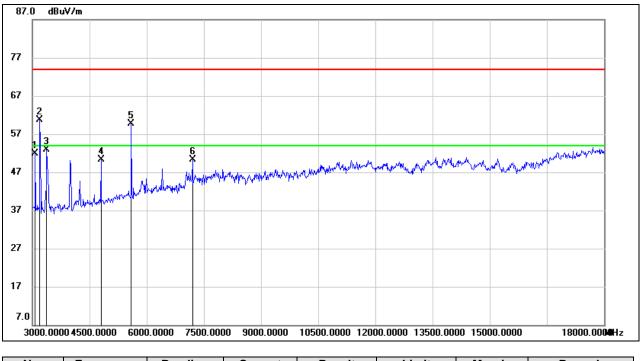
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	60.88	-13.80	47.08	74.00	-26.92	peak
2	1194.000	63.22	-12.97	50.25	74.00	-23.75	peak
3	1200.000	62.39	-12.92	49.47	74.00	-24.53	peak
4	1686.000	52.28	-11.18	41.10	74.00	-32.90	peak
5	2124.000	52.27	-9.20	43.07	74.00	-30.93	peak
6	2480.000	58.05	-7.39	50.66	/	/	fundamental


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	58.78	-13.80	44.98	74.00	-29.02	peak
2	1194.000	55.80	-12.97	42.83	74.00	-31.17	peak
3	1680.000	51.03	-11.22	39.81	74.00	-34.19	peak
4	2124.000	55.52	-9.20	46.32	74.00	-27.68	peak
5	2128.000	53.12	-9.18	43.94	74.00	-30.06	peak
6	2480.000	56.33	-7.39	48.94	/	/	fundamental


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

8.3.SPURIOUS EMISSIONS (3~18GHz)

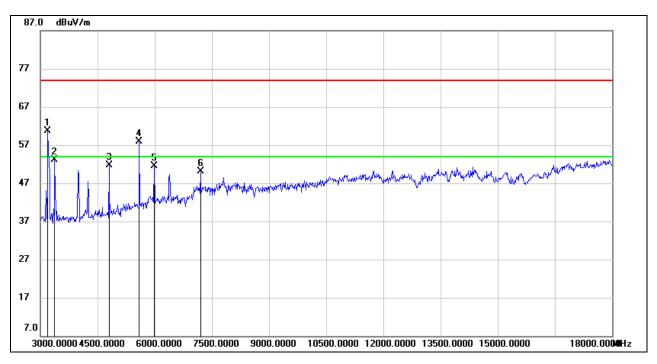
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	3075.000	55.85	-3.88	51.97	/	/	peak
2*	3202.000	65.15	-4.42	60.73	/	/	peak
3*	3375.000	57.23	-4.31	52.92	/	/	peak
4	4800.000	50.38	-0.14	50.24	74.00	-23.76	peak
5*	5595.000	56.87	2.83	59.70	/	/	peak
6*	7200.000	43.32	7.05	50.37	/	/	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

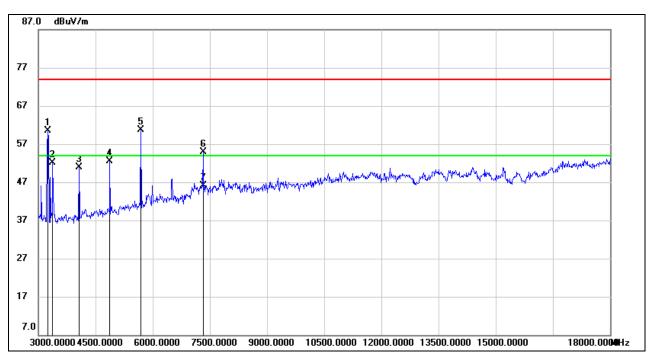

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6. *indicates the frequency is out of the restricted bands and the limit is referring to

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	3195.000	64.99	-4.38	60.61	/	/	peak
2*	3375.000	57.37	-4.31	53.06	/	/	peak
3	4800.000	51.82	-0.14	51.68	74.00	-22.32	peak
4*	5595.000	55.01	2.83	57.84	/	/	peak
5*	5985.000	47.25	4.20	51.45	/	/	peak
6*	7200.000	43.08	7.05	50.13	/	/	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6. *indicates the frequency is out of the restricted bands and the limit is referring to

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	3253.387	64.77	-4.30	60.47	/	/	peak
2*	3375.000	56.32	-4.31	52.01	/	/	peak
3	4065.000	53.74	-2.84	50.90	74.00	-23.10	peak
4	4875.000	52.49	0.10	52.59	74.00	-21.41	peak
5*	5685.000	57.78	2.95	60.73	/	/	peak
6	7320.000	47.39	7.42	54.81	74.00	-19.19	peak
7	7320.000	38.60	7.42	46.02	54.00	-7.98	AVG

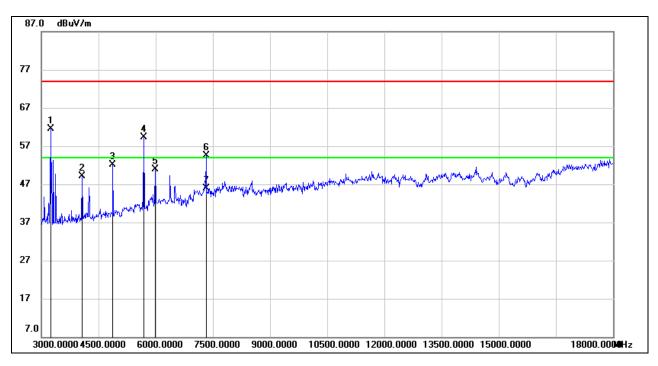
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.


6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. *indicates the frequency is out of the restricted bands and the limit is referring to

No.	Frequency	Reading	Reading Correct		Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	3253.337	65.85	-4.30	61.55	/	/	peak
2	4065.000	51.90	-2.84	49.06	74.00	-24.94	peak
3	4875.000	52.00	0.10	52.10	74.00	-21.90	peak
4*	5693.512	56.34	2.97	59.31	/	/	peak
5*	5985.000	46.73	4.20	50.93	/	/	peak
6	7320.000	47.10	7.42	54.52	74.00	-19.48	peak
7	7320.000	38.52	7.42	45.94	54.00	-8.06	AVG

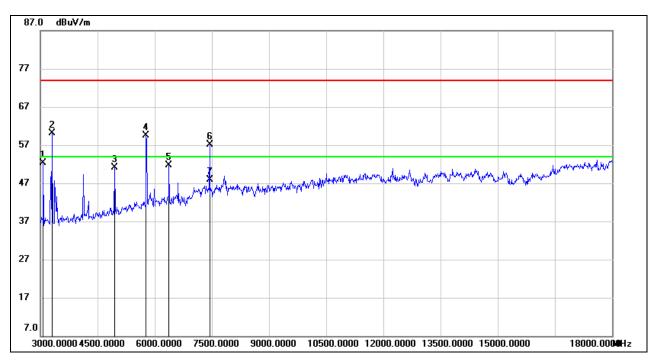
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.


6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. *indicates the frequency is out of the restricted bands and the limit is referring to

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	3075.000	56.16	-3.88	52.28	/	/	peak
2*	3306.643	64.37	-4.20	60.17	/	/	peak
3	4950.000	50.78	0.40	51.18	74.00	-22.82	peak
4*	5786.149	56.14	3.41	59.55	/	/	peak
5*	6375.000	46.69	5.08	51.77	/	/	peak
6	7440.000	49.41	7.65	57.06	74.00	-16.94	peak
7	7440.000	40.35	7.65	48.00	54.00	-6.00	AVG

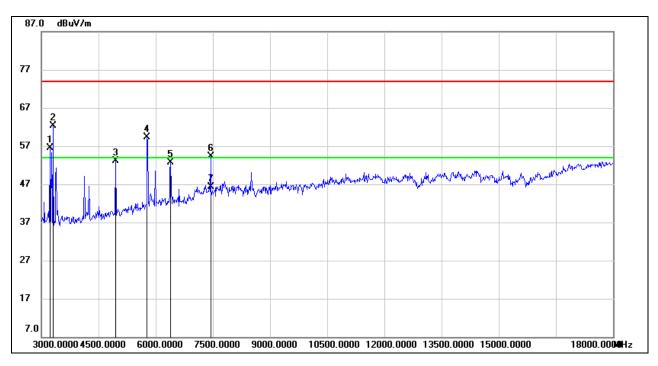
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.


6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. *indicates the frequency is out of the restricted bands and the limit is referring to

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	3225.000	60.92	-4.36	56.56	/	/	peak
2*	3300.000	66.56	-4.19	62.37	/	/	peak
3	4950.000	52.64	0.40	53.04	74.00	-20.96	peak
4*	5786.389	55.93	3.41	59.34	/	/	peak
5*	6390.000	47.49	5.15	52.64	/	/	peak
6	7440.000	46.58	7.65	54.23	74.00	-19.77	peak
7	7440.000	38.56	7.65	46.21	54.00	-7.79	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

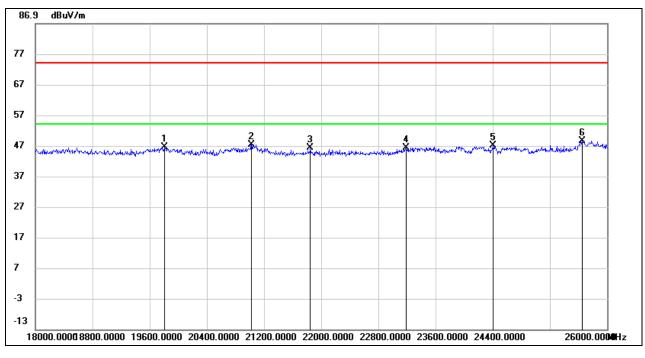
8. *indicates the frequency is out of the restricted bands and the limit is referring to

8.4. SPURIOUS EMISSIONS 18G ~ 26GHz

3	000.00		0.0000	1000	0000	20402	0000	21.20)0.0000	22000	0000	2200	0.0000	1000	0.000	1 244	0.0000	2000	.0004
		_																 	
,																		 	
,		_																	
,																			
,	aharantha	1 Martine	mm	warden		w	Muntura	2 X	www.autoren	manne	materia	3	and an all and a second	4 X	winte	www.water	ungun	 mander	5 Frank
,																			
,																			
,																			

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18544.000	51.76	-4.46	47.30	74.00	-26.70	peak
2	21024.000	53.12	-5.30	47.82	74.00	-26.18	peak
3	22744.000	53.18	-5.74	47.44	74.00	-26.56	peak
4	23400.000	52.92	-4.96	47.96	74.00	-26.04	peak
5	25192.000	47.49	-1.16	46.33	74.00	-27.67	peak
6	25784.000	48.73	-1.49	47.24	74.00	-26.76	peak

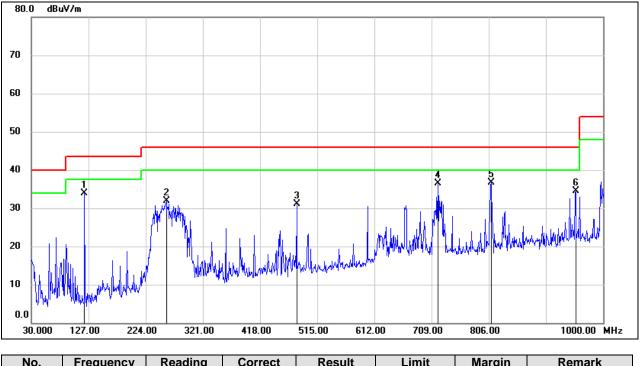

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

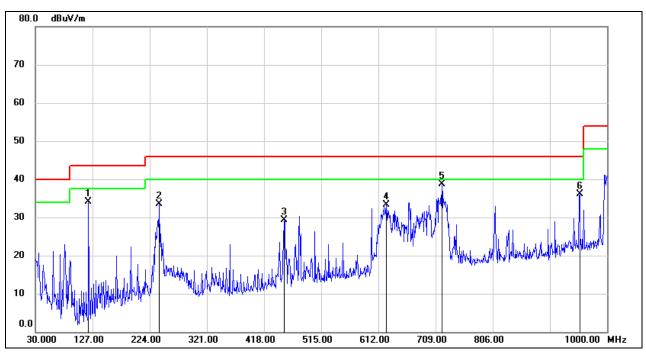
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19808.000	50.83	-4.34	46.49	74.00	-27.51	peak
2	21024.000	52.64	-5.30	47.34	74.00	-26.66	peak
3	21848.000	52.26	-5.95	46.31	74.00	-27.69	peak
4	23184.000	51.70	-5.36	46.34	74.00	-27.66	peak
5	24400.000	50.14	-2.99	47.15	74.00	-26.85	peak
6	25648.000	50.12	-1.53	48.59	74.00	-25.41	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

Note: All the test modes have been tested, only the worst data record in the report.

8.5. SPURIOUS EMISSIONS 30M ~ 1 GHz


SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	120.2100	54.54	-20.60	33.94	43.50	-9.56	QP
2	258.9200	47.80	-15.80	32.00	46.00	-14.00	QP
3	480.0800	41.93	-10.84	31.09	46.00	-14.91	QP
4	719.6700	42.64	-6.09	36.55	46.00	-9.45	QP
5	809.8800	42.07	-5.27	36.80	46.00	-9.20	QP
6	953.4400	37.82	-3.37	34.45	46.00	-11.55	QP

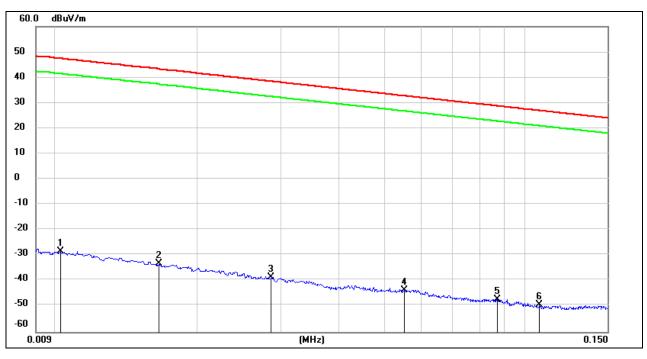
Note: 1. Result Level = Read Level + Correct Factor.

If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
 Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	120.2100	54.72	-20.60	34.12	43.50	-9.38	QP
2	240.4900	50.52	-16.97	33.55	46.00	-12.45	QP
3	451.9500	40.65	-11.41	29.24	46.00	-16.76	QP
4	625.5800	41.19	-7.97	33.22	46.00	-12.78	QP
5	719.6700	44.81	-6.09	38.72	46.00	-7.28	QP
6	953.4400	39.51	-3.37	36.14	46.00	-9.86	QP

Note: 1. Result Level = Read Level + Correct Factor.


2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

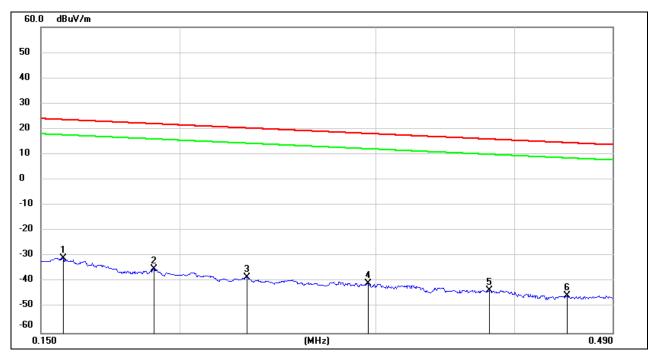
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Note: All the test modes has been tested, only the worst data record in the report

8.6. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>0.09kHz~ 150kHz</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0102	73.05	-101.40	-28.35	47.43	-75.78	peak
2	0.0165	68.34	-101.37	-33.03	43.25	-76.28	peak
3	0.0286	62.96	-101.38	-38.42	38.47	-76.89	peak
4	0.0551	57.95	-101.50	-43.55	32.78	-76.33	peak
5	0.0873	54.46	-101.69	-47.23	28.78	-76.01	peak
6	0.1073	52.30	-101.77	-49.47	26.99	-76.46	peak

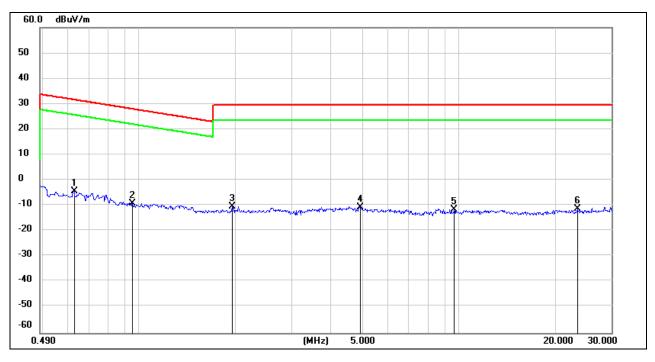
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150kHz ~ 490kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1570	71.03	-101.65	-30.62	23.68	-54.30	peak
2	0.1895	66.65	-101.70	-35.05	22.05	-57.10	peak
3	0.2298	63.55	-101.77	-38.22	20.37	-58.59	peak
4	0.2953	61.13	-101.85	-40.72	18.20	-58.92	peak
5	0.3800	58.52	-101.94	-43.42	16.01	-59.43	peak
6	0.4460	56.58	-102.01	-45.43	14.62	-60.05	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

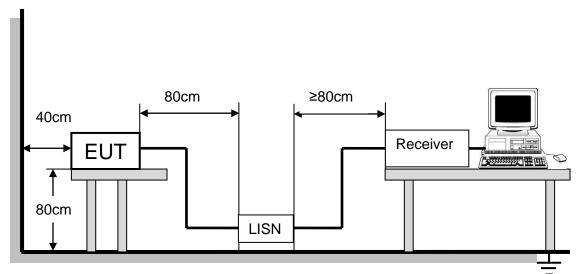
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.6270	57.65	-62.09	-4.44	31.66	-36.10	peak
2	0.9543	53.04	-62.24	-9.20	28.01	-37.21	peak
3	1.9521	51.61	-61.84	-10.23	29.54	-39.77	peak
4	4.9165	50.88	-61.48	-10.60	29.54	-40.14	peak
5	9.6971	49.19	-60.84	-11.65	29.54	-41.19	peak
6	23.4783	49.24	-60.56	-11.32	29.54	-40.86	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the test modes have been tested, only the worst data record in the report.


9. AC POWER LINE CONDUCTED EMISSIONS

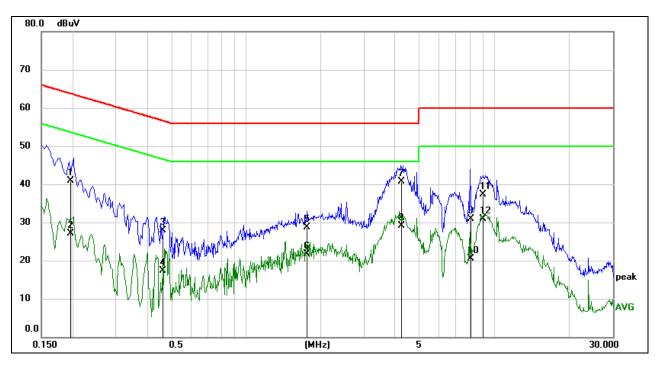
LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

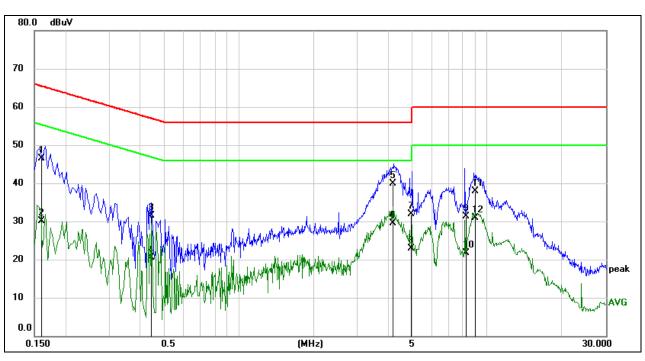
TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.


The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

Temperature	24.3°C	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1974	31.23	9.60	40.83	63.72	-22.89	QP
2	0.1974	17.59	9.60	27.19	53.72	-26.53	AVG
3	0.4656	18.38	9.60	27.98	56.59	-28.61	QP
4	0.4656	7.74	9.60	17.34	46.59	-29.25	AVG
5	1.7582	19.12	9.63	28.75	56.00	-27.25	QP
6	1.7582	12.13	9.63	21.76	46.00	-24.24	AVG
7	4.2560	31.00	9.66	40.66	56.00	-15.34	QP
8	4.2560	19.45	9.66	29.11	46.00	-16.89	AVG
9	8.0546	21.12	9.72	30.84	60.00	-29.16	QP
10	8.0546	10.84	9.72	20.56	50.00	-29.44	AVG
11	9.0379	27.53	9.75	37.28	60.00	-22.72	QP
12	9.0379	21.23	9.75	30.98	50.00	-19.02	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

MID CHANNEL	WORST-CASE	CONFIGURATION)
	WONDI-CAUL	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1611	36.83	9.61	46.44	65.41	-18.97	QP
2	0.1611	20.40	9.61	30.01	55.41	-25.40	AVG
3	0.4460	21.89	9.60	31.49	56.95	-25.46	QP
4	0.4460	10.97	9.60	20.57	46.95	-26.38	AVG
5	4.1700	30.33	9.66	39.99	56.00	-16.01	QP
6	4.1700	19.83	9.66	29.49	46.00	-16.51	AVG
7	4.9532	22.31	9.67	31.98	56.00	-24.02	QP
8	4.9532	13.23	9.67	22.90	46.00	-23.10	AVG
9	8.1787	21.50	9.72	31.22	60.00	-28.78	QP
10	8.1787	12.04	9.72	21.76	50.00	-28.24	AVG
11	8.9320	28.09	9.73	37.82	60.00	-22.18	QP
12	8.9320	21.22	9.73	30.95	50.00	-19.05	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All the test modes have been tested, only the worst data record in the report.

10. ANTENNA REQUIREMENTS

Applicable requirements

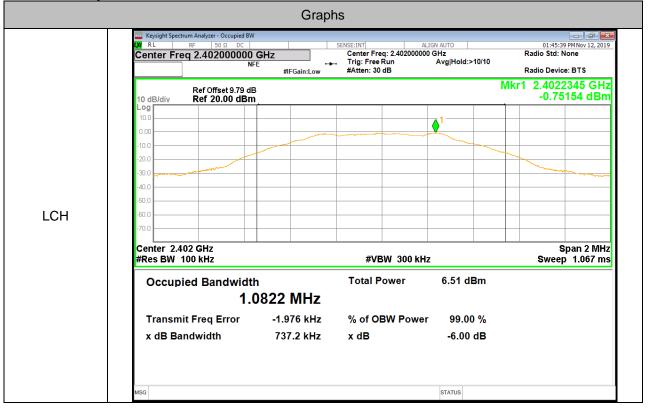
Please refer to FCC §15.203

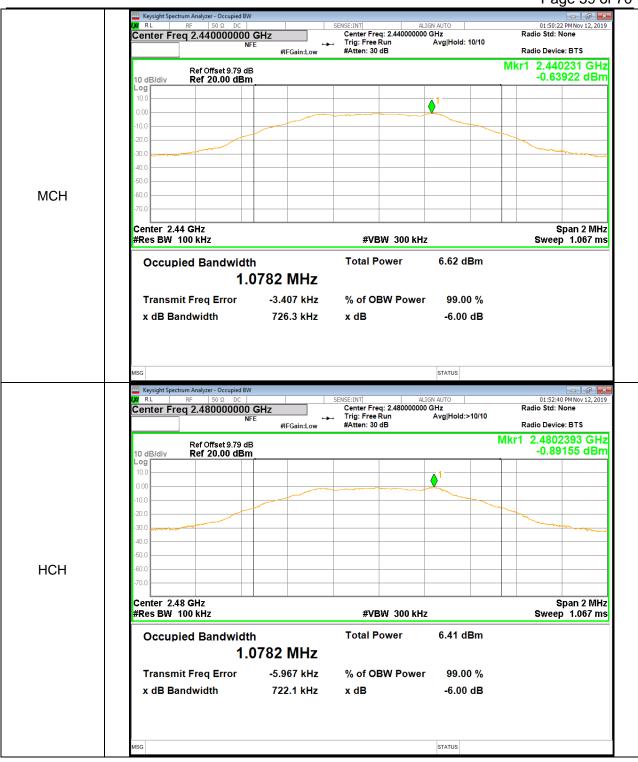
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

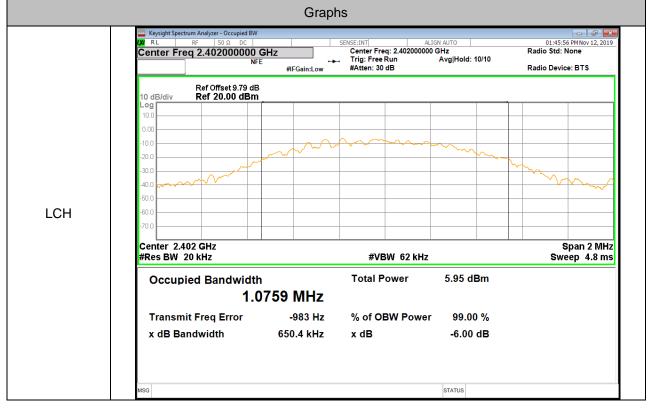

Complies


Appendix A): 6dB Bandwidth

Test Result Mode Channel 6dB Bandwidth [MHz] Verdict BLE 0.7372 PASS LCH BLE MCH 0.7263 PASS BLE 0.7221 HCH PASS

Test Graphs

REPORT No.: 4789176224-7 Page 59 of 70



Appendix B): Occupied Bandwidth

Test Result

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0759	PASS
BLE	MCH	1.0719	PASS
BLE	НСН	1.0735	PASS

Test Graphs

REPORT No.: 4789176224-7 Page 61 of 70

Appendix C): Band-edge for RF Conducted Emissions

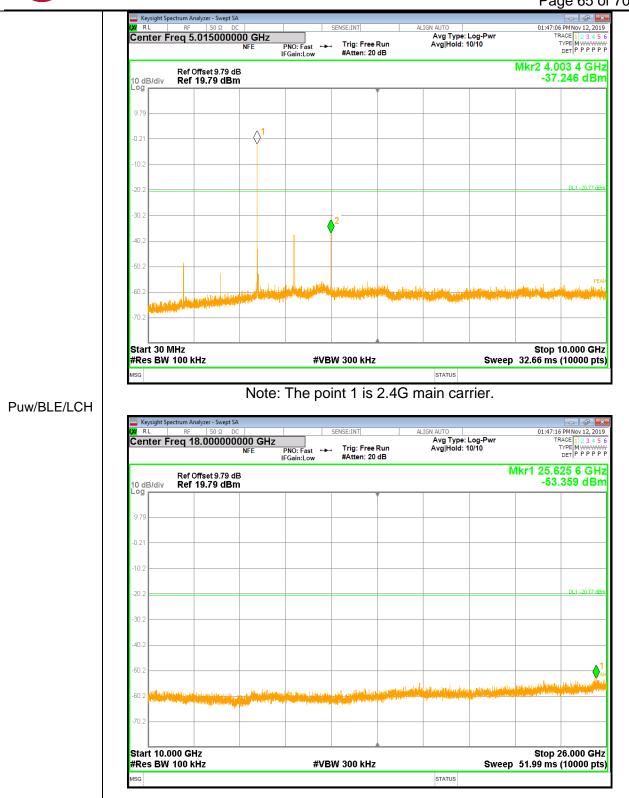
Resul	t Table				
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-0.703	-39.017	-20.7	PASS
BLE	HCH	-0.847	-45.648	-20.85	PASS

Test Graphs

	Graphs
	Keysight Spectrum Analyzer - Swept SA O
	Ref Offset 9.79 dB Mkr4 2.399 997 5 GF 10 dB/div Ref 20.00 dBm -39.017 dB
	10 dB/div Ref 20.00 dBm -39.017 dB
	-40.0 -50.0
LCH	-00.0 -60.0 -70.0
	Start 2.38500 GHz Stop 2.40500 GI
	#Res BW 100 kHz #VBW 300 kHz Sweep 1.067 ms (8001 pt [MKR] MODE[TRC] SCL] X Y FUNCTION FUNCTION VALUE
	1 N 1 f 2.402 257 5 GHz -0.703 dBm 2 N 1 f 2.400 000 0 GHz -38.905 dBm 3 N 1 f 2.390 000 0 GHz -53.161 dBm 4 N 1 f 2.399 997 5 GHz -39.017 dBm
	5 6 7
	8 9 10
	ii
	MSG STATUS

REPORT No.: 4789176224-7 Page 63 of 70 NSE:INT ALIGN AUTO 01:53:43 PM Nov 12, 2019 Trig: Free Run #Atten: 30 dB TRACE [] : 3 4 5 6 DET [] P P P P P P

			O:Wide ⊶⊶ Trig:Fi Gain:Low #Atten:	30 dB		DETPPPF
	10 dB/div	Ref Offset 9.79 dB Ref 20.00 dBm				Wkr4 2.483 531 GH -45.648 dBr
	10.0			1		
	0.00					
	-10.0					
	-20.0					DL1 -20.85 dE
	-30.0	mark ha	•4			
	-40.0	mut put	Marine -			PE
НСН	-60.0		a source and a second	www.	- Antone and a second	m.M.m.m.m.m.m.m.m.
	-70.0					
		00 GHz				Stop 2 50000 CH
	Start 2.4750 #Res BW 10		#VBW 300 k	Hz	Swe	Stop 2.50000 GH ep 1.067 ms (8001 pts
	Start 2.4750 #Res BW 10	00 kHz SCL X	Y			
	Start 2.4750 #Res BW 10 MKR MODE TRG 1 N 1 2 N 1	00 kHz <u>SCL X</u> f 2.480 269 GHz f 2.483 500 GHz	-0.847 dBm -46.241 dBm			ep 1.067 ms (8001 pt
	Start 2.4750 #Res BW 10 1 N 1 2 N 1 3 N 1	00 kHz SCL X f 2.480 269 GHz	Y -0.847 dBm			ep 1.067 ms (8001 pt
	Start 2.4750 #Res BW 10 1 N 1 2 N 1 3 N 1 4 N 1 5 6	00 kHz f 2.480 269 GHz f 2.483 500 GHz f 2.500 000 GHz	Y -0.847 dBm -46.241 dBm -53.112 dBm			ep 1.067 ms (8001 pt
	Start 2.4750 #Res BW 10 1 N 1 2 N 1 3 N 1 3 N 1 5 6 7 8	00 kHz f 2.480 269 GHz f 2.483 500 GHz f 2.500 000 GHz	Y -0.847 dBm -46.241 dBm -53.112 dBm			ep 1.067 ms (8001 pt
	Start 2.4750 #Res BW 10 1 N 1 2 N 1 3 N 1 3 N 1 5 6 7	00 kHz f 2.480 269 GHz f 2.483 500 GHz f 2.500 000 GHz	Y -0.847 dBm -46.241 dBm -53.112 dBm			ep 1.067 ms (8001 pt


Appendix D): RF Conducted Spurious Emissions

Result T	Result Table								
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict					
BLE	LCH	-0.769	<limit< td=""><td>PASS</td></limit<>	PASS					
BLE	MCH	-0.664	<limit< td=""><td>PASS</td></limit<>	PASS					
BLE	HCH	-0.904	<limit< td=""><td>PASS</td></limit<>	PASS					
Test Ore									

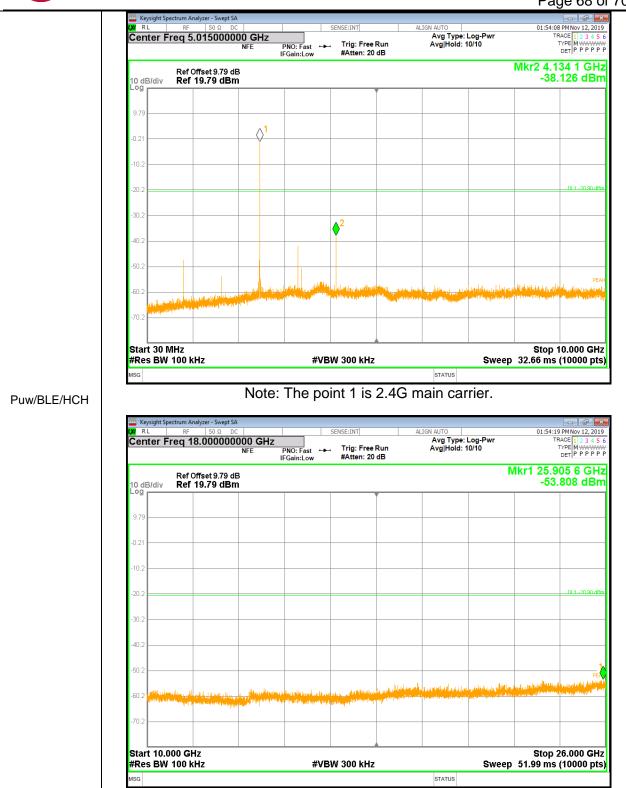
Test Graphs

	BI	LE_LCH_Graphs	
	Keysight Spectrum Analyzer - Swept SA Ν RL RF 50 Ω DC Center Freq 2.402000000 GHz NFE NFE	SENSE:INT ALIGN AUTO	01:46:54 PM Nov 12, 2019 pe: Log-Pwr TRACE [1 2 3 4 5 6 d: 10/10 TYPE MWWWWW DET P P P P P P
	Ref Offset 9.79 dB		Mkr1 2.402 233 32 GHz -0.769 dBm
	0.00 -10.0 -20.0		DL1-20.77.d9m
Pref/BLE/LCH	-30.0		PEAK Winner
	-60.0		
	Center 2.402000 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 2.000 MHz Sweep 1.333 ms (10000 pts)

REPORT No.: 4789176224-7 Page 65 of 70

REPORT No.: 4789176224-7 Page 66 of 70

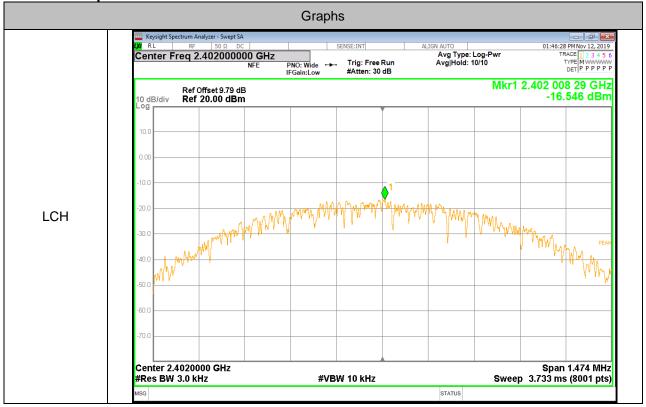
#1 #3 <td< th=""><th></th><th></th><th></th><th>_MCH_Graphs</th><th></th><th></th><th></th></td<>				_MCH_Graphs			
IfBLE/MCH Center Freq 2.440000000 GHz Productive Trige Free Run Media: 30 dB Mkr1 2.440 233 32 GHz -0.664 dBm 1/BLE/MCH Ref Offset 8 7 dB Ref 20.00 dBm Mkr1 2.440 233 32 GHz -0.664 dBm 0.664 dBm 10 Image: State S				SENSE-INT			01:51:36 PM Nov 12, 2019
Image: State in the s			0000000 GHz		Avg Typ	e: Log-Pwr	TRACE 1 2 3 4 5 6
Image: State in the s			NFE PN		eRun Avg∣Hol 0 dB	d: 10/10	DET PPPPP
#/BLE/MCH Image: Content of the second o		10 dB/div Ref 20.0	:9.79 dB			Mkr1 2	2.440 232 32 GHz -0.664 dBm
#/BLE/MCH Image: Content of the second s		10.0					
f/BLE/MCH					♦ ¹		
#/BLE/MCH Image: Second Se				- man - man	Jacob Marken		
#/BLE/MCH 300 400						- And a start	DI 4, 20 00 4Pm
w/BLE/MCH	ef/BLE/MCH	10 March 198				×	A
w/BLE/MCH 300		-30.0 www.www.www.					. Marine Marine
w/BLE/MCH 000		-40.0					
w/BLE/MCH Registration Registration <td></td> <td>-50.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-50.0					
<pre>w/BLE/MCH</pre>		-60.0					
#Res BW 100 kHz #VBW 300 kHz Sweep 1.333 ms (10000 pts) status wsg status Center Freq 5.015000000 GHz NFE Status Ref Offset 9.79 dB 10 dB/div Ref Offset 9.79 dB 10 dB/div Aug Type: Log-Pwr Avg Type: Log-		-70.0					
N/BLE/MCH Ref 07fiset 30 cp Child Spectrum Analyzer Sweet SA With the product share stress of the prod			47		<u> </u>		Span 2.000 MHz
Keynight Spectrum Analyzer - Sweet SA Selves Intil Auton Auton Olisiate PHN viz 2,005 Center Freq 5.01500000 GHz NFE PNO: Fast -> Trig: Free Run #Atten: 20 dB Auton Auton Distate PHN viz 2,015 Genter Freq 5.01500000 GHz NFE PNO: Fast -> Trig: Free Run #Atten: 20 dB Auton Auton Distate PHN viz 2,015 Inter Content Freq 5.01500000 GHz NFE PNO: Fast -> Trig: Free Run #Atten: 20 dB Auton Auton Distate PHN viz 2,015 Inter Content Freq 5.01500000 GHz NFE PNO: Fast -> Trig: Free Run #Atten: 20 dB Auton Auton Trig: Free Run AvgIHold: 10/10 Trig: Free Run AvgIHold: 10/10 Trig: Free Run AvgIHold: 10/10 Micr 2 4.067 3 GHz 36.649 dBm Inter Content Freq 5.015000000 GHz Ref 0ffset 9.79 dB Inter Content Free Run Content Free Run Auton Micr 2 4.067 3 GHz 36.649 dBm Inter Content Free Run Content Free Run Auton Inter Content Free Run Auton Inter Content Free Run Content Free Run Auton Inter Content Free R			12			_	
W/BLE/MCH ME MP Stort Stort Autor Stort S		#Res BW 100 kHz	12	#VBW 300 kHz		Sweep	1.333 ms (10000 pts)
Ref Offset 9.79 dBm Mkr2 4.067 3 GHz -36.649 dBm 10 dB/div Ref 19.79 dBm -36.649 dBm 979 - - - 0.21 - - - - 10.2 - - - - - 0.21 - - - - - - 10.2 - - - - - - - 0.21 -		#Res BW 100 kHz		#VBW 300 kHz		Sweep	
N/BLE/MCH Ref Offset 3.79 dBm Mkr2 4.067 3 GHz -36.649 dBm 0.0 BMcr2 19.79 dBm -36.649 dBm 0.0 0.0 -36.649 dBm 0.0 -36.649 dBm -36.649 dBm -30.2 -36.649 dBm -36.649 dBm -30.2 -36.649 dBm -36.649 dBm -30.2 -36.649 dBm -36.649 dBm -30.		#Res BW 100 kHz MSG Keysight Spectrum Analyzer	- Swept SA i0 Ω DC		STATUS ALIGN AUTO	•	01:51:48 PM Nov 12, 2019
w/BLE/MCH		#Res BW 100 kHz MSG Keysight Spectrum Analyzer	- Swept SA 60 Ω DC 0 600000 GHz NFE PI	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Run Avg Hoi	be: Log-Pwr	01:51:48 PM Nov 12, 2019
v/BLE/MCH 0.21 0.1.2066.dm .0.21 .0.1.2066.dm .0.1.2066.dm .0.22 .0.1.2066.dm .0.1.2066.dm		#Res BW 100 kHz Msg Image: Sector Analyzer Image: Sector Analyzer <	- Swept SA 10 Ω DC 1000000 GHz NFE P IFC 9.79 dB	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Run Avg Hoi	be: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE 13:34 5 6 TYPE MWWWW DET PPPPP Mkr2 4.067 3 GHz
w/BLE/MCH 202 0.1-20.56 dbm 302		#Res BW 100 kHz MSG Keysight Spectrum Analyzer Keysight Spectrum Analyzer Ker S Center Freq 5.015	- Swept SA 10 Ω DC 5 0000000 GHz NFE PP IFC 9.79 dB 9 dBm	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Run Avg Hoi	be: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE 13:34 5 6 TYPE MWWWW DET PPPPP Mkr2 4.067 3 GHz
w/BLE/MCH		#Res BW 100 kHz MSG Keysight Spectrum Analyzer Ref Offset Center Freq 5.015 Ref Offset Og 9.79	- Swept SA 10 Ω DC 5 0000000 GHz NFE PP IFC 9.79 dB 9 dBm	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Run Avg Hoi	be: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE 13:34 5 6 TYPE MWWWW DET PPPPP Mkr2 4.067 3 GHz
-40.2 -40.2 <td< td=""><td></td><td>#Res BW 100 kHz MSG MSG MSG MSG MSG MSG MSG MS</td><td>- Swept SA 10 Ω DC 5 0000000 GHz NFE PP IFC 9.79 dB 9 dBm</td><td>SENSE:INT IO: Fast ↔ Trig: Free</td><td>ALIGN AUTO Avg Tyr Run Avg Hoi</td><td>be: Log-Pwr d: 10/10</td><td>01:51:48 PMNov 12, 2019 TRACE 13:34 5 6 TYPE MWWWW DET PPPPP Mkr2 4.067 3 GHz</td></td<>		#Res BW 100 kHz MSG MSG MSG MSG MSG MSG MSG MS	- Swept SA 10 Ω DC 5 0000000 GHz NFE PP IFC 9.79 dB 9 dBm	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Run Avg Hoi	be: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE 13:34 5 6 TYPE MWWWW DET PPPPP Mkr2 4.067 3 GHz
50 2 60 2 70 2 55 2 70 2 55 2 70 2 55 2 70 2 55 2 70 2 55 2 70 2 55 2 70 70 70 70 70 70		#Res BW 100 kHz MSG WSG Keysight Spectrum Analyzer Keysight Spectrum Analyzer Kef Offset Od B/div Ref Offset .0 .0 .0 .0 .0 .0 .0 .0 .0 .	- Swept SA 10 Ω DC 5 0000000 GHz NFE PP IFC 9.79 dB 9 dBm	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Run Avg Hoi	be: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE [] 23 45 6 TYPE M WWW WW DET P P P P P P VIkr2 4.067 3 GHz -36.649 dBm
-60.2 -70.2	v/BLE/MCH	#Res BW 100 kHz Msg Image: Sector Analyzer of the sector Anal	- Swept SA 10 Ω DC 5 0000000 GHz NFE PP IFC 9.79 dB 9 dBm	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Pun Avg Hoi	be: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE [] 23 45 6 TYPE M WWW WW DET P P P P P P VIkr2 4.067 3 GHz -36.649 dBm
-60.2 -70.2 -70.2 Start 30 MHz #Res BW 100 kHz #VBW 300 kHz Start 30 0 k	v/BLE/MCH	#Res BW 100 kHz MSG MSG Image: Sector and Secto	- Swept SA 10 Ω DC 5 0000000 GHz NFE PP IFC 9.79 dB 9 dBm	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Pun Avg Hoi	be: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE [] 23 45 6 TYPE M WWW WW DET P P P P P P VIkr2 4.067 3 GHz -36.649 dBm
-70.2 Stop Stop 10.000 GHz Start 30 MHz #VBW 300 kHz Stop 10.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 32.66 ms (10000 pts)	w/BLE/MCH	#Res BW 100 kHz MSG MSG Image: Sector and the sector of th	- Swept SA 10 Ω DC 5 0000000 GHz NFE PP IFC 9.79 dB 9 dBm	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Pun Avg Hoi	be: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE 12:34 5 6 TYPE M DET P P P P P P VIkr2 4.067 3 GHz -36.649 dBm DL1-20.66 dBm
#Res BW 100 kHz #VBW 300 kHz Sweep 32.66 ms (10000 pts)	w/BLE/MCH	#Res BW 100 kHz MSG MSG Image: Sector and secto	- Swept SA 10 Ω DC NFE PP IFC 19.79 dB 9 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Pun Avg Hoi	De: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE 12:34 5 6 TYPE M WWWW DET P P P P P P Vkr2 4.067 3 GHz -36.649 dBm
	N/BLE/MCH	#Res BW 100 kHz MSG MSG Center Freq 5.015 Center Freq 5.015 Ref Offset 10 dB/div Ref Offset 9.79	- Swept SA 10 Ω DC NFE PP IFC 19.79 dB 9 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT IO: Fast ↔ Trig: Free	ALIGN AUTO Avg Tyr Pun Avg Hoi	De: Log-Pwr d: 10/10	01:51:48 PMNov 12, 2019 TRACE 12:34 5 6 TYPE M WWWW DET P P P P P P Vkr2 4.067 3 GHz -36.649 dBm
MSG STATUS	w/BLE/MCH	#Res BW 100 kHz MSG MSG Center Freq 5.015 Center Freq 5.015 Ref Offset 0.021 -0.21 -10.2 -30.2 -30.2 -60.2 -60.2 -70.2 Start 30 MHz	- Swept SA 10 Ω DC NFE PP IFC 19.79 dB 9 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT IO: Fast → Trig: Free #Atten: 20 2 2 10: Low 2 2	ALIGN AUTO AUGN AUTO AVG Typ AVG Hol D dB	A constraints of the second se	01:51:48 PMNov 12, 2019 TRACE [] 23 45 6 TYPE M WWWW DET P P P P P P Wkr2 4.067 3 GHz -36.649 dBm DL1-20.66 dBm DL1-20.66 dBm PEAK PEAK PEAK PEAK PEAK PEAK PEAK PEAK PEAK

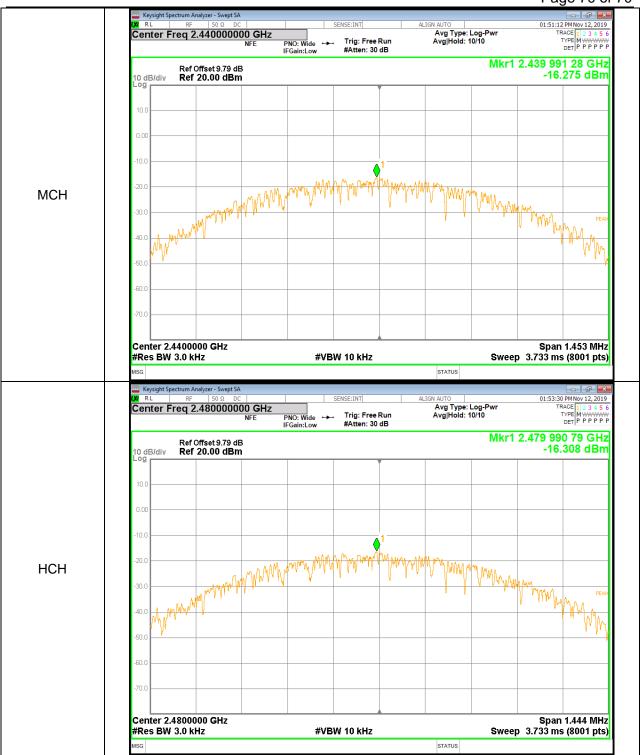

REPORT No.: 4789176224-7 Page 67 of 70

		um Analyzer - Swept			SENSE:INT	A	LIGN AUTO		01:51:5	8 PM Nov 12,
		q 18.00000		PNO: Fast		Run	Avg Type: Avg Hold:		Т	RACE 1 2 3 4 TYPE M WWW DET P P P P
10 c Log	B/div	Ref Offset 9.79 o Ref 19.79 dB						N	1kr1 25.9 -53	28 0 G .134 dE
9.75										
-0.21										
-10.2										
-20.2										DL1 -20.66 c
-30.2										
-40.2										
-50.2										P
-60.2	alling Hart		ter and the second				lanna an alailai An ann aiseana			
-70.2	1		All							
Sta	rt 10.00) GH7							Ston	26.000 GI

BLE_HCH_Graphs

REPORT No.: 4789176224-7 Page 68 of 70




Appendix E): Maximum Power Spectral Density

Result Table	Result Table									
Mode	Channel	PSD [dBm]	Verdict							
BLE	LCH	-16.546	PASS							
BLE	MCH	-16.275	PASS							
BLE	НСН	-16.308	PASS							

Test Graphs

REPORT No.: 4789176224-7 Page 70 of 70

