

Page 1 of 31

FCC Test Report

Report No.	:	1812C50040712501
Applicant	:	Dongguan Dareu Electronics Audio Co., Ltd
Address	:	Room 301, Building 3, No.3 Yuhua Rd., Juzhou area, Shijie Town, Dongguan, China
Product Name	:	Wireless Mouse
Report Date	:	Mar. 19, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Contents

1. General Information	6
 1.1. Client Information	
2. Antenna requirement	12
2.1. Conclusion	12
3. Conducted Emission at AC power line	13
3.1. EUT Operation 3.2. Test Setup 3.3. Test Data	13
4. Maximum Conducted Output Power	14
4.1. EUT Operation4.2. Test Setup4.3. Test Data	14
5. Channel Separation	15
5.1. EUT Operation 5.2. Test Setup 5.3. Test Data	15
6. Number of Hopping Frequencies	16
6.1. EUT Operation 6.2. Test Setup 6.3. Test Data	16
7. Dwell Time	17
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data	18
8. Emissions in non-restricted frequency bands	19
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data	20
9. Band edge emissions (Radiated)	21
9.1. EUT Operation 9.2. Test Setup 9.3. Test Data	21
10. Emissions in frequency bands (below 1GHz)	

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Report No.:1812C50040712501 FCC ID: 2A5PJ-A950

10.1. EUT Operation	23
10.2. Test Setup	
10.3. Test Data	
11. Emissions in frequency bands (above 1GHz)	27
11.1. EUT Operation	27
11.2. Test Setup	
11.3. Test Data	
APPENDIX I TEST SETUP PHOTOGRAPH	
APPENDIX II EXTERNAL PHOTOGRAPH	
APPENDIX III INTERNAL PHOTOGRAPH	

Report No.:1812C50040712501 FCC ID: 2A5PJ-A950

TEST REPORT

Test Standard(s)	:	47 CFR Part 15.247
Rating(s)	:	Input: 5V=500mA(with DC 3.7V, 210mAh battery inside)
Trade Mark	:	DAREU
Model No.	:	A950 WING, TM275D
Product Name	:	Wireless Mouse
Manufacturer	:	Dongguan Togran Electronics Technology Co.,LTD
Applicant	:	Dongguan Dareu Electronics Audio Co., Ltd

ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Date of Test:

Prepared By:

Feb. 12, 2025 to Feb. 20, 2025

Feb. 11, 2025

(Haidi Huang)

Approved & Authorized Signer:

(Hugo Chen)

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email:service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	Mar. 19, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

1. General Information

1.1. Client Information

Applicant	:	Dongguan Dareu Electronics Audio Co., Ltd
Address	:	Room 301, Building 3, No.3 Yuhua Rd., Juzhou area, Shijie Town, Dongguan, China
Manufacturer	:	Dongguan Togran Electronics Technology Co.,LTD
Address	:	No. 110, Shidan Rd., Shijie Town, Dongguan City, Guangdong, China
Factory	:	Dongguan Togran Electronics Technology Co.,LTD
Address		No. 110, Shidan Rd., Shijie Town, Dongguan City, Guangdong, China

1.2. Description of Device (EUT)

Product Name	:	Wireless Mouse		
Model No.	:	A950 WING, TM275D (Note: All samples are the same except the model number, so we prepare "A950 WING" for test only.)		
Trade Mark	:	DAREU		
Test Power Supply	:	DC 3.7V Battery inside		
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)		
Adapter	:	N/A		
RF Specification				
Operation Frequency	:	2403-2480MHz		
Number of Channel	:	16		
Modulation Type	:	GFSK		
Antenna Type	:	PCB Antenna		
Antenna Gain(Peak)	:	1.88dBi		
Remark: (1) All of the RF speci	ifica	ation are provided by customer.		

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.	
1	/	1	1	

1.4. Operation channel list

Operation Band:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2403	5	2446	9	2462	13	2470
2	2424	6	2450	10	2464	14	2472
3	2442	7	2452	11	2466	15	2474
4	2444	8	2458	12	2468	16	2480

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT in continuously transmitting mode with GFSK modulation (non-hopping).
TM2	Keep the EUT in continuously transmitting mode with GFSK modulation (hopping).

1.6. Measurement Uncertainty

Parameter	Uncertainty				
Conducted emissions (AMN 150kHz~30MHz)	3.2dB				
Conducted Output Power	0.76dB				
Occupied Bandwidth	925Hz				
Dwell Time	2%				
Conducted Spurious Emission	1.24dB				
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.64dB; 6G-18GHz: 4.82dB 18G-40GHz: 5.62dB				
Radiated emissions (Below 30MHz)	3.26dB				
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.70dB; Vertical: 4.42dB				
The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.					

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	/	Р
Conducted Emission at AC power line	/	N
Maximum Conducted Output Power	Mode1	Р
Channel Separation	Mode2	Р
Number of Hopping Frequencies	Mode2	Р
Dwell Time	Mode2	Р
Emissions in non-restricted frequency bands	Mode1,2	Р
Band edge emissions (Radiated)	Mode1	Р
Emissions in frequency bands (below 1GHz)	Mode1	Р
Emissions in frequency bands (above 1GHz)	Mode1	Р
Note: P: Pass N: N/A, not applicable		

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited. Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing 1. and approving the test report.
- The test report is invalid if there is any evidence and/or falsification. 2.
- The results documented in this report apply only to the tested sample, under the conditions and 3. modes of operation as described herein.
- This document may not be altered or revised in any way unless done so by Anbotek and all 4. revisions are duly noted in the revisions section.
- Content of the test report, in part or in full, cannot be used for publicity and/or promotional 5. purposes without prior written approval from the laboratory.
- The authenticity of the information provided by the customer is the responsibility of the customer 6. and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Cond	Conducted Emission at AC power line						
Item	Equipment	Manufacturer Model No. Serial No. Last Ca		Last Cal.	Cal.Due Date		
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08	
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2025-01-13	2026-01-12	
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	1	
4	EMI Test Receiver(CE2#)	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08	

Dwell Emiss Maxir	Number of Hopping Frequencies Dwell Time Emissions in non-restricted frequency bands Maximum Conducted Output Power Channel Separation						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13	
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08	
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05	
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08	
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09	
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2025-01-14	2026-01-13	

	Band edge emissions (Radiated) Emissions in frequency bands (above 1GHz)					
Item					Cal.Due Date	
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2025-01-13	2026-01-12
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/
5	5 Horn Antenna A-INFO		LB-180400- KF	J2110606 28	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Emis	Emissions in frequency bands (below 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13	
2	Pre-amplifier	SONOMA	310N	186860	2025-01-14	2026-01-13	
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22	
4	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11	
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	1	

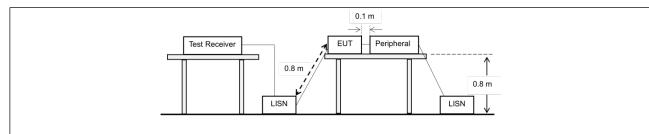
2. Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

2.1. Conclusion

The antenna is a **PCB Antenna** which permanently attached, and the best case gain of the antenna is **1.88dBi**. It complies with the standard requirement.

N 70, (1 ~ 1)


3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).				
	Frequency of emission (MHz)	Conducted limit (dBµV)			
		Quasi-peak	Average		
T = 1 1 = 1	0.15-0.5	66 to 56*	56 to 46*		
Test Limit:	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				
Test Method:	ANSI C63.10-2020 section 6.2				
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power- line conducted emissions from unlicensed wireless devices				

3.1. EUT Operation

Operating Env	Operating Environment:				
Test mode:	1: TX (Non-Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (non-hopping).				

3.2. Test Setup

3.3. Test Data

Not Applicable.

Shenzhen Anbotek Compliance Laboratory Limited

2

4. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2020, section 7.8.5
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings: a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. b) RBW > 20 dB bandwidth of the emission being measured. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow trace to stabilize. h) Use the marker-to-peak function to set the marker to the peak of the emission. i) The indicated level is the peak output power, after any corrections for external attenuators and cables. j) A spectral plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

4.1. EUT Operation

Operating Environment:				
Test mode:	1: TX (Non-Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (non-hopping).			

4.2. Test Setup

EUT Spectrum Analyzer	

4.3. Test Data

			1		
Temperature: 2	21.5 °C	Humidity:	56 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

5. Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2020, section 7.8.2
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

5.1. EUT Operation

Operating Envir	onment:
Test mode:	2: TX (Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (hopping).

5.2. Test Setup

EUT Spectrum Analyzer

5.3. Test Data

Temperature:	21.5 °C	Humidity:	56 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

6. Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.3
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A spectral plot of the data shall be included in the test report.

6.1. EUT Operation

Operating Envir	ronment:
Test mode:	2: TX (Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (hopping).

6.2. Test Setup

	EUT	Spectrum Analyzer	
--	-----	-------------------	--

6.3. Test Data

Temperature: 21.5 °C Humidity: 56 %	Atmospheric Pressure: 101 kPa
---	-------------------------------

Please Refer to Appendix for Details.

7. Dwell Time

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.4
	The dwell time per hop on a channel is the time from the start of the first transmission to the end of the last transmission for that hop. If the device has a single transmission per hop then the dwell time is the duration of that transmission. If the device has a multiple transmissions per hop then the dwell time is measured from the start of the first transmission to the end of the last transmission.
	The time of occupancy is the total time that the device dwells on a channel over an observation period specified in the regulatory requirement. To determine the time of occupancy the spectrum analyzer will be configured to measure both the dwell time per hop and the number of times the device transmits on a specific channel in a given period.
Procedure:	The EUT shall have its hopping function enabled. Compliance with the requirements shall be made with the minimum and with the maximum number of channels enabled. If the dwell time per channel does not vary with the number of channels than compliance with the requirements may be based on the minimum number of channels. If the device supports different dwell times per channel (example Bluetooth devices can dwell on a channel for 1, 3 or 5 time slots) then measurements can be limited to the longest dwell time with the minimum number of channels.
	Use the following spectrum analyzer settings to determine the dwell time per hop:
	 a) Span: Zero span, centered on a hopping channel. b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected transmission time per hop. c) Sweep time: Set so that the start of the first transmission and end of the last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this. d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent channel. e) Detector function: Peak. f) Trace: Clear-write, single sweep. g) Place markers at the start of the first transmission on the channel and at the end of the last transmission. The dwell time per hop is the time between these two markers.

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

To determine the number of hops on a channel in the regulatory observation period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the channel across the sweep time.
The average number of hops on the same channel within the regulatory observation period is calculated from the number of hops on the channel divided by the spectrum analyzer sweep time multiplied by the regulatory observation period. For example, if three hops are counted with an analyzer sweep time of 500 ms and the regulatory observation period is 10 s, then the number of hops in that ten seconds is $3 / 0.5 \times 10$, or 60 hops. The average time of occupancy is calculated by multiplying the dwell time per hop by the number of hops in the observation period.

7.1. EUT Operation

Operating Env	ironment:
Test mode:	2: TX (Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (hopping).

7.2. Test Setup

EUT Spectrum Analyzer

7.3. Test Data

Temperature:21.5 °CHumidity:56 %A	Atmospheric Pressure:	101 kPa
-----------------------------------	-----------------------	---------

Please Refer to Appendix for Details.

8. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 7.8.7
	 7.8.7.1 General considerations To demonstrate compliance with the relative out-of-band emissions requirements conducted spurious emissions shall be measured for the transmit frequencies, per 5.5 and 5.6, and at the maximum transmit powers. Frequency hopping shall be disabled for this test with the exception of measurements at the allocated band-edges which shall be repeated with hopping enabled. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed
	wireless device output and the spectrum analyzer. The frequency range of testing shall span 30 MHz to 10 times the operating frequency and this may be done in a single sweep or, to aid resolution, across a number of sweeps. The resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector.
Procedure:	The limit is based on the highest in-band level across all channels measured using the same instrument settings (resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector). To help clearly demonstrate compliance a display line may be set at the required offset (typically 20 dB) below the highest in-band level. Where the highest in-band level is not clearly identified in the out-of-band measurements a separate spectral plot showing the in-band level shall be provided.
	When conducted measurements cannot be made (for example a device with integrated, non-removable antenna) radiated measurements shall be used. The reference level for determining the limit shall be established by maximizing the field strength from the highest power channel and measuring using the resolution and video bandwidth settings and peak detector as described above. The field strength limit for spurious emissions outside of restricted-bands shall then be set at the required offset (typically 20 dB) below the highest in-band level. Radiated measurements will follow the standards measurement procedures described in Clause 6 with the exception that the resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector. Note that use of

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

wider measurement bandwidths are acceptable for measuring the spurious emissions provided that the peak detector is used and that the measured value of spurious emissions are compared to the highest in-band level measured with the 100 kHz / 300 kHz bandwidth settings to determine compliance.
7.8.7.2 Band-edges Compliance with a relative limit at the band-edges (e.g., −20 dBc) shall be made on the lowest and on the highest channels with frequency hopping disabled and repeated with frequency hopping enabled. For the latter test the hopping sequence shall include the lowest and highest channels.
For measurements with the hopping disabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of the allocated band-edge.
For measurements with the hopping enabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of both of the allocated band-edges. This could require separate spectral plots for each band-edge.

8.1. EUT Operation

Operating Environment:		
Test mode:	 TX (Non-Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (non-hopping). TX (Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (hopping). 	

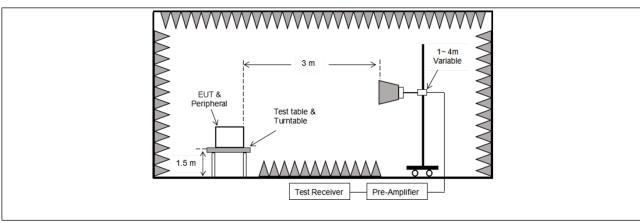
8.2. Test Setup

EUT .	Spectrum Analyzer	

8.3. Test Data

Temperature:	21.5 °C	Humidity:	56 %	Atmospheric Pressure:	101 kPa
I		, , , , , , , , , , , , , , , , , , ,		I	

Please Refer to Appendix for Details.


9. Band edge emissions (Radiated)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Test Limit:	intentional radiators operative frequency bands 54-72 Mill However, operation within sections of this part, e.g., § In the emission table abov The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	aragraph (g), fundamental emiss ting under this section shall not b Hz, 76-88 MHz, 174-216 MHz or these frequency bands is permit §§ 15.231 and 15.241. e, the tighter limit applies at the l in the above table are based on peak detector except for the free above 1000 MHz. Radiated emis ed on measurements employing	be located in the 470-806 MHz. ted under other band edges. measurements guency bands 9– ssion limits in
Test Method:	ANSI C63.10-2020 section	6.10	
Procedure:	ANSI C63.10-2020 section	6.10.5.2	

9.1. EUT Operation

Operating Environment:		
Test mode:	1: TX (Non-Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (non-hopping).	

9.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

9.3. Test Data

Ref Level 107.00 mBy/0 Offset 0.50 mB e BW 1 Mez Att 10 mB SWT 15.1 μs VDL 00 mBy/0 Offset 0.50 mB e BW 1 Mez VDL 00 mBy/0 Offset 0.50 mB e BW 1 M	Temperature:	21.5 °C	Humidity:	56	%	Atmospheric	Pressure:	101 kPa
Spectrum Ar of the second biological of the se			т	M1 /	CH· I			
bet Level 107 20 Gay Offeet 25.0 G as Raw 1 Sec Constrained Sector 1020 Sector 1			-		·			m
00.0 Table 00.0 Cont 1000 00.0 Table 00.0 Cont 1000 00.0 Cont 1000 00.0 Cont 1000 <td>Ref Level 107.00 dBµV Offset</td> <td>0.50 dB 👄 RBW 1 MHz</td> <td></td> <td>∇</td> <td>Ref Level 107.00 dB</td> <td>μV Offset 0.50 dB 👄 RBW 1</td> <td>MHz</td> <td></td>	Ref Level 107.00 dBµV Offset	0.50 dB 👄 RBW 1 MHz		∇	Ref Level 107.00 dB	μV Offset 0.50 dB 👄 RBW 1	MHz	
Ind du/ M(1) 29,0000 du/ M(1) 20,0000 du/ V0 du/ 10 du/ 10 du/ 10 du/ 10 du/ 10 du/ V0 du/ 10 du/ 10 du/ 10 du/ 10 du/ 10 du/ 10 du/ V0 du/ 10 du/	Att 10 dB SWT	15.1 µs 👄 VBW 3 MHz 🛛 Mode Auto I	FT		Att 10	dB SWT 15.1 µs 👄 VBW 3	MHz Mode Auto FFT	
100 du/ 2.90000 dH 100 du/ 2.90000 dH 100 du/ 2.90000 dH 2.90000 dH 2.90000 dH 2.90000 dH 100 du/	●1Pk Max	M1[1]	30	5.18 dBuV	●1Pk Max		M1[1]	38.58 dBµV
In dia/ 10 dia/	100 dBµV		2.39	0000 GHz	100 dBµV			2.390000 GHz
71 Autor 71 Autor <td< td=""><td>90 dBµV</td><td></td><td></td><td>Α—</td><td>90 dBµV</td><td></td><td></td><td></td></td<>	90 dBµV			Α—	90 dBµV			
71 db/ 72 db/					80 dBµV			
0 du/ 0 du/ <td< td=""><td>D1 74.000 dBµV</td><td></td><td></td><td></td><td>D1 74.000</td><td>dBµV-</td><td></td><td></td></td<>	D1 74.000 dBµV				D1 74.000	dBµV-		
0 du/ 0 du/ <td< td=""><td>60 dBµV</td><td></td><td></td><td></td><td>60 dBµV</td><td></td><td></td><td></td></td<>	60 dBµV				60 dBµV			
ei diu- hand hand hand hand hand hand hand hand								
Security OS perform Security								
20 db/	mm smt Wh	man and a show a show	- minum	N.	n min hom	Mymmum	when colleges	how we we
Lo du/ Do du/					30 /BPhA			
Start 2.21 GHz Start 2.21 GHZ <th< td=""><td></td><td></td><td></td><td></td><td>20 dBµV</td><td></td><td></td><td></td></th<>					20 dBµV			
Narker Yest K-value Y-value		691 pts	Stop	2.41 GHz		6	91 pts	Stop 2.41 GHz
Mil 1 2.39 GHz 38.58 dBy/ Peak Value(Vertical) Peak Value(Horizontal) TM1 / CH: H Spectrum Peak Value(Horizontal) Spectrum Spectrum Bet Level 97.50 dBy/ Offset 0.50 dB extreme Spectrum Spectrum Spectrum Spectrum Spectrum Odd Spectrum Spectrum Spectrum Spectrum Odd Spectrum Sp	Marker				Marker			
Peak Value(Vertical) Peak Value(Horizontal) The first of the state of t	M1 1 2.39	GHz 36.18 dBµV			M1 1	2.39 GHz 38.58	dBµ∨	
TIM1 / CH: H Spectrum Ref level 97.50 dBy/ Offset 0.50 dB + 800 1 MHz Att sSR. Contr 50/50 Spectrum Fel level 97.50 dBy/ Offset 0.50 dB + 800 1 MHz Att sSR. Contr 50/50 SP Max SP Max Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 SP Max Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 SP Max Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 Offset 0.50 dBy/ Offset 0.50 dBy/ Offset 0.50 dB + 800 1 MHz SR. Contr 50/50 Offset 0.50 dBy/ Offset 0.			Ready 🎎	11.			Rea	dy 🗰 🏭
TM1 / CH: H Spectrum Ret load 07.50 dBy/ Offset 0.50 dB # RBW 1 Met; Att colspan="2">Sol dBy/ Offset 0.50 dB	F	Peak Value(Vertio	al)			Peak Valu	e(Horizonta	al)
Spectrum To Spectrum Spectrum Rof Level 97.50 dBµV Offset 0.50 dB RBW 1 MHz Natz Natz<		```	,				`	,
Spectrum To Spectrum Ref Level 97.50 dBµV Offset 0.50 dB = RBW 1 MHz Att 0 dB SWT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mode Auto FFT SGL Count 50/50 SUT 3.8 µs = VBW 3 MHz Mathz SG Bu/V MI SGL Count 50/50 SGL Count 50/50 SG Bu/V Mit								
Ref Level 97:50 dig/v Offset 0.50 dis RBW 1 MHz Att 0 dis SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 50/50 0 dis WT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 50/50 0 dis WT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 50/50 0 dis WT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 50/50 0 dis WT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 50/50 0 dis WT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 50/50 0 dis WT 3.8 µs VBW 3 MHz 3.8 9.9 dis 0 dis 0 dis V 0 dis V 0 dis V 0 dis V 2.4835000 Git 0 dis V V V			Т	M1 /	CH: H			
At 0 dB SWT 3.8 µS VBW 3 MHz Mode Auto FFT SGL Count SU50 90 dBµV M1[1] 2.4835000 GHz SR.12 dBµV M1[1] 2.4835000 GHz 90 dBµV 01 74.500 dBµV M1[1] 2.4835000 GHz SGL Quit SU50 SGL Quit SU50 90 dBµV 01 74.500 dBµV 0 dBµV 01 74.500 dBµV M1[1] 2.4835000 GHz 90 dBµV 01 74.500 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV 90 dBµV M1 0 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV 90 dBµV M1 0 dBµV M1 0 dBµV								
10: ht Max: M1[1] 38: 12 dBy/ M1[1] 39: 93 df 90 dBy/ 10 70 dBy/ 11 2.4835000 GHz 90 dBy/ 11 2.4835000 GHz 90 dBy/ 12.4835000 GHz 90 dBy/ 10.4500 GBy/ 10.4500 G	Att 0 dB SWT	50 dB 👄 RBW 1 MHz 3.8 µs 👄 VBW 3 MHz 🛛 Mode Auto F	т		🕳 Att 🛛 🛛 d	V Offset 0.50 dB ⊕ RBW 1 № B SWT 3.8 µs ⊕ VBW 3 №	1Hz 1Hz Mode Auto FFT	
90 dBµ/ 2.4835000 GHz 90 dBµ/ 2.4835000 GHz 80 dBµ/ 01 74.500 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 70 dBµ/ 01 74.500 dBµ/ 00 dBµ/ 00 dBµ/ 01 dPµ/ 60 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 50 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 50 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 50 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 00 dBµ/ 50 dBµ/ 00 dBµ/	SGL Count 50/50 ●1Pk Max				SGL Count 50/50 IPk Max			
01 74.500 74.500 74.	90 dBµV	M1[1]	38 2.483	8.12 dBµV 5000 GHz	90 dBµV		M1[1]	38.93 dBµV 2.4835000 GHz
01 74.500 dBµV 01 dBµV dD dBµV dD dBµV dD dBµV dD dD dBµV dD d	80 dBµV				80 dBµV			
60 dBµV 60 dBµV 60 dBµV 60 dBµV 50 dBµV M1 M1 M1 40 dBµV M1 M1 M1 30 dBµV 0 dBµV 30 dBµV 30 dBµV 20 dBµV M1 M1 M1 10 dBµV 0 dBµV 0 dBµV 0 dBµV 11 2.4835 GHz 38.12 dBµV Function Result Ready Ready	D1 74.500 dBµV				D1 74.500			
S0 dBu// M1								
40 dbµ/ M1 40 dbµ/ M1 40 dbµ/ 30 dbµ/ 20 dbµ/ 30 dbµ/ 30 dbµ/ 20 dbµ/ 20 dbµ/ 20 dbµ/ 20 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 11 2.4835 GHz 501 pts Ready								
40 dBµ/ 10 40 dBµ/ 30 dBµ/ 30 dBµ/ 20 dBµ/ 30 dBµ/ 30 dBµ/ 10 dBµ/ 10 dBµ/ 20 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 10 dBµ/ 11 2.4835 GHz 38.12 dBµ/ Function Function Result Type Ref Trc X-value Y-value 11 2.4835 GHz 38.12 dBµ/ Ready Ready Ready Ready Ready		M1			Ϋ́	M1		
20 dBµV 10 dBµV 20 dBµV 20 dBµV 10 dBµV				~				
10 dBµV 0 dBµV </td <td>30 dBµV</td> <td></td> <td></td> <td></td> <td>30 dBµV-</td> <td></td> <td></td> <td></td>	30 dBµV				30 dBµV-			
O dBµ/v O dBµ/v <t< td=""><td>20 dBµV</td><td></td><td></td><td></td><td>20 dBµV</td><td></td><td></td><td></td></t<>	20 dBµV				20 dBµV			
Start 2.475 GHz 691 pts Stop 2.5 GHz Marker Marker Marker Function Function Result Type Ref Trc X-value Y-value Function Result Marker M1 1 2.4835 GHz 38.12 dBµV Ready Marker	10 dBµV				10 dBµV			
Marker Type Ref X-value Y-value Function Function Result Marker M1 1 2.4835 GH2 38.12 dBµV Function Result M1 1 2.4835 GH2 38.93 dBµV Function Result M2 Ready Function Function Function Function Result M1 1 2.4835 GH2 38.93 dBµV Function Function Result M1 1 2.4835 GH2 38.93 dBµV Function Function Result M1 Function Function Result Function Function Result Function Function Function Result Function Function <td>0 dBµV</td> <td></td> <td></td> <td>0.5.0</td> <td>0 dBµV</td> <td></td> <td></td> <td></td>	0 dBµV			0.5.0	0 dBµV			
M1 1 2.4835 GHz 38.12 dBµV M1 1 2.4835 GHz 38.93 dBµV Ready	Marker			2.5 GHZ	Marker			
	Type Ref Trc X-value	Y-value Function GHz 38.12 dBµV			Type Ref Trc M1 1	X-value Y-value 2.4835 GHz 38.93	dBµ∨	
Peak Value(Vertical) Peak Value(Horizontal)			Ready	11.			Rea	dy 🗰 🎼
	F	Peak Value(Vertic	al)			Peak Valu	e(Horizonta	al)
	I		,,					, , , , , , , , , , , , , , , , , , ,

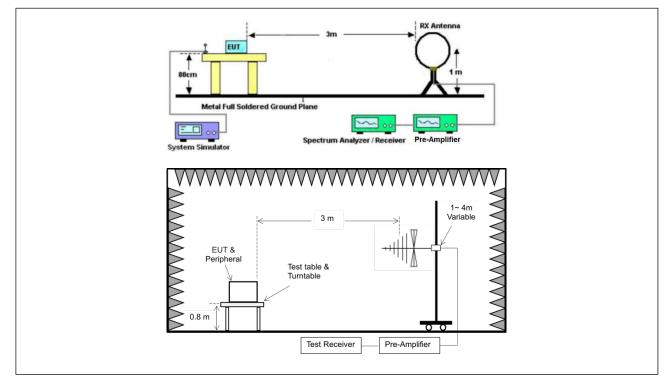
Note: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

m

pp

10. Emissions in frequency bands (below 1GHz)

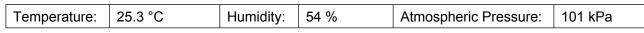
Test Requirement:	restricted bands, as define	, In addition, radiated emissions d in § 15.205(a), must also com ecified in § 15.209(a)(see § 15.2	oly with the	
Test Limit:	Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in partice intentional radiators operator frequency bands 54-72 MHH However, operation within sections of this part, e.g., § In the emission table above The emission limits shown	Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500 aragraph (g), fundamental emiss ing under this section shall not b tz, 76-88 MHz, 174-216 MHz or these frequency bands is permit § 15.231 and 15.241. e, the tighter limit applies at the l in the above table are based on	Measurement distance (meters) 300 30 30 30 3 3 3 3 3 3 3 3 3 5 ions from be located in the 470-806 MHz. ted under other band edges. measurements	
	employing a CISPR quasi-peak detector except for the frequency bands 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits ir these three bands are based on measurements employing an average detector.			
Test Method:	ANSI C63.10-2020 section	6.6.4		
Procedure:	ANSI C63.10-2020 section	6.6.4		

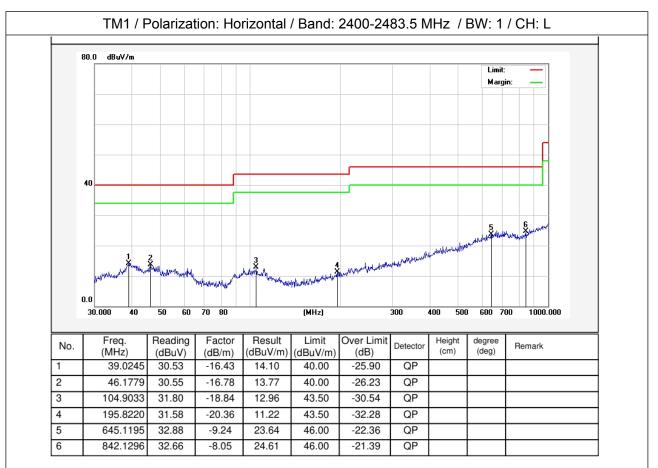

10.1. EUT Operation

Operating Envi	Operating Environment:		
Test mode:	1: TX (Non-Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (non-hopping).		

10.2. Test Setup

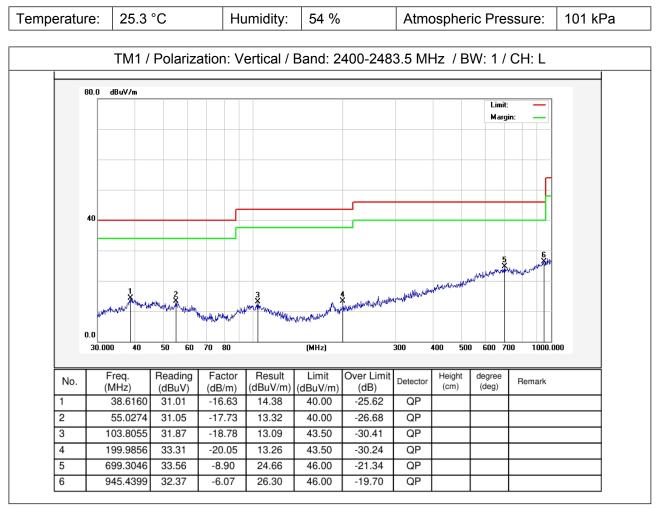
Shenzhen Anbotek Compliance Laboratory Limited


Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

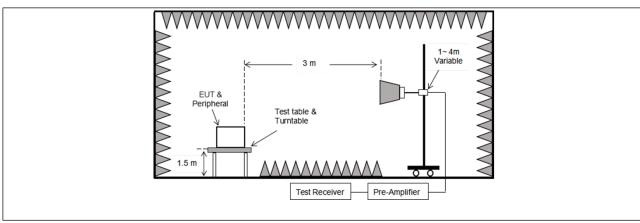

Hotline 400-003-0500 www.anbotek.com

10.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.



Report No.:1812C50040712501 FCC ID: 2A5PJ-A950


11. Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Test Limit:	intentional radiators open frequency bands 54-72 M However, operation with sections of this part, e.g. In the emission table abo The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz an	paragraph (g), fundamental emis ating under this section shall no /IHz, 76-88 MHz, 174-216 MHz on n these frequency bands is pern , §§ 15.231 and 15.241. here, the tighter limit applies at the on in the above table are based of si-peak detector except for the fr d above 1000 MHz. Radiated er used on measurements employing	t be located in the or 470-806 MHz. nitted under other e band edges. on measurements equency bands 9– nission limits in
Test Method:	ANSI C63.10-2020 section	on 6.6.4	
Procedure:	ANSI C63.10-2020 section	on 6.6.4	

11.1. EUT Operation

Operating Envi	ronment:
Test mode:	1: TX (Non-Hopping): Keep the EUT in continuously transmitting mode with GFSK modulation (non-hopping).

11.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

11.3. Test Data

Temperature:	21.5 °C	Humidity:	56 %	Atmospheric Pressure:		101 kPa	
		Т	M1 / CH: L				
Peak value:							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization	
4806.00	27.54	15.27	42.81	74.00	-31.19	Vertical	
7209.00	28.76	18.09	46.85	74.00	-27.15	Vertical	
9612.00	29.61	23.76	53.37	74.00	-20.63	Vertical	
12015.00	*			74.00		Vertical	
14418.00	*			74.00		Vertical	
4806.00	27.95	15.27	43.22	74.00	-30.78	Horizontal	
7209.00	28.68	18.09	46.77	74.00	-27.23	Horizontal	
9612.00	28.49	23.76	52.25	74.00	-21.75	Horizontal	
12015.00	*			74.00		Horizontal	
14418.00	*			74.00		Horizontal	
Average value	:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization	
4806.00				· · · · ·			
4000.00	16.92	15.27	32.19	54.00	-21.81	Vertical	
7209.00	16.92 17.79	15.27 18.09	32.19 35.88	54.00 54.00	-21.81 -18.12	Vertical Vertical	
		_			_		
7209.00	17.79	18.09	35.88	54.00	-18.12	Vertical	
7209.00 9612.00	17.79 18.63	18.09	35.88	54.00 54.00	-18.12	Vertical Vertical	
7209.00 9612.00 12015.00	17.79 18.63 *	18.09	35.88	54.00 54.00 54.00	-18.12	Vertical Vertical Vertical	
7209.00 9612.00 12015.00 14418.00	17.79 18.63 * *	18.09 23.76	35.88 42.39	54.00 54.00 54.00 54.00	-18.12 -11.61	Vertical Vertical Vertical Vertical	
7209.00 9612.00 12015.00 14418.00 4806.00	17.79 18.63 * * 16.30	18.09 23.76 15.27	35.88 42.39 31.57	54.00 54.00 54.00 54.00 54.00	-18.12 -11.61 -22.43	Vertical Vertical Vertical Vertical Horizontal	

Shenzhen Anbotek Compliance Laboratory Limited

*

14418.00

54.00

Horizontal

Report No.:1812C50040712501 FCC ID: 2A5PJ-A950

			TM1 / CH: M				
Peak value:							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization	
4884.00	27.56	15.42	42.98	74.00	-31.02	Vertical	
7326.00	28.61	18.02	46.63	74.00	-27.37	Vertical	
9768.00	28.62	23.80	52.42	74.00	-21.58	Vertical	
12210.00	*			74.00		Vertical	
14652.00	*			74.00		Vertical	
4884.00	27.65	15.42	43.07	74.00	-30.93	Horizontal	
7326.00	28.67	18.02	46.69	74.00	-27.31	Horizontal	
9768.00	28.19	23.80	51.99	74.00	-22.01	Horizontal	
12210.00	*			74.00		Horizontal	
14652.00	*			74.00		Horizontal	
Average value:							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization	
4884.00	16.65	15.42	32.07	54.00	-21.93	Vertical	
7326.00	17.89	18.02	35.91	54.00	-18.09	Vertical	
9768.00	18.49	23.80	42.29	54.00	-11.71	Vertical	
12210.00	*			54.00		Vertical	
14652.00	*			54.00		Vertical	
4884.00	16.21	15.42	31.63	54.00	-22.37	Horizontal	
7326.00	17.30	18.02	35.32	54.00	-18.68	Horizontal	
9768.00	18.31	23.80	42.11	54.00	-11.89	Horizontal	
12210.00	*			54.00		Horizontal	
14652.00	*			54.00		Horizontal	

			TM1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	27.83	15.58	43.41	74.00	-30.59	Vertical
7440.00	28.62	17.93	46.55	74.00	-27.45	Vertical
9920.00	29.17	23.83	53.00	74.00	-21.00	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	27.72	15.58	43.30	74.00	-30.70	Horizontal
7440.00	28.70	17.93	46.63	74.00	-27.37	Horizontal
9920.00	28.87	23.83	52.70	74.00	-21.30	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	17.77	15.58	33.35	54.00	-20.65	Vertical
7440.00	18.90	17.93	36.83	54.00	-17.17	Vertical
9920.00	19.04	23.83	42.87	54.00	-11.13	Vertical
12400.00	*			54.00		Vertical
14880.00	*			54.00		Vertical
4960.00	17.65	15.58	33.23	54.00	-20.77	Horizontal
7440.00	18.67	17.93	36.60	54.00	-17.40	Horizontal
9920.00	18.21	23.83	42.04	54.00	-11.96	Horizontal
12400.00	*			54.00		Horizontal
14880.00	*			54.00		Horizontal

Remark:

1. Result =Reading + Factor

2. Test frequency are from 1GHz to 25GHz, "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

