

RF Test Report

For

Applicant Name: FOXX Development Inc.

Address: 3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

EUT Name: Smart Phone Brand Name: FOXXD Model Number: A65M

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF240218R00102 Test Standards: 47 CFR Part 15.247

Test Conclusion: Pass

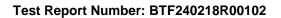
FCC ID: 2AQRM-A65M

Test Date: 2024-02-19 to 2024-03-08

Date of Issue: 2024-03-11

Prepared By:

Chris Liu / Project Engineer

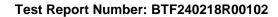

Date: 2024-03-11

Approved By:

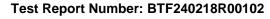
Ryan.CJ / EMC Manager

Date: 2024-03-11

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History			
Version	Issue Date	Revisions Content	1111
R_V0	2024-03-11	Original	
Note: Once the	revision has been made, then pre	vious versions reports are invalid.	

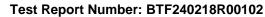

Table of Contents

1	INTR	ODUCTION	5
	1.1	Identification of Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	5
	1.3	Announcement	
2	PROI	DUCT INFORMATION	6
	2.1	Application Information	
	2.1	Manufacturer Information	
	2.3	Factory Information	
	2.4	General Description of Equipment under Test (EUT)	6
	2.5	Technical Information	
3	SUMI	MARY OF TEST RESULTS	
•			
	3.1 3.2	Test Standards Uncertainty of Test	
	3.3	Summary of Test Result	
4		CONFIGURATION	
	4.1	Test Equipment List	
	4.2 4.3	Test Auxiliary Equipment	
_		Test Modes	
5	EVAL	.UATION RESULTS (EVALUATION)	
	5.1	Antenna requirement	11
		5.1.1 Conclusion:	11
6	RADI	O SPECTRUM MATTER TEST RESULTS (RF)	12
	6.1	Conducted Emission at AC power line	12
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram:	
		6.1.3 Test Data:	
	6.2	Occupied Bandwidth	15
		6.2.1 E.U.T. Operation:	15
		6.2.2 Test Setup Diagram:	
		6.2.3 Test Data:	15
	6.3	Maximum Conducted Output Power	16
		6.3.1 E.U.T. Operation:	16
		6.3.2 Test Setup Diagram:	
		6.3.3 Test Data:	
	6.4	Power Spectral Density	17
		6.4.1 E.U.T. Operation:	
		6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	
	6.5	Emissions in non-restricted frequency bands	
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Setup Diagram: 6.5.3 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation: 6.6.2 Test Setup Diagram:	
		6.6.2 Test Setup Diagram: 6.6.3 Test Data:	
	6.7	Emissions in frequency bands (below 1GHz)	
	0.7	6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	
		o.r.z root ootap Diagram	- 1

	6.7.3	Test Data:	22
6.8	Emiss	sions in frequency bands (above 1GHz)	24
	6.8.1	E.U.T. Operation:	24
		Test Setup Diagram:	
	6.8.3	Test Data:	25
7 TES	ST SETU	JP PHOTOS	27
8 EU	T CONST	TRUCTIONAL DETAILS (EUT PHOTOS)	29
		· · · · · · · · · · · · · · · · · · ·	

1 Introduction

1.1 Identification of Testing Laboratory


Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.		
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.		
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	FOXX Development Inc.
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

2.2 Manufacturer Information

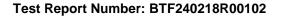
Company Name:	FOXX Development Inc.
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

2.3 Factory Information

Company Name:	FOXX Development Inc.
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Smart Phone
Test Model Number:	A65M


2.5 Technical Information

Power Supply:	DC 5V 1A from adapotr or 3.8V from battery
Power Adaptor: Input:AC 100-240V 50/60Hz 0.3A Output:5.0V==1000mA	
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	PIFA ANT
Antenna Gain [#] :	2.69dBi
Mata	

Note:

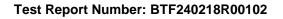
#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

Bluetooth Version: 5.0

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

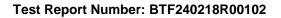

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB
Occupied Bandwidth	±69kHz
Transmitter Power, Conducted	±0.87dB
Power Spectral Density	±0.69dB
Conducted Spurious Emissions	±0.95dB
Radiated Spurious Emissions (above 1GHz)	1-6GHz: ±3.94dB 6-18GHz: ±4.16dB
Radiated Spurious Emissions (30M - 1GHz)	±4.12dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

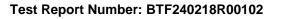
3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass



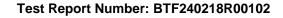
Test Configuration

Test Equipment List


Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	/	/		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	/	/		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2023-11-16	2024-11-15		
LISN	AFJ	LS16/110VAC	16010020076	2023-11-26	2024-11-15		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2023-11-15	2024-11-14		

Occupied Bandwidth Maximum Conducted Power Spectral Densi Emissions in non-res	ty	ands			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	1	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	/	/
RF Sensor Unit	Techy	TR1029-2	/	/	/
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	/	/
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Band edge emissions	(Padiated)				
Emissions in frequen		GHz)			
Emissions in frequen					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	/	/
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	/	/
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	/	/
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	/	/
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	/	/
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	1
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-13	2024-11-12
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	/	/
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-13	2024-11-12



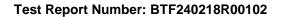
4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

No.	Test Modes	Description
TM1	TX mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

5 Evaluation Results (Evaluation)

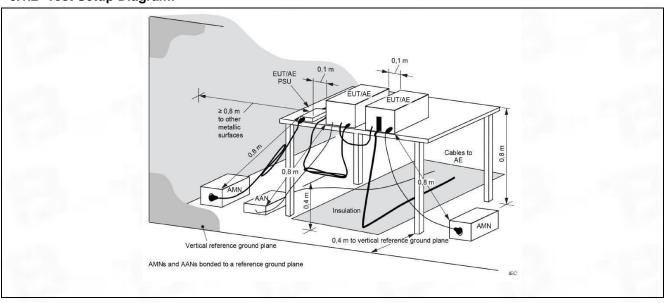

5.1 Antenna requirement

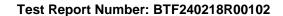
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

6 Radio Spectrum Matter Test Results (RF)

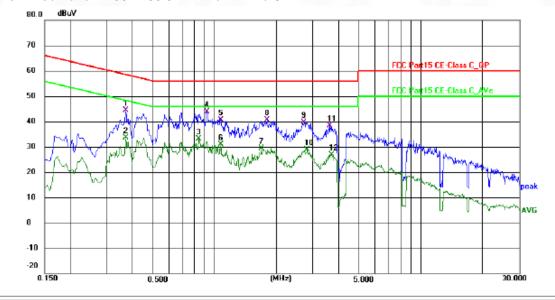

6.1 Conducted Emission at AC power line

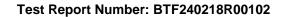

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Method:	ANSI C63.10-2013 section 6.2						
	Frequency of emission (MHz)	Conducted limit (dE Quasi-peak	BμV) Average				
Test Limit:	0.15-0.5	66 to 56*	56 to 46*				
Test Littit.	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

6.1.1 E.U.T. Operation:

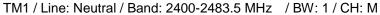
Operating Environment:			
Temperature:	24.3 °C		
Humidity:	47.9 %		
Atmospheric Pressure:	1010 mbar		

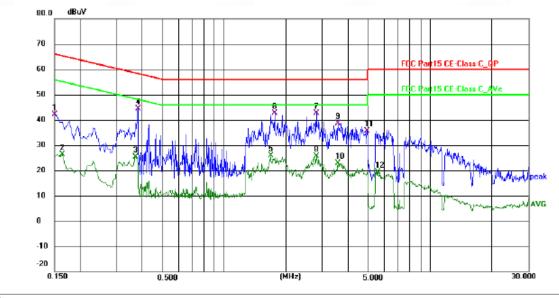
6.1.2 Test Setup Diagram:



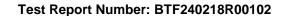


6.1.3 Test Data:

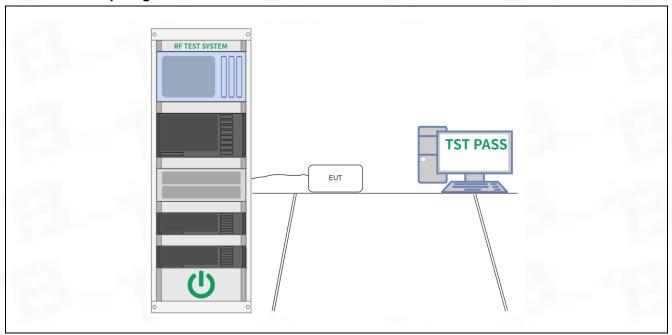

TM1 / Line: Line / Band: 2400-2483.5 MHz / BW: 1 / CH: M



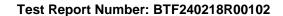
No.	Frequency (MHz)	Reading (dBuV)	Factor ()	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.3704	34.16	10.20	44.36	58.49	-14.13	QP	Р	
2	0.3704	23.54	10.20	33.74	48.49	-14.75	AVG	Р	
3	0.8385	23.35	9.84	33.19	46.00	-12.81	AVG	Р	
4 *	0.9195	33.10	10.67	43.77	56.00	-12.23	QP	Р	
5	1.0725	30.05	10.66	40.71	56.00	-15.29	QP	Р	
6	1.0725	20.32	10.66	30.98	46.00	-15.02	AVG	Р	
7	1.6890	18.77	10.67	29.44	46.00	-16.56	AVG	Р	
8	1.7970	29.94	10.67	40.61	56.00	-15.39	QP	Р	
9	2.7239	29.00	10.67	39.67	56.00	-16.33	QP	Р	
10	2.8140	18.14	10.68	28.82	46.00	-17.18	AVG	Р	
11	3.6330	27.65	10.64	38.29	56.00	-17.71	QP	Р	
12	3.6960	16.19	10.65	26.84	46.00	-19.16	AVG	Р	



No.	Frequency (MHz)	Reading (dBuV)	Factor ()	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1500	31.56	10.45	42.01	66.00	-23.99	QP	Р	
2	0.1635	15.95	10.48	26.43	55.28	-28.85	AVG	Р	
3	0.3704	15.22	10.20	25.42	48.49	-23.07	AVG	Р	
4	0.3795	34.23	10.19	44.42	58.29	-13.87	QP	Р	
5	1.6890	15.28	10.67	25.95	46.00	-20.05	AVG	Р	
6 *	1.7610	32.03	10.67	42.70	56.00	-13.30	QP	Р	
7	2.8005	31.86	10.68	42.54	56.00	-13.46	QP	Р	
8	2.8005	14.91	10.68	25.59	46.00	-20.41	AVG	Р	
9	3.5655	28.01	10.64	38.65	56.00	-17.35	QP	Р	
10	3.5655	12.29	10.64	22.93	46.00	-23.07	AVG	Р	
11	4.9380	24.85	10.73	35.58	56.00	-20.42	QP	Р	
12	5.5770	8.62	10.75	19.37	50.00	-30.63	AVG	Р	


6.2 Occupied Bandwidth

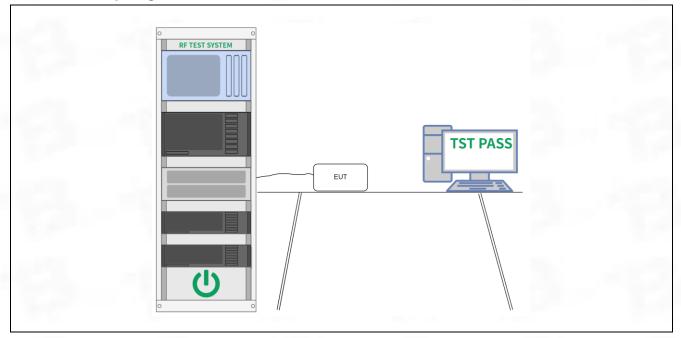
Test Requirement:	47 CFR 15.247(a)(2)
Test Method:	ANSI C63.10-2013, section 11.8
Test Limit:	KDB 558074 D01 15.247 Meas Guidance v05r02 Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


6.2.1 E.U.T. Operation:

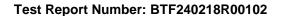
Operating Environment:	
Temperature:	22.2 °C
Humidity:	49.4 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

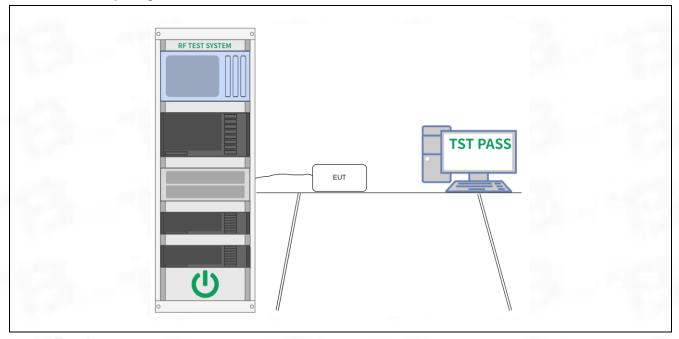
Test Requirement:	47 CFR 15.247(b)(3)
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power


6.3.1 E.U.T. Operation:

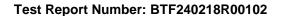
Operating Environment:	
Temperature:	22.2 °C
Humidity:	49.4 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Power Spectral Density

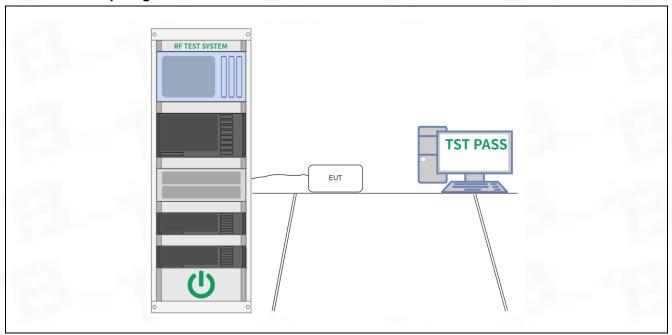
	·
Test Requirement:	47 CFR 15.247(e)
Test Method:	ANSI C63.10-2013, section 11.10
Test Method.	KDB 558074 D01 15.247 Meas Guidance v05r02
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission


6.4.1 E.U.T. Operation:

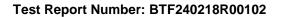
Operating Environment:				
Temperature:	22.2 °C			
Humidity:	49.4 %			
Atmospheric Pressure:	1010 mbar			

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 Emissions in non-restricted frequency bands

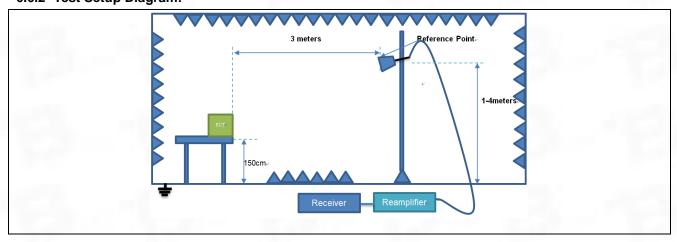
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Method:	ANSI C63.10-2013 section 11.11
rest Metriod.	KDB 558074 D01 15.247 Meas Guidance v05r02
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

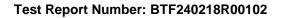

6.5.1 E.U.T. Operation:

Operating Environment:	
Temperature:	22.2 °C
Humidity:	49.4 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Setup Diagram:

6.5.3 Test Data:


6.6 Band edge emissions (Radiated)


	neerene (radiated)					
Test Requirement:	restricted bands, as defin	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`				
Test Method:	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
Test Limit:	Above 960	500	3			
** Except as provided in paragraph (g), fundamental emissions from intention radiators operating under this section shall not be located in the frequency by 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–9 110–490 kHz and above 1000 MHz. Radiated emission limits in these three						
Dragadura		ents employing an average det	ector.			
Procedure:	ANSI C63.10-2013 section	on 6.10.5.2				

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	22.1 °C
Humidity:	49.2 %
Atmospheric Pressure:	1010 mbar

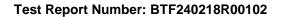
6.6.2 Test Setup Diagram:

6.6.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	66.50	-30.59	35.91	74.00	-38.09	peak	Р
2	2390.000	66.76	-30.49	36.27	74.00	-37.73	peak	Р
3 *	2400.000	71.37	-30.48	40.89	74.00	-33.11	peak	Р

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

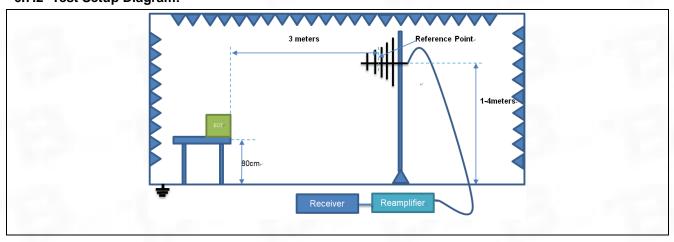

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	66.27	-30.59	35.68	74.00	-38.32	peak	Р
2	2390.000	66.76	-30.49	36.27	74.00	-37.73	peak	Р
3 *	2400.000	71.87	-30.48	41.39	74.00	-32.61	peak	Р

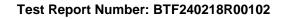
TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	2483.500	67.77	-30.39	37.38	74.00	-36.62	peak	Р
2	2500.000	65.70	-30.37	35.33	74.00	-38.67	peak	Р

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	2483.500	67.27	-30.39	36.88	74.00	-37.12	peak	Р
2	2500.000	65.74	-30.37	35.37	74.00	-38.63	peak	Р

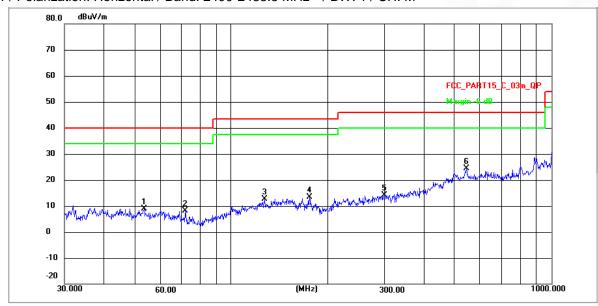

6.7 Emissions in frequency bands (below 1GHz)

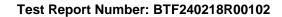

D (
restricted bands, as defined in § 15.205(a), must also comply with the radiated						
KDB 558074 D01 15.247 M	eas Guidance v05r02					
Frequency (MHz)	Field strength	Measurement				
	(microvolts/meter)	distance				
		(meters)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				
30-88	100 **	3				
88-216	150 **	3				
216-960	200 **	3				
Above 960	500	3				
** Except as provided in paragraph (g), fundamental emissions from intentional						
radiators operating under this section shall not be located in the frequency bands						
54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within						
these frequency bands is permitted under other sections of this part, e.g., §§						
15.231 and 15.241.						
In the emission table above, the tighter limit applies at the band edges.						
The emission limits shown in the above table are based on measurements						
employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz,						
110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands						
are based on measurement	s employing an average detector.					
	restricted bands, as defined emission limits specified in a ANSI C63.10-2013 section KDB 558074 D01 15.247 M Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in parradiators operating under th 54-72 MHz, 76-88 MHz, 174 these frequency bands is perfectly bands is perfectly bands in parradiators of the emission table above The emission limits shown in the emission l	emission limits specified in § 15.209(a)(see § 15.205(c)). ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02 Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 0.490-1.705 24000/F(kHz) 1.705-30.0 30-88 100 ** 88-216 150 ** 216-960 200 ** Above 960 ** Except as provided in paragraph (g), fundamental emission radiators operating under this section shall not be located in the section of the				

6.7.1 E.U.T. Operation:

Operating Environment:	
Temperature:	22.1 °C
Humidity:	49.2 %
Atmospheric Pressure:	1010 mbar

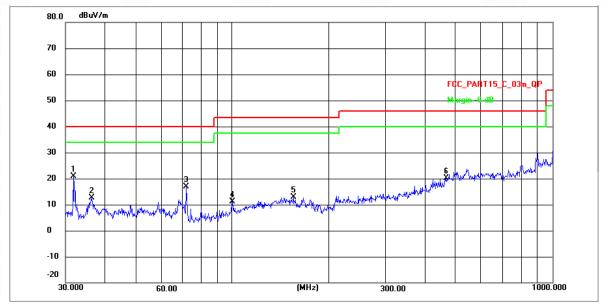
6.7.2 Test Setup Diagram:



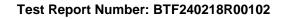


6.7.3 Test Data:

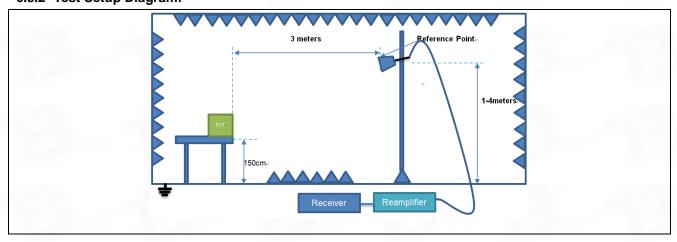
TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

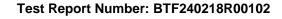


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	53.1313	27.00	-18.24	8.76	40.00	-31.24	peak	Р
2	71.9580	26.22	-18.09	8.13	40.00	-31.87	peak	Р
3	127.2176	40.56	-27.99	12.57	43.50	-30.93	peak	Р
4	175.0367	40.96	-27.55	13.41	43.50	-30.09	peak	Р
5	299.3158	39.52	-25.43	14.09	46.00	-31.91	peak	Р
6 *	545.1825	45.96	-21.61	24.35	46.00	-21.65	peak	Р



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	31.8427	41.59	-20.70	20.89	40.00	-19.11	peak	Р
2	36.3814	33.22	-20.61	12.61	40.00	-27.39	peak	Р
3	71.8320	36.75	-19.96	16.79	40.00	-23.21	peak	Р
4	100.0530	39.36	-28.23	11.13	43.50	-32.37	peak	Р
5	155.3643	40.49	-27.73	12.76	43.50	-30.74	peak	Р
6	465.5994	41.99	-21.93	20.06	46.00	-25.94	peak	Р


6.8 Emissions in frequency bands (above 1GHz)


	In addition, radiated emi	ssions which fall in the restricted	d bands, as defined in §							
Test Requirement:		nply with the radiated emission								
root roquiromoni.	15.209(a)(see § 15.205(minto opcomod in 3							
	ANSI C63.10-2013 secti	,,								
Test Method:		KDB 558074 D01 15.247 Meas Guidance v05r02 Frequency (MHz) Field strength Measurement								
			Measurement							
	1.040.01.07 ((microvolts/meter)	distance							
		(mere vene, meter)	(meters)							
	0.009-0.490	2400/F(kHz)	300							
	0.490-1.705	24000/F(kHz)	30							
	1.705-30.0	30	30							
	30-88 100 ** 3									
	88-216 150 ** 3									
	216-960 200 ** 3									
Test Limit:	Above 960	500	3							
103t Littit.	** Except as provided in	paragraph (g), fundamental em	issions from intentional							
		r this section shall not be locate								
		174-216 MHz or 470-806 MHz.	·							
		s permitted under other sections	s of this part, e.g., §§							
	15.231 and 15.241.									
		ove, the tighter limit applies at the								
		vn in the above table are based								
		si-peak detector except for the f								
	110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.									
December		1 1 2	ector.							
Procedure:	ANSI C63.10-2013 secti	on 6.6.4								

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	22.1 °C
Humidity:	49.2 %
Atmospheric Pressure:	1010 mbar

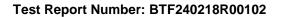
6.8.2 Test Setup Diagram:

6.8.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	4804.000	73.45	-27.92	45.53	74.00	-28.47	peak	Р
2	7206.000	73.19	-24.87	48.32	74.00	-25.68	peak	Р
3	9608.000	69.36	-23.43	45.93	74.00	-28.07	peak	Р

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

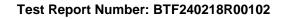

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
IVO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	4804.000	74.42	}27.92	46.50	74.00	-27.50	peak	Р
2	7206.000	73.71	-24.87	48.84	74.00	-25.16	peak	Р
3	9608.000	71.35	-23.43	47.92	74.00	-26.08	peak	Р

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

Ì	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
	1	4880.000	74.01	-27.70	46.31	74.00	-27.69	peak	Р
	2	7320.000	73.75	-24.83	48.92	74.00	-25.08	peak	Р
	3	9760.000	69.92	-23.78	46.14	74.00	-27.86	peak	Р

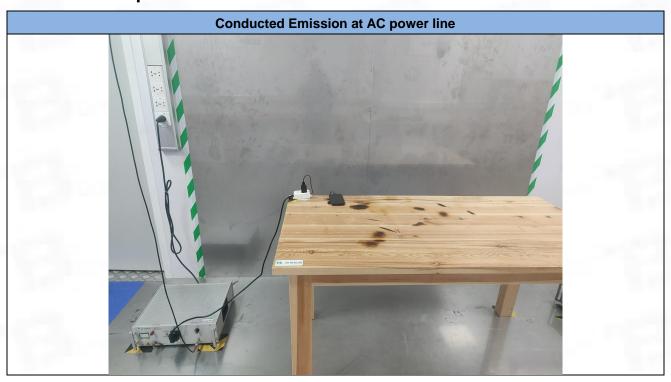
TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

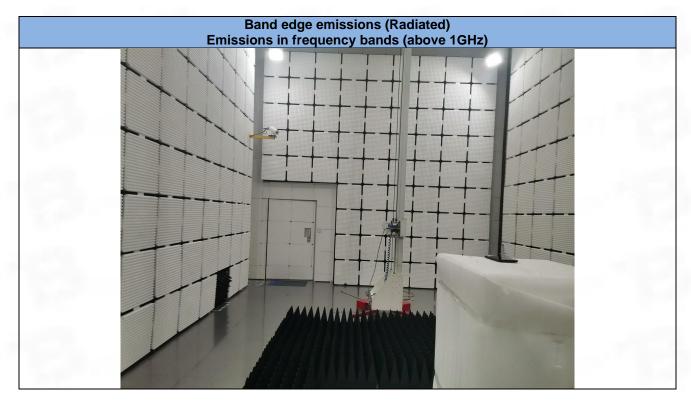
- 1										
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
	INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	17/1	
	1	4880.000	74.77	-27.70	47.07	74.00	-26.93	peak	Р	
	2	7320.000	74.06	-24.83	49.23	74.00	-24.77	peak	Р	
	3	9760.000	71.70	-23.78	47.92	74.00	-26.08	peak	Р	

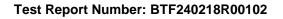


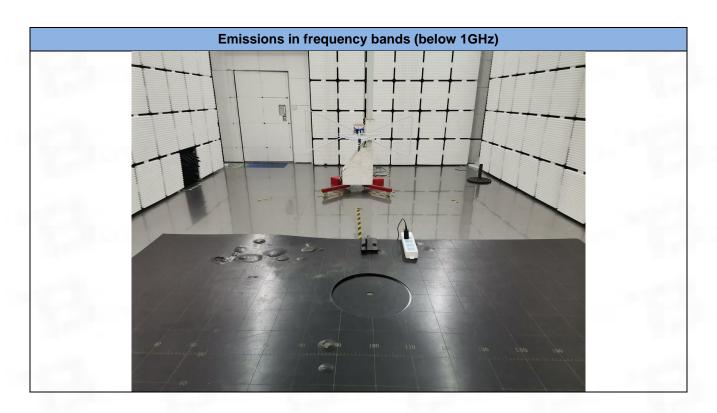
TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

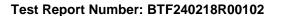
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4960.000	74.47	-27.37	47.10	74.00	-26.90	peak	Р
2	7440.000	74.21	-24.68	49.53	74.00	-24.47	peak	Р
3	9920.000	70.38	-23.99	46.39	74.00	-27.61	peak	Р

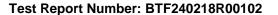

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

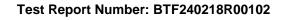

ĺ	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
	1	4960.000	75.17	-27.37	47.80	74.00	-26.20	peak	Р
	2	7440.000	74.46	-24.68	49.78	74.00	-24.22	peak	Р
	3	9920.000	72.10	-23.99	48.11	74.00	-25.89	peak	Р




7 Test Setup Photos

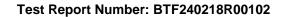





8 **EUT Constructional Details (EUT Photos)**

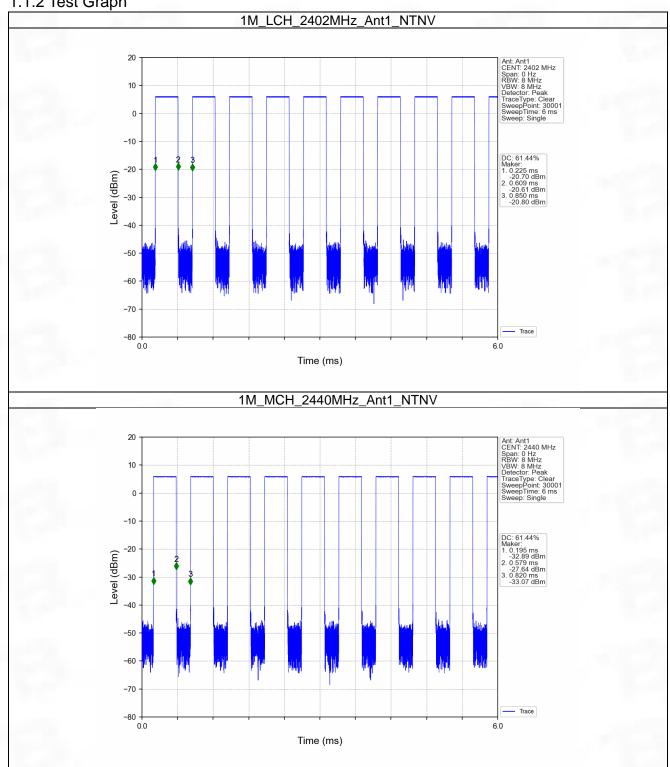
Please refer to the test report No. BTF240218R00101

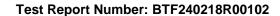
Appendix

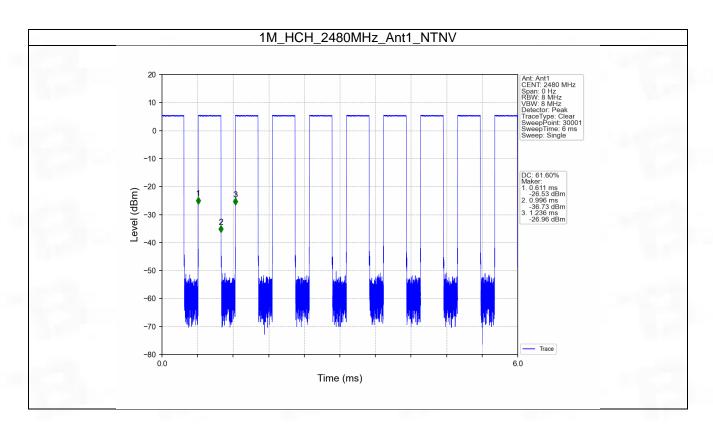


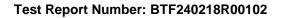
1. Duty Cycle

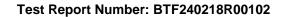
1.1 Ant1


1.1.1 Test Result


	Ant1										
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC				
Mode	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)				
		2402	0.384	0.625	61.44	2.12	0.00				
1M	SISO	2440	0.384	0.625	61.44	2.12	0.00				
		2480	0.385	0.625	61.60	2.10	0.00				

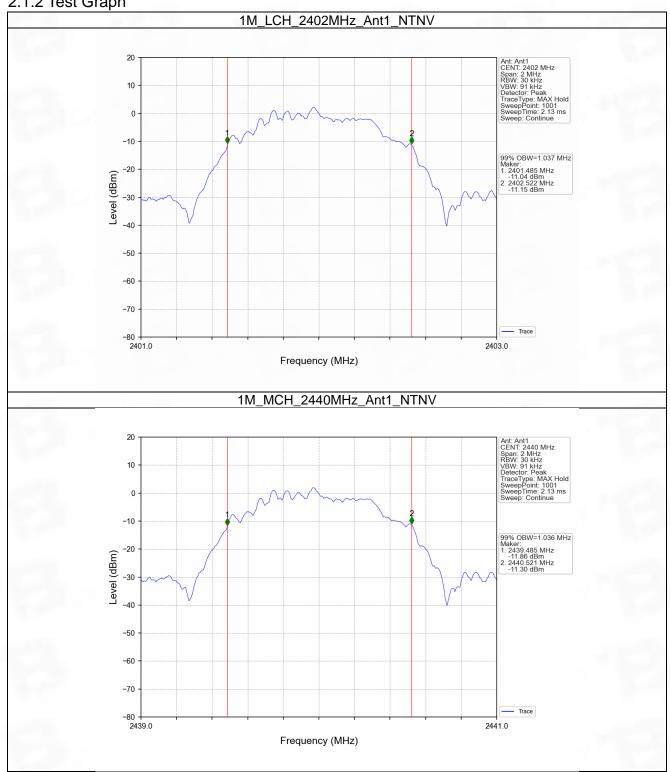


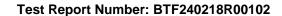

1.1.2 Test Graph

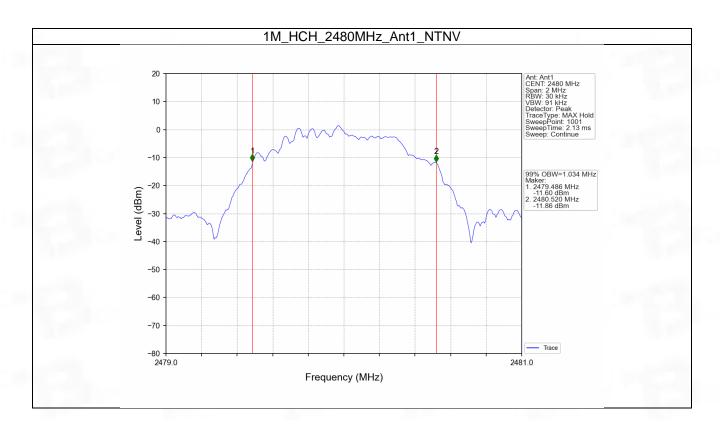


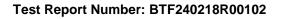
2. Bandwidth

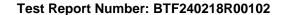
2.1 OBW


2.1.1 Test Result

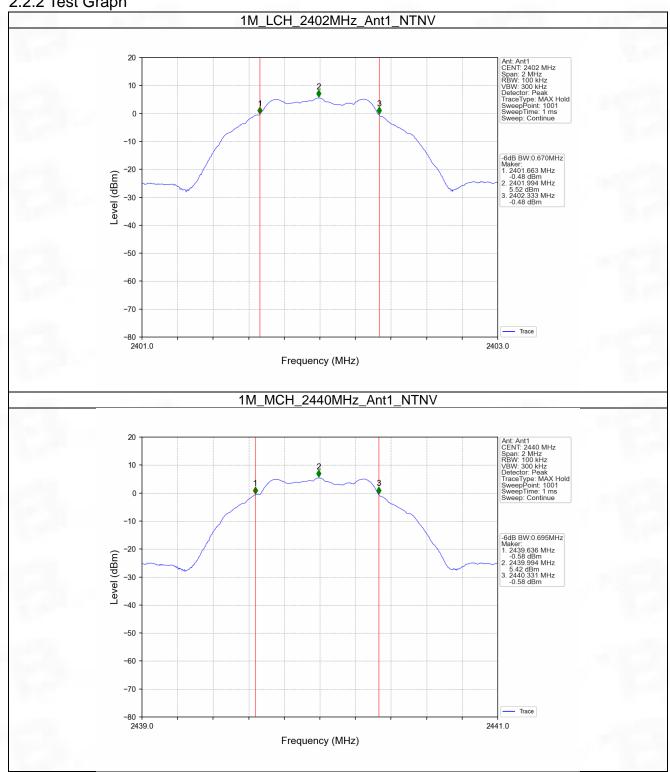

Mode	TX	Frequency	ANT	99% Occupied E	Bandwidth (MHz)	Verdict
Mode	Type	(MHz)	AINT	Result	Limit	verdict
		2402	1	1.037	/	Pass
1M	SISO	2440	1	1.036	/	Pass
		2480	1	1.034	/	Pass

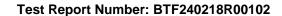


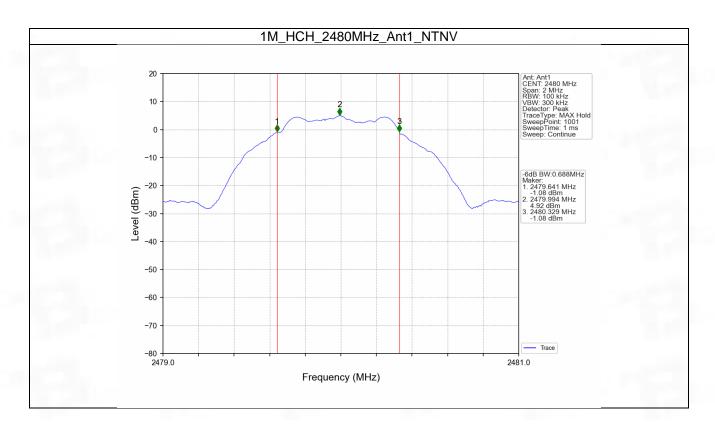

2.1.2 Test Graph

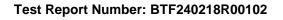


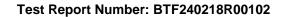
2.2 6dB BW


2.2.1 Test Result


Mode	TX	Frequency	ANT	6dB Bandwidth (MHz)		Verdict
iviode	Туре	(MHz)	AINI	Result	Limit	verdict
		2402	1	0.670	>=0.5	Pass
1M	SISO	2440	1	0.695	>=0.5	Pass
		2480	1	0.688	>=0.5	Pass

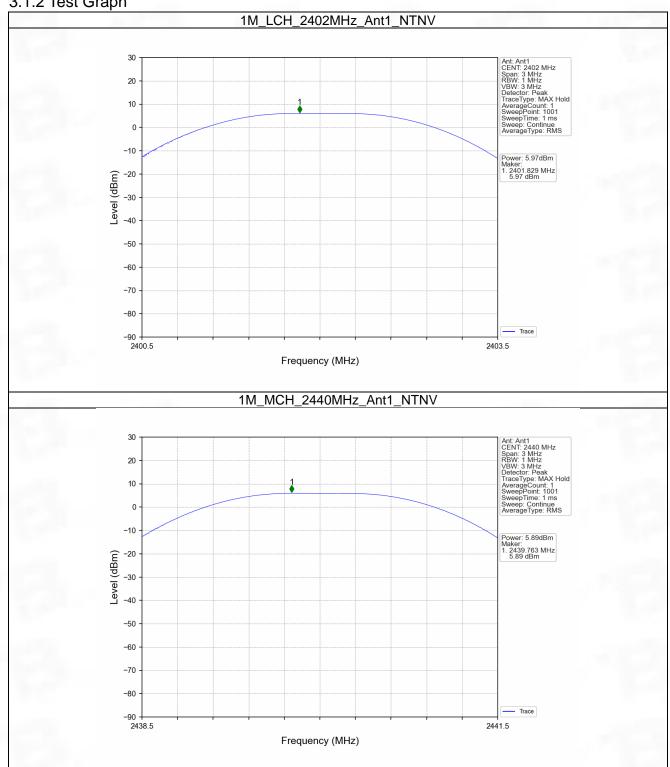


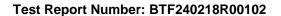

2.2.2 Test Graph

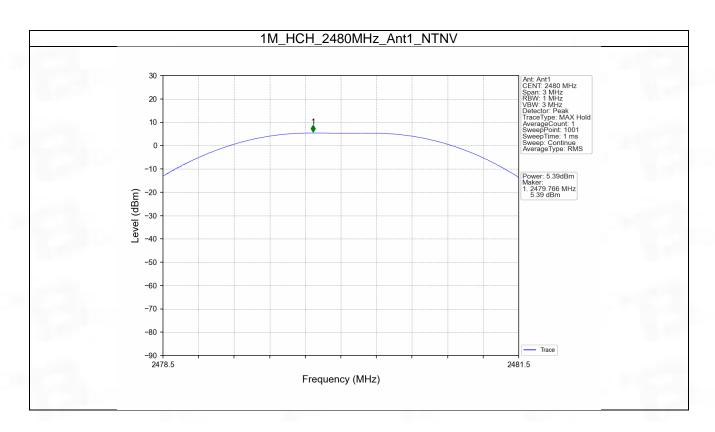


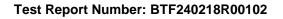
3. Maximum Conducted Output Power

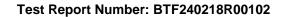
3.1 Power


3.1.1 Test Result


Mode	TX	Frequency	Maximum Peak Conducted Output Power (dBm)		Verdict
	Type	(MHz)	ANT1	Limit	verdict
		2402	5.97	<=30	Pass
1M	SISO	2440	5.89	<=30	Pass
		2480	5.39	<=30	Pass
Note1: Antenna Gain: Ant1: 2.69dBi;					

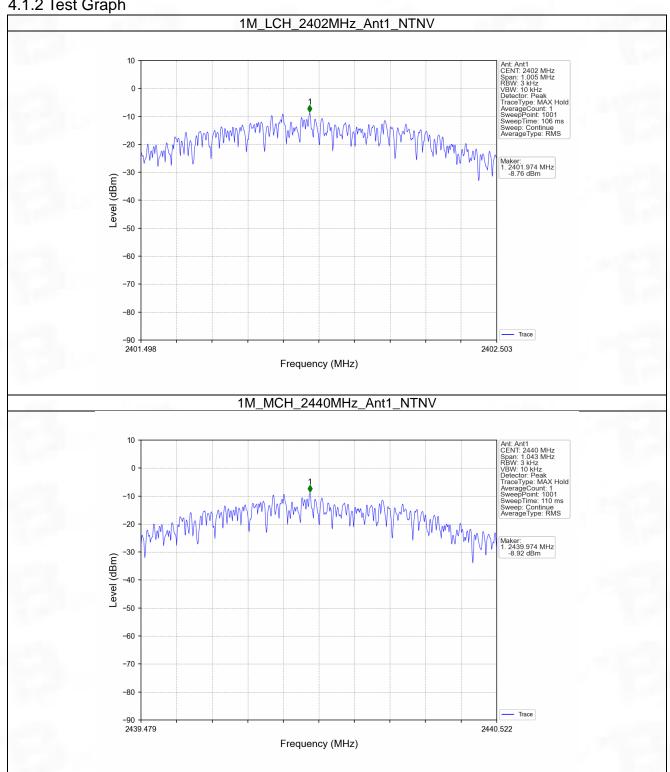


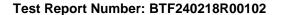

3.1.2 Test Graph

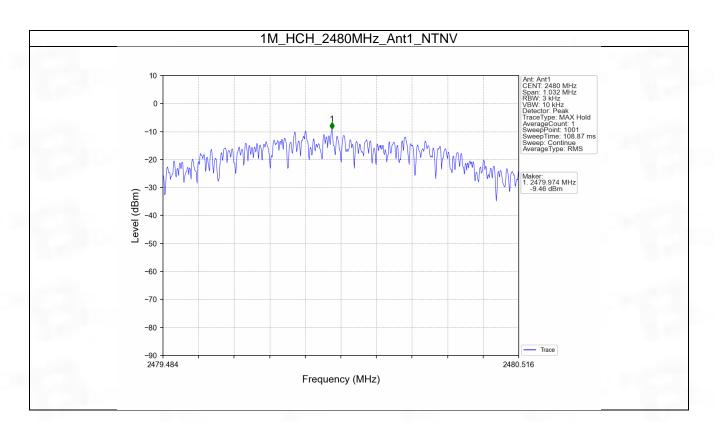


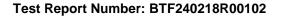
4. Maximum Power Spectral Density

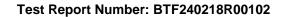
4.1 PSD


4.1.1 Test Result


Mode	TX	Frequency	Maximum PS	Verdict	
Mode	Type	(MHz)	ANT1	Limit	verdict
1M	SISO	2402	-8.76	<=8	Pass
		2440	-8.92	<=8	Pass
		2480	-9.46	<=8	Pass
Note1: Antenna Gain: Ant1: 2.69dBi;					

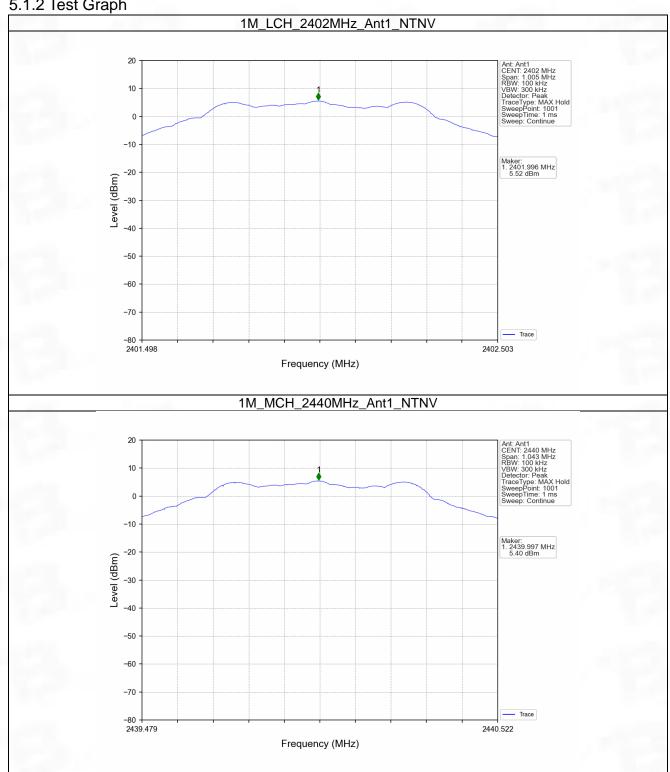


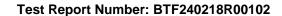

4.1.2 Test Graph


5. Unwanted Emissions In Non-restricted Frequency Bands

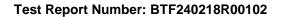
5.1 Ref

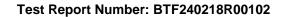
5.1.1 Test Result


Mode	TX Type	Frequency (MHz)	ANT	Level of Reference (dBm)
	SISO	2402	1	5.52
1M		2440	1	5.40
		2480	1	4.92


Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.

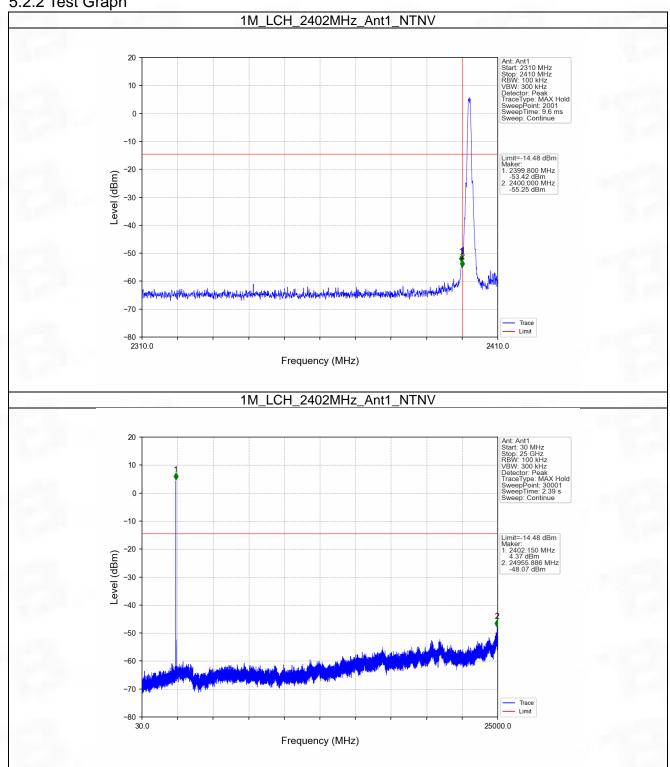


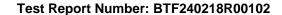

5.1.2 Test Graph

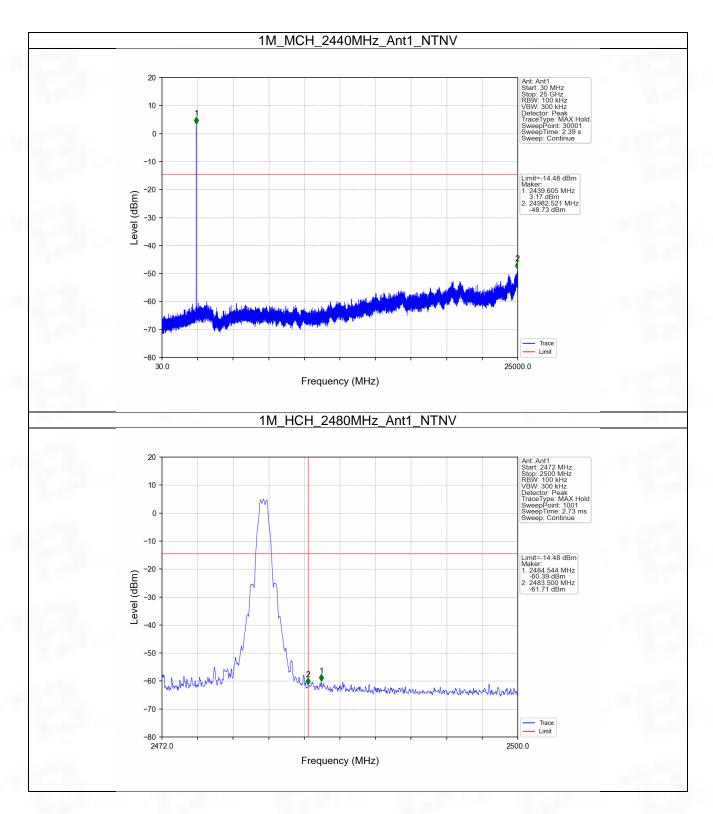


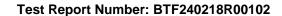
5.2 CSE

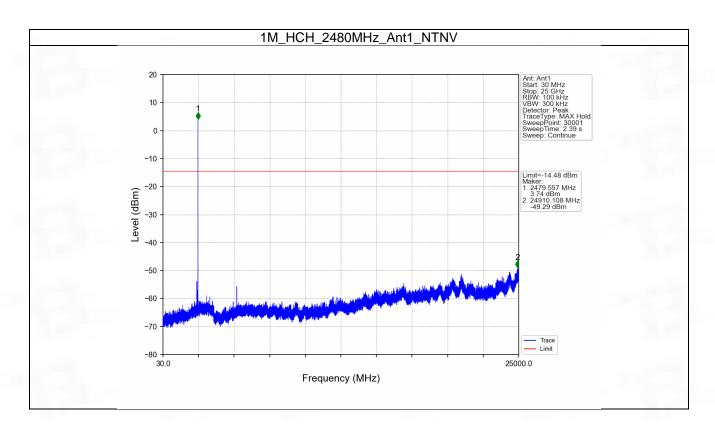
5.2.1 Test Result

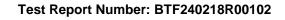

Mode	TX Type	Frequency (MHz)	ANT	Level of Reference (dBm)	Limit (dBm)	Verdict
		2402	1	5.52	-14.48	Pass
1M	SISO	2440	1	5.52	-14.48	Pass
		2480	1	5.52	-14.48	Pass

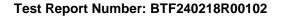

Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.




5.2.2 Test Graph







6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
2402	2480	0.0040	5.97

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --