

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-7616/18-01-09

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com mail@ctcadvanced.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-04 & 05

Applicant

Treon Oy

Visiokatu 3

FI-33720 Tampere / FINLAND

Phone:

Contact: Rami Koskinen

rami.koskinen@treon.fi e-mail: Phone: +358 5 03 08 25 98

Manufacturer

Treon Oy

Visiokatu 3

FI-33720 Tampere / FINLAND

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public

Part 22 mobile services

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal

communications services Part 24

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: IoT device Model name: **Treon Gateway** FCC ID: 2AR86GW11 IC: 24716-GW11

Frequency: GSM850, PCS1900

Technology tested: **GSM**

Radio Communications & EMC

Antenna: Integrated antenna

5 V DC / 115 V AC by mains adapter GTM96180-1807-2.0 Power supply:

Temperature range: 0°C to +50°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Marco Bertolino	Mihail Dorongovskij	
Lab Manager	Lab Manager	

Radio Communications & EMC

1 Table of contents

1	Table	of contents	.2
2	Gene	ral information	.3
	2.1 2.2 2.3	Notes and disclaimerApplication details	.3
3	Test s	standard/s and references	.4
4	Test e	environment	.5
5	Test i	tem	.5
	5.1 5.2	General description	
6	Seque	ence of testing	.6
	6.1 6.2 6.3 6.4	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	.7 .8
7	Desci	ription of the test setup1	0
	7.1 7.2 7.3	Shielded semi anechoic chamber1 Shielded fully anechoic chamber1 Radiated measurements > 18 GHz1	2
8	Meas	urement uncertainty1	4
9	Sumn	nary of measurement results1	5
	9.1 9.2	GSM 8501 PCS 1900	
10	Res	sults GSM 8501	6
	10.1 10.2	RF output power1 Spurious emissions radiated1	
11	Res	sults PCS 19002	<u>?</u> 4
	11.1 11.2	RF output power2 Spurious emissions radiated2	
Anr	nex A	Glossary3	32
Anr	nex B	Document history3	
Anr	nex C	Accreditation Certificate – D-PL-12076-01-043	
Anr	nex D	Accreditation Certificate - D-PL-12076-01-053	34

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2018-11-26
Date of receipt of test item: 2019-01-28
Start of test: 2019-05-27
End of test: 2019-05-28

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 34

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 22	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services
FCC - Title 47 CFR Part 24	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services
RSS - 132 Issue 3	January 2013	Spectrum Management and Telecommunications Radio Standards Specification - Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 6	January 2018	Spectrum Management and Telecommunications Policy - Radio Standards Specifications, 2 GHz Personal Communication Services

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.26-2015	-/-	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
Power Meas License Systems: KDB 971168 D01	v03r01	Measurement Guidance for Certification of Licensed Digital Transmitters

© CTC advanced GmbH Page 4 of 34

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests No tests under extreme temperature conditions performed. No tests under extreme temperature conditions performed.
Relative humidity content	:		51 %
Barometric pressure	:		1021 hpa
Power supply	:	$V_{nom} \ V_{max} \ V_{min}$	5 V DC / 115 V AC by mains adapter GTM96180-1807-2.0 No tests under extreme voltage conditions performed. No tests under extreme voltage conditions performed.

5 Test item

5.1 General description

Kind of test item	:	IoT device
Type identification	:	Treon Gateway
HMN	:	-/-
PMN	:	Treon Gateway
HVIN	:	1111
FVIN	:	-/-
S/N serial number	:	Radiated unit: 00000000 407c097f
Hardware status	:	-/-
Software status	:	-/-
Firmware status	:	-/-
Frequency band	:	GSM850, PCS1900
Type of modulation	:	GMSK, 8-PSK
Antenna	:	Integrated antenna
Power supply	•	5 V DC / 115 V AC V by mains adapter GTM96180-1807-2.0
Temperature range	:	0°C to +50°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-7616/18-01-01_AnnexA

1-7616/18-01-01_AnnexB 1-7616/18-01-01_AnnexD

© CTC advanced GmbH Page 5 of 34

6 Sequence of testing

6.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 6 of 34

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

6.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 7 of 34

6.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 8 of 34

6.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

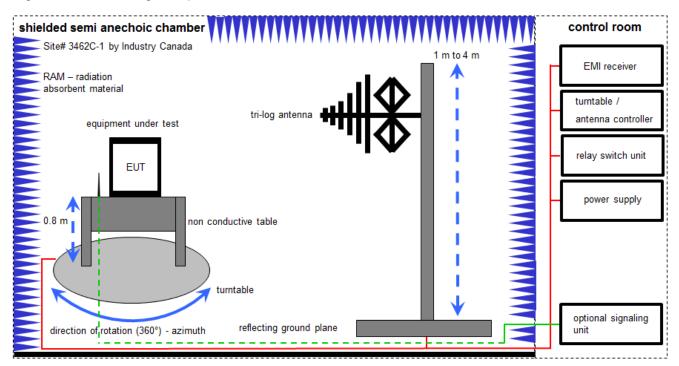
© CTC advanced GmbH Page 9 of 34

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 10 of 34

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

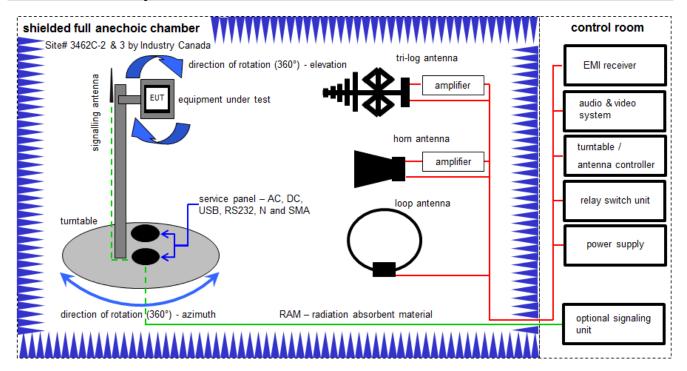
EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Universal Radio Communication Tester	CMU200	R&S	832221/055	300002862	NK!	-/-	-/-
2	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
3	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020
9	А	Universal Radio Communication Tester	CMU200	R&S	832221/055	300002862	NK!	-/-	-/-

© CTC advanced GmbH Page 11 of 34

7.2 Shielded fully anechoic chamber

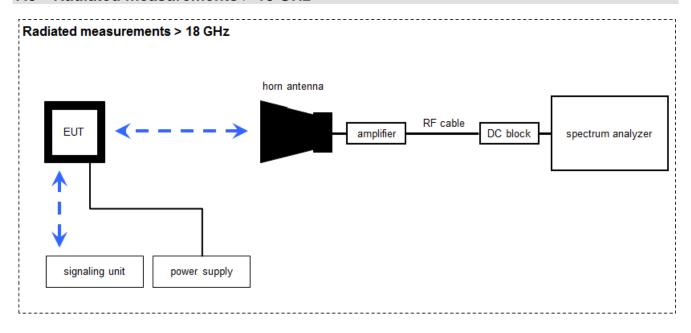
Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

 $OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 \mu W)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	С	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	07.07.2017	06.07.2019
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	07.07.2017	06.07.2019
4	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	А	Band Reject filter	WRCG1850/1910- 1835/1925-40/8SS	Wainwright	7	300003350	ev	-/-	-/-
6	А	Highpass Filter	WHKX2.9/18G- 12SS	Wainwright	1	300003492	ev	-/-	-/-
7	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	19.12.2018	18.12.2019
8	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
9	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
12	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
13	A, B, C	PC	ExOne	F+W		300004703	ne	-/-	-/-
14	A, B, C	Universal Radio Communication Tester	CMU200	R&S	832221/055	300002862	NK!	-/-	-/-

© CTC advanced GmbH Page 12 of 34

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

 $\overline{OP \text{ [dBm]}} = -65.0 \text{ [dBm]} + 50.0 \text{ [dB]} - 20.0 \text{ [dBi]} + 5.0 \text{ [dB]} = -30 \text{ [dBm]} (1 \mu\text{W})$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	Α	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vIKI!	13.12.2017	12.12.2019
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2018	16.12.2019
4	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
7	А	Universal Radio Communication Tester	CMU200	R&S	832221/055	300002862	NK!	-/-	-/-

© CTC advanced GmbH Page 13 of 34

8 Measurement uncertainty

Measurement uncertai	nty
Test case	Uncertainty
RF output power conducted	± 1 dB
RF output power radiated	± 3 dB
Frequency stability	± 20 Hz
Spurious emissions radiated below 30 MHz	± 3 dB
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB
Spurious emissions radiated above 12.75 GHz	± 4.5 dB
Spurious emissions conducted	± 3 dB
Block edge compliance	± 3 dB
Occupied bandwidth	± RBW

© CTC advanced GmbH Page 14 of 34

9 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
×	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	CFR Part 22, 24 RSS 132, 133	See table!	2019-05-28	Output power + radiated spurious only

9.1 GSM 850

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal				\boxtimes	-/-
Spurious Emissions Radiated	Nominal	Nominal	×				-/-
Spurious Emissions Conducted	Nominal	Nominal				\boxtimes	-/-
Block Edge Compliance	Nominal	Nominal				\boxtimes	-/-
Occupied Bandwidth	Nominal	Nominal				\boxtimes	-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

9.2 PCS 1900

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal				\boxtimes	-/-
Spurious Emissions Radiated	Nominal	Nominal	×				-/-
Spurious Emissions Conducted	Nominal	Nominal				\boxtimes	-/-
Block Edge Compliance	Nominal	Nominal				\boxtimes	-/-
Occupied Bandwidth	Nominal	Nominal				\boxtimes	-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 15 of 34

10 Results GSM 850

All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

10.1 RF output power

Description:

This paragraph contains average power, peak output power, PAPR and ERP measurements for the mobile station.

The plots in this test report represents only an example of the measurements. All plots of this chapter are available on request.

The red line in the measurements indicates the ideal Gaussian distribution for the measured amplitude range.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters				
Detector:	Sample			
AQT:	See plot			
Resolution bandwidth:	1 MHz			
Used equipment:	See chapter 6.1 – A			
Measurement uncertainty:	see chapter 8			

Limits:

FCC	IC		
+38.45 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.			

© CTC advanced GmbH Page 16 of 34

Results:

Output Power (radiated) GMSK mode				
Frequency (MHz)	Average Output Power (dBm) - ERP			
824.2	28.7			
836.4	29.2			
848.8	29.5			

Output Power (radiated) 8-PSK mode				
Frequency (MHz)	Average Output Power (dBm) - ERP			
824.2	26.1			
836.4	26.6			
848.8	27.3			

© CTC advanced GmbH Page 17 of 34

10.2 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. Measurements made up to 12.75 GHz. The resolution bandwidth is set as outlined in Part 22.917.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	2 s			
Resolution bandwidth:	100 kHz			
Video bandwidth:	300 kHz			
Span:	100 MHz Steps			
Trace mode:	Max hold			
Used equipment:	See chapter 6.1 – A & C & 6.2 – A			
Measurement uncertainty:	See chapter 8			

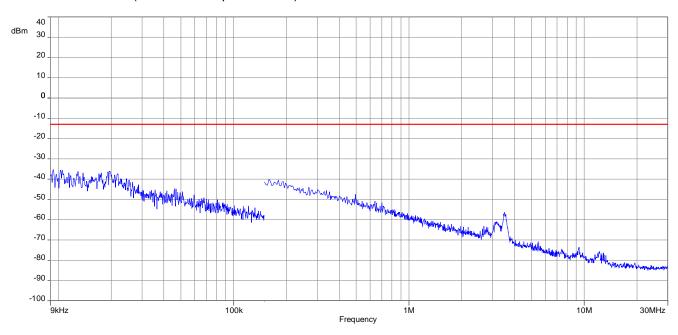
Limits:

FCC	IC		
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)			
-13 (dBm		

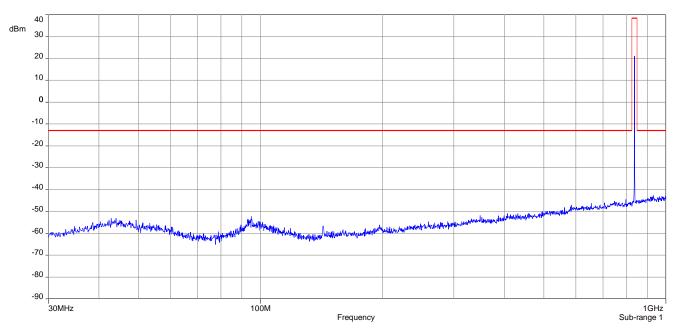
Results GPRS & EGPRS:

Radiated emissions measurements were made only at the center carrier frequency of the GSM-850 band (836.4 MHz). The measurements shows the cabinet radiation in transmit mode. The antenna port can be terminated with 50Ω .

© CTC advanced GmbH Page 18 of 34

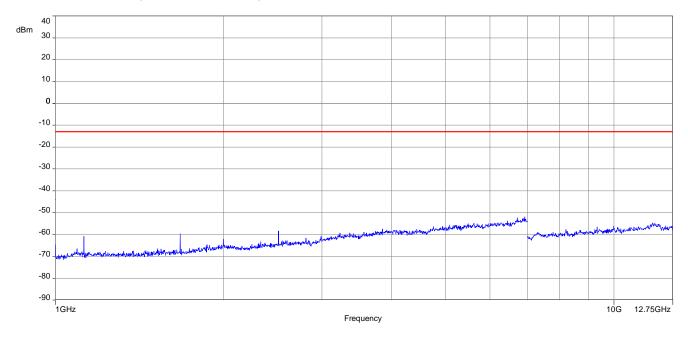

Spurious emission level (dBm)								
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4	-	2	1672.8	ı	2	1697.6	-
3	2472.6	-	3	2509.2	-	3	2546.4	-
4	3296.8	1	4	3345.6	ı	4	3395.2	-
5	4121.0	-	5	4182.0	-	5	4244.0	-
6	4945.2	-	6	5018.4	-	6	5092.8	-
7	5769.4	-	7	5854.8	-	7	5941.6	-
8	6593.6	-	8	6691.2	-	8	6790.4	-
9	7417.8	-	9	7527.6	-	9	7639.2	-
10	8242.0	-	10	8364.0	-	10	8488.0	-

© CTC advanced GmbH Page 19 of 34



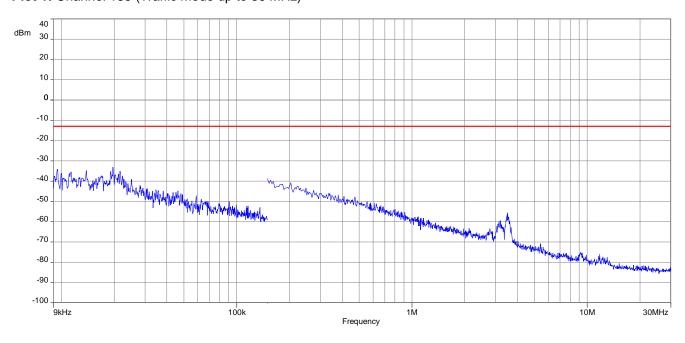
Plots: GMSK

Plot 1: Channel 189 (Traffic mode up to 30 MHz)

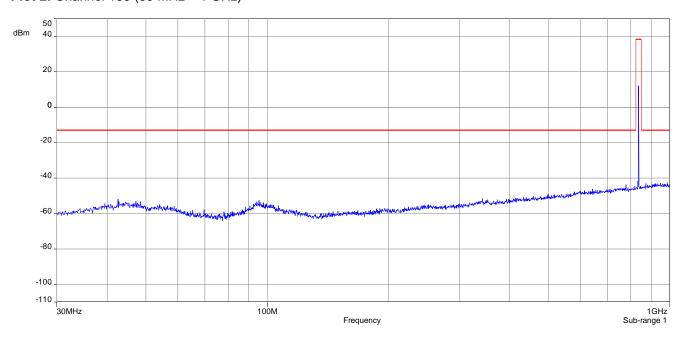

Plot 2: Channel 189 (30 MHz - 1 GHz)

© CTC advanced GmbH Page 20 of 34

Plot 3: Channel 189 (1 GHz – 12.75 GHz)

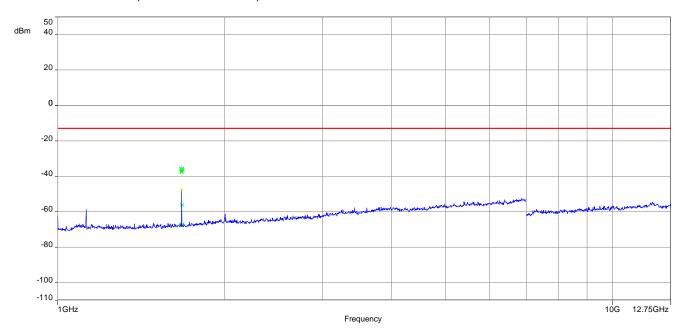


© CTC advanced GmbH Page 21 of 34



Plots: 8 PSK

Plot 1: Channel 189 (Traffic mode up to 30 MHz)


Plot 2: Channel 189 (30 MHz - 1 GHz)

© CTC advanced GmbH Page 22 of 34

Plot 3: Channel 189 (1 GHz – 12.75 GHz)

© CTC advanced GmbH Page 23 of 34

11 Results PCS 1900

All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

11.1 RF output power

Description:

This paragraph contains average power, peak output power, PAPR and ERP measurements for the mobile station.

The plots in this test report represents only an example of the measurements. All plots of this chapter are available on request.

The red line in the measurements indicates the ideal Gaussian distribution for the measured amplitude range.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters				
Detector:	Sample			
AQT:	See plot			
Resolution bandwidth:	1 MHz			
Used equipment:	See chapter 6.2 – B			
Measurement uncertainty:	See chapter 8			

Limits:

FCC	IC
In measuring transmissions in this band using an average	0 dBm e power technique, the peak-to-average ratio (PAR) of the not exceed 13 dB.

© CTC advanced GmbH Page 24 of 34

Results:

Output Power (radiated) GMSK mode		
Frequency (MHz) Average Output Power (dBm) - EIRP		
1850.2	32.9	
1880.0	32.0	
1909.8	31.4	

Output Power (radiated) 8-PSK mode		
Frequency (MHz) Average Output Power (dBm) - EIRP		
1850.2	30.0	
1880.0	29.0	
1909.8	28.7	

© CTC advanced GmbH Page 25 of 34

11.2 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. Measurement made up to 25 GHz. The resolution bandwidth is set as outlined in Part 24.238.

Measurement:

Measurement parameters		
Detector:	Peak	
Sweep time:	2 sec.	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	100 MHz Steps	
Trace mode:	Max hold	
Used equipment:	See chapter 6.1 – A, 6.2 – A & C, 6.3 – A	
Measurement uncertainty:	See chapter 8	

Limits:

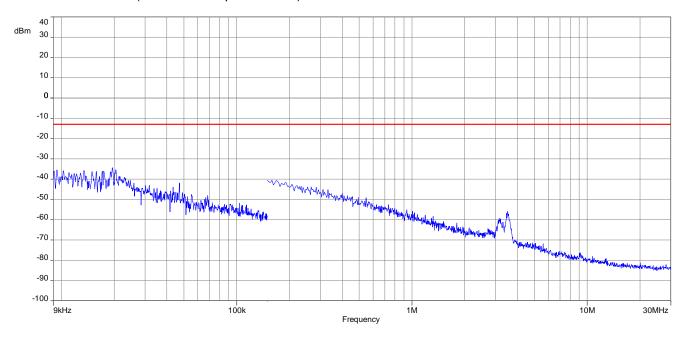
FCC	IC		
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)			
-13 dBm			

Results GPRS & EGPRS:

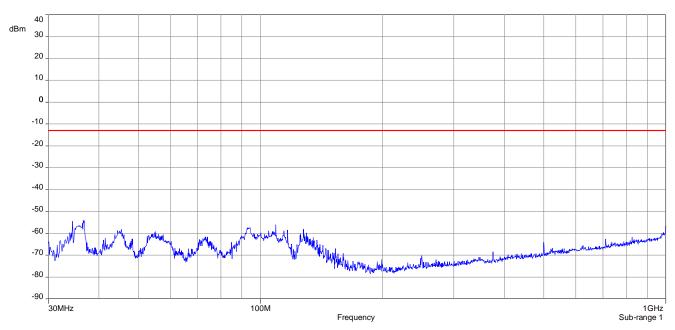
Radiated emissions measurements were made only at the center carrier frequencies of the PCS1900 band (1880.0 MHz) to show the compliance with cabinet radiation limits.

© CTC advanced GmbH Page 26 of 34

Results:

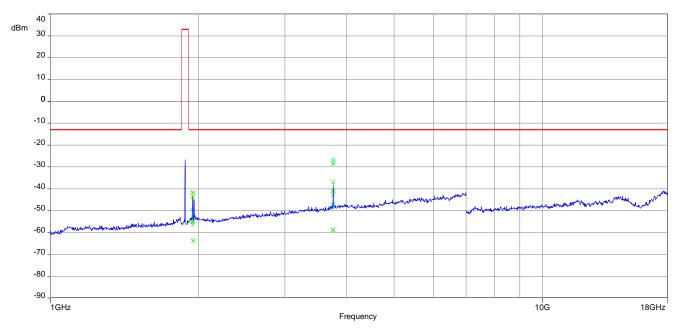

Spurious emission level (dBm)								
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]
2	3700.4	-	2	3760.0	-	2	3819.6	-
3	5550.6	-	3	5640.0	-	3	5729.4	-
4	7400.8	-	4	7520.0	-	4	7639.2	-
5	9251.0	-	5	9400.0	-	5	9549.0	-
6	11101.2	-	6	11280.0	-	6	11458.8	-
7	12951.4	-	7	13160.0	-	7	13368.6	-
8	14801.6	-	8	15040.0	-	8	15278.4	-
9	16651.8	-	9	16920.0	-	9	17188.2	-
10	18502.0	-	10	18800.0	-	10	19098.0	-

© CTC advanced GmbH Page 27 of 34

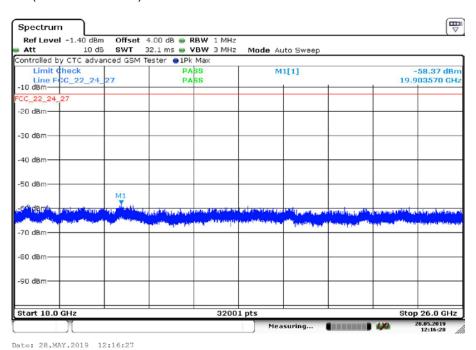


Plots: GMSK

Plot 1: Channel 661 (Traffic mode up to 30 MHz)


Plot 2: Channel 661 (30 MHz - 1 GHz)

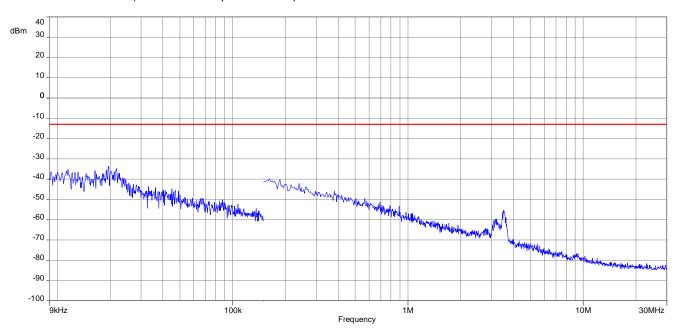
© CTC advanced GmbH Page 28 of 34



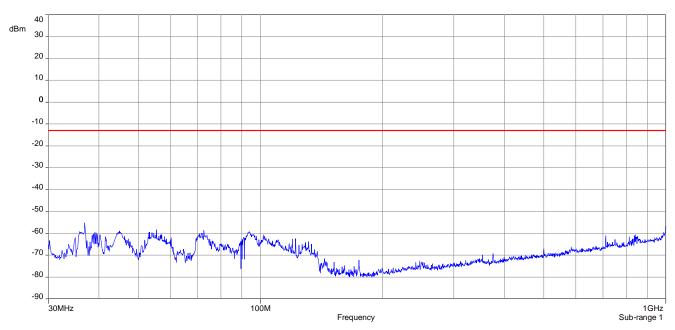
Plot 3: Channel 661 (1 GHz - 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 3: Channel 661 (18 GHz - 26 GHz)

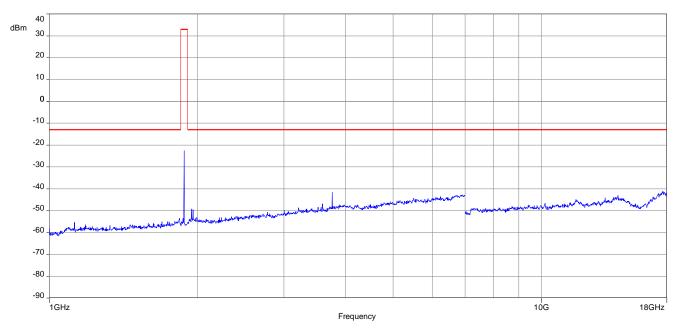


© CTC advanced GmbH Page 29 of 34

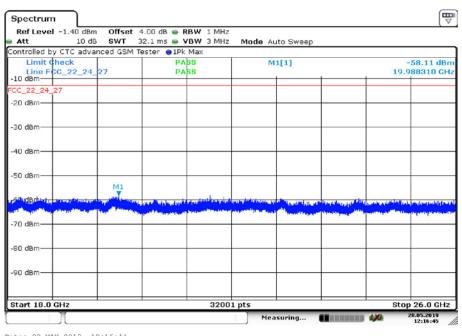


Plots: 8 PSK

Plot 1: Channel 661 (Traffic mode up to 30 MHz)


Plot 2: Channel 661 (30 MHz - 1 GHz)

© CTC advanced GmbH Page 30 of 34



Plot 3: Channel 661 (1 GHz – 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 4: Channel 661 (18 GHz - 26 GHz)

Date: 28.MAY.2019 12:16:44

© CTC advanced GmbH Page 31 of 34

Annex A Glossary

EUT	Equipment under test		
DUT	Device under test		
UUT	Unit under test		
GUE	GNSS User Equipment		
ETSI	European Telecommunications Standards Institute		
EN	European Standard		
FCC	Federal Communications Commission		
FCC ID	Company Identifier at FCC		
IC	Industry Canada		
PMN	Product marketing name		
HMN	Host marketing name		
HVIN	Hardware version identification number		
FVIN	Firmware version identification number		
EMC	Electromagnetic Compatibility		
HW	Hardware		
SW	Software		
Inv. No.	Inventory number		
S/N or SN	Serial number		
С	Compliant		
NC	Not compliant		
NA	Not applicable		
NP	Not performed		
PP	Positive peak		
QP	Quasi peak		
AVG	Average		
ОС	Operating channel		
ocw	Operating channel bandwidth		
OBW	Occupied bandwidth		
ООВ	Out of band		
DFS	Dynamic frequency selection		
CAC	Channel availability check		
OP	Occupancy period		
NOP	Non occupancy period		
DC	Duty cycle		
PER	Packet error rate		
CW	Clean wave		
MC	Modulated carrier		
WLAN	Wireless local area network		
RLAN	Radio local area network		
DSSS	Dynamic sequence spread spectrum		
OFDM	Orthogonal frequency division multiplexing		
FHSS	Frequency hopping spread spectrum		
GNSS	Global Navigation Satellite System		
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz		

© CTC advanced GmbH Page 32 of 34

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-05-28

Annex C Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2005 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number 0-Pt-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages.	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Alice 52 Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkS), Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlea! No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation was granted pursuant to the Act on the Accreditation Body (AAkSelleG) of 31 July 2009 [rederal Law Gazetta Ip. 2623] and the Regulation (ICC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products of Official Journal of the European thou 1,218 of 9 July 2005, p. 90, DAKS is a signatory to the Multilateral Apresements for Multial Recognition of the European co-operation for Accreditation (IAC). The signatories to these agreements recognite each other's accreditation. The upto-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org
Registration number of the certificate: D-PL-12076-01-04 Topol line Topol line	MF: www.lat.mu
The state control.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

© CTC advanced GmbH Page 33 of 34

Annex D Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkrediterungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 1:0 Europa-Allies 52. Bundesaliee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2005 to carry out tests in the following fields: Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkkS), Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body membroned overleat. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I p. 2625) and the Regulation (EC) No 765/7008 of the European Parlament and of the Council of 3 July 2008 setting out the requirements for accreditation and market surveillance relating
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages. Registration number of the certificate: D-PL-12076-01-05	to the marketing of products (Official Journal of the European Union, 1.28 of 9 July 2008, p. 30), DAMS is a signatory to the Multilateral Agreements for Mutual Secognition of the European or operation for Accreditation (EA), International Accreditation Forum (IAF) and international Laboratory Accreditation Cooperation (IAC). The signatories to these agreements recognic each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.uuropean-accreditation.org LIAC: www.lat.org LIAF: www.lat.nu
Frankert on Main, 11012019 Spender User Commentation Read of Division	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 34 of 34