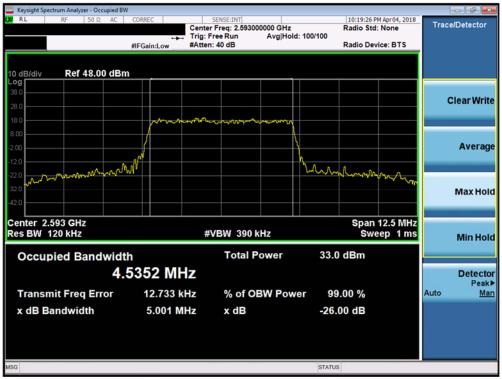


Keysight Spectrum Analyzer - Occupied BW RL RF 50 Ω AC NFE	Trig: F	SENSE:INT r Freq: 1.882500000 GHz Free Run Avg Hold: n: 40 dB	Radio St 100/100	2 PM Mar 29, 2018 td: None evice: BTS	Trace/Detector
10 dB/div Ref 40.00 dBm -og 30.0 20.0					Clear Writ
10.0 0.00 10.0 20.0			month and a second	hand at the	Averag
40.0					Max Hol
Center 1.883 GHz Res BW 470 kHz		VBW 1.5 MHz		an 50 MHz veep 1 ms	Min Hol
Occupied Bandwidth 18	.056 MHz	Total Power	33.2 GB M	i i	Detecto
Transmit Freq Error x dB Bandwidth	4.646 kHz 19.68 MHz	% of OBW Powe x dB	r 99.00 % -26.00 dB	,	Auto <u>Ma</u>
SG			STATUS		

Plot 7-45. Occupied Bandwidth Plot (Band 25/2 - 20.0MHz QPSK - Full RB Configuration)

Plot 7-46. Occupied Bandwidth Plot (Band 25/2 - 20.0MHz 16-QAM - Full RB Configuration)


FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 39 of 179
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

Band 41 PC2

Plot 7-47. Occupied Bandwidth Plot (Band 41 PC2 - 5.0MHz QPSK - Full RB Configuration)

Plot 7-48. Occupied Bandwidth Plot (Band 41 PC2- 5.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 40 of 179
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 40 01 179
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

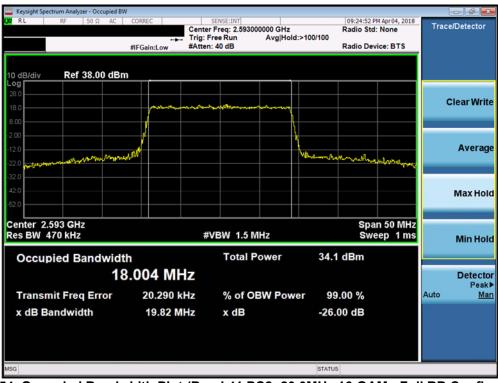
Keysight Spectrum Analyzer - Occupied BW	1					- 0
(X) RL RF 50Ω AC	Trig: F	SENSE:INT r Freq: 2.593000000 GHz Free Run Avg Hold: :: 40 dB	Radio Std		Trace	/Detector
10 dB/div Ref 43.00 dBm						
33.0 23.0					с	lear Write
13.0 3.00 -7.00 -17.0 <mark>Performantin After </mark>	~~~		for maline manufacture	֍ֈֈՠՠ֎ՠֈֈֈՠ		Average
-27.0 -37.0 -47.0						Max Hold
Center 2.593 GHz Res BW 240 kHz	#	VBW 750 kHz		n 25 MHz ep 1 ms		Min Hold
Occupied Bandwidt	^h 0907 MHz	Total Power	35.0 dBm			Detector Peak
Transmit Freq Error x dB Bandwidth	3.343 kHz 10.14 MHz	% of OBW Powe x dB	er 99.00 % -26.00 dB		Auto	Man
MSG			STATUS			

Plot 7-49. Occupied Bandwidth Plot (Band 41 PC2- 10.0MHz QPSK - Full RB Configuration)

Plot 7-50. Occupied Bandwidth Plot (Band 41 PC2- 10.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 41 of 179
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

Plot 7-51. Occupied Bandwidth Plot (Band 41 PC2- 15.0MHz QPSK - Full RB Configuration)


Plot 7-52. Occupied Bandwidth Plot (Band 41 PC2- 15.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 42 of 179
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

Plot 7-53. Occupied Bandwidth Plot (Band 41 PC2- 20.0MHz QPSK - Full RB Configuration)

Plot 7-54. Occupied Bandwidth Plot (Band 41 PC2- 20.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 42 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 43 of 179
© 2018 PCTEST Engineering Labo	V 8.0 04/05/2018			

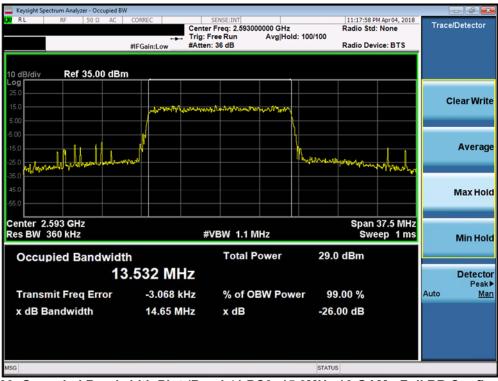
Plot 7-55. Occupied Bandwidth Plot (Band 41 PC3- 5.0MHz QPSK- Full RB Configuration)

Plot 7-56. Occupied Bandwidth Plot (Band 41 PC3- 5.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 11 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 44 of 179
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

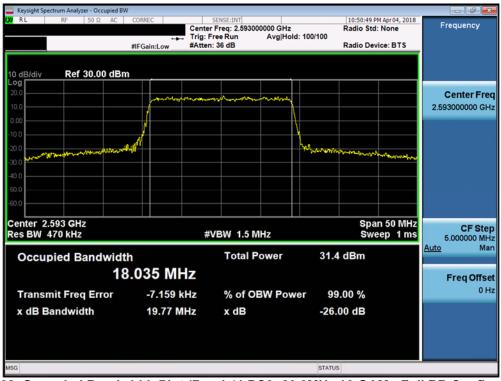
Keysight Spectrum Analyzer - Occupied BW	1					9 X
(X) R L RF 50 Ω AC		SENSE:INT r Freq: 2.593000000 GHz Free Run Avg Hold: 1		one	Trace/Dete	ctor
	#IFGain:Low #Atter	:: 36 dB	Radio Device	BTS		
10 dB/div Ref 40.00 dBm	1 <u> </u>					
Log 30.0					Clear	Write
20.0	m	warman				
0.00	/					
.10.0		\			Av	erage
-20.0 -30.0 Mmmunowwww.	ที่ไ		Alambar .			
-30.0 WWW. Manufacture				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
40.0					Max	Hold
-50.0						
Center 2.593 GHz Res BW 240 kHz		VBW 750 kHz		25 MHz		
Res BW 240 KHZ	#		Swee	p 1 ms	Min	Hold
Occupied Bandwidt	h	Total Power	31.9 dBm			
9.	0262 MHz					tector
Transmit Freq Error	10.791 kHz	% of OBW Power	99.00 %		Auto	Peak Man
x dB Bandwidth	9.976 MHz	x dB	-26.00 dB			
	5.510 MILL	X db	-20.00 00			
MSG			STATUS			

Plot 7-57. Occupied Bandwidth Plot (Band 41 PC3- 10.0MHz QPSK - Full RB Configuration)


Plot 7-58. Occupied Bandwidth Plot (Band 41 PC3- 10.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 45 of 179
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

Plot 7-59. Occupied Bandwidth Plot (Band 41 PC3- 15.0MHz QPSK - Full RB Configuration)


Plot 7-60. Occupied Bandwidth Plot (Band 41 PC3- 15.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 46 of 179
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

Plot 7-61. Occupied Bandwidth Plot (Band 41 PC3- 20.0MHz QPSK - Full RB Configuration)

Plot 7-62. Occupied Bandwidth Plot (Band 41 PC3- 20.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 47 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 47 of 179
© 2018 PCTEST Engineering Labo	V 8.0 04/05/2018			

7.3 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

For Band 41, the minimum permissible attenuation level of any spurious emission is 55 + log₁₀(P_[Watts]).

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

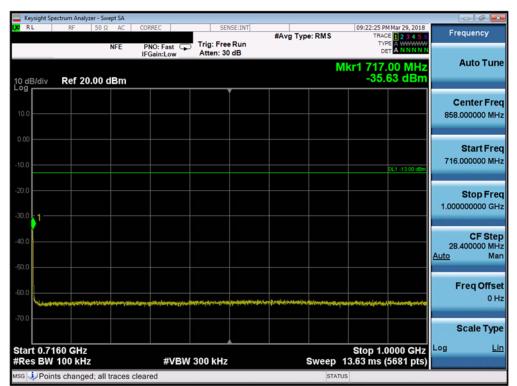
- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

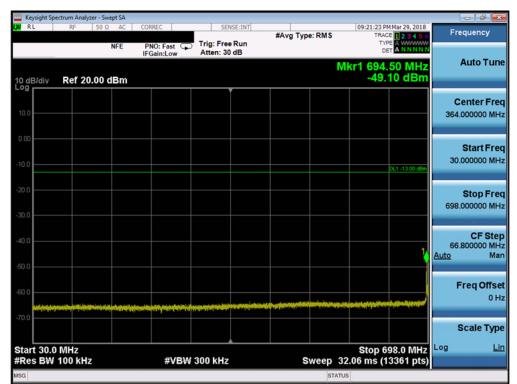
Test Notes


Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 49 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018 Portable Handset		Page 48 of 179
© 2018 PCTEST Engineering Labo	ratory. Inc.		V 8.0 04/05/2018

	ectrum Analyzer - Swept SA					- 2 -
L <mark>XI</mark> RL	RF 50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	09:22:19 PM Mar 29, 2018 TRACE 1 2 3 4 5 6	Frequency
	NFE	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 30 dB		DET A NNNN	Auto Tune
10 dB/div Log	Ref 20.00 dBm			M	kr1 697.90 MHz -44.96 dBm	
10.0			Ĭ			Center Freq
						363.950000 MHz
0.00						Start Freq 30.000000 MHz
-10.0					DL1 -13.00 dBm	30.000000 MHz
-20.0						Stop Freq 697.900000 MHz
-30.0						
-40.0					1	CF Step 66.790000 MHz Auto Man
-50.0						<u>Auto</u> Man
-60.0						Freq Offset 0 Hz
-70.0	ensistanti antista anti	nanifisis an terresta si strue				
						Scale Type
Start 30.0 #Res BW		#VBW 3	300 kHz	Sweep 32	Stop 697.9 MHz 2.06 ms (13359 pts)	Log <u>Lin</u>
MSG				STATU	s	

Plot 7-63. Conducted Spurious Plot (Band 12/17 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-64. Conducted Spurious Plot (Band 12/17 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates: EUT Type:		Page 49 of 179
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset	Page 49 01 179
© 2018 PCTEST Engineering Labo	ratory, Inc.		V 8.0 04/05/2018

	ectrum Analyze						- 6 -
XI RL	RF	50 Ω AC NFE	CORREC PNO: Fast	Trig: Free Run #Atten: 22 dB	#Avg Type: RMS	09:22:43 PM Mar 29, 2018 TRACE 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
10 dB/div	Ref 7.0	0 dBm	IFGain:Low	#Atten: 22 db		Mkr1 1.399 5 GHz -44.44 dBm	Auto Tune
-3.00						DL1 -13.00 dBm	Center Fre 5.500000000 GH
23.0							Start Fre 1.000000000 GH
33.0 43.0	1						Stop Fre 10.000000000 GF
53.0		ranentra	~~~	~~~~			CF Ste 900.000000 MH <u>Auto</u> Ma
73.0							Freq Offs 0 F
83.0						Stop 10.000 GHz	Scale Typ
#Res BW	1.0 MHz		#VBW	3.0 MHz		15.60 ms (18001 pts)	
SG					S	TATUS	

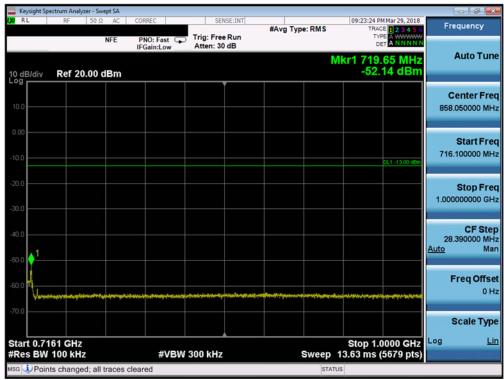
Plot 7-65. Conducted Spurious Plot (Band 12/17 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-66. Conducted Spurious Plot (Band 12/17 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset	Page 50 of 179
© 2018 PCTEST Engineering Labo	ratory, Inc.		V 8.0 04/05/2018

	ctrum Analyzer - S									- 6 -
XI RL	RF 50		CORREC		SE:INT	#Avg Typ	e: RMS	TRAC	Mar 29, 2018 E 1 2 3 4 5 6 E A HIMM	Frequency
10 dB/div	Ref 20.00	NFE dBm	PNO: Fast G	Atten: 30			М	ote kr1 720.	ANNNN	Auto Tune
10.0										Center Free 858.000000 MH
10.00									0L1 -13.00 dBm	Start Free 716.000000 MH
30.0										Stop Free 1.000000000 GH
40.0										CF Ste 28.400000 MH <u>Auto</u> Ma
60.0 بنيمور نومحور	int strict freelighter a wind	yantinaniyea	ijenen jogen de staangeregten gebeure	ter and the state of the state	www.anglikidadi.vi	لاجتمامهم	nyantine-so-siy	Manuritantoposityale	ve ste prilase deligenses	Freq Offse 0 H
Start 0.71			#VBV	V 300 kHz			Sweep 1	Stop 1.0	OUD OIL	Scale Type Log <u>Li</u>
#Res BW		l traces c		V 300 kHz			Sweep 1	3.63 ms (OUD OIL	

Plot 7-67. Conducted Spurious Plot (Band 12/17 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-68. Conducted Spurious Plot (Band 12/17 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 51 of 170	
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 51 of 179	
© 2018 PCTEST Engineering Labo	ratory, Inc.			V 8.0 04/05/2018	

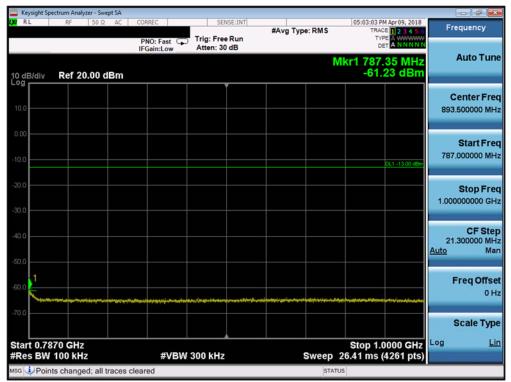
	ectrum Analyze										- 6
LXU RL	RF	50 Ω AC	CORREC	SEN	ISE:INT	#Avg Typ	e: RMS	TRA	M Mar 29, 2018	Fre	quency
		NFE	PNO: Fast C IFGain:Low	Trig: Free Atten: 30		• //		TY D			
10 dB/div Log	Ref 20.	.00 dBm					N	lkr1 698 -49.	.00 MHz 24 dBm		Auto Tune
10.0											e nter Freq 000000 MHz
-10.0									DL1 -13.00 dBm		Start Freq 000000 MHz
-20.0											Stop Freq 000000 MHz
-40.0									1	66.8 <u>Auto</u>	CF Step 800000 MHz Man
-60.0		ninginglysigning	atoria dan da atori fatar		u and a second secon	nije de sjone de sjone en	eriferietter breiste		aphie providente	F	req Offset 0 Hz
-70.0										12 A	cale Type
Start 30.0 #Res BW			#VB	W 300 kHz		s	weep 3	Stop 6 2.06 ms (1	98.0 MHz 3361 pts)	Log	Lin
MSG							STATU				

Plot 7-69. Conducted Spurious Plot (Band 12/17 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-70. Conducted Spurious Plot (Band 12/17 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Report S/N: Test Dates: EUT Type:			Dega 52 of 170	
1M1804240083-03-R1.ZNF	3/22-5/17/2018	2018 Portable Handset		Page 52 of 179	
© 2018 PCTEST Engineering Labo	ratory, Inc.	·		V 8.0 04/05/2018	

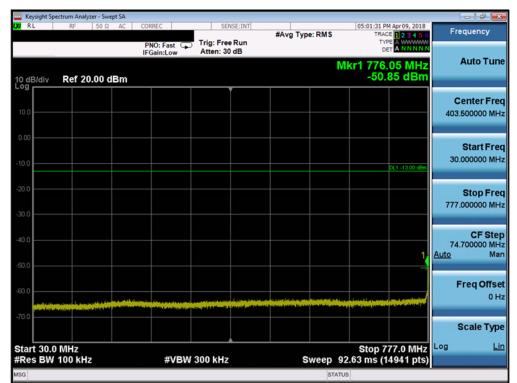
		zer - Swept SA								
CXI RL	RF	50 Ω AC	CORREC			#Avg Type:	RMS	TRAC	Mar 29, 2018	Frequency
10 dB/div	Ref 10	NFE	PNO: Fast G	#Atten: 22			Mki	1 1.413	3 5 GHz 01 dBm	Auto Tune
0.00										Center Freq 5.500000000 GHz
-10.0									0L1 -13.00 dBm	Start Fred 1.000000000 GHz
-30.0	1									Stop Free 10.000000000 GH:
-50.0			~~~~	~~~~	, and the second se		~~			CF Step 900.000000 MH Auto Mar
-70.0										Freq Offse 0 Hi
Start 1.00			#\/B\A	/ 3.0 MHz			000 15	Stop 10.	.000 GHz	Scale Type
#Res BW	T.O WIH	-	#VBW	- 3.0 WHZ		SW	status	00 IIIS (1)	8001 pts)	


Plot 7-71. Conducted Spurious Plot (Band 12/17 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N: Test Dates: EUT Type:		EUT Type:		Dage 52 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 53 of 179
© 2018 PCTEST Engineering Labor	ratory, Inc.			V 8.0 04/05/2018

Keysight Sp XI R.L	ectrum Analyze RF	50 Ω AC	CORREC	Trig: Free		#Avg Type	e: RMS	TRA	PM Apr 09, 2018 CE 1 2 3 4 5 6 (PE A WANNANA DET A N N N N N	_	uency
10 dB/div	Ref 20.	00 dBm	IFGain:Low	Atten: 30	dB			Mkr1 776		A	uto Tun
10.0											nter Fre 50000 MH
10.00									DL1 -13.00 d 1		Start Fre
20.0											Stop Fre
40.0 50.0										74.69 <u>Auto</u>	CF Ste 90000 MI M
50.0			and a shirt should be a second		No. Contraction		antria partu			Fr	eq Offs 0 I
70.0										2010 	ale Typ
tart 30.0 Res BW	MHz 100 kHz		#VBW	300 kHz		s	weep	Stop 7 92.62 ms (70.9 WINZ	Log	L

Plot 7-72. Conducted Spurious Plot (Band 13 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-73. Conducted Spurious Plot (Band 13 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Daga 54 of 170			
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 54 of 179			
© 2018 PCTEST Engineering Labor	2018 PCTEST Engineering Laboratory, Inc.						

Image: Second	
IO dB/div Ref 15.00 dBm 500	Mkr1 1.555 0 GHz -45.432 dBm
5.00 -5.00 -25.0 -25.0 -35.0 -45.0 -65.0	Conter Fre
-15 0 -25 0 -35 0 -45 0 -65 0 -65 0	5.50000000 GH
-35 0 -45 0 -55 0 -66 0	Ct.1 +13.00 dBm 1.00000000 GH
65 0	Stop Fre 10.00000000 GH
65.0	CF Ste 900.000000 MH Auto Ma
75.0	Freq Offs 0 H
Start 1.000 GHz	
#Res BW 1.0 MHz #VBW 3.0 MHz	Scale Typ Stop 10.000 GHz

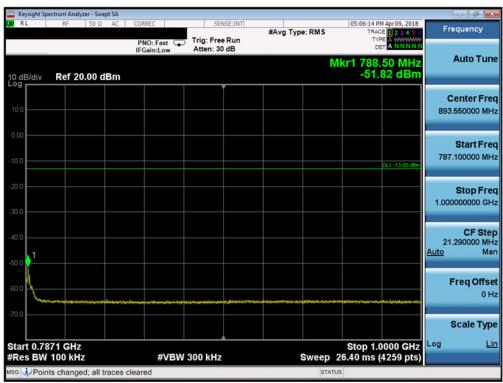
Plot 7-74. Conducted Spurious Plot (Band 13 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-75. Conducted Spurious Plot (Band 13 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 55 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 55 of 179
© 2018 PCTEST Engineering Labo	ratory, Inc.	·		V 8.0 04/05/2018

Keysight Spectrum Analyzer - Swep					
X RL RF 50 Ω	AC CORREC	SENSE:INT	#Avg Type: RMS	05:01:39 PM Apr 09, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 30 dB			Auto Tun
10 dB/div Ref 20.00 dB	Зm		M	kr1 787.00 MHz -55.78 dBm	Auto Tun
					Center Free
10.0					893.500000 MH
0.00					Start Fre
10.0				DL1 -13.00 dBm	787.000000 MH
20.0					Stop Fre
30.0					1.000000000 GH
40.0					CF Ste
					21.300000 MH Auto Ma
50.0 1					Ener Offer
60.0		leidette vikitze mile skiid stikeen tientii	a in such assume to be a finite of a state of the such as the		Freq Offse 0 H
70.0					Scale Typ
Start 0.7870 GHz				Stop 1 0000 CHa	Log Li
#Res BW 100 kHz	#VBW :	300 kHz	Sweep 2	Stop 1.0000 GHz 26.41 ms (4261 pts)	
isg 🤳 Points changed; all tra	aces cleared		STATU	S	

Plot 7-76. Conducted Spurious Plot (Band 13 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-77. Conducted Spurious Plot (Band 13 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 56 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset	Page 56 of 179
© 2018 PCTEST Engineering Labo	ratory, Inc.		V 8.0 04/05/2018

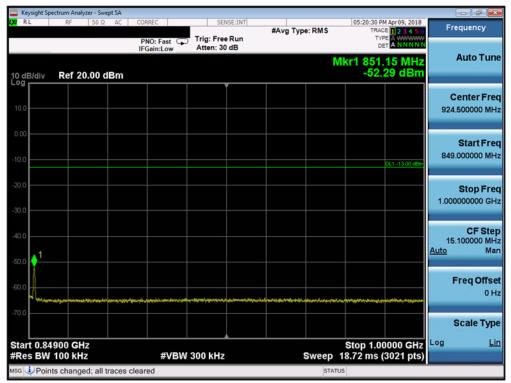
	ectrum Analyze											
L <mark>XI</mark> RL	RF	50 Ω AC	CORRE	C	SEI	VSE:INT	#Avg Type	e: RMS		M Apr 09, 2018 CE 1 2 3 4 5 6	Fre	equency
				:Fast 🖵 n:Low	Trig: Fre Atten: 30		•		TY			
10 dB/div Log	Ref 20.	00 dBm						N	lkr1 777 -59.	.00 MHz 99 dBm		Auto Tune
10.0												enter Freq 500000 MHz
-10.0										DL1 -13.00 dBm	30.	Start Freq 000000 MHz
-20.0											777.	Stop Freq 000000 MHz
-40.0											74. <u>Auto</u>	CF Step 700000 MHz Man
-60.0	in the second		Tin Distantiation		addiscontrates		en e		den for a state of the	1. اسمبسم ہے۔	F	req Offset 0 Hz
-70.0												Scale Type
Start 30.0 #Res BW				#VBW	300 kHz		S	weep 9	Stop 7 2.63 ms (1	77.0 MHz 4941 pts)	Log	Lin
MSG								STATL	JS		-	

Plot 7-78. Conducted Spurious Plot (Band 13 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-79. Conducted Spurious Plot (Band 13 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:	Daga 57 of 170				
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset	Page 57 of 179				
© 2018 PCTEST Engineering Labor	© 2018 PCTEST Engineering Laboratory, Inc.						

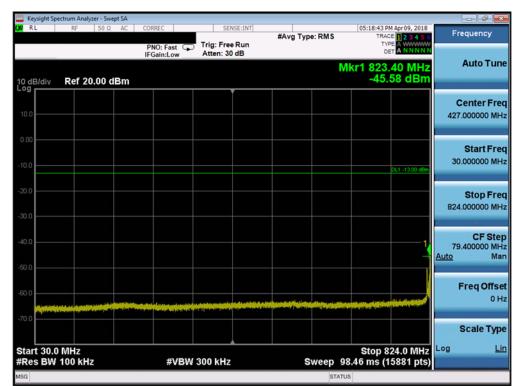
RF 50	Ω AC	CORREC				#Avg Typ	e: RMS	TF	ACE 1 2 3 4 5 6	Frequency
Ref 17.00) dBm						N	1.5 Akr1	65 0 GHz 3.98 dBm	Auto Tu
										Center F
										5.500000000
									DL1 -13.00 dBm	Start F 1.000000000 0
										Stop F
										10.000000000
1										CF S
								and the second second		900.000000 M Auto
		A COLORIDA	and the second							
						_				Freq Off
										Scale Ty
GHz								Stop 1	0.000 GHz	Log
.0 MHz		-	WBW 3	0 MHz		9	ween	15 60 mc	(19001 nte)	the second s
	Ref 17.00	Ref 17.00 dBm	RF 50 Ω AC CORREC PNO: F IFGain:1 Ref 17.00 dBm	RF 50 Ω AC CORREC PNO: Fast Fast IFGain:Low	RF 50 Ω AC CORREC SET PNO: Fast Trig: Free IFGain:Low Trig: Free #Atten: 3 Ref 17.00 dBm I I	Ref 17.00 dBm	RF 50 Ω AC CORREC SENSE:INT #Avg Typ PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Typ	RF 50 Ω AC CORREC SENSE:INT #Avg Type: RMS PRO: Fast Trig: Free Run #Atten: 30 dB #Avg Type: RMS Ref 17.00 dBm Image: Sense: Int Image: Sense: Int Image: Sense: Int Image: Sense: Int Image: Sense: Int Image: Sense: Int #Avg Type: RMS Image: Sense: Int Image: Sense: Int	RF 50 Ω AC CORREC SENSE:INT (05:06:37) PNO: Fast Trig: Free Run #Avg Type: RMS Trig: Free Run IFGain:Low #Atten: 30 dB MKr1 1.5 Ref 17.00 dBm 44 Image: Sense: Introduction of the sense: Introducting and the sensense: Introducting and the sense: Introduction of	RF 50 Ω AC CORREC SENSE:INT IOS:06:37 PM Apr 09, 2018 PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: RMS Trace 22:4 3 G Ref 17.00 dBm Mkr1 1.565 0 GHz -43.98 dBm -43.98 dBm 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 -43.98 dBm 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 -00:07 mu apr 09, 2018 Ref 17.00 dBm 00:00:07 mu apr 09, 2018 -00:07 mu apr 09, 2018 1 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 1 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 1 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 1 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 1 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 1 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018 00:00:07 mu apr 09, 2018


Plot 7-80. Conducted Spurious Plot (Band 13 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 59 of 170			
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 58 of 179			
© 2018 PCTEST Engineering Labo	2018 PCTEST Engineering Laboratory, Inc.						

RL	rum Analyzer - Swept SA RF 50 Ω AC	CORREC	CEM	SE:INT			05-20-25	PM Apr 09, 2018		
NL.	NF JUX AC	PNO: Fast G		Run	#Avg Typ	e:RMS	TRA	ACE 1 2 3 4 5 6 WPE A WANNIN N DET A N N N N N		iency
0 dB/div	Ref 20.00 dBm					Ν	/lkr1 819 -46	.10 MHz .62 dBm	Au	ito Tur
10.0										nter Fre 0000 MH
0.00								0L1 -13.00 dBm		tart Fre
10.0										top Fr 0000 M
0.0								1		CF Ste 0000 M M
0.0					-		under state of the		Fre	e q Offs 01
70.0									2007	ale Ty
tart 30.0 N Res BW 1		#VBW	/ 300 kHz		s	weep 9	Stop 3 98.33 ms (823.0 MHz 15861 pts)	Log	L

Plot 7-81. Conducted Spurious Plot (Band 26 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-82. Conducted Spurious Plot (Band 26 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 170			
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 59 of 179			
© 2018 PCTEST Engineering Labor	2018 PCTEST Engineering Laboratory, Inc.						

Keysight Spectrum Analyzer - Swe					
<mark>χα</mark> RL RF 50 Ω	AC CORREC	SENSE:INT	#Avg Type: RMS	05:20:49 PM Apr 09, 2018 TRACE 2 3 4 5 6 TYPE A	Frequency
10 dB/div Ref 17.00 d	IFGain:Low	#Atten: 32 dB	Μ	DET <mark>ANNNNN</mark> Ikr1 1.650 0 GHz -43.546 dBm	Auto Tun
7.00					Center Fre 5.50000000 GH
13.0				DL1 -13.00 dBm	Start Fre 1.000000000 GF
-23.0					Stop Fre 10.000000000 GF
-43.0 1 -53.0 martine and the second		and the second			CF Ste 900.000000 MH Auto Ma
63.0					Freq Offs 0 F
5tart 1.000 GHz				0100 10.000 0112	Scale Typ
#Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 1	5.60 ms (18001 pts)	

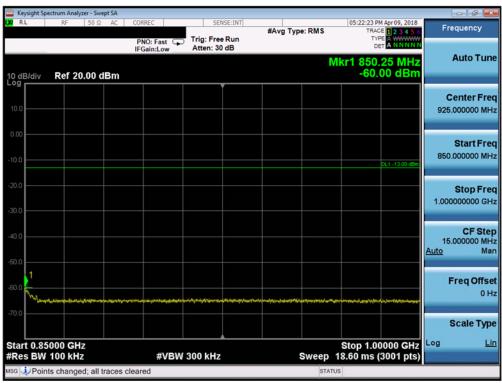
Plot 7-83. Conducted Spurious Plot (Band 26 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-84. Conducted Spurious Plot (Band 26 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset	Page 60 of 179
© 2018 PCTEST Engineering Labo	V 8.0 04/05/2018		

	rum Analyzer - Swept								
X/RL	RF 50 Ω				#Avg Type	RMS	05:18:50 PM TRACE	123456	Frequency
		PNO: Fa IFGain:L				M	kr1 849.0	65 MHz 0 dBm	Auto Tur
l0 dB/div	Ref 20.00 dE	3m		-			-04.0	оавт	
10.0									Center Fre 924.500000 MH
0.00								L1 -13.00 dBm	Start Fre 849.000000 MF
20.0									Stop Fre 1.000000000 GH
40.0									CF Ste 15.100000 Mi <u>Auto</u> Mi
50.0 1		****	مىيەردىرىيەر مەرىيەرىيەر مەرەبىرىيەر مەرەبىرىيەر	مطحدة كيمحفظ		موجيه الحوجات	in the second	ra ya da da da ka ka ka ya	Freq Offs 0 H
70.0									Scale Typ
Start 0.849 Res BW 1		#	VBW 300 kHz		5	Sweep 1	Stop 1.00 8.72 ms (3	000 GHz 021 pts)	Log <u>L</u>
sg Deints	changed; all tra	ces cleared				STATUS			

Plot 7-85. Conducted Spurious Plot (Band 26 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-86. Conducted Spurious Plot (Band 26 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 61 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset	Page 61 of 179
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018		

	ectrum Analyzer -										
LXI RL	RF 50	Ω AC	CORREC	SEI	NSE:INT	#Avg Typ	e: RMS		Apr09, 2018	F	requency
			PNO: Fast G	Trig: Free Atten: 30		• //		TYF DE			Auto Tune
10 dB/div	Ref 20.00) dBm						Mkr1 821. -49.	80 MHz 10 dBm		Auto Tune
10.0											Center Freq
										42	7.000000 MHz
0.00										30	Start Freq
-10.0									DL1 -13.00 dBm		
-20.0										824	Stop Freq 4.000000 MHz
-30.0											CF Step
+40.0									1	79 Auto	9.400000 MHz Man
-50.0											Freq Offset
-60.0									, and a second		0 Hz
-70.0											Scale Type
Start 30.0 #Res BW			#VBV	V 300 kHz		s	weep	Stop 8 98.46 ms (1	24.0 101112		Lin
MSG								TUS		_	

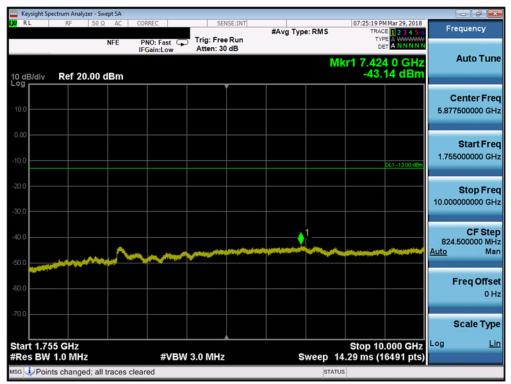
Plot 7-87. Conducted Spurious Plot (Band 26 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-88. Conducted Spurious Plot (Band 26 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Decc. 62 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset	Page 62 of 179
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018		

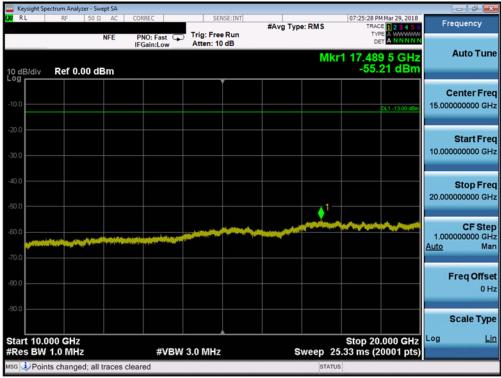
	pectrum Analy												
RL	RF	50 Ω	AC	CORREC		SEI		#Avg Typ	e: RMS	TE	8 PM Apr 09, 2018 RACE 1 2 3 4 5 6	Fre	equency
				PNO: F IFGain:	ast 🖵 .ow	#Atten: 3							
0 dB/div	Ref 0.	00 dB	m						Ν	/kr1 1.6 -4	70 0 GHz 3.02 dBm		Auto Tur
°g							Í					C	enter Fre
0.0											DL1 -13.00 dBm		000000 GI
0.0													
.0.0													Start Fre
30.0												1.000	000000 GI
10.0	▲1												
10.0										- Charles		10.000	Stop Fre
50.0		and the second		And a strength		and the second distance			Stanik George	and the second s		10.000	000000 61
													CF St
0,0												900. Auto	.000000 M
0.0												Auto	
												F	reg Offs
0.0													0
0.0													
												5	Scale Ty
	00 GHz									Stop '	10.000 GHZ	Log	1
Res BM	1.0 MH	z			#VBW	3.0 MHz		ş	Sweep	15.60 ms	(18001 pts)		

Plot 7-89. Conducted Spurious Plot (Band 26 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)


FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 170	
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 63 of 179	
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018				

Band 4

Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	CORREC SENSE:INT	#Avg Type: RMS	07:25:11 PM Mar 29, 2018 TRACE 2 3 4 5 6	Frequency
NFE 10 dB/div Ref 20.00 dBm	PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB	М	kr1 1.709 0 GHz -26.42 dBm	Auto Tun
10.0				Center Fre 869.500000 M⊦
0.00			DL1 -13.00 dBm	Start Fre 30.000000 M⊦
30.0			1	Stop Fre 1.709000000 GF
40.0			المعتدم معرفين والمعرف	CF Ste 167.900000 MH Auto Ma
50.0		مەرىپىلەر ئەرىپىلەر بەرىپىرىمەر بەرىپىرىمەر بەرىپىرىمەر بىرىيىلەر بەرىپىرىمەر بىرىيىلەر بەرىپىرىمەر بىرىيىلەر ب 	of a subsection of the	Freq Offs 0 F
70.0 Start 0.0300 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 2	Stop 1.7090 GHz 2.239 ms (3359 pts)	Scale Typ Log <u>L</u>
sG		STATU		


Plot 7-90. Conducted Spurious Plot (Band 4 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-91. Conducted Spurious Plot (Band 4 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 170
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 64 of 179
© 2018 PCTEST Engineering Labo	V 8.0 04/05/2018			

Plot 7-92. Conducted Spurious Plot (Band 4 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-93. Conducted Spurious Plot (Band 4 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 170	
1M1804240083-03-R1.ZNF	3/22-5/17/2018	Portable Handset		Page 65 of 179	
© 2018 PCTEST Engineering Labo	V 8.0 04/05/2018				