

SHENZHEN FENDA TECHNOLOGY CO., LTD.

TEST REPORT

SCOPE OF WORK

FCC Testing–HS1000, HS1000A, HS1000B, HS1000C, HS1000D, HS1000E, HS1000F, HS1000G, HS1000H, HS1000I, HS1000J, HS1000K, HS1000L, HS1000M, HS1000N, HS1000O, HS1000P, HS1000Q, HS1000R, HS1000S, HS1000T, HS1000U, HS1000V, HS1000W, HS1000X, HS1000Y, HS1000Z, HS1000AU, HS1000UK, HS1000JP, TS1000, TS1000A, TS1000B, TS1000C.

REPORT NUMBER

250106044SZN-001

ISSUE DATE

[REVISED DATE]

28 March 2025

[-----]

PAGES 28

DOCUMENT CONTROL NUMBER FCC ID 249_C © 2017 INTERTEK

Test Report

Intertek Report No.: 250106044SZN-001

SHENZHEN FENDA TECHNOLOGY CO., LTD.

Application For Certification

FCC ID: HBOHS1000

2.0 Channel Soundbar Home Theater System

Model: HS1000, HS1000A, HS1000B, HS1000C, HS1000D, HS1000E, HS1000F, HS1000G, HS1000H, HS1000I, HS1000J, HS1000K, HS1000L, HS1000M, HS1000N, HS1000O, HS1000P, HS1000Q, HS1000R, HS1000S, HS1000T, HS1000U, HS1000V, HS1000W, HS1000X, HS1000Y, HS1000Z, HS1000AU, HS1000UK, HS1000JP, TS1000, TS1000A, TS1000B, TS1000C.

Brand Name: Hisense, TOSHIBA

2.4GHz Transceiver

Report No.: 250106044SZN-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-23]

Prepared and Checked by:

Approved by:

Mandy Chen Engineer Johnny Wang Project Engineer Date: 28 March 2025

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Services Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen, P.R. China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

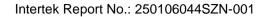
MEASUREMENT/TECHNICAL REPORT

This report	concerns (check one:)	Original Grant <u>X</u>	Class I Change			
Equipment	Type: <u>DXX - Part 15 Low Pow</u>	er Communication Dev	ice Transmitter			
Deferred gr	rant requested per 47 CFR 0.4	457(d)(1)(ii)?	Yes	No <u>X</u>		
		If yes, defe	er until:	date		
Company N	lame agrees to notify the Cor	nmission by:	date			
of the inter	nded date of announcement of	of the product so that t	he grant can be iss	ued on that date.		
Transition F	Rules Request per 15.37?		Yes	No <u>X</u>		
lf no, assu provision.	med Part 15, Subpart C for	r intentional radiator -	– the new 47 CFF	8 [10-1-23 Edition]		
Report prep	pared by:					
Mandy Chen Intertek Testing Services Shenzhen Ltd. Longhua Branch 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen, P.R. China Tel / Fax: 86-755-8614 0743/86-755-8601 6661						

Table of Contents

1.0 Summary of Test Result	4
2.0 General Description	5
 2.1 Product Description 2.2 Related Submittal(s) Grants 2.3 Test Methodology 2.4 Test Facility 	5 6
3.0 System Test Configuration	7
 3.1 Justification 3.2 EUT Exercising Software	7 7 7 8
4.0 Emission Results	9
 4.1 Radiated Test Results 4.1.1 Field Strength Calculation 4.1.2 Radiated Emission Configuration Photograph 4.1.3 Radiated Emissions 4.1.4 Transmitter Spurious Emissions 4.2 Conducted Emission Configuration Photograph 4.2.1 Conducted Emission 	9 10 10 13 17
5.0 Equipment Photographs	20
6.0 Product Labelling	20
7.0 Technical Specifications	20
8.0 Instruction Manual	20
9.0 Miscellaneous Information	21
 9.1 Bandedge Plot 9.2 20dB Bandwidth 9.3 Discussion of Pulse Desensitization 9.4 Calculation of Average Factor 9.5 Emissions Test Procedures 	24 25 25 26
10.0 Test Equipment List	28

1.0 <u>Summary of Test Result</u>


Applicant: SHENZHEN FENDA TECHNOLOGY CO., LTD. Applicant Address: Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen City, Guangdong, China Manufacturer: SHENZHEN FENDA TECHNOLOGY CO., LTD. Manufacturer Address: Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen City, Guangdong, China

MODEL: HS1000, HS1000A, HS1000B, HS1000C, HS1000D, HS1000E, HS1000F, HS1000G, HS1000H, HS1000I, HS1000J, HS1000K, HS1000L, HS1000M, HS1000N, HS1000O, HS1000P, HS1000Q, HS1000R, HS1000S, HS1000T, HS1000U, HS1000V, HS1000W, HS1000X, HS1000Y, HS1000Z, HS1000AU, HS1000UK, HS1000JP, TS1000, TS1000A, TS1000B, TS1000C.

FCC ID: HBOHS1000

Test Specification	Reference	Results
Transmitter Radiated Emission	15.249 &15.209 &15.205	Pass
Conducted Emission	15.207	Pass
Band edge	15.249 &15.209 &15.205	Pass
20dB Bandwidth	15.215(c)	Pass

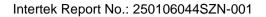
Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

2.0 General Description

2.1 Product Description

The equipment under test (EUT) is a 2.0 Channel Soundbar Home Theater System with Bluetooth 5.3 EDR (Single Mode) function operating in 2402-2480MHz. The EUT is powered by AC 100-240V~50/60Hz . For more detail information pls. refer to the user manual.

Antenna Type: Integral antenna Modulation Type: GFSK, $\pi/4$ -DQPSK and 8-DPSK Antenna Gain: 2.98dBi Max(This information is provided by applicant, and the applicant is responsible for the authenticity of the provided information.) Bluetooth Version: EDR 5.3(Single Mode)


The Model: HS1000A, HS1000B, HS1000C, HS1000D, HS1000E, HS1000F, HS1000G, HS1000H, HS1000I, HS1000J, HS1000K, HS1000L, HS1000M, HS1000N, HS1000O, HS1000P, HS1000Q, HS1000R, HS1000S, HS1000T, HS1000U, HS1000V, HS1000W, HS1000X, HS1000Y, HS1000Z, HS1000AU, HS1000UK, HS1000JP, TS1000, TS1000A, TS1000B, TS1000C are the same as the Model: HS1000 in hardware aspect. The difference in model number and brand name serves as marketing strategy. Details as follows:

Model Number	Brand Name
HS1000, HS1000A, HS1000B, HS1000C, HS1000D, HS1000E,	Hisense
HS1000F, HS1000G, HS1000H, HS1000I, HS1000J, HS1000K,	
HS1000L, HS1000M, HS1000N, HS1000O, HS1000P, HS1000Q,	
HS1000R, HS1000S, HS1000T, HS1000U, HS1000V,	
HS1000W, HS1000X, HS1000Y, HS1000Z, HS1000AU, HS1000UK,	
Н\$1000ЈР	
TS1000, TS1000A, TS1000B, TS1000C	TOSHIBA

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of a transceiver for the 2.0 Channel Soundbar Home Theater System which has Bluetooth function. Other digital functions were reported in the SDOC report: 250106044SZN-002.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in Semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst-case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The Semi-Anechoic chamber and shield room used to collect the radiated data and conducted data are **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen, P.R. China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: CN1188).

3.0 System Test Configuration

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT is powered by AC 120V/60Hz from adapter during the test, only the worst data was reported in this report.

All packets DH1, DH3 & DH5 mode in modulation type GFSK, $\pi/4$ -DQPSK and 8-DPSK were tested and only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the bottom of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section 4.

The EUT and transmitting antenna was centered on the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

The EUT exercise program (provided by client) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The worst case configuration is used in all specified testing.

The parameters of test software setting:

During the test, Channel and power controlling software provided by the applicant was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the application and is going to be fixed on the firmware of the end product.

Test Software: SPA MP Tool

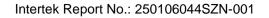
3.3 Special Accessories

N/A

3.4 Equipment Modification

Any modifications installed previous to testing by SHENZHEN FENDA TECHNOLOGY CO., LTD. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Longhua Branch.


3.5 Measurement Uncertainty

When determining the test conclusion, the Measurement Uncertainty of test has been considered.

Measurement Uncertainty	Uncertainty		
Channel Bandwidth	±3.46%		
RF Output Power	±0.31dB		
Conducted Unwanted Emission	±0.55dB		
Spurious emission (Above 18GHz)	±5.3dB		
Spurious emission (6GHz to 18GHz)	±5.1dB		
Radiated emission (1GHz to 6GHz)	±4.8dB		
Radiated emission (Up to 1GHz)	±4.8dB		
AC Conducted emission	±3.2 dB		
Dwell time	±5%		
Temperature	±1°C		
Humidity	±5%		

3.6 Support Equipment List and Description

Description	Manufacturer	Remark
AC power cord	N/A (provided by Client)	Detachable, Length 150cm
HDMI Cable	N/A (provided by Client)	Shielded, Length 150cm
mobile phone	Samsung (provided by Intertek)	\$7
USB Memory	SanDisk (provided by Intertek)	SDCZ36-002G-P36
DVD Player	SONY (provided by Intertek)	Model: BDP-BX59
TV	SONY (provided by Intertek)	Model: KDL-24EX520
Dummy Load	N/A (provided by Intertek)	Audio Port: 1000Ω Video Port: 75 Ω HDMI Port: 100 Ω
AUX IN Cable	N/A (provided by Intertek)	Unshielded, Length 100cm
Optical Cable	N/A (provided by Intertek)	Unshielded, Length 150cm

4.0 Emission Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF +	CF - AG + PD + AV
Where	FS = Field Strength in dBμV/m
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB/m
	AG = Amplifier Gain in dB
	PD = Pulse Desensitization in dB
	AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 62.0 dBµV AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB FS = 62 + 7.4 + 1.6 - 29 + 0 = 42 dBµV/m

Level in μ V/m = Common Antilogarithm [(42 dB μ V/m)/20] = 125.9 μ V/m

4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

4.1.3 Radiated Emissions

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

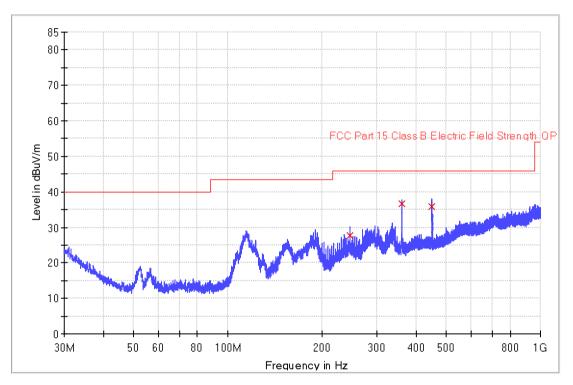
Worst Case Radiated Emission at 359.961667 MHz

Judgement: Passed by 9.4 dB

TEST PERSONNEL:

Sign on file

Mandy Chen, Engineer Typed/Printed Name


<u>11 February 2025</u> Date

Applicant: SHENZHEN FENDA TECHNOLOGY CO., LTD.Date of Test: 11 February 2025Model:Worst Case Operating Mode:TransmitModulation type:GFSK

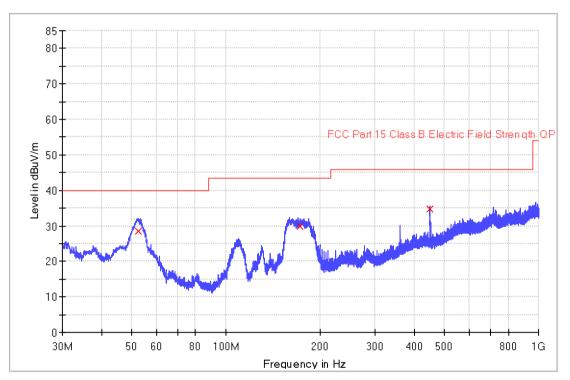
Model: HS1000 Transmitting(2402MHz) GFSK

ANT Polarity: Horizontal

FCC Part 15

Frequency (MHz)	Quasi Peak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB/m)	Margin - QPK (dB)	Limit – QPK (dBµV/m)
245.728000	27.6	1000.0	120.000	н	19.2	18.4	46.0
359.961667	36.6	1000.0	120.000	н	23.4	9.4	46.0
450.074667	35.7	1000.0	120.000	Н	25.3	10.3	46.0

Remark:


- 1. Corr. (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB/m) + Read Level (dBµV)
- 3. Margin (dB) = Limit Line (dB μ V/m) Level (dB μ V/m)

Applicant: SHENZHEN FENDA TECHNOLOGY CO., LTD. Date of Test: 11 February 2025 Model: HS1000 Worst Case Operating Mode: Modulation type: GFSK

Transmitting(2402MHz)

ANT Polarity: Vertical

Meas. Margin -Limit – Frequency Quasi Peak Bandwidth Corr. Time Polarization QPK QPK (MHz) (dBµV/m) (kHz) (dB/m) (dB) (dBµV/m) (ms) 52.633333 28.6 1000.0 120.000 13.0 40.0 ٧ 11.4 172.331333 29.9 1000.0 120.000 v 16.6 13.6 43.5 449.492667 1000.0 120.000 ٧ 34.6 25.3 11.4 46.0

Remark:

1. Corr. (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB)

2. Quasi Peak ($dB\mu V/m$) = Corr. (dB/m) + Read Level ($dB\mu V$)

3. Margin (dB) = Limit Line (dB μ V/m) – Level (dB μ V/m)

FCC Part 15

4.1.4 Transmitter Spurious Emissions (Radiated)

Worst Case Radiated Emission at 2441.000 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 12.6 dB

TEST PERSONNEL:

Sign on file

Mandy Chen, Engineer Typed/Printed Name

<u>11 February 2025</u>

Applicant: SHENZHEN FENDA TECHNOLOGY CO., LTD.Date of Test: 11 February 2025Model: HS1000Worst Case Operating Mode:Transmitting(2402MHz)Modulation type:GFSK

Table 1

Radiated Emissions

(2402MHz)									
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)		
Horizontal	2402.000	108.4	36.7	28.1	99.8	114.0	-14.2		
Horizontal	4804.000	45.0	36.7	35.5	43.8	74.0	-30.2		
Horizontal	7206.000	48.0	36.1	36.5	48.4	74.0	-25.6		
Horizontal	9608.000	47.6	36.3	38.0	49.3	74.0	-24.7		

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2402.000	108.4	36.7	28.1	22.5	77.3	94.0	-16.7
Horizontal	4804.000	45.0	36.7	35.5	22.5	21.3	54.0	-32.7
Horizontal	7206.000	48.0	36.1	36.5	22.5	25.9	54.0	-28.1
Horizontal	9608.000	47.6	36.3	38.0	22.5	26.8	54.0	-27.2

Notes: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Test Engineer: Mandy Chen

Applicant: SHENZHEN FENDA TECHNOLOGY CO., LTD.Date of Test: 11 February 2025ModWorst Case Operating Mode:TranModulation type:GFSk

Model: HS1000 Transmitting(2441MHz) GFSK

Table 2

Radiated Emissions

(2441MHz)										
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)			
Horizontal	2441.000	110.0	36.7	28.1	101.4	114.0	-12.6			
Horizontal	4882.000	44.5	36.7	35.5	43.3	74.0	-30.7			
Horizontal	7323.000	46.4	36.1	37.2	47.5	74.0	-26.5			
Horizontal	9764.000	51.8	36.2	37.0	52.6	74.0	-21.4			

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2441.000	110.0	36.7	28.1	22.5	78.9	94.0	-15.1
Horizontal	4882.000	44.5	36.7	35.5	22.5	20.8	54.0	-33.2
Horizontal	7323.000	46.4	36.1	37.2	22.5	25.0	54.0	-29.0
Horizontal	9764.000	51.8	36.2	37.0	22.5	30.1	54.0	-23.9

Notes: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Test Engineer: Mandy Chen

Applicant: SHENZHEN FENDA TECHNOLOGY CO., LTD.Date of Test: 11 February 2025Model: HS1000Worst Case Operating Mode:Transmitting(2480MHz)Modulation type:GFSK

Table 3

Radiated Emissions

	(2480MHz)											
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)					
Horizontal	2480.000	108.8	36.7	28.1	100.2	114.0	-13.8					
Horizontal	4960.000	45.7	36.7	35.5	44.5	74.0	-29.5					
Horizontal	7440.000	46.1	36.1	37.2	47.2	74.0	-26.8					
Horizontal	9920.000	49.7	36.3	38.9	52.3	74.0	-21.7					

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2480.000	108.8	36.7	28.1	22.5	77.7	94.0	-16.3
Horizontal	4960.000	45.7	36.7	35.5	22.5	22.0	54.0	-32.0
Horizontal	7440.000	46.1	36.1	37.2	22.5	24.7	54.0	-29.3
Horizontal	9920.000	49.7	36.3	38.9	22.5	29.8	54.0	-24.2

Notes: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Test Engineer: Mandy Chen

4.2 Conducted Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: conducted photos.pdf.

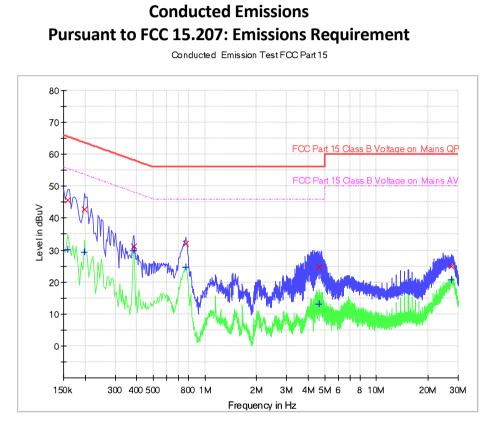
4.2.1 Conducted Emission

Worst Case Conducted Configuration at 0.386000MHz

Judgement: Passed by 18.1dB margin

TEST PERSONNEL:

Sign on file


Mandy Chen, Engineer Typed/Printed Name

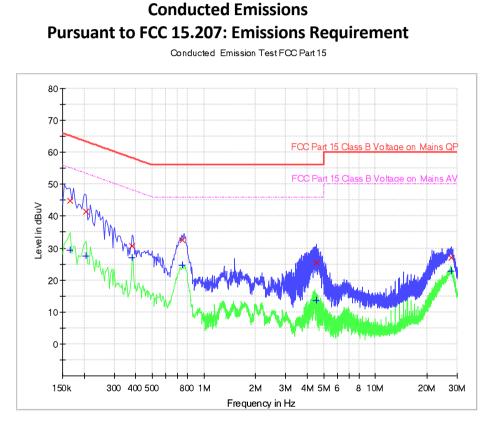
06 January 2025 Date

Applicant: SHENZHEN FENDA TECHNOLOGY CO., LTD. Date of Test: 06 January 2025 Model: HS1000 Worst Case Operating Mode: Transmitting(2402MHz) Modulation type: GFSK Test Voltage: AC 120V/60Hz Phase: Live

Graphic / Data Table

Limit and Margin QP

Frequency	Quasi Peak	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(kHz)	Line	(dB)	(dB)	(dBµV)
0.158000	45.6	9.000	L1	9.6	20.0	65.6
0.198000	42.6	9.000	L1	9.6	21.1	63.7
0.386000	31.1	9.000	L1	9.6	27.0	58.1
0.774000	32.0	9.000	L1	9.6	24.0	56.0
4.618000	24.5	9.000	L1	9.8	31.5	56.0
27.538000	25.0	9.000	L1	10.9	35.0	60.0


Limit and Margin AV

Frequency	Average	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(kHz)	Line	(dB)	(dB)	(dBµV)
0.158000	30.2	9.000	L1	9.6	25.4	55.6
0.198000	29.2	9.000	L1	9.6	24.5	53.7
0.386000	30.0	9.000	L1	9.6	18.1	48.1
0.774000	24.6	9.000	L1	9.6	21.4	46.0
4.618000	13.2	9.000	L1	9.8	32.8	46.0
27.538000	20.7	9.000	L1	10.9	29.3	50.0

Applicant: SHENZHEN FENDA TECHNOLOGY CO., LTD. Date of Test: 06 January 2025 Model: HS1000 Worst Case Operating Mode: Transmitting(2402MHz) Modulation type: GFSK Test Voltage: AC 120V/60Hz Phase: Neutral

Graphic / Data Table

Limit and Margin QP

	· 0 · ·					
Frequency	Quasi Peak	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(kHz)	Line	(dB)	(dB)	(dBµV)
0.166000	44.8	9.000	N	9.6	20.4	65.2
0.206000	41.5	9.000	N	9.6	21.9	63.4
0.382000	30.6	9.000	N	9.6	27.6	58.2
0.750000	32.4	9.000	N	9.6	23.6	56.0
4.522000	25.5	9.000	N	9.8	30.5	56.0
27.650000	27.1	9.000	Ν	11.0	32.9	60.0

Limit and Margin AV

Frequency	Average	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(kHz)	Line	(dB)	(dB)	(dBµV)
0.166000	29.4	9.000	Ν	9.6	25.8	55.2
0.206000	27.5	9.000	Ν	9.6	25.9	53.4
0.382000	27.1	9.000	Ν	9.6	21.1	48.2
0.750000	24.5	9.000	Ν	9.6	21.5	46.0
4.522000	13.7	9.000	Ν	9.8	32.3	46.0
27.650000	22.8	9.000	Ν	11.0	27.2	50.0

5.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

6.0 <u>Product Labelling</u>

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

9.0 Miscellaneous Information

This miscellaneous information includes details of the measured bandedge, 20dB Bandwidth, the test procedure and calculation of factor such as pulse desensitization.

9.1 Bandedge Plot

The test plots are attached as below. From the below plots, the field strength of any emissions outside of the specified frequency band are attenuated to the general radiated emission limits in section 15.209. It fulfils the requirement of 15.249(d).

Peak Measurement

Bandedge compliance is determined by applying marker-delta method, i.e (Bandedge Plot).

(i) Lowest frequency channel (2402MHz):

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the bandedge plot

Average Resultant field strength = Fundamental emissions (average value) – delta from the bandedge plot

= 77.3 dBμv/m-46.97 dB = 30.33 dBμv/m

(ii) Highest frequency channel (2480MHz):

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the bandedge plot

= 100.2 dBμv/m-53.43 dB = 46.77 dBμv/m

Average Resultant field strength = Fundamental emissions (average value) – delta from the bandedge plot

= 77.7 dBμv/m-53.43 dB = 24.27 dBμv/m

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).

Hopping function off Lowest frequency Channel

Spectrum										□
Ref Level 🗄				3W 100 kHz						
Att	40 c	iB SWT 5	i6.8 μs 👄 ۷	3W 300 kHz	Mode 4	۱uto	FFT			
1Pk Max		_								
					D	1[1]				-46.97 dE
120 dBµV-										.8810 MH
120 0001					M	1[1]	1		1	18230 GH
						ż.		1	2.40	10230 GH
110 dBµV—						1				
					n n	h				
100 dBµV—						+				
						11				
90 dвµV—										
90 UBHV										
80 dBµV—						-	 			
							6			
70 dBµV—							N			
				D	1		- \ N J			
					V		<u> () </u>	Υ		
60 dBµV	M. A. Sugar	and a second	moun	-AN				him	mmm	N
		0.00000								0
50 dBµV—						-				
40 dBµV										
30 dBµV										
CF 2.4 GHz				691	pts				Span	20.0 MHz

Date:21.JAN.2025 11:10:49

Highest frequency Channel

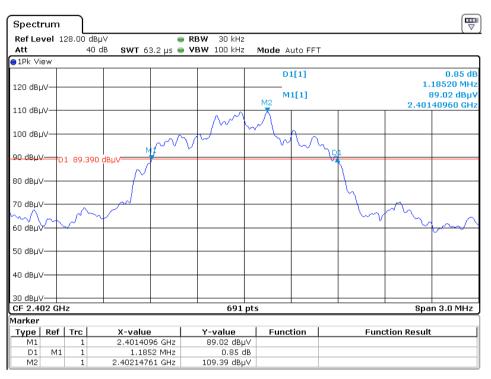
Spectrum								
Ref Level 128.00 dBp			3W 100 kHz					
Att 40 (3B SWT 50	5.8 µs 👄 ۷	3W 300 kHz	Mode A	uto FFT			
●1Pk Max								
				D	1[1]			-53.43 dE
120 dBµV					1[1]			5.4120 MH; 12.60 dBµ\
		M1		IM	1[1]			'98240 GH;
		X			1		2.17	
110 dBµV		Λ						
		r 14						
100 dBµV								
	1 1							
90 dBµV								
90 ивру-								
	1 1							
80 dBµV	+							
	1	10						
70 dBµV		V (
, o dopv		· · · ·	\mathbb{V}					
	5			D1				
60 dBµV	pr -		- Ym	DI.	a.	mmon		more
- marine when a			0.0	- Constantine of	mar	manalana	mann	a contract
50 dBµV								
10 10 11								
40 dBµV								
30 dBµV								
CF 2.4835 GHz			691	pts			Span	20.0 MHz

Date:21.JAN.2025 11:09:33

Hopping function on Lowest frequency Channel

Ref Level Att	131.50 dBµ∖ 40 dE		RBW 100 ki VBW 300 ki		le	Auto FFT			
1Pk Max			 						
					D	l[1]			-49.56 d
					м	1[1] _{/1}			3.3860 MH 18.14 dBµ
120 dBµV—					1				28360 GH
110 dBµV—					Ą	w.M.N	My My m	how	han
110 UBHV—				(40	• •	•••	
100 dBµV—									
100 000.									
90 dBµV									
80 dBµV									
				M					
70 dBµV			D1	1	_				
			man	2					
66/d8pv	Anna ann	har walles	 MUDC Y		_				
50 dBµV—									
40 dB⊔V									
40 aBhA									
CF 2.4 GH:	,		691	nts				Snan	20.0 MHz

Highest frequency Channel


Spectrum			0.50 40 -	DDUU 100 l					
Att	131.50 dBµ 40 c		3.50 dB 👄 56.8 µs 👄			Auto FFT			
)1Pk Max					inoue	Hatofff			
						1[1]			-56.25 dB
120 dBµV—		M1			M	1[1]			18.63 dBµV 78270 GHz
	Mr	MA	M					2.47	78270 GH2
100 dBµV—									
90 dBµV									
80 dBµV			ha	1					
70 dBµV				M	D1				
60 dBµV				hrma	a Arana	har and the second	- Anna - Anna	and and a state of the state of	ممدهمهم
50 dBµV									
40 dBµV									
CF 2.4835	GHz			691	pts			Span	20.0 MHz

Date: 21.JAN 2025 12:01:40

9.2 20dB bandwidth

Pursuant to FCC part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered. The test plots are reported as below.

Date: 21.JAN .2025 11:04:02

Spectru	ım	ך								
Ref Leve	el 128.	oo dBµ'		_	RBW 30 kHz					
Att		40 di	B SWT 63	3.2 µs 😑	VBW 100 kHz	Mode A	uto FFT	-		
⊖1Pk Viev	N									
120 dBµV						D	1[1]		1.	0.75 dB 18520 MHz
						M2 M	1[1]			89.72 dBµV 40960 GHz
110 dBµV					M	$\sim \Lambda$				
100 dBµV	+		M	\sim	\mathcal{N}	- \v	\mathbb{A}	~		
90 dBµV	-D1 9	90.020 c	ИВµ∨———	<u></u>						
80 dBµV–	_		-							
ZQ dβµV−		.0-							Δ	
* 🗸 60 dBµV-	\sim	/* * _						~~~	1 m	m
50 dBµV–										
40 dBµV—										
30 dBµV-					691	nte				n 3.0 MHz
	GHZ				691	prs			spa	n 3.0 MHZ
Marker	Ref Ti		X-value		Y-value	Func	tion	F	tion Result	. 1
Type F M1		1	2.479409		89.72 dBµ		uun	Fun	LION RESUL	
D1	M1	1		2 MHz	0.75 d					
M2		1	2.4801476	51 GHz	110.02 dBµ	V				

Date: 21.JAN 2025 11:07:55

9.3 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period (Teff) is approximately $625\mu s$ for Bluetooth. With a resolution bandwidth (3dB) of 1MHz, so the pulse desensitivity factor is 0dB.

9.4 Calculation of Average Factor

Based on the Bluetooth Specification Version 5.3 (EDR mode) and worst case AFH mode, transmitter ON time is independent of packet type (DH1, DH3 and DH5) and packet length, the AFH mode Duty cycle connection factor as below:

Channel hop rate = 800 hops/second (AFH Mode)

Adjusted channel hop rate for DH5 mode = 133.33 hops/second

Time per channel hop = 1/133.33 hops/second = 7.5 ms

Time to cycle through all channels = 7.5 x 20 channels = 150 ms

Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s)

Worst case dwell time = 7.5 ms

Duty cycle connection factor = 20log10 (7.5ms / 100ms) = -22.5 dB

9.5 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10 - 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter and approximately 0.8 meter up to 1GHz and 1.5 meter above 1GHz in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjust through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 9.4.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

Detector function for conducted emissions is in QP & AV mode and IFBW setting is 9 kHz from the frequency band 150 kHz to 30MHz.

9.5 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.10 - 2013.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. Above 1000 MHz, a resolution bandwidth of 1 MHz is used (RBW 3MHz used for fundamental emission).

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

10.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-13	BiConiLog Antenna	ETS	3142E	00166158	2022-07-13	2025-07-13
SZ185-03	EMI Receiver	R&S	ESR7	101975	2024-04-23	2025-04-23
SZ061-09	Horn Antenna	ETS	3115	00092347	2022-07-13	2025-07-13
SZ061-06	Active Loop Antenna	Electro-Metrics	EM-6876	217	2024-05-05	2027-05-05
SZ056-03	Spectrum Analyzer	R&S	FSP 30	101148	2024-04-22	2025-04-22
SZ056-06	Signal Analyzer	R&S	FSV 40	101101	2024-12-06	2025-12-06
SZ181-04	Preamplifier	Agilent	8449B	3008A02474	2024-04-22	2025-04-22
SZ188-05	Anechoic Chamber	ETS	RFD-F/A- 100	4102	2021-05-25	2026-05-25
SZ062-02	RF Cable	RADIALL	RG 213U		2024-11-01	2025-05-01
SZ062-05	RF Cable	RADIALL	0.04- 26.5GHz	Packet	2024-11-01	2025-05-01
SZ062-12	RF Cable	RADIALL	0.04- 26.5GHz		2024-11-01	2025-05-01
SZ067-04	Notch Filter	Micro-Tronics	BRM50702 -02		2024-04-23	2025-04-23
SZ185-02	EMI Test Receiver	R&S	ESCI	100692	2024-07-09	2025-07-09
SZ187-01	Two-Line V- Network	R&S	ENV216	100072	2024-10-24	2025-10-24
SZ187-02	Two-Line V- Network	R&S	ENV216	100073	2024-04-23	2025-04-23
SZ188-03	Shielding Room	ETS	RFD-100	4100	2022-12-20	2025-12-20