

RADIO TEST REPORT

Test Report No. 15356903S-C

Customer	Canon Inc.
Description of EUT	Wireless LAN Module
Model Number of EUT	K30400
FCC ID	AZDK30400
Test Regulation	FCC Part 15 Subpart E
Test Result	Complied
Issue Date	November 8, 2024
Remarks	WLAN (5 GHz band) part DFS test only (* Client without radar detection)

Representative Test Engineer Approved By & Kolyphi S. Jakano Shiro Kobayashi Shinichi Takano Engineer Engineer ACCREDITED CERTIFICATE 1266.03 The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. \mathbb{N} There is no testing item of "Non-accreditation". Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15356903S-C

Revision	Test Report No.	Date	Page Revised Contents
-	15356903S-C	November 8,	-
(Original)		2024	

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
01000	,		
GPS	Global Positioning System	Vert.	Vertical

CONTENTS PAGE SECTION 1: Customer Information5 Equipment Under Test (EUT)......5 SECTION 2: SECTION 3: Scope of Report.....7 Test specification, Procedures & Results......7 **SECTION 4:** SECTION 5: Operation of EUT during testing12 Channel Move Time, Channel Closing Transmission Time......17 SECTION 6: SECTION 7: Non-Occupancy Period......19

APPENDIX 1:	Test Instruments	21
APPENDIX 2:	Photographs of Test Setup	22
	, , , , , , , , , , , , , , , , , , ,	

SECTION 1: Customer Information

Company Name	Canon Inc.
Address	451, Tsukagoshi 3-chome, Saiwai-ku, Kawasaki-shi, Kanagawa
	212-8530, Japan
Telephone Number	+81-3-3758-2111
Contact Person	Shuma Hashimoto

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Wireless LAN Module
Model Number	K30400
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	June 14, 2024
Test Date	July 4, 2024

2.2 **Product Description**

General Specification

Rating	DC 3.3 V
Operating temperature	0 deg. C to +45 deg. C

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

WLAN (IEEE802.11b/11g/11n-20)

Equipment Type	Transceiver
Frequency of Operation	2412 MHz to 2462 MHz
Type of Modulation	DSSS, OFDM
Antenna Gain ^{a)}	2.51 dBi

WLAN (IEEE802.11a/111-20/1111-40)			
Equipment Type	Transceiver		
Frequency of Operation	20 MHz Band	5180 MHz to 5240 MHz	
		5260 MHz to 5320 MHz	
		5500 MHz to 5700 MHz	
		5745 MHz to 5825 MHz	
	40 MHz Band	5190 MHz to 5230 MHz	
		5270 MHz to 5310 MHz	
		5510 MHz to 5670 MHz	
		5755 MHz to 5795 MHz	
Type of Modulation	OFDM		
Antenna Gain ^{a)}	-0.47 dBi	(WLAN UNII-1 and UNII-2A band)	
	0.41 dBi	(WLAN UNII-2C band)	
	1.33 dBi	(WLAN UNII-3 band)	

WLAN (IEEE802.11a/11n-20/11n-40)

SECTION 3: Scope of Report

This report only covers DFS requirement, as specified by the following referenced procedures.

SECTION 4: Test specification, Procedures & Results

4.1 Test Specification

Test	FCC Part 15 Subpart E
Specification	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart E
	Unlicensed National Information Infrastructure Devices
	Section 15.407 General technical requirements
Test	KDB 905462 D02 UNII DFS Compliance Procedure New Rules v02
Specification	
Title	COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-
	NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE

	5250-5350MHz AND 5470-5725MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION
Test	KDB905462 D03 Client Without DFS New Rules v01r02
Specification	
Title	U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY

Test Specification	KDB905462 D04 Operational Modes for DFS Testing New Rules v01
Title	OPERATIONAL MODES SUGGESTED FOR DFS TESTING

FCC Part 15.31 (e)

The host device provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement

FCC Part 15.203 Antenna requirement

The antenna is not removable from the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

4.2 Procedures and Results

Table 1: Applicability of DFS Requirements

< Client mode>

Requirement	Operating Mode Client without Radar Detection	Test Procedures & Limits	Deviation	Results
U-NII Detection Bandwidth	Not required	KDB905462 D02 UNII DFS Compliance Procedures New Rules v02	N/A	N/A
Initial Channel Availability Check Time	Not required	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v02 RSS-247 6.3	N/A	N/A
Radar Burst at the Beginning of the Channel Availability Check Time	Not required	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v02 RSS-247 6.3	N/A	N/A
Radar Burst at the End of the Channel Availability Check Time	Not required	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v02 RSS-247 6.3	N/A	N/A
In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time	Yes	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v02 RSS-247 6.3	N/A	Complied
In-Service Monitoring for Non- Occupancy period	Yes *	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v02 RSS-247 6.3	N/A	Complied
Statistical Performance Check	Not required	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v02	N/A	N/A

*Although this test was not required in FCC, KDB 905462 D02, it was performed as additional test.

Table 2 DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1,2, and 3)	
≥ 200 milliwatt	-64 dBm	
< 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz		
< 200 milliwatt that do not meet the power	-64 dBm	
spectral density requirement		
Note 1: This is the level at the input of the receiv	er assuming a 0 dBi receive antenna.	
Note 2: Throughout these test procedures an ad	ditional 1 dB has been added to the amplitude of the	
test transmission waveforms to account for varia	tions in measurement equipment. This will ensure	
that the test signal is at or above the detection the	nreshold level to trigger a DFS response.	
Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication		
662911 D01.		

Table 3 DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60
	milliseconds over remaining 10 second
	period.
	See Notes 1 and 2
U-NII Detection Bandwidth	Minimum 100 % of the U-NII 99 %
	transmission power bandwidth
	See Note 3
Note 1: Channel Move Time and the Channel Closing Radar Type 0. The measurement timing begins at the	
Note 2: The Channel Closing Transmission Time is	comprised of 200 milliseconds starting at the
beginning of the Channel Move Time plus any addition	nal intermittent control signals required to
facilitate a Channel move (an aggregate of 60 millised	onds) during the remainder of the 10 second
period. The aggregate duration of control signal will	not count quiet periods in between
transmissions.	
Note 3: During the U-NII Detection Bandwidth detection	tion test, radar type 0 should be used. For
each frequency step the minimum percentage of dete	ction is 90 percent. Measurements are
performed with no data traffic.	

Radar Type	Pulse Width (μs)	PRI (µs)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Traials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µs, with a minimum increment of 1 µs, excluding PRI values selected in Test A	Roundup{(1/3 60)* (19*10 ⁶ /PRI _{us})}	60 %	30
2	1-5	150-230	23-29	60 %	30
3	6-10	200-500	16-18	60 %	30
4	11-20	200-500	12-16	60 %	30
Aggregate (Rader Types 1-4) 80 %					
Note 1: Short Pu channel closing		hould be used for the d	etection bandwidt	h test, channel mo	ve time, and

Table 4 Short Pulse Radar Test Waveform

Table 5 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µs)	Chip Width (MHz)	PRI (µs)	Number of Pulses per <i>Burst</i>	Number of <i>Burst</i>	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5 - 20	1000- 2000	1-3	8-20	80 %	30

Table 6 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µs)	PRI (µs)	Pulse per Hop (kHz)	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70 %	30

4.3 Addition to Standard

No addition, exclusion nor deviation has been made from the standard.

4.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor *k*=2.

Time Measurement uncertainty for this test was: (±) 0.012 %

4.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 Japan

Telephone: +81-463-50-6400

A2LA Certificate Number: 1266.03

(FCC test firm registration number: 6263	366, ISED lab company r	number: 2973D / CAB ider	ntifier: JP0001)
Test room	Width x Depth x Height		Maximum
	(m)	plane (m) / horizontal	measurement
		conducting plane	distance
No.1 Semi-anechoic chamber (SAC1)	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber (SAC2)	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber (SAC3)	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber (SAC4)	8.1 x 5.1 x 3.55	8.1 x 5.1	-
Wireless anechoic chamber 1 (WAC1)	9.5 x 6.0 x 5.4	9.5 x 6.0	3 m
Wireless anechoic chamber 2 (WAC2)	9.5 x 6.0 x 5.4	9.5 x 6.0	3 m
No.1 Shielded room	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 Shielded room	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	2.55 x 4.1 x 2.5	-	-
No.2 Measurement room	4.5 x 3.5 x 2.5	-	-
Wireless shielded room 1	3.0 x 4.5 x 2.7	3.0 x 4.5	-
Wireless shielded room 2	3.0 x 4.5 x 2.7	3.0 x 4.5	-

4.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 5: Operation of EUT during testing

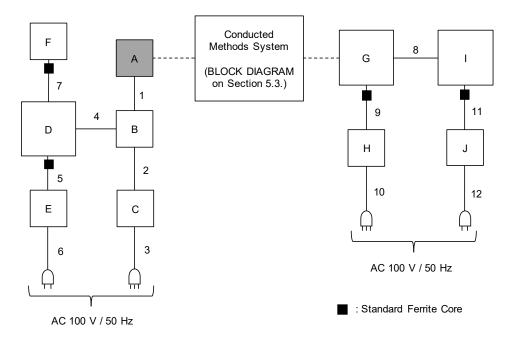
5.1 Operating Mode(s)

The EUT, which is a Client Device without Radar detection capability, operates over the W53 and W56 Band.

The channel-loading of approximately 17 % or greater was used for testing, and its test data was transferred from the Master Device to the Client Device for all test configurations.

WLAN traffic is generated random data by iperf program from the Master to the Client.

The EUT utilizes the 802.11a/n architecture, with a 20 MHz and 40 MHz channel bandwidth.


The FCC ID for the Master Device used with EUT for DFS testing is LDK102087.

The rated output power of the Master unit is >200 mW (23 dBm). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 + 0 = -63.0 dBm (threshold level + additional 1 dB + antenna gain).

It is impossible for users to change DFS control, because the DFS function is written on the firmware and users cannot access it.

The EUT was set by the software as follows: Software name & version: iperf.exe, version 2.0.9 linux OS: Ubuntu 16.04.7 LTS FW Verion: 16.80.21.128

5.2 Configuration and peripherals

Description of EUT and Support Equipment

No.	Item	Model Number	Serial Number	Manufacturer	Remarks
A	Wireless LAN Module	K30400	E024	Canon	EUT
В	WLAN JOINT PCB	-	-	Canon	-
С	Power Supply(DC)	PW16-5ADP	19100034	GW Instek	-
D	Laptop Computer	Thinkpad X61s 7666-77J	LV-B8PVT 08/05	LENOVO	-
Е	AC Adapter	42T4422	11S42T4422Z1ZF3D9BV4XN	Lenovo	-
F	USB DVD-ROM DRIVE	LDV-P8U2LBK	1225762	Logitec	-
G	Wireless LAN access point	AIR-CAP3702E-A- K9	FTX18227609	Cisco Systems, Inc.	FCC ID: LDK102087
Н	AC Adapter	AA25480L	ALD0522GAFE	Cisco Systems, Inc.	-
I	Laptop Computer	ThinkPad E470	PF-0UU34A	LENOVO	-
J	AC Adapter	ADLX45DLC2A	8SSA10E75792L1CZ75Z0W0R	LENOVO	-

List of Cables Used

No.	b. Name Length (m)		Shield	Shield		
			Cable	Connector		
1	Flat	0.1	Unshielded	Unshielded	-	
2	DC	0.3 + 2.0	Unshielded	Unshielded	-	
3	AC	2.0	Unshielded	Unshielded	-	
4	USB	1.0	Shielded	Shielded	-	
5	DC	1.8	Unshielded	Unshielded	-	
6	AC	0.9	Unshielded	Unshielded	-	
7	USB	0.4	Shielded	Shielded	-	
8	LAN	1.5	Unshielded	Unshielded	-	
9	DC	1.8	Unshielded	Unshielded	-	
10	AC	2.0	Unshielded	Unshielded	-	
11	DC	1.6	Unshielded	Unshielded	-	
12	AC	0.9	Unshielded	Unshielded	-	

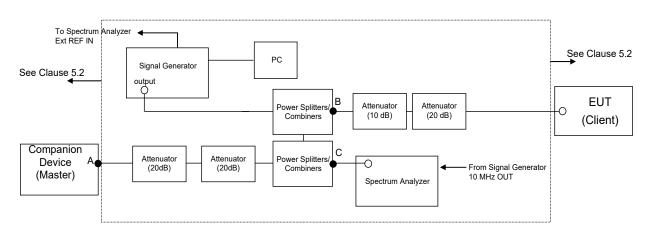
5.3 Test and Measurement System

SYSTEM OVERVIEW

The measurement system is based on a conducted test method.

The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution. The short pulse types 1, 2, 3, and 4, the long pulse type 5, and the frequency hopping type 6 parameters are randomized at run-time.

The signal monitoring equipment consists of a spectrum analyzer with the capacity to display 10001 bins on the horizontal axis. A time-domain resolution of 1.6 ms/bin is achievable with a 16 second sweep time, meeting the 10 seconds short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection.


FREQUENCY HOPPING RADAR WAVEFORM GENERATING SUBSYSTEM

The first 100 frequencies are selected out of the hopping sequence of the randomized 475 hop frequencies.

Only a *Burst* that has the frequency falling within the receiver bandwidth of the tested U-NII device is selected among those frequencies. (Frequency-domain simulation). The radar waveform generated at the start time of the selected *Burst* (Time-domain simulation) is download to the Signal Generator. If all of the randomly selected 100 frequencies do not fall within the receiver bandwidth of the U-NII device, the radar waveform is not used for the test.

CONDUCTED METHODS SYSTEM BLOCK DIAGRM

<Client mode>

MEASUREMENT SYSTEM FREQUENCY REFERENCE

Lock the signal generator and the spectrum analyzer to the same reference sources as follows: Connect the 10 MHz OUT on the signal generator to the EXT REF IN on the spectrum analyzer and set the spectrum analyzer Ext to On.

SYSTEM CALIBRATION

Step 1: Set the system as shown in Figure 3 of KDB905462 D02, 7.2.2.

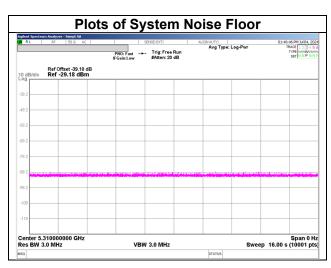
Step 2: Adjust each attenuator to fulfill the following three conditions:

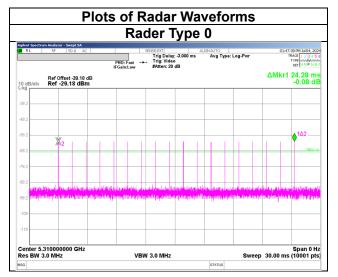
- WLAN can be communicated, and
- Rader detection threshold level is bigger than Client Device traffic level on the spectrum analyzer, and
- Master Device traffic level is not displayed on the spectrum analyzer.

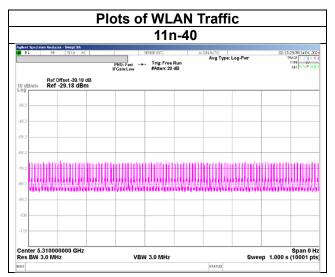
Step 3: Terminate 50 ohm at B and C points, and connect the spectrum analyzer to the point A. (See the figure on before page of Clause 5.3)

At the point A, adjust the signal generator and spectrum analyzer to the center frequency of the channel to be measured.

Download the applicable radar waveforms to the signal generator. Select the radar waveform, trigger a burst manually and measure the amplitude on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold.


Separate signal generator amplitude settings are determined as required for each radar type.


Step 4: Without changing any of the instrument settings, restore the system setting to Step 2 and adjust the Reference Level Offset of the spectrum analyzer to the level at Step 3.


By taking the above steps 1 to 4, the spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device.

See Clause 5.4 for Plots of Noise, Rader Waveforms, and WLAN signals.

5.4 Plots of Noise, Rader Waveforms, and WLAN signals

SECTION 6: Channel Move Time, Channel Closing Transmission Time

6.1 Operating environment

Test place Date	Shonan EMC Lab. No.6 Shielded Room July 4, 2024
Temperature/ Humidity	25 deg. C / 44 % RH
Engineer	Shiro Kobayashi
Mode	11n-40

6.2 Test Procedure

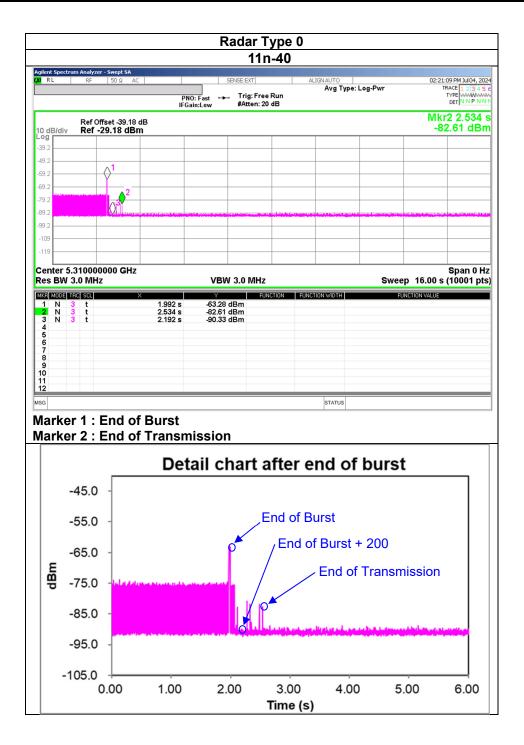
Transmit the data from the Master Device to the Client Device on the test Channel for the entire period of the test.

The Radar Waveform generator sends a Burst of pulses for one of the Radar Types 0 at levels defined on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds.

6.3 Test data

11n-40


Test Item	Unit	Measurement Time	Limit	Results
Channel Move Time *1)	[s]	0.542	10.000	Pass
Channel Closing				
Transmission Time *2)	[ms]	8	60	Pass

*1) Channel Move Time is calculated as follows:

(Channel Move Time) = (End of Transmission) - (End of Burst) = 2.534 - 1.992

*2) Channel Closing Transmission Time is calculated from (End of Burst + 200 ms) to (End of Burst + 10 s) (Channel Closing Transmission Time) = (Number of analyzer bins showing transmission) × (dwell time per bin)

= 5 × 1.6 [ms]

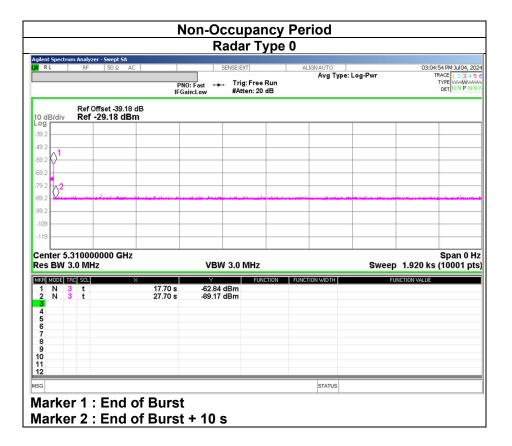
6.4 Test result

Test result: Pass

SECTION 7: Non-Occupancy Period

7.1 Operating environment

Test place	Shonan EMC Lab. No.6 Shielded Room
Date	July 4, 2024
Temperature/ Humidity	25 deg. C / 44 % RH
Engineer	Shiro Kobayashi
Mode	11n-40


7.2 Test Procedure

The following two tests are performed:

1). Transmit the data from the Master Device to the Client Device on the test Channel for the entire period of the test.

The Radar Waveform generator sends a Burst of pulses for one of the Radar Types 0 (Client Device) at levels defined on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors. Observe the transmissions of the EUT after the Channel Move Time on the Operating Channel for duration greater than 30 minutes.

7.3 Test data

7.4 Test result

Test result: Pass

APPENDIX 1: Test Instruments

Test Equipment

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
DFS	145132	Attenuator	Weinschel Corp.	54A-10	W5692	2023/10/13	12
DFS	145155	Attenuator	Weinschel Corp.	54A-20	31484	2024/04/04	12
DFS	145693	Wireless LAN access point	Cisco Systems, Inc.	AIR-CAP3702E-A-K9	FTX18227609	-	-
DFS	146223	Spectrum Analyzer	Keysight Technologies Inc	N9010A-526	MY48031482	2023/10/07	12
DFS	146252	Power Splitters/Combiners	Mini-Circuits	ZFSC-2-10G+	-	2023/11/22	12
DFS	146253	Power Splitters/Combiners	Mini-Circuits	ZFSC-2-10G+	-	2023/11/22	12
DFS	146293	Thermo-Hygrometer	A&D Company	AD-5681	4062518	2023/08/03	12
DFS	158037	Signal Generator	Rohde & Schwarz	SMBV100A	262877	2023/08/08	12
DFS	242070	Attenuator	Weinschel Corp.	54A-20	120415	2023/11/02	12
DFS	242072	Attenuator	Weinschel Corp.	54A-20	120518	2023/11/02	12
DFS	245174	Coaxial Cable	Hayashi-Repic co., Ltd.	KMS020B-GL140sE- KMS020B-2.0m	49334-01-01	2024/02/14	12
DFS	246244	Coaxial Cable	Hayashi-Repic co., Ltd.	SMS13-13A26-SMS13- 1.0m	49883-01-01	2024/03/15	12
DFS	246245	Coaxial Cable	Hayashi-Repic co., Ltd.	SMS13-13A26-SMS13- 1.0m	49883-01-02	2024/03/15	12
DFS	246246	Coaxial Cable	Hayashi-Repic co., Ltd.	SMS13-13A26-SMS13- 1.0m	49883-01-03	2024/03/15	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

DFS: Dynamic Frequency Selection