Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Cetecom USA Certificate No: D835V2-4d113_Apr16 | Object | D835V2 - SN: 40 | d113 | | |--|---|--|---| | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | edure for dipole validation kits abo | ove 700 MHz | | Calibration date: | April 14, 2016 | | | | | | rional standards, which realize the physical un
probability are given on the following pages ar | | | All calibrations have been conduc | cted in the closed laborato | bry facility: environment temperature (22 ± 3)°(| C and humidity < 70%. | | Calibration Equipment used (\$40° | TE critical for calibration) | | | | Januranon Equipment used (M& | , | | | | | ID # | Cal Date (Certificate No.) | Scheduled Calibration | | rimary Standards | | Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) | Scheduled Calibration
Apr-17 | | rimary Standards | ID# | | | | rimary Standards
ower meter NRP
ower sensor NRP-Z91
ower sensor NRP-Z91 | ID #
SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288) | Apr-17
Apr-17 | | rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289) | Apr-17
Apr-17
Apr-17 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289)
05-Apr-16 (No. 217-02292)
05-Apr-16 (No. 217-02295)
31-Dec-15 (No. EX3-7349_Dec15) | Apr-17
Apr-17
Apr-17
Apr-17 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289)
05-Apr-16 (No. 217-02292)
05-Apr-16 (No. 217-02295) | Apr-17
Apr-17
Apr-17
Apr-17
Apr-17 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289)
05-Apr-16 (No. 217-02292)
05-Apr-16 (No. 217-02295)
31-Dec-15 (No. EX3-7349_Dec15) | Apr-17
Apr-17
Apr-17
Apr-17
Apr-17
Dec-16 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) | Apr-17
Apr-17
Apr-17
Apr-17
Apr-17
Dec-16
Dec-16 | | ower sensor NRP-Z91 ower sensor NRP-Z91 oference 20 dB Attenuator ope-N mismatch combination oference Probe EX3DV4 AE4 ocondary Standards ower meter EPM-442A ower sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check | | ower meter NRP-Z91 ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 oference 20 dB Attenuator ope-N mismatch combination oference Probe EX3DV4 AE4 condary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A ower sensor HP 8481A ower sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 oference 20 dB Attenuator r/pe-N mismatch combination oference Probe EX3DV4 AE4 ocondary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A ower sensor HP 8481A ower sensor HR 8481A ower sensor HR 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 | | rrimary Standards Power meter NRP Power sensor NRP-Z91 Ower sensor NRP-Z91 Deference 20 dB Attenuator ypp-N mismatch combination Deference Probe
EX3DV4 DAE4 Decondary Standards Ower meter EPM-442A Ower sensor HP 8481A Ower sensor HP 8481A Figenerator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 | | rrimary Standards Power meter NRP Power sensor NRP-Z91 NRP- | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 | Certificate No: D835V2-4d113_Apr16 Page 1 of 8 Page 2 of 36 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 3 of 36 #### **Measurement Conditions** | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.7 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.26 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.05 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.4 ± 6 % | 1.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.45 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.62 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.28 W/kg ± 16.5 % (k=2) | Page 4 of 36 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7 Ω - 3.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.1 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.1 Ω - 5.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.1 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.393 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|--------------|--| | Manufactured on | May 26, 2010 | | Certificate No: D835V2-4d113_Apr16 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 14.04.2016 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d113 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.83, 9.83, 9.83); Calibrated: 31.12.2015; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.30 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kgMaximum value of SAR (measured) = 3.16 W/kg 0 dB = 3.16 W/kg = 5.00 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 14.04.2016 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d113 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\varepsilon_r = 54.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 31.12.2015; -
Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.55 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 3.22 W/kg 0 dB = 3.22 W/kg = 5.08 dBW/kg # Impedance Measurement Plot for Body TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Cetecom USA Certificate No: D1900V2-5d135 Apr16 | | CERTIFICATI | | | |--|--|---|--| | Dbject | D1900V2 - SN: 5 | 5d135 | | | Calibration procedure(s) | QA CAL-05.v9 | | | | | Calibration proce | edure for dipole validation kits abo | ove 700 MHz | | | | | | | | | | | | Calibration date: | April 25, 2016 | | | | | | probability are given on the following pages are ry facility: environment temperature $(22 \pm 3)^{\circ}$ | | | alibration Equipment used (M& | TE critical for calibration) | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | ower sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | wer sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | eference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | pe-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | eference Probe EX3DV4 | SN: 7349 | 31-Dec-15 (No. EX3-7349_Dec15) | Dec-16 | | | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec 40 | | AE4 | | | Dec-16 | | | ID# | Check Date (in house) | Scheduled Check | | econdary Standards ower meter EPM-442A | 1 | 200-0-0-0-1-0-1-1-1-1-1-1-1-1-1-1-1-1-1- | Scheduled Check | | econdary Standards
ower meter EPM-442A
ower sensor HP 8481A | ID #
SN: GB37480704
SN: US37292783 | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) | Scheduled Check
In house check: Oct-16 | | econdary Standards
ower meter EPM-442A
ower sensor HP 8481A
ower sensor HP 8481A | ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) | Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 | | econdary Standards
ower meter EPM-442A
ower sensor HP 8481A
ower sensor HP 8481A
F generator R&S SMT-06 | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) | Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 | | econdary Standards
ower meter EPM-442A
ower sensor HP 8481A
ower sensor HP 8481A
F generator R&S SMT-06 | ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) | Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 | | econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) | Scheduled Check In house check: Oct-16 | | econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) | Scheduled Check In house check: Oct-16 | | econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) | Scheduled Check In house check: Oct-16 | | econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) | Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 Signature | | econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E alibrated by: | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Michael Weber | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function Laboratory Technician | Scheduled Check In house check: Oct-1(Signature | Certificate No: D1900V2-5d135_Apr16 Page 1 of 8 Page 10 of 36 Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d135_Apr16 Page 2 of 8 FCC ID: 2AEAJ-66801791 Page 11 of 36 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------
--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.0 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.90 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.8 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.60 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 38.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d135_Apr16 SAR_SMITH-001-14001-FCC Appendix C IC Cert. No.: 20634-66801791 FCC ID: 2AEAJ-66801791 Page 12 of 36 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $52.8 \Omega + 9.9 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 20.0 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $48.2 \Omega + 9.7 jΩ$ | | |--------------------------------------|------------------------|--| | Return Loss | - 20.0 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.203 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|----------------|--| | Manufactured on | April 14, 2010 | | Certificate No: D1900V2-5d135_Apr16 # **DASY5 Validation Report for Head TSL** Date: 25.04.2016 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d135 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.12.2015; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.8 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.29 W/kg; SAR(10 g) = 4.9 W/kgMaximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 25.04.2016 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d135 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.49 S/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 31.12.2015; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.9 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.6 W/kg: SAR(10 g) = 5.09 W/kg SAR(1 g) = 9.6 W/kg; SAR(10 g) = 5.09 W/kgMaximum value of SAR (measured) = 14.5 W/kg 0 dB = 14.5 W/kg = 11.61 dBW/kg # Impedance Measurement Plot for Body TSL Certificate No: D1900V2-5d135_Apr16 Page 8 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S C | CALIBRATION C | ERTIFICATE | | lo: D835V2-4d155_Jun13 | |-----------------------------|-----------------------------------|--|------------------------| | | | | | | Object | D835V2 - SN: 40 | 1155 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | edure for dipole validation kits ab | ove 700 MHz | | Calibration date: | June 06, 2013 | | | | | sted in the closed laborato | robability are given on the following pages a
ry facility: environment temperature (22 ± 3) | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Opt-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (In house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-08 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (In house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Lelf Klysner | Laboratory Technician | A Malle | | | | | def the | | | | | | | Approved by: | Katja Pokovic | Technical Manager | ECKS- | Certificate No: D835V2-4d155_Jun13 Page 1 of 8 Page 18 of 36 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,v,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)*, February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking
of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d155_Jun13 ## Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.6 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 0.94 mha/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.54 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1,59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.17 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.55 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.60 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.27 W/kg ± 16.5 % (k=2) | Page 20 of 36 ## Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.2 Ω - 2.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.6 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.8 Ω - 4.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.8 dB | | # General Antenna Parameters and Design | E. C. | (1.010) | |---|----------| | Electrical Delay (one direction) | 1.433 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 28, 2012 | FCC ID: 2AEAJ-66801791 IC Cert. No.: 20634-66801791 #### DASY5 Validation Report for Head TSL Date: 06.06.2013 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d155 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94 \text{ S/m}$; $\epsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.245 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.78 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 2.91 W/kg 0 dB = 2.91 W/kg = 4.64 dBW/kg #### DASY5 Validation Report for Body TSL Date: 05.06.2013 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d155 Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 25.04.2013 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.423 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.62 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 2.85 W/kg 0 dB = 2.85 W/kg = 4.55 dBW/kg # Impedance Measurement Plot for Body TSL Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com # IMPORTANT NOTICE #### **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering TN_BR040315AD DAE4.doc 11.12.2009 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland lac MR S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited
by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Cetecom USA Certificate No: DAE4-1233_Mar14 Accreditation No.: SCS 108 | 10 | CAL | IBRA | TION | CERT | TIFIC. | ATE | |----|-----|------|------|------|--------|-----| |----|-----|------|------|------|--------|-----| Object DAE4 - SD 000 D04 BM - SN: 1233 Calibration procedure(s) QA CAL-06.v26 Calibration procedure for the data acquisition electronics (DAE) Calibration date: March 17, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Call Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|-----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 01-Oct-13 (No:13976) | Oct-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 07-Jan-14 (in house check) | In house check: Jan-15 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 07-Jan-14 (in house check) | In house check: Jan-15 | Calibrated by: Name Eric Hainfeld Function Technician Signatur Approved by: Fin Bomholt Deputy Technical Manager Issued: March 17, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: DAE4-1233_Mar14 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. FCC ID: 2AEAJ-66801791 IC Cert. No.: 20634-66801791 SAR_SMITH-001-14001-FCC Appendix C Page 28 of 36 # DC Voltage Measurement A/D - Converter Resolution nominal $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1}\mu\mbox{V} \,, & \mbox{full range} = & \mbox{-100...+300 mV} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \,, & \mbox{full range} = & \mbox{-1.....+3mV} \\ \mbox{DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec} \end{array}$ | Calibration Factors | x | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.917 ± 0.02% (k=2) | 405.640 ± 0.02% (k=2) | 406.020 ± 0.02% (k=2) | | Low Range | 3.98643 ± 1.50% (k=2) | 4.00590 ± 1.50% (k=2) | 4.02375 ± 1.50% (k=2) | # Connector Angle | Connector Angle to be used in DASY system | 302.0 ° ± 1 ° | |---|---------------| Page 3 of 5 Certificate No: DAE4-1233_Mar14 ## Appendix | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200032.07 | -1.42 | -0.00 | | Channel X + Input | 20002.94 | -0.69 | -0.00 | | Channel X - Input | -20003.18 | 2.34 | -0.01 | | Channel Y + Input | 200032.48 | -0.76 | -0.00 | | Channel Y + Input | 20001.74 | -1.80 | -0.01 | | Channel Y - Input | -20004.41 | 1.24 | -0.01 | | Channel Z + Input | 200032.53 | -0.98 | -0.00 | | Channel Z + Input | 20002.61 | -0.89 | -0.00 | | Channel Z - Input | -20004.60 | 1,10 | -0.01 | | Low Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.14 | -0.13 | -0.01 | | Channel X + Input | 201.63 | 1.56 | 0.78 | | Channel X - Input | -198.75 | 0.96 | -0.48 | | Channel Y + Input | 2000.05 | 0.04 | 0.00 | | Channel Y + Input | 199.94 | -0.05 | -0.02 | | Channel Y - Input | -200.20 | -0.40 | 0.20 | | Channel Z + Input | 1999.65 | -0.27 | -0.01 | | Channel Z + Input | 199.46 | -0.55 | -0.27 | | Channel Z - Input | -200.79 | -0.93 | 0.46 | | | | | | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 11.99 | 10.42 | | | - 200 | -9.24 | -10.45 | | Channel Y | 200 | 11.18 | 10.75 | | | - 200 | -11.99 | -12.36 | | Channel Z | 200 | 15.43 | 14.98 | | | - 200 | -18.39 | -18.16 | 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | C64-1011- | Input Voltage (mV) | Channel X (µV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | -0.20 | -4.06 | | Channel Y | 200 | 6.84 | | 0.36 | | Channel Z | 200 | 9.37 | 4.74 | 2 | Certificate No: DAE4-1233_Mar14 Page 4 of 5 **CETECOM™** Page 30 of 36 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15737 | 16019 | | Channel Y | 15930 | 16238 | | Channel Z | 16001 | 16120 | ## 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec input 10MC | nput rowsz | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |------------|--------------|------------------|------------------|---------------------| | Channel X | -0.41 | -2.04 | 1.61 | 0.75 | | Channel Y | 0.74 | -0.73 | 2.73 | 0.62 | | Channel Z | -0.95 | -2.71 | 0.58 | 0.59 | ## 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com 1265 # **IMPORTANT NOTICE** #### **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop
failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering TN_BR040315AD DAE4.doc FCC ID: 2AEAJ-66801791 IC Cert. No.: 20634-66801791 SAR_SMITH-001-14001-FCC Appendix C S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Cetecom USA Certificate No: DAE4-1265_May16 Accreditation No.: SCS 0108 # CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1265 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 11, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | |-------------------------------|--------------------|----------------------------|------------------------|--| | Keithley Multimeter Type 2001 | SN: 0810278 | 09-Sep-15 (No:17153) | Sep-16 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 05-Jan-16 (in house check) | In house check: Jan-17 | | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 05-Jan-16 (in house check) | In house check: Jan-17 | | Name Function Signature Calibrated by: Dominique Steffen Technician : V. B. Lum Approved by: Fin Bomholt Deputy Technical Manager Issued: May 11, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1265_May16 Page 1 of 5 FCC ID: 2AEAJ-66801791 IC Cert. No.: 20634-66801791 Page 33 of 36 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Page 34 of 36 FCC ID: 2AEAJ-66801791 IC Cert. No.: 20634-66801791 SAR_SMITH-001-14001-FCC Appendix C **DC Voltage Measurement** A/D - Converter Resolution nominal | Calibration Factors | х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.895 ± 0.02% (k=2) | 404.913 ± 0.02% (k=2) | 404.189 ± 0.02% (k=2) | | Low Range | 4.00300 ± 1.50% (k=2) | 3.99777 ± 1.50% (k=2) | 3.99268 ± 1.50% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 186.5 ° ± 1 ° | |---|---------------| |---|---------------| Certificate No: DAE4-1265_May16 Page 3 of 5 # Appendix (Additional assessments outside the scope of SCS0108) # 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199996.57 | 2.25 | 0.00 | | Channel X + Input | 20001.53 | 0.14 | 0.00 | | Channel X - Input | -19998.65 | 1.83 | -0.01 | | Channel Y + Input | 199999.96 | 5.88 | 0.00 | | Channel Y + Input | 19998.73 | -2.57 | -0.01 | | Channel Y - Input | -20000.63 | -0.18 | 0.00 | | Channel Z + Input | 199996.32 | 1.58 | 0.00 | | Channel Z + Input | 19998.73 | -2.58 | -0.01 | | Channel Z - Input | -20002.02 | -1.50 | 0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.76 | 0.48 | 0.02 | | Channel X + Input | 202.56 | 0.86 | 0.43 | | Channel X - Input | -196.82 | 1.38 | -0.70 | | Channel Y + Input | 2000.80 | -0.29 | -0.01 | | Channel Y + Input | 200.62 | -0.92 | -0.46 | | Channel Y - Input | -198.82 | -0.51 | 0.26 | | Channel Z + Input | 2000.63 | -0.50 | -0.02 | | Channel Z + Input | 201.07 | -0.54 | -0.27 | | Channel Z - Input | -199.54 | -1.24 | 0.63 | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 13.25 | 11.04 | | | - 200 | -10.12 | -11.61 | | Channel Y | 200 | 5.42 | 5.34 | | | - 200 | -7.31 | -7.71 | | Channel Z | 200 | -5.72 | -5.60 | | | - 200 | 4.97 | 4.71 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.22 | -3.61 | | Channel Y | 200 | 7.54 | - | 2.57 | | Channel Z | 200 | 10.32 | 4.88 | - | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16042 | 15738 | | Channel Y | 16342 | 15898 | | Channel Z | 15927 | 15633 | # 5. Input Offset Measurement DÅSY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 1.48 | -0.22 | 3.38 | 0.67 | | Channel Y | 0.25 | -1.44 | 2.14 | 0.67 | | Channel Z | 0.55 | -1.31 | 1.91 | 0.65 | ## 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------
---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-1265_May16