

1. No spurious emission were detected above 3 GHz.

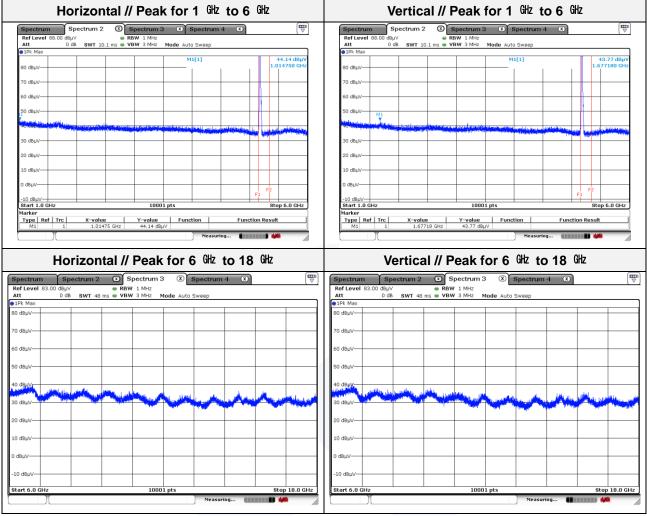
2. Average test would be performed if the peak result were greater than the average limit.

802.11ac_VH	T20 (MCS0)
-------------	------------

Distance of measurement:	3 meter
Channel:	36

- Spurious

Mode:


Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ W/m)	Limit (dBµV/m)	Margin (dB)
1 014.75	44.14	Peak	Н	-9.61	-	34.53	74.00	39.47
1 677.18	43.77	Peak	V	-4.97	-	38.80	74.00	35.20

Band edge

Bulla								
Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	СF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4 725.03	43.10	Peak	V	5.62	-	48.72	74.00	25.28
4 759.27	43.87	Peak	Н	5.84	-	49.71	74.00	24.29

Res	Restricted band // Vertical // Peak												
Ref Level 97.00 dBµ\		Spectrum 3 BW 1 MHz BW 3 MHz Ma	X Spectru ade Sweep	m 4 🛛 🕈	43.87 dBµV	Spectrum Ref Level 97 Att 91Pk Max	.00 dBµV		Spectrum 3 BW 1 MHz /BW 3 MHz M	X Spectr Node Sweep M1[1]	rum 4 🛛 🔊		.10 dBµ
90 d6µV		M3			4.7592710 CH4	90 dBµV 80 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV			M1			4.723	50320 GH
Start 4.4 GHz Marker Type Ref Trc	X-value	10001 pl	Function	Function R	Stop 5.18 GHz	Start 4.4 GH Marker Type Ref	Trc	X-value	10001 Y-value	Function	- Fun	Stop ction Result	5.18 GHz
M1 1	4.759271 GHz	43.87 dBµV	Meas	suring		M1	1	4.725032 GHz	43.10 dBµV		asuring 🚺)

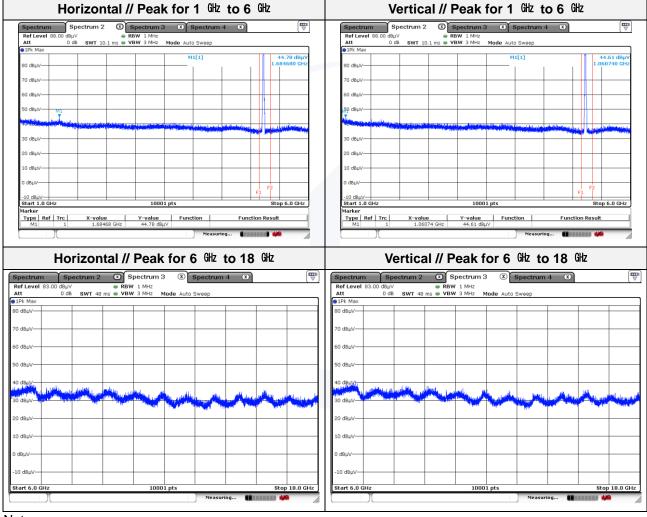
Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:

802.11ac_VHT20 (MCS0)


Distance of measurement:

Channel:

3 meter 44

- Spurious

- Opuno	40							
Frequency (胚)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ W/m)	Limit (dBµN/m)	Margin (dB)
1 060.74	44.61	Peak	V	-9.32	-	35.29	74.00	38.71
1 684.68	44.78	Peak	Н	-4.90	-	39.88	74.00	34.12

Note.

1. No spurious emission were detected above 3 ${\rm Ghz}$.

2. Average test would be performed if the peak result were greater than the average limit.

KES-QP16-F01(00-23-01-01)

The authenticity of this test report can be found on the verification page of our website (www.kes.co.kr).

802.11ac_VHT20 (MC	S0)
--------------------	-----

Distance of measurement:

Channel: 48

3 meter 48

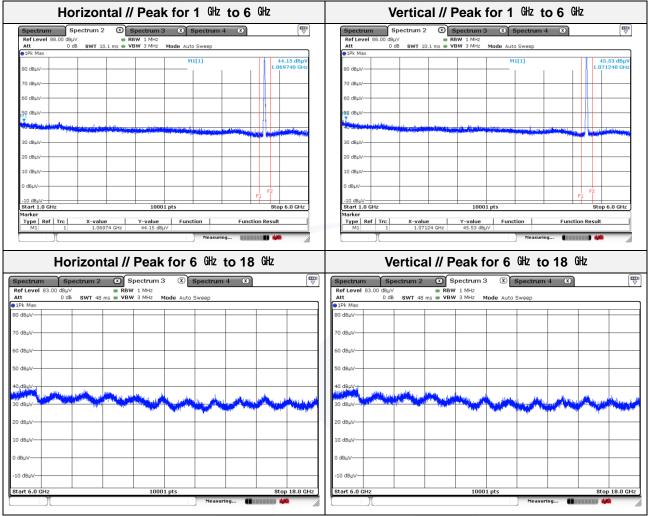
Spurious

Mode:

_

Frequency (肔)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ W/m)	Limit (dBµN/m)	Margin (dB)
1 069.74	44.15	Peak	Н	-9.27	-	34.88	74.00	39.12
1 071.24	45.53	Peak	V	-9.26	-	36.27	74.00	37.73

Band edge


Frequency (肔)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _# N/m)	Limit (dBµN/m)	Margin (dB)
5 359.52	40.74	Peak	V	7.50	-	48.24	74.00	25.76
5 359.70	41.05	Peak	Н	7.50	-	48.55	74.00	25.45

F	Restrict	ed band //	Horizontal	// Peak		F	Restric	ted band	l // Vert	ical // P	eak	
Spectrum Ref Level 93.0		 RBW 1 MHz 		(X)	Ref Leve	93.00 dB		Spectrun RBW 1 MH;		ectrum 4 🛛 🗵)	
Att	5 dB SWT 10	.1 ms 👄 VBW 3 MHz	Mode Sweep		Att	5	dB SWT 10.	1 ms 👄 VBW 3 MH;	Mode Sweep			
 1Pk Max 			M1[1]	41.05 dBµ	1Pk Max	_			M1[-1		40.74 dBµV
90 dBµV			milil	5.3596950 GH					mit.	1		40.74 UBμ¥ 595150 GHz
80 dBµV					80 dBµV—				_			
70 dBµV					70 dBµV—							
60 dBµV					- 60 dBµV-				_			
50 dBµV					50 dBµV-							
40 dBitV	M1			-	40 dBuVct		M1	alati ya kina kina ya kina kata ya ya kuna				
					The state of the s			a provide second s	and the second s		and the state of the	and the ball of the second
30 dBµV					-V-V-							
20 dBµV					20 dBµV—							
10 dBµV					10 dBµV—							
0 dBuV				F2	0 dBuV-						2	
0 0000	F1				0 06µv	F1						
Start 5.32 GHz		1000	11 pts	Stop 5.5 GHz		2 GHz		10	001 pts		St	op 5.5 GHz
Marker Type Ref Tr M1	1 5.3596		Function µV	Function Result	Marker Type R M1	ef Trc	X-value 5.35951			in F	unction Resul	t
			Measuring							Measuring		

KES-QP16-F01(00-23-01-01)

The authenticity of this test report can be found on the verification page of our website (www.kes.co.kr).

1. No spurious emission were detected above 3 GHz.

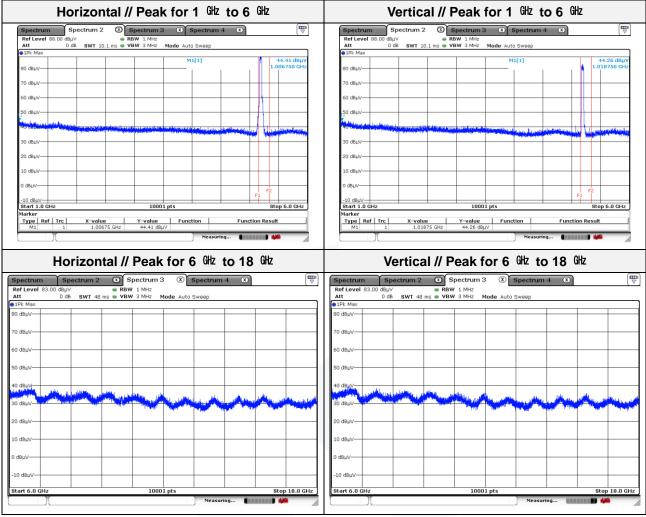
2. Average test would be performed if the peak result were greater than the average limit.

802.11n_HT40	(MCS0)
--------------	--------

Distance of measurement:	3 meter
Channel:	38

- Spurious

Mode:


Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 006.75	44.41	Peak	Н	-9.66	-	34.75	74.00	39.25
1 018.75	44.26	Peak	V	-9.59	-	34.67	74.00	39.33

Band edge

Bulla								
Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	СF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4 750.05	43.18	Peak	V	5.78	-	48.96	74.00	25.04
4 775.49	43.43	Peak	Н	5.95	-	49.38	74.00	24.62

F	Restricted band // Horizontal // Peak							Restricted band // Vertical // Peak						
Spectrum Ref Level 97.0		Spectrum 3	Spectru	n 4 🛛 🗴		Spectrum Ref Level 9		_	Spectrum 3 RBW 1 MHz	(X) Spectr	um 4 🛛 🗴			
Att 1Pk Max	10 dB SWT 10.1 m	s 👄 VBW 3 MHz M	lode Sweep			Att	10 d	B SWT 10.1 ms 🕯	VBW 3 MHz M	lode Sweep				
90 dBµV 80 dBµV 70 dBµV 60 dBµV 50 dBµV 10 dBµV 20 dBµV 10 dBµV 10 dBµV		Mi ika ca ba sure a	M1[1]		43,43 dBpV 4,7254890 GHz 4,7254890 GHz	90 dBµV 90 dBµV 90 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 20 dBµV 10 dBµV			MI alter et Dute au			4.75	53.18 dBµ 00530 GH	
0 dBµV F1 Start 4.4 GHz Marker Type Ref Tr		10001 j	Function	Function	F2 Stop 5.19 GHz Result	0 dBµV Start 4.4 GH Marker Type Ref		X-value	10001 j	Function	Fund	Stop ction Result	F2 5.19 GHz	
M1	1 4.775489 0	Hz 43.43 dBμV		uring		M1		4.750053 GHz	43.18 dBµV		asuring 🚺			

Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

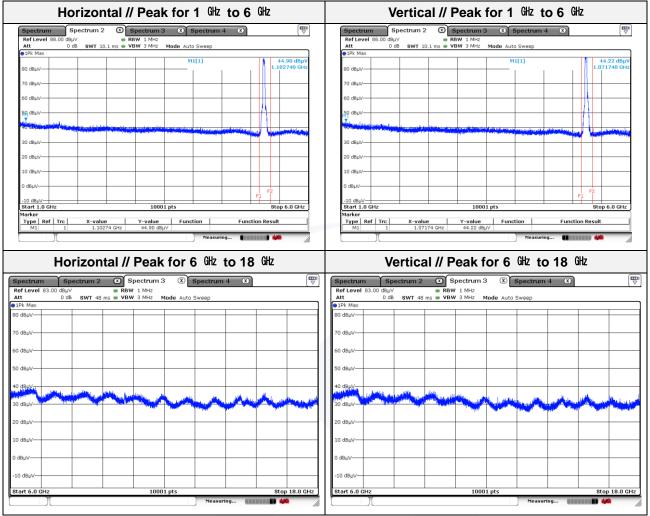
Mode:

802.11n_HT40 (MCS0)

Distance of measurement: Channel:

3 meter 46

Spurious


Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _# N/m)	Limit (dBµN/m)	Margin (dB)
1 071.74	44.22	Peak	V	-9.25	-	34.97	74.00	39.03
1 102.74	44.90	Peak	Н	-9.06	-	35.84	74.00	38.16

Band edge

Frequency (ᡅ)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 350.05	45.19	Peak	н	7.49	-	52.68	74.00	21.32
5 350.25	43.81	Peak	V	7.49	-	51.30	74.00	22.70

Restricted band // Horizontal // Peak	Restricted band // Vertical // Peak
Spectrum Spectrum 3 Spectrum 4 (mm) Ref Level 93.00 dBµ/ ● RBW 1 MHz Att 5 d8 SWT 10.1 ms • VBW 3 MHz Mode Sweep	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 (III) Ref Level 93.00 dBµ/ ● RBW 1 MHz ● RBW 1 MBz ● RBW 1 MBz ● RBW 1 MBz ● RBW
	IPIK Max 43.81 dBµV 90 dBµV M1[1] 6.3502460 GHz 80 dBµV 60 dBµV 50 dBµV M1 40 dBµV 90 dBµV
20 dBµV 10 dBµV 0 dBµV 0 dBµV F1 Start 5.32 GHz Start 5.32 GHz Markar Type Ref Trc X-value Y-value Function Function Result 1 S.350048 GHz 45.19 dBµV Measuring ■	20 dBµV 10 dBµV 0 dBµV F1 Btart 5.32 GHz Stop 5.5 GHz Marker Type Kef Trc Marker Type Kef Trc Marker Type Kef Trc Marker

1. No spurious emission were detected above 3 GHz.

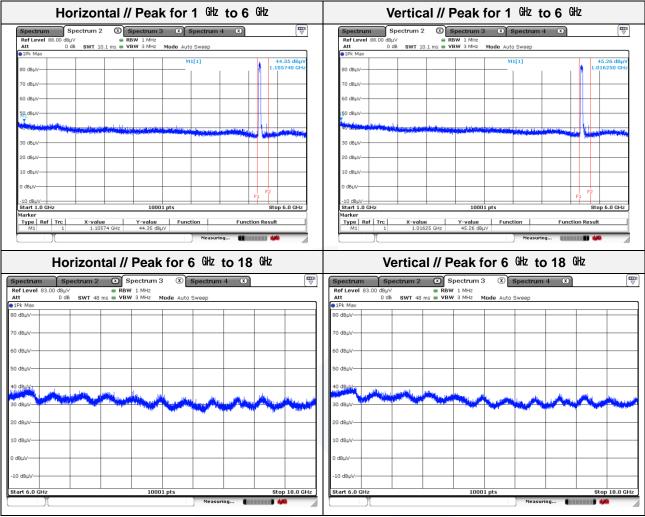
2. Average test would be performed if the peak result were greater than the average limit.

802.11ac_VHT40	(MCS0)
----------------	--------

Distance of measurement:	3 meter
Channel:	38

- Spurious

Mode:


Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _# V/m)	Limit (dBµN/m)	Margin (dB)
1 016.25	45.26	Peak	V	-9.60	-	35.66	74.00	38.34
1 105.74	44.35	Peak	Н	-9.04	-	35.31	74.00	38.69

Band edge

Bulla								
Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	СF (dB)	DCF (dB)	Field strength (dB _# V/m)	Limit (dBµN/m)	Margin (dB)
4 654.71	43.32	Peak	V	5.17	-	48.49	74.00	25.51
4 737.73	43.15	Peak	Н	5.70	-	48.85	74.00	25.15

F	Restricted b	band // H	lorizon	al // Peak	ζ		R	estricted	band //	Vertica	al // Pe	ak	
Spectrum Ref Level 97.00 Att 1Pk Max		Spectrum 3 RBW 1 MHz VBW 3 MHz Me	X Spectru ade Sweep M1[1]	m 4 🛞	(₩) 43.15 dBµV	Spectrum Ref Level S Att PIPk Max	7.00 dBµ		Spectrum 3 RBW 1 MHz VBW 3 MHz M	Spectrode Sweep	rum 4 🛞		₩ 43.32 dBμ
90 dBµV 80 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 30 dBµV 20 dBµV		MA MA				90 dBµV		M1 W1 kr					47100 GH
10 dBµV F1 Start 4.4 GHz Marker Type Ref Tra M1	5 X-value 1 4.737731 GHz	10001 р Y-value 43.15 dBµV	Function	Function Re uring		10 dBµV 0 dBµV Start 4.4 GF Marker Type Ref M1		X-value 4.65471 GHz	10001 ; Y-value 43.32 dBµV	Function		Stop action Result	F2 5.19 GHz

Note.

1. No spurious emission were detected above 3 GHz.

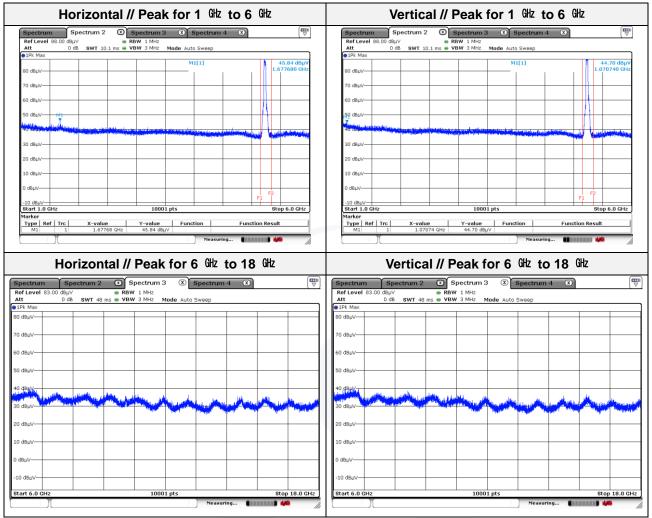
2. Average test would be performed if the peak result were greater than the average limit.

Mode:

802.11ac_VHT40 (MCS0)

Distance of measurement: Channel: 3 meter 46

Spurious


Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _# N/m)	Limit (dBµN/m)	Margin (dB)
1 070.74	44.70	Peak	V	-9.26	-	35.44	74.00	38.56
1 677.68	45.84	Peak	Н	-4.97	-	40.87	74.00	33.13

Band edge

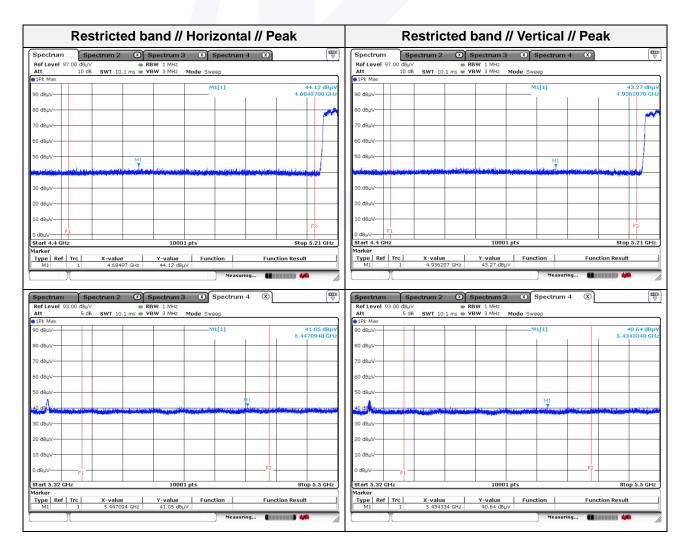
Frequency (账)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 350.01	45.33	Peak	Н	7.49	-	52.82	74.00	21.18
5 350.01	43.78	Peak	V	7.49	-	51.27	74.00	22.73

R	Restricted band // Horizontal // Peak						R	estricted	l band //	Vertica	al // Pea	ak	
Spectrum Ref Level 93.00 Att		Spectrum 3 RBW 1 MHz ms • VBW 3 MHz	-	m 4 🛞		Spectrum Ref Level	93.00 dBµ∨	SWT 10.1 ms	RBW 1 MHz	Spectr	um 4 🛞		
1Pk Max	0.00 UNI 1011		House Sweep			1Pk Max		0111 1012 1115		out sweep			
90 dBµV-			M1[1]		15.33 dBµV 00120 GHz	90 dBµV				M1[1]		43.78 5.350012	
80 dBµV						80 dBµV							
70 dBµV						70 dBµV							
50 dBµV	M					50 dBµV	M1						
40.HB	<u> </u>				i Malana da Sa	40, dB+445-4	-						
30 dBµV						30 dBµV							
20 dBµV						20 dBµV							
0 db 0/				F2		0 dBuV-					F2_		
Start 5.32 GHz	F1	10001	pts	Sto	p 5.5 GHz	Start 5.32	F1 GHz		10001 g	its		Stop 5.5	5 GHz
Marker Type Ref Tro M1	X-value	Y-value 2 GHz 45.33 dBµ	Function	Function Result		Marker Type Re M1	f Trc	X-value 5.350012 GHz	Y-value 43.78 dBμV	Function	Fun	ction Result	
			Meas	uring 🊺 🖬 🗰	111)[Me	asuring 🚺		lin

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

802.11ac_VHT80 (MCS0)

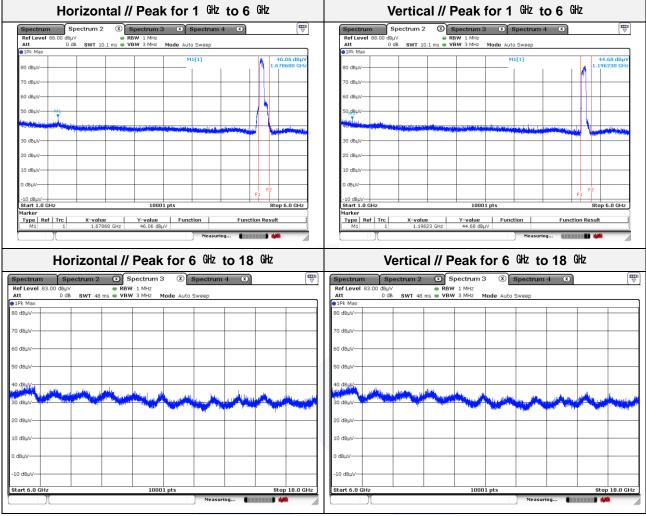

Distance of measurement:	3 meter
Channel:	42

- Spurious

Mode:

Frequency (脈)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 196.23	44.68	Peak	V	-8.47	-	36.21	74.00	37.79
1 678.68	46.06	Peak	Н	-4.96	-	41.10	74.00	32.90

- Band e	dge							
Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	СF (dB)	DCF (dB)	Field strength (dB _# V/m)	Limit (dBµV/m)	Margin (dB)
4 684.97	44.12	Peak	Н	5.37	-	49.49	74.00	24.51
4 936.21	43.27	Peak	V	7.02	-	50.29	74.00	23.71
5 434.33	40.64	Peak	V	7.51	-	48.15	74.00	25.85
5 447.09	41.05	Peak	Н	7.50	-	48.55	74.00	25.45



KES-QP16-F01(00-23-01-01)

KES Co., Ltd.

The authenticity of this test report can be found on the verification page of our website (www.kes.co.kr).

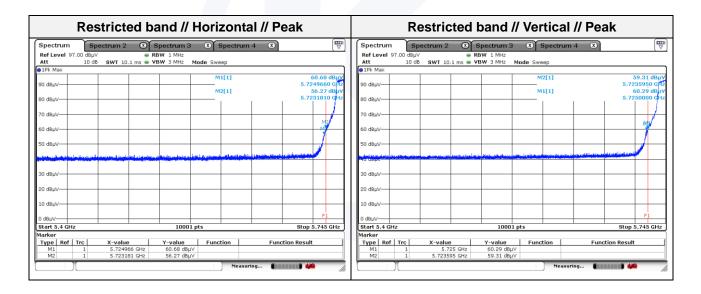
Note.

1. No spurious emission were detected above 3 GHz.

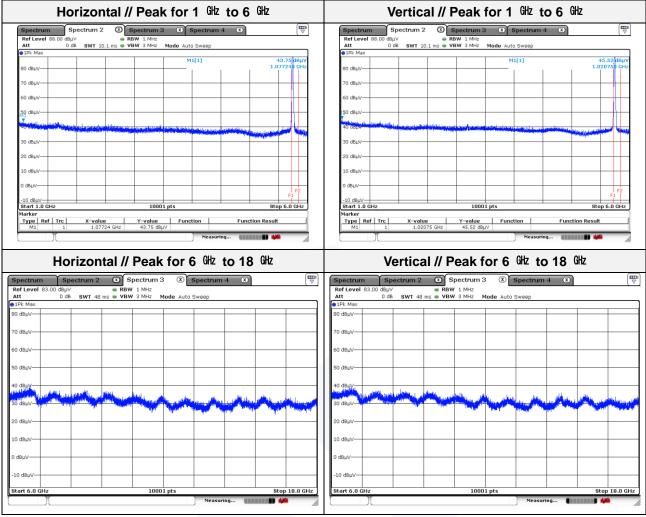
2. Average test would be performed if the peak result were greater than the average limit.

Mode:

802.11a (6 Mbps)


Distance of measurement: Channel:

t:	3 meter
	149


Spurious

Frequency (脈)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _# N/m)	Limit (dBµN/m)	Margin (dB)
1 020.75	45.52	Peak	V	-9.57	-	35.95	74.00	38.05
1 077.24	43.75	Peak	Н	-9.22	-	34.53	74.00	39.47

- Band e	edge							
Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	СF (dB)	DCF (dB)	Field strength (dB _# V/m)	Limit (dBµN/m)	Margin (dB)
5 723.18	56.27	Peak	Н	8.58	-	64.85	118.08	53.23
5 723.60	59.31	Peak	V	8.58	-	67.89	119.04	51.15
5 724.97	60.68	Peak	Н	8.59	-	69.27	122.16	52.89
5 725.00	60.29	Peak	V	8.59	-	68.88	122.23	53.35

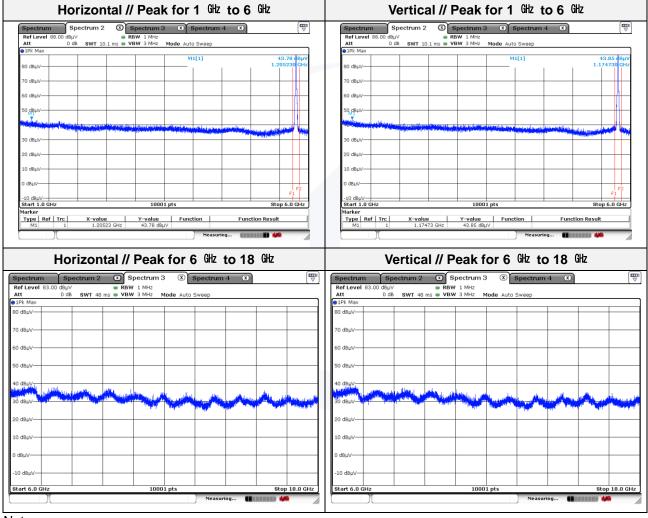
Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:

802.11a (6 Mbps)


Distance of measurement:

Channel:

3 meter 157

Spurious

opuno	40							
Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ W/m)	Limit (dBµN/m)	Margin (dB)
1 174.73	43.85	Peak	V	-8.60	-	35.25	74.00	38.75
1 205.23	43.78	Peak	Н	-8.41	-	35.37	74.00	38.63

Note.

1. No spurious emission were detected above 3 ${\rm Ghz}$.

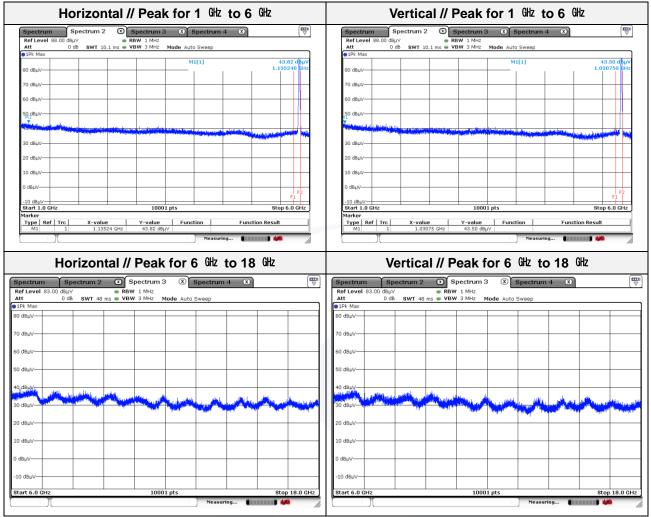
2. Average test would be performed if the peak result were greater than the average limit.

KES-QP16-F01(00-23-01-01)

The authenticity of this test report can be found on the verification page of our website (www.kes.co.kr).

Mode:	802.11a (6 Mbps)
Distance of measurement:	3 meter
Channel:	165

Spurious


opuno	40							
Frequency (ᡅ)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ W/m)	Limit (dBµV/m)	Margin (dB)
1 030.75	43.50	Peak	V	-9.51	-	33.99	74.00	40.01
1 135.24	43.82	Peak	Н	-8.85	-	34.97	74.00	39.03

Band edge

Bulla	/ugo							
Frequency (胐)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ W/m)	Limit (dBµN/m)	Margin (dB)
5 850.02	45.03	Peak	Н	9.24	-	54.27	122.18	67.91
5 850.14	43.64	Peak	V	9.24	-	52.88	121.91	69.03

Restricte	d band // Horizontal /	/ Peak	Restricted band // Vertical // Peak
Spectrum Spectrum 2 Ref Level 93.00 dBµV	RBW 1 MHz	(𝔅) (𝔅)	Ref Level 93.00 dBµV
	ms 🖶 VBW 3 MHz 🛛 Mode Sweep		Att 5 dB SWT 10.1 ms VBW 3 MHz Mode Sweep
●1Pk Max			e 1Pk Max
90 BBHV	M1[1]	45.03 dBµV 5.8500170 GHz	
80 dBuV			80 dBuV
70 dBp			70 dBuv
60 dBµV			60 dBµV
50 dBuV			50 dBuV
So dopv			
40 dBµV	ومعامر المتحديل ويروا والخاصية والخاصية وتحجوا أخلاها ومرد والخطاعة الخا	and the state of the	40 dBµV - Malus by balanced as and intelling by a setting of the balance of the b
		and the second second second second second second	
30 dBµV			30 dBµV
20 dBµV			20 dBµV
10 dBuV			10 dBuV
0 dBµV-F1			0 dBµV
Start 5.825 GHz	10001 =1=	Stop 6.0 GHz	Start 5.825 GHz 10001 pts Stop 6.0 GHz
Start 5.825 GHz Marker	10001 pts	stop 6.0 GHz	Start 5.825 GHz 10001 pts Stop 6.0 GHz Marker
Type Ref Trc X-value	Y-value Function	Function Result	Type Ref Trc X-value Y-value Function Function Result
M1 1 5.85001	7 GHz 45.03 dBµV		M1 1 5.85014 GHz 43.64 dBµV
	Measuring	•••••	Measuring 🚺 🚧
		111	

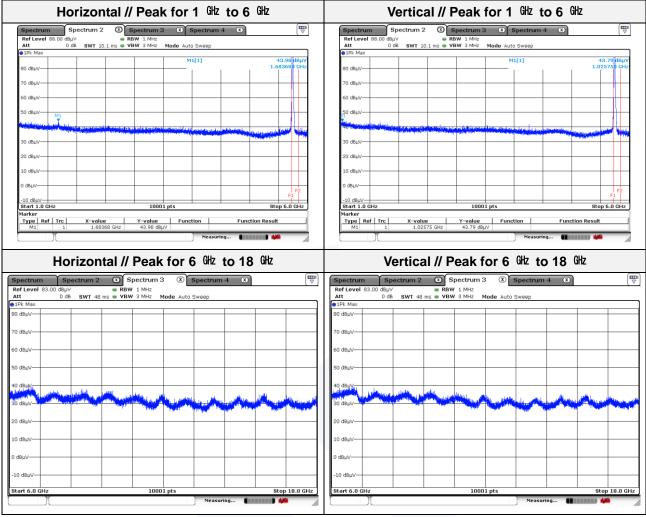
1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

802.11n_HT20 (MCS0)

Distance of measurement:	3 meter
Channel:	149

- Spurious


Mode:

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 025.75	43.79	Peak	V	-9.54	-	34.25	74.00	39.75
1 683.68	43.98	Peak	Н	-4.91	-	39.07	74.00	34.93

- Band e	edge							
Frequency (胚)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5 722.73	60.69	Peak	V	8.57	-	69.26	117.05	47.79
5 723.01	60.14	Peak	Н	8.57	-	68.71	117.69	48.98
5 724.97	61.16	Peak	V	8.59	-	69.75	122.16	52.41
5 725.00	60.04	Peak	Н	8.59	-	68.63	122.23	53.60

			Horizontal	,, i cun			estricted	Sand II			
Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	×		Spectrum	Spectrum 2 🛛 🔊	Spectrum 3	Spectrum	4 ×	
Ref Level 97.0 Att		RBW 1 MHz ms VBW 3 MHz	Mode Sweep				µV ● dB SWT 10.1 ms ● '	RBW 1 MHz VBW 3 MHz Mo	de Sweep		
1Pk Max						1Pk Max					
90 dBµV			M2[1]	5.	60.14 dBµY 7230080 GAz	90 dBµV			M2[1]		60.69 dBi 5.7227320 G
80 dBµV			M1[1]	5.	60.04 dBµ¥ 7250000 GHz	80 dBµV			M1[1]		61.16 dBµ 5.7249660 dH
70 dBµV					++/-	70 dBµV					/
60 dBµV					1992	60 dBµV					
50 dBµV						50 dBµV					
ale elegent mara de		ulus misti ja suns titus a selesa o	anne de atende atendro des tentes	Lesional local sector designed					op also del <mark>los finitestado</mark>	A ali tradição de la constante	
30 dBµV						30 dBµV					
20 dBµV						20 dBµV					
10 dBµV						10 dBµV					
0 dBµV					F1	0 dBµV					F1
Start 5.4 GHz		10001	pts	Sto	p 5.745 GHz	Start 5.4 GHz		10001 p	ts		Stop 5.745 GHz
1arker Type Ref Ti	rc X-value	Y-value	Function	Function Res		Marker Type Ref Trc	X-value	Y-value	Function	Function	Result
M1 M2	1 5.725	i GHz 60.04 dBµ	v	- anotion Res		M1 1 M2 1	5.724966 GHz 5.722732 GHz	61.16 dBµV 60.69 dBµV		. unotion	

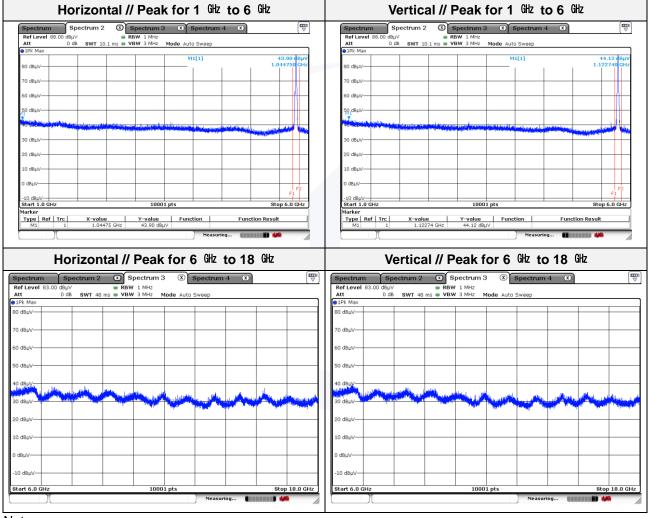
Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:

802.11n_HT20 (MCS0)


Distance of measurement:

Channel:

t: <u>3 meter</u> 157

Spurious

- Spullo	us							
Frequency (畑)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 044.75	43.90	Peak	Н	-9.42	-	34.48	74.00	39.52
1 122.74	44.12	Peak	V	-8.93	-	35.19	74.00	38.81

Note.

1. No spurious emission were detected above 3 ${\rm Ghz}$.

2. Average test would be performed if the peak result were greater than the average limit.

KES-QP16-F01(00-23-01-01)

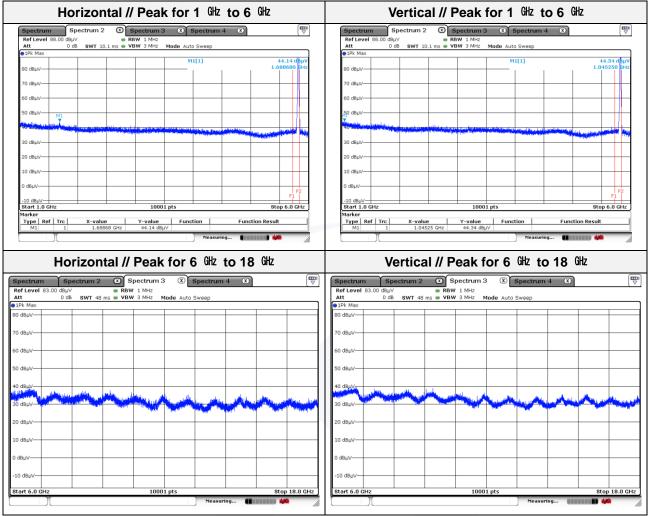
The authenticity of this test report can be found on the verification page of our website (www.kes.co.kr).

Mode:	802.11n_HT20 (MCS0)
Distance of measurement:	3 meter

Channel:

3 meter 165

Spurious


Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ W/m)	Limit (dBµN/m)	Margin (dB)
1 045.25	44.34	Peak	V	-9.42	-	34.92	74.00	39.08
1 688.68	44.14	Peak	Н	-4.86	-	39.28	74.00	34.72

Band edge

Balla								
Frequency (畑)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ N/m)	Limit (dBµN/m)	Margin (dB)
5 850.04	47.04	Peak	Н	9.24	-	56.28	122.14	65.86
5 850.07	48.88	Peak	Н	9.24	-	58.12	122.07	63.95

Restricted band // Horizontal // Peak	Restricted band // Vertical // Peak
Spectrum Spectrum Spectrum Spectrum (m) Ref Level 93.00 dBµV ● RBW 1 MHz (m) (m)	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 (Em) Ref Level 93.00 dby/ Att • RBW 1 MHz • MBW 1 MHz • MBW 3 MHz • PBW 3 MHz • Mode Sweep • PIL 1 MS • PIL 1
0 dBu// P1 Start 5.825 GHz 10001 pts Stop 6.0 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.85007 GHz 48.88 dBµ/ Measuring	D dBµV P1 Image: Constraint of the constraint

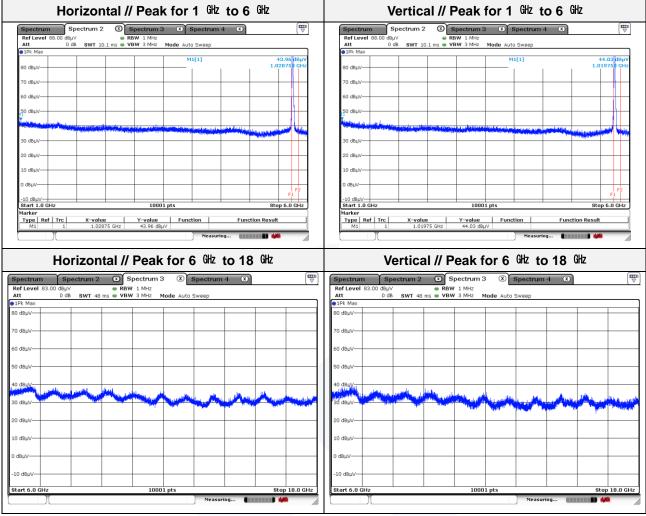
1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

802.11ac_VHT20 (MCS0)

Distance of measurement:	3 meter
Channel:	149

- Spurious


Mode:

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 019.75	44.03	Peak	V	-9.58	-	34.45	74.00	39.55
1 028.75	43.96	Peak	Н	-9.52	-	34.44	74.00	39.56

- Band edge									
Frequency (쌘)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ W/m)	Limit (dBµN/m)	Margin (dB)	
5 722.53	58.06	Peak	V	8.57	-	66.63	116.60	49.97	
5 722.87	60.66	Peak	Н	8.57	-	69.23	117.37	48.14	
5 725.00	61.35	Peak	V	8.59	-	69.94	122.23	52.29	
5 725.00	60.36	Peak	V	8.59	-	68.95	122.23	53.28	

Restricted band // Horizontal // Peak						Restricted band // Vertical // Peak						
Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	× ×	Spectrum	Spectrum 2	Spectrum 3	Spectrun	n 4 🛛 🗶	T V		
Ref Level 97.0 Att	0 dBµ∨ 10 dB SWT 10.1 m	■ RBW 1 MHz s ■ VBW 3 MHz N	lode Sweep		Ref Level 9 Att		● RBW 1 MHz 1.1 ms ● VBW 3 MHz	Node Sweep				
●1Pk Max					1Pk Max							
90 dBµV			M1[1] M2[1]	61.35 dBµ 5.7250000 GA 60.66 dBu				M2[1] M1[1]		58.06 dBµ 5.7225250 G 60.36 dBu		
80 dBµV				5.7228700 CH					1 1	5.7250000 CH		
70 dBµV					70 dBµV							
60 dBµV					60 dBµV					1		
50 dBµV	la monte palaret altra della	a second table descention of the	n a calification de la calificación	and the state of the	50 dBµV-	and a second	Simologitation and a state in the	non total land total at state	a the loss were live and	المحفيظة بتعتيمان		
30 dBµV					30 dBµV							
20 dBµV					20 dBµV							
10 dBµV					10 dBµV							
0 dBuV				F1	0 dBuV					F1		
Start 5.4 GHz		10001	pts	Stop 5.745 GHz	Start 5.4 GH	z	10001	pts		Stop 5.745 GHz		
Marker					Marker							
	rc X-value 1 5.725 G 1 5.72287 G			Function Result	Type Ref M1 M2	1 5.7	e Y-value 25 GHz 60.36 dBµV 25 GHz 58.06 dBµV		Functio	a Result		
			Measurin	g 🚺 🗰 🧰		1		Measu	ring 🚺			

Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.