

Shenzhen Huaxia Testing Technology Co., Ltd

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V03 Report Template Revision Date: Mar.1st, 2017

Test Report

Report No. :	CQASZ20210500027EX-02				
Applicant:	Dongguan Lingjie Electronics & Technology Co., Ltd				
Address of Applicant:	Building A(Floor 1-4) and B(Floor 1-5), No. 16 Zhenxing North Road, Taiyuan Community, Xiegang Town, Dongguan City, Guangdong Province, 523590, P.R.C				
Manufacturer:	Dongguan Lingjie Electronics & Technology Co., Ltd				
Address of Manufacturer:	Building A(Floor 1-4) and B(Floor 1-5), No. 16 Zhenxing North Road, Taiyuan Community, Xiegang Town, Dongguan City, Guangdong Province, 523590, P.R.C				
Equipment Under Test (E	EUT):				
Product:	Wireless Keyboard				
All Model No.:	K911T, K922T, K901T, K933T, K913T, K902T, K903T, K921T, K923T, K912T				
Test Model No.:	K911T				
Brand Name:	N/A				
FCC ID:	2ANBU-K911T				
Standards:	47 CFR Part 15, Subpart C Section 15.247				
Date of Test:	Apr. 23, 2021 to May 10, 2021				
Date of Issue:	May 10, 2021				
Test Result :	PASS*				
Tested By:	lewis zhou				
	(Lewis Zhou)				
Reviewed By:	Timo Lei				
	(Timo Lei)				
Approved By:	Sheek, Luc				
, , , , , , , , , , , , , , , , , , , 	(Sheek Luo)				

* In the configuration tested, the EUT complied with the standards specified above.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20210500027EX-02	Rev.01	Initial report	2020-05-10

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	N/A
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

N/A: Not Applicable

Note: When the EUT charging, BT will not work.

3 Contents

	Page
COVER PAGE	1
1 VERSION	2
2 TEST SUMMARY	
3 CONTENTS	4
4 GENERAL INFORMATION	
4.1 Client Information	5
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Test Environment	
4.4 DESCRIPTION OF SUPPORT UNITS	
4.5 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.6 Test Facility	
4.7 Abnormalities from Standard Conditions	
4.8 Equipment List	10
5 TEST RESULTS AND MEASUREMENT DATA	11
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 Conducted Peak Output Power	
5.4 20dB Occupy Bandwidth	
5.5 FREQUENCIES SEPARATION	
5.6 Hopping Channel Number	
5.7 DWELL TIME	
5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.9 Spurious RF Conducted Emissions.	
5.10 Other requirements Frequency Hopping Spread Spectrum System 5.11 Radiated Spurious Emission & Restricted bands	
5.11 Radiated Spurious Emission & Restricted Bands 5.11.1 Radiated Emission below 1GHz	
5.11.1 Radiated Emission below TGHZ 5.11.2 Transmitter Emission above 1GHz	
6 PHOTOGRAPHS - EUT TEST SETUP	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	44

4 General Information

4.1 Client Information

Applicant:	Dongguan Lingjie Electronics & Technology Co., Ltd
Address of Applicant:	Building A(Floor 1-4) and B(Floor 1-5), No. 16 Zhenxing North Road, Taiyuan Community, Xiegang Town, Dongguan City, Guangdong Province, 523590, P.R.C
Manufacturer:	Dongguan Lingjie Electronics & Technology Co., Ltd
Address of Manufacturer:	Building A(Floor 1-4) and B(Floor 1-5), No. 16 Zhenxing North Road, Taiyuan Community, Xiegang Town, Dongguan City, Guangdong Province, 523590, P.R.C

4.2 General Description of EUT

Product Name:	Wireless Keyboard
Test Model No.:	K911T
Trade Mark:	N/A
Hardware Version:	V1.0
Software Version:	V1.8
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V3.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK
Transfer Rate:	1Mbps
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Product Type:	□ Mobile
Antenna Type:	PCB antenna
Antenna Gain:	0dBi
EUT Power Supply:	battery: 3.0V(2*1.5V)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 Test Environment

Operating Environment	Operating Environment:			
Temperature:	25.0 °C			
Humidity:	53 % RH			
Atmospheric Pressure:	995mbar			
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.			

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
PC	Lenovo	ThinkPad E450C	Provide by lab	FCC ID
AC/DC Adapter	Lenovo	ADLX65NLC3A	Provide by lab	FCC SDOC

4.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8°C	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

Hereafter the best measurement capability for CQA laboratory is reported:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.6 Test Facility

Shenzhen Huaxia Testing Technology Co., Ltd,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

The test facility is recognized, certified, or accredited by the following organizations: • IC Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.7 Abnormalities from Standard Conditions

None.

4.8 Equipment List

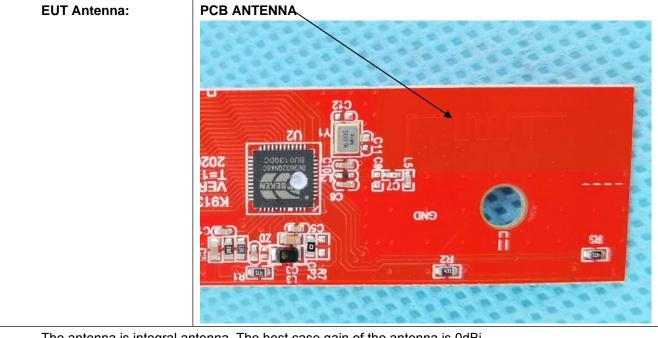
			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2020/09/22	2021/09/21
Spectrum analyzer	R&S	FSU26	CQA-038	2020/10/24	2021/10/23
Spectrum analyzer	keysight	N9020A	CQA-105	2020/10/24	2021/10/23
Preamplifier	MITEQ	AFS4-00010300-18-10P- 4	CQA-035	2020/09/22	2021/09/21
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2020/10/29	2020/10/28
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2020/10/24	2021/10/23
Bilog Antenna	R&S	HL562	CQA-011	2020/09/22	2021/09/21
Horn Antenna	R&S	HF906	CQA-012	2020/09/22	2021/09/21
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2020/09/22	2021/09/21
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2020/09/22	2021/09/21
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2020/09/22	2021/09/21
Antenna Connector	CQA	RFC-01	CQA-080	2020/09/22	2021/09/21
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2020/09/22	2021/09/21
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2020/09/22	2021/09/21
EMI Test Receiver	R&S	ESPI3	CQA-013	2020/09/22	2021/09/21
LISN	R&S	ENV216	CQA-003	2020/11/01	2021/10/30
Coaxial cable	CQA	N/A	CQA-C009	2020/09/22	2021/09/21

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement


Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

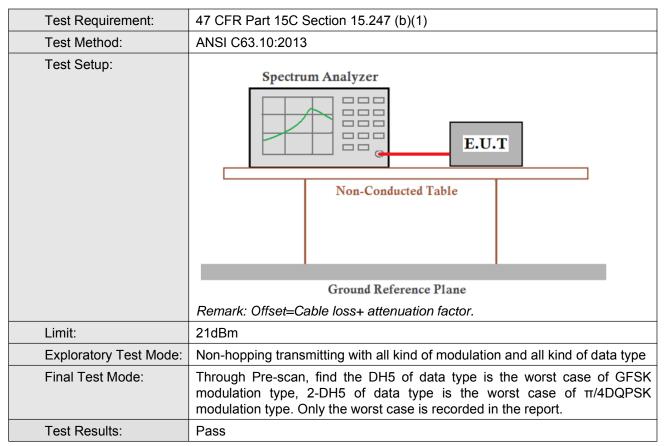
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integral antenna. The best case gain of the antenna is 0dBi.

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Limit:	Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30 60 50		50	
	* Decreases with the logarithm	n of the frequency.		
Test Procedure:	 The mains terminal disturburged in the room. The EUT was connected to Impedance Stabilization Neimpedance. The power cable connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was placed on the horizontal grading reference plane. An placed on the horizontal grading of the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated equipment and all of the implication. 	AC power source thro etwork) which provides oles of all other units of N 2, which was bonder e way as the LISN 1 for et outlet strip was used SN provided the rating and for floor-standing and ound reference plane, th a vertical ground reference plane was bonded to th 1 was placed 0.8 m fro to a ground reference and reference plane. The of the LISN 1 and the quipment was at least 0 im emission, the relativiterface cables must be	bugh a LISN 1 (Line a $350\Omega/50\mu$ H + 5Ω linear if the EUT were d to the ground or the unit being d to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. re positions of changed according to	
	AC Mains LISN1 LISN2 Ground Reference Plane			
Exploratory Test Mode:	e: Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.			
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the			

Shenzhen Huaxia Testing Technology Co., Ltd


Report No.: CQASZ20210500027EX-02

	lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Not application to this device

5.3 Conducted Peak Output Power

Measurement Data

	GFSK mod	le	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	-1.495	30.00	Pass
Middle	-1.439	30.00	Pass
Highest	-1.383	30.00	Pass

Shenzhen Huaxia Testing Technology Co., Ltd

Report No.: CQASZ20210500027EX-02

Center Freq 2.402000000 GHz PNO: Fast FGain:Low #Avg Type: Log-Pwr Avg|Hold: 100/100 Auto Tun -1 495 dF Ref 20.00 dBm Center Fred 2.40200000 GH Start Freq 2.397000000 GH Stop Free GFSK/LCH 2.407000000 GHz CF Step 1.000000 MHz Man ۹uto Freq Offse 0 H2 Scale Type Center 2.402000 GHz #Res BW 2.0 MHz Span 10.00 MHz Sweep 1.067 ms (2001 pts) Lin .og #VBW 6.0 MHz light Spec Freq Center Freq 2.441000000 GHz #Avg Type: Log-Pwr Avg|Hold: 100/100 icy Trig: Free Run #Atten: 30 dB 234 PNO: Fast ----FGain:Low Auto Tun 440 840 GH -1.439 dB Ref 20.00 dBm Center Freq 2.441000000 GHz Start Freq 2.436000000 GHz Stop Freq GFSK/MCH 2.446000000 GHz CF Step 1.000000 MHz Man Auto Freq Offset 0 H2 Scale Type Center 2.441000 GHz #Res BW 2.0 MHz Span 10.00 MHz Sweep 1.067 ms (2001 pts) Log Lin #VBW 6.0 MHz Frequency Center Freq 2.480000000 GHz #Avg Type: Log-Pwr Avg[Hold: 100/100 PNO: Fast Trig: Free Run #Atten: 30 dB Auto Tune 2.480 200 GI -1.383 dB Ref 20.00 dBm Center Freq 2.48000000 GHz ▲1 Start Freq 2.475000000 GHz Stop Freq 2.48500000 GHz GFSK/HCH CF Step 1.000000 MHz Ma Auto Freq Offse 0 Hz Scale Type Span 10.00 MHz Sweep 1.067 ms (2001 pts) Center 2.480000 GHz #Res BW 2.0 MHz Log Lin #VBW 6.0 MHz

Graphs

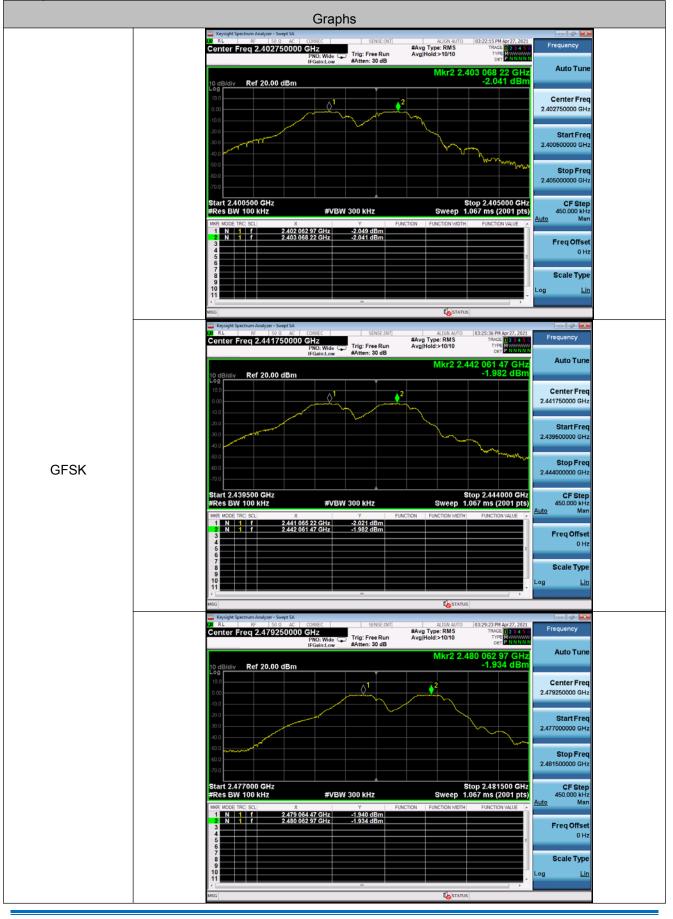
5.4 20dB Occupy Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
1 : :4.	Remark: Offset=Cable loss+ attenuation factor.	
Limit:	NA	
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type	
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, Only the worst case is recorded in the report.	
Test Results:	Pass	

Measurement Data

Test shannel	20dB Occupy Bandwidth (MHz)		
Test channel	GFSK	1	1
Lowest	0.9899	1	/
Middle	1.007	1	/
Highest	1.000		/

Test plot as follows:

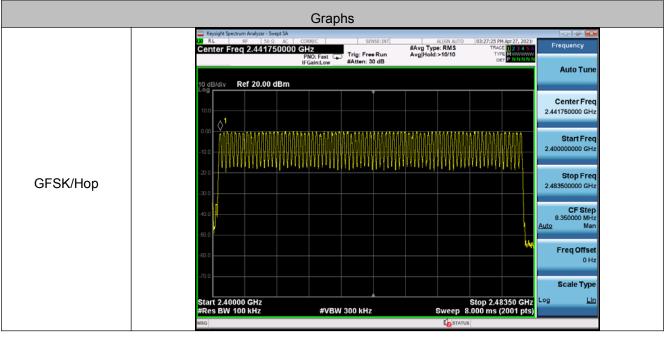

5.5 Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.		
Limit:	2/3 of the 20dB bandwidth		
	Remark: the transmission power is less than 0.125W.		
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, Only the worst case is recorded in the report.		
Test Results:	Pass		

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
	CH00	1.005			
	CH01		 25KHz or 2/3*20dB		
GFSK	CH39	0.000		Daga	
Grok	CH40	0.996 bandwidth	bandwidth	Pass	
	CH77	0.000		0.000	
	CH78	0.999			

Test plot as follows:

5.6 Hopping Channel Number


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
· · · · · · · · · · · · · · · · · · ·			
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark: Offset=Cable loss+ attenuation factor.		
Limit:	At least 15 channels		
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type,Only the worst case is recorded in the report.		
Test Results:	Pass		

Measurement Data

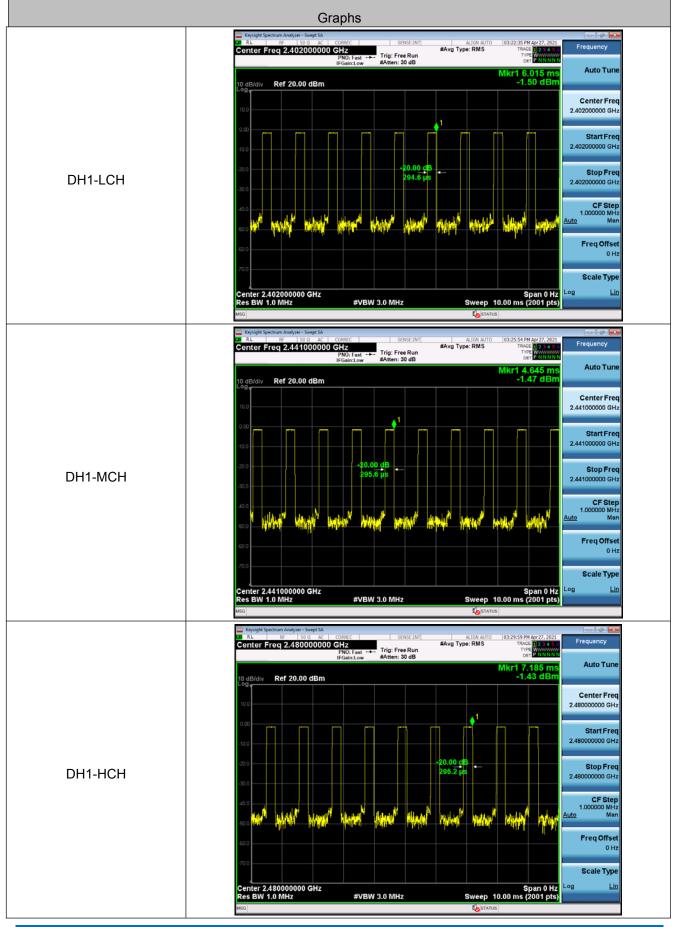
Mode	Hopping channel numbers	Limit
GFSK	79	≥15

Test plot as follows:

5.7 Dwell Time

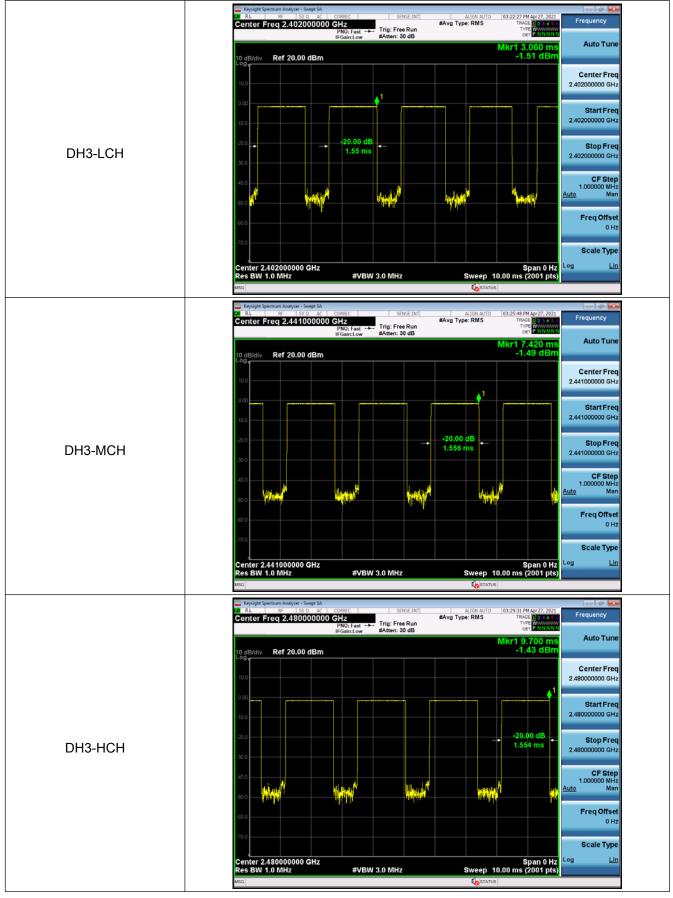
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.	
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.	
Limit:	0.4 Second	
Test Results:	Pass	

Measurement Data

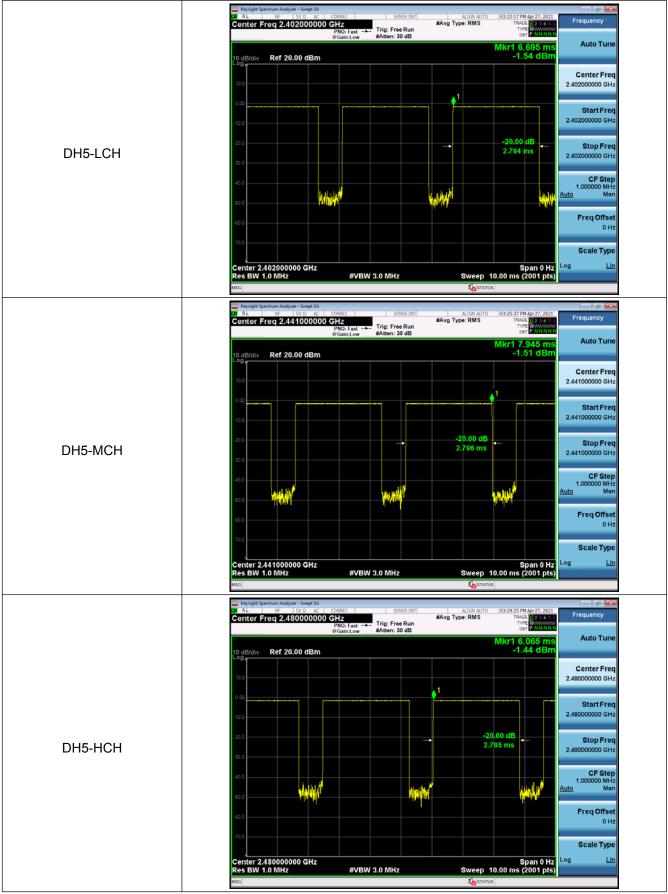

Mode	Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time[ms]	Limit (ms)
GFSK	DH1	LCH	0.2946	94.272	≤400
GFSK	DH1	MCH	0.2956	94.592	≤400
GFSK	DH1	НСН	0.2962	94.784	≤400
GFSK	DH3	LCH	1.55	248.000	≤400
GFSK	DH3	MCH	1.556	248.960	≤400
GFSK	DH3	НСН	1.554	248.640	≤400
GFSK	DH5	LCH	2.794	298.027	≤400
GFSK	DH5	MCH	2.796	298.240	≤400
GFSK	DH5	НСН	2.795	298.133	≤400

Remark:

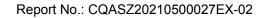
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s
DH1/2DH1 Dwell time = Burst Width(ms)*(1600/ (2*79))*31.6
DH3/2DH3 Dwell time = Burst Width (ms)*(1600/ (4*79))*31.6
DH5/2DH5 Dwell time = Burst Width (ms)*(1600/ (6*79))*31.6



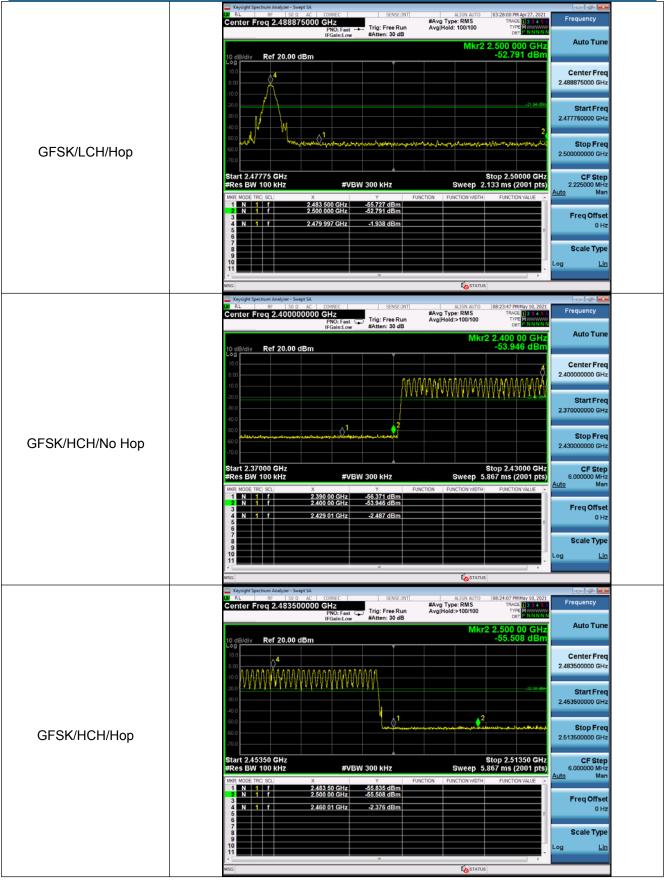
Test plot as follows:


Shenzhen Huaxia Testing Technology Co., Ltd

Shenzhen Huaxia Testing Technology Co., Ltd

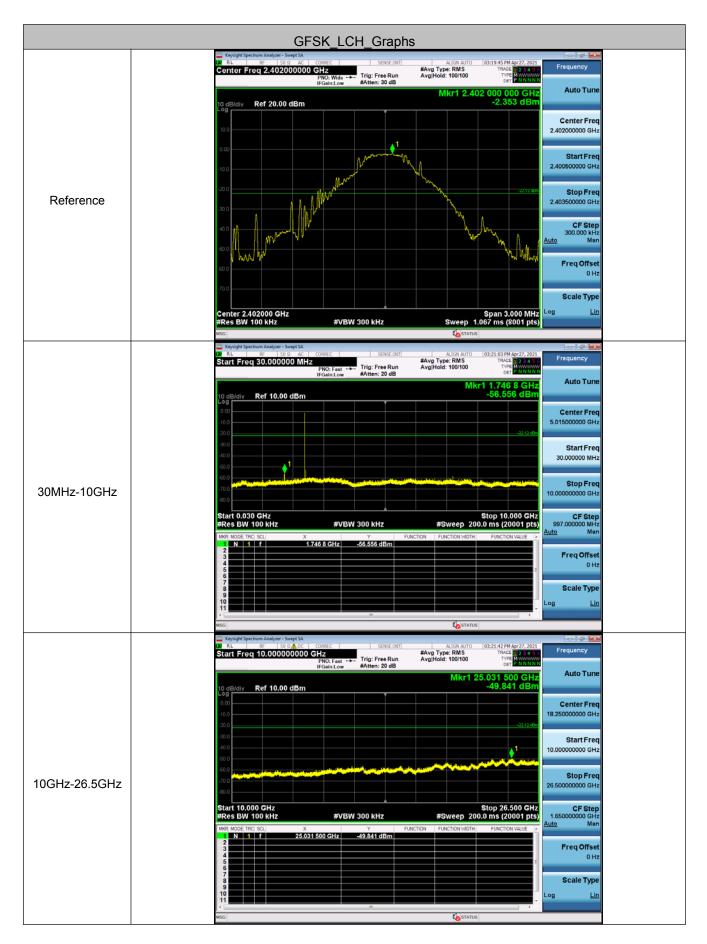

5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
	Remark: Offset=cable loss+ attenuation factor.					
Limit:	In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, Only the worst case is recorded in the report.					
Test Results:	Pass					


Test plot as follows:

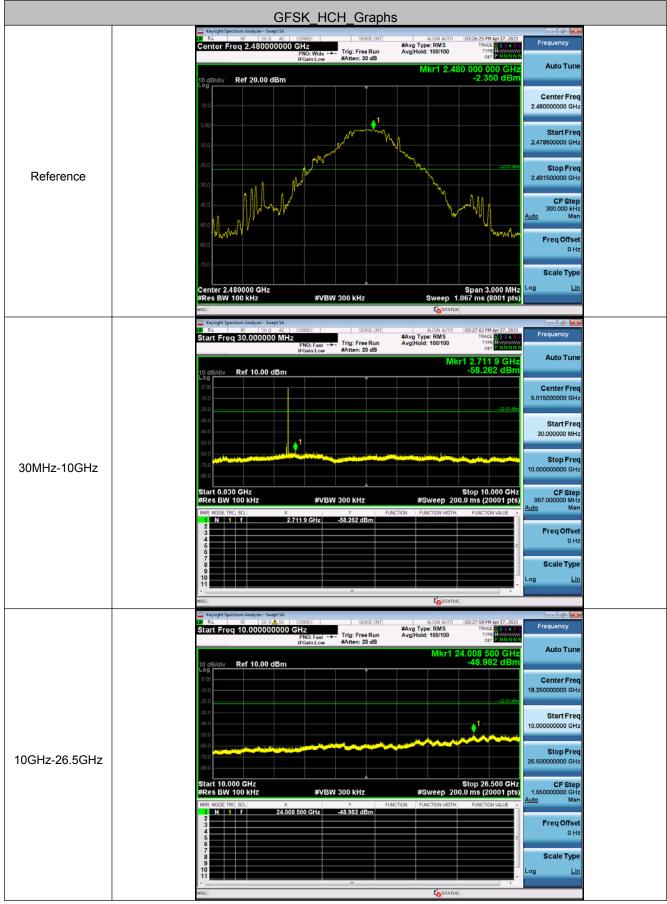
	Graphs
	Keysight Spectrum Analyzer - Swept SA RL RF 50 0 4C CORREC SENSE:INT ALIGN 4//70 [0321:45 PM Agr.27, 2021 Center Freq 2.357/125000 GHz PN0: Fast IFGain.Low PN0: Fast RATE: 30 dB Frequency Auto Tunc
GFSK/LCH/No Hop	Mkr2 2.400 00 GHz Add 10 m 10 dB/div Ref 20.00 dBm -53.722 dBm 100 -53.722 dBm Center Free 200 -21.94 Start Free 2.31000000 GH -21.94 Start Free 2.31000000 GH -21.94 -21.94
	Start 2.31000 GHz Stop 2.40425 GHz CF Stop 2.40425 GHz #Res BW 100 KHz #VBW 300 KHz Sweep 9.067 ms (2001 pts) MRR MODE TRC SCL X Y Function Function width Function value
	1 N 1 f 2.390.00.GHz -55.128.dBm 2 N 1 f 2.400.00.GHz -53.722.dBm 3 1 f 2.400.00.GHz -53.722.dBm Freq Offsee 4 N 1 f 2.402.08.GHz -1.912.dBm 0 H 5 6 - - - - - - - 0 H
	7 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11
	MSG Contraction of the status

Shenzhen Huaxia Testing Technology Co., Ltd



5.9 Spurious RF Conducted Emissions

-								
Test Requirement:	47 CFR Part 15C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013							
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
	Remark: Offset=cable loss+ attenuation factor.							
Limit:	In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type							
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type,							
Test Results:	Pass							


Shenzhen Huaxia Testing Technology Co., Ltd

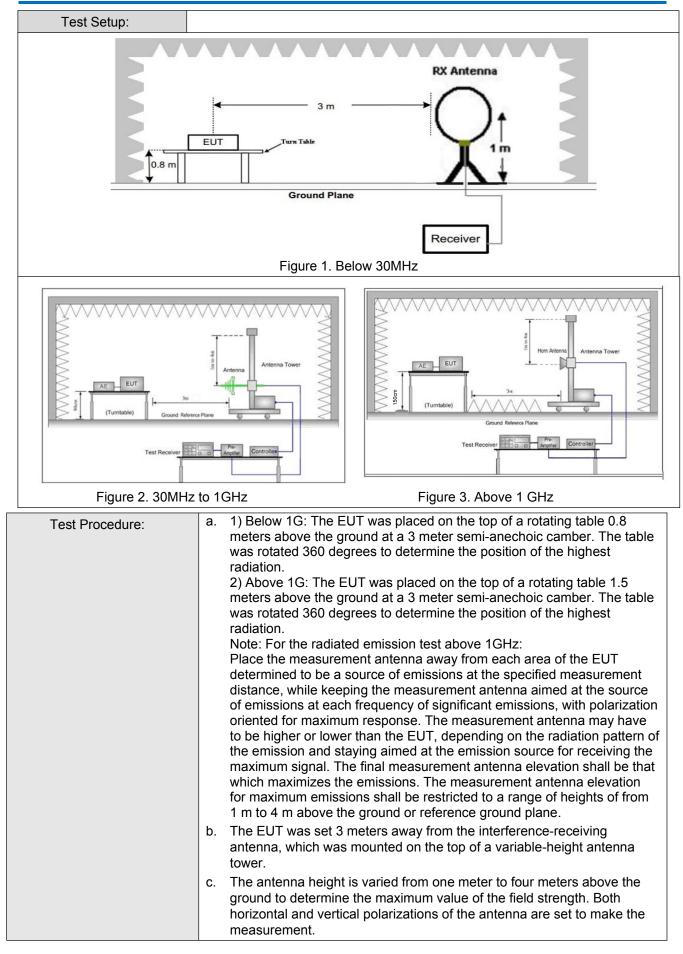
	GFSK_MCH_Graphs
	Knysigit spreature Ausigner - Swegt SA Server EA Align Auro 0.022257 PM Apr22, 2021 P8 R4 96 9 0 0 0 CORREC SERVEEINT Align Auro 0.022257 PM Apr22, 2021 Center Freq 2.441000000 GHz. PND: Wilds Trig: Free Run BrGain:Low Avg1Hold: 100/100 Trig: Do a server Avg1Hold: 100/100 Trig: Do a server per PM Abit Mills Frequency 10 dB/div Ref 20.00 dBm
Reference	100 Center Freq 100 1 2.441000000 GHz 100 2.44100000 GHz 2.439500000 GHz 200 2.439500000 GHz 2.439500000 GHz 200 2.442500000 GHz 2.442500000 GHz 200 2.442500000 GHz 2.442500000 GHz 200 2.442500000 GHz 2.442500000 GHz 200 2.442500000 GHz 300.000 KHz 200 CF Step 300.000 KHz
	Center 2.441000 GHz #Res BW 100 kHz #Res BW 100 kHz Center 2.441000 GHz #Res BW 100 kHz #Center 2.441000 GHz #Center 2.44100 GHz #Center 2.44100 GHz #Center 2.44100 GHz #Center 2.44100 GHz #Center 2.44100 GHz #Center 2.441000 GHz #Center 2.44100 GH
	OUR RL RF ISO R AC CORREC SENSE INT ALION ANTO 032334 FM Are77, 2021 Frequency Start Freq 30.000000 MHz FMO: Fait ++- Trig: Free Run #Atten: 20 dB #AvgiHold: 100/100 Truce IP 24 are AvgiHold: 100/100 Frequency Auto Tune 10 dB/div Ref 10.00 dBm -58.341 dBm -58.341 dBm Auto Tune 000 0.00 0.00 0.00 dBm -58.341 dBm Center Freq 5.015000000 GHz
30MHz-10GHz	300 1 30.000000 MHz 400 1 1 5 1 1 400 1 1 400 1 1 5 1 1
	MRR MODE TRCI SCI. X Y FUNCTION FUNCTION WIDTH FUNCTION WIDTH FUNCTION WIDTH 1 N 1 f 7.692 G Hz -538411 d Bm 3 4 4 4 4 5 5 5 5 6 7 7 8 5 9 9 1 1 1
	Miss Miss Contraction Contrac
	Log 0.00 0
10GHz-26.5GHz	Stop Freq Stop Freq <t< td=""></t<>
	3 Freq Offset 4 6 6 7 8 7 9 10 10 10 11 10 12 10 13 10 14 10 15 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 10

Shenzhen Huaxia Testing Technology Co., Ltd

Remark:Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

5.10 Other requirements Frequency Hopping Spread Spectrum System

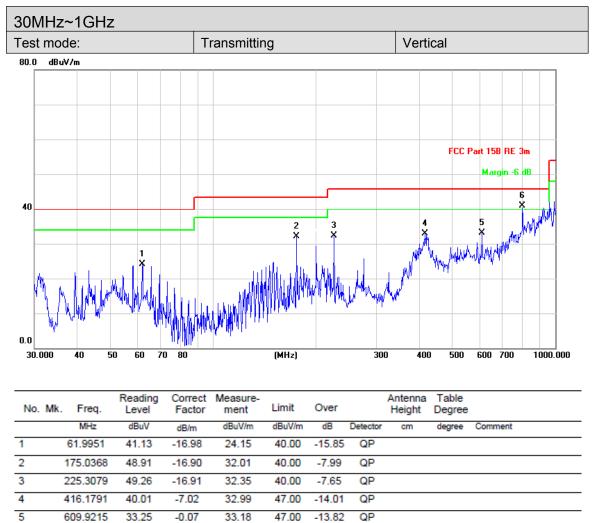
The system shall hop to channel frequencies that are selected at the system hopping trate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmitters incluous data (or information) stream. In addition, a system employing short transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that premited in equencing on occupied channels is perified in the section. The incorporation of intelligence within a frequency hopping pread spectrum system that individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage bift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as fol	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:
on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmissions bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band to that it dividually and independently chooses and adapts its hoppent of avoiding the simultaneous occupancy of individual hopping on occupied channels is permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register robose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Lenger feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Squeuce as follow: 20 62 46 97 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channe		nnel frequencies that are selected at the system hopping
hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system and must distribute its transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adps its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register stages: 9 • Longist of pseudo-andom sequence: 2 ⁹ - 1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as foliow: 20 62 46 77 7 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bendwidths that math the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According		
<pre>synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band to that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine- stage shift register whose 6th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹ -1 = 511 bits Linear Feedback Shift Register for Generation of the PRBS sequence Ac example of Pseudorandom Frequency Hopping Sequence as follow: 20 € 24 € 77 7 € € 73 € 73 16 75 1 16 75 1 20 £ 24 € 77 7 € € 73 € 73 20 £ 7 € € 73 20 £ 7 20 £ 7 € € 73 20 £ 7 20 £ 7 € € 73 20 £ 7 20 £ 7 € € 73 20 £ 7 20</pre>		
Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmister be presented with a continuous data (or information) stream. In addition, a system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independentity chocesse and adpits its hopests to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register stages: 9 • Longert Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 44 77 7 64 9 73 16 75 1 20 62 44 77 2 64 9 73 16 75 1 16 75 1 2 62 44 77 7 64 9 73 16 75 1 16 75 1 2 62 44 77 7 64 9 73 16 75 1 2 62 44 77 7 64 9 73 16 75 1 2 62 44 77 7 64 9 73 16 75 1 2 62 44 77 7 64 9 73 16 75 1 2 62 44 77 7 64 9 73 16 75 1 2 62 44 77 7 64 9 73 16 75 1 2 62 44 77 7 64 9 73 16 75 1 2 62 44 77 7 64 9 73 16 75 1 2 62 62 77 7 64 9 73 16 75 1 2 62 62 77 7 64 9 73 16 75 1 17 64 9 73 16 75 1 17 64 9 7		
channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2°-1 = 511 bits Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 20 cmpliance for section 15.247(g) According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitter signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with th	synchronization with the tran	smitted signals.
the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ - 1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) <i>Linear Feedback Shift Register for Generation of the PRBS sequence</i> An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 6 4 8 73 16 75 1 20 62 45 77 7 6 4 8 73 16 75 1 According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the Bluetooth system.	channels during each transm receiver, must be designed t transmitter be presented with employing short transmission and must distribute its transm	hission. However, the system, consisting of both the transmitter and the to comply with all of the regulations in this section should the h a continuous data (or information) stream. In addition, a system n bursts must comply with the definition of a frequency hopping system
According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine- stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) <i>Linear Feedback Shift Register for Generation of the PRBS sequence</i> An example of Pseudorandom Frequency Hopping Sequence as follow: 20 624677 7 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.	the system to recognize othe independently chooses and The coordination of frequence avoiding the simultaneous of	er users within the spectrum band so that it individually and adapts its hopsets to avoid hopping on occupied channels is permitted. cy hopping systems in any other manner for the express purpose of
stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2º -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) <i>Linear Feedback Shift Register for Generation of the PRBS sequence</i> An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.	Compliance for section 15.	.247(a)(1)
An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.	stage shift register whose 5th outputs are added in a modu stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random s	h and 9th stage ilo-two addition stage. And the result is fed back to the input of the first with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ges: 9 sequence: $2^9 - 1 = 511$ bits
An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.		
An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.	Linear Feedback S	hift Register for Generation of the PRBS sequence
20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.		- · ·
 According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system. 		
 According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system. 		
 According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system. 	Each frequency used equally	on the average by each transmitter.
Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.	According to Bluetooth Cord bandwidths that match the	e Specification, Bluetooth receivers are designed to have input and IF hopping channel bandwidths of any Bluetooth transmitters and shift
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.		
Compliance for section 15.247(h)	According to Bluetooth Compseudorandom hopping freq Bluetooth system is also tra	re Specification, the Bluetooth system transmits the packet with the uency with a continuous data and the short burst transmission from the
		.247(h)


According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

5.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak	1		
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak			
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	30MHz-1GHz		Peak	100 kH	lz 300kHz	Peak			
	Above 1GHz		Peak	1MHz	z 3MHz	Peak			
			Peak	1MHz	z 10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz 5		500	54.0	Quasi-peak	3			
	Above 1GHz 500 54.0 Average 3								
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								



	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with BLE5.0 & BT3.0 mode.
Final Test Mode:	Transmitting with BLE-GFSK and BT3.0-GFSK modulation. For below 1GHz part, through pre-scan, the worst case is the BT3.0-GFSK- high channel Only the worst case is recorded in the report.
Test Results:	Pass

5.11.1 Radiated Emission below 1GHz

Remark:

6

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

-6.09

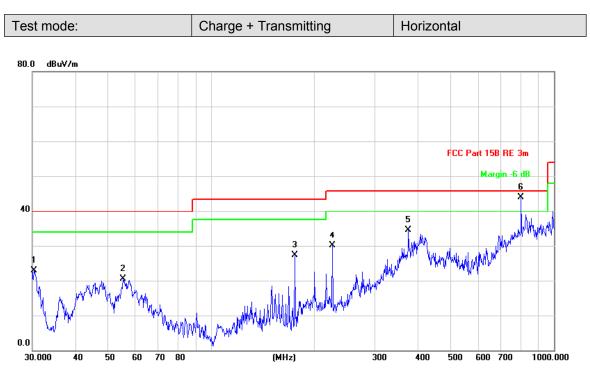
QP

47.00

40.91

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

5.07


Level = Read Level + Factor,

801.7863

35.84

Over Limit=Level-Limit Line.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		30.3172	30.92	-7.96	22.96	40.00	-17.04	QP			
2		55.2207	37.29	-16.87	20.42	40.00	-19.58	QP			
3		175.0368	44.30	-16.90	27.40	40.00	-12.60	QP			
4		225.3080	46.98	-16.91	30.07	40.00	-9.93	QP			
5		375.9384	42.20	-7.69	34.51	47.00	-12.49	QP			
6	*	801.7863	38.82	5.07	43.89	47.00	-3.11	QP			

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

moo	mode:		5)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	57.10	-9.2	47.90	74	-26.10	Peak	н
2400	60.28	-9.39	50.89	74	-23.11	Peak	н
4804	55.52	-4.33	51.19	74	-22.81	Peak	н
7206	53.90	1.01	54.91	74	-19.09	Peak	н
2390	58.55	-9.2	49.35	74	-24.65	Peak	v
2400	63.26	-9.39	53.87	74	-20.13	Peak	V
4804	55.28	-4.33	50.95	74	-23.05	Peak	V
7206	54.25	1.01	55.26	74	-18.74	Peak	V

5.11.2 Transmitter Emission above 1GHz

moo	mode: GFSK(DH5)		Test channel:		Middle		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	56.59	-4.11	52.48	74	-21.52	Peak	н
7323	51.71	1.51	53.22	74	-20.78	Peak	н
4882	54.76	-4.11	50.65	74	-23.35	Peak	V
7323	52.35	1.51	53.86	74	-20.14	Peak	V

moo	mode:		5)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	58.71	-9.29	49.42	74	-24.58	Peak	н
4960	59.51	-4.04	55.47	74	-18.53	Peak	н
7440	54.37	1.57	55.94	74	-18.06	Peak	н
2483.5	58.41	-9.29	49.12	74	-24.88	Peak	v
4960	56.90	-4.04	52.86	74	-21.14	Peak	V
7440	54.62	1.57	56.19	74	-17.81	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6 Photographs - EUT Test Setup

Please refer to the report No.: CQASZ20210500027EX-01

7 Photographs - EUT Constructional Details

Please refer to the report No.: CQASZ20210500027EX-01

The End