

RF Test Report

For

Applicant Name:

TECNO MOBILE LIMITED

Address:

EUT Name:

Brand Name:

Model Number:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG Laptop Computer TECNO **T15RA** Series Model Number: Refer to section 2

Issued By

Company Name:

Address:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: Test Standards:

BTF230918R00302 47 CFR Part 15.247

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass 2ADYY-T15RA 2023-08-25 to 2023-09-21 2023-09-22

Prepared By:

Date:

Approved By:

Date:

Chris	Ripject Encineer
Chris Liu 2023-09-2	Project Encineer
Figur	The second secon
Ryan.CJ / 2023-09-2	EMC Manager

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 1 of 84

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230918R00302

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-09-22	Original	

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 84BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	ODUCTION	5
	1.1	Identification of Testing Laboratory	
	1.2 1.3	Identification of the Responsible Testing Location	
2	-	DUCT INFORMATION	
2	2.1	Application Information	
	2.1	Manufacturer Information	
	2.3	Factory Information	6
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	
3		MARY OF TEST RESULTS	
	3.1	Test Standards	
	3.2 3.3	Uncertainty of Test Summary of Test Result	
4		CONFIGURATION	
-	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	
5	EVAL	LUATION RESULTS (EVALUATION)	14
	5.1	Antenna requirement	14
		5.1.1 Conclusion:	14
6	RAD	IO SPECTRUM MATTER TEST RESULTS (RF)1	15
	6.1	Conducted Emission at AC power line	15
		6.1.1 E.U.T. Operation:	15
		6.1.2 Test Setup Diagram:	
	~ ^	6.1.3	
	6.2	Occupied Bandwidth 1 6.2.1 E.U.T. Operation:	
		6.2.2 Test Setup Diagram:	
		6.2.3 Test Data:	
	6.3	Maximum Conducted Output Power	20
		6.3.1 E.U.T. Operation:	
		6.3.2 Test Setup Diagram:	
	6.4		∠ı 22
	0.4	6.4.1 E.U.T. Operation:	
		6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	
	6.5	Number of Hopping Frequencies	24
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Setup Diagram:	
	6.6	Dwell Time	
	0.0	6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	
		6.6.3 Test Data:	27
	6.7	Emissions in non-restricted frequency bands	28

Test Report Number: BTF230918R00302

		6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	
		6.7.3 Test Data:	
	6.8	Band edge emissions (Radiated)	
		6.8.1 E.U.T. Operation:	
		6.8.2 Test Data:	
	6.9	Emissions in restricted frequency bands (below 1GHz)	
		6.9.1 E.U.T. Operation:	
		6.9.2 Test Data:	
	6.10	Emissions in restricted frequency bands (above 1GHz)	35
		6.10.1 E.U.T. Operation:	
		6.10.2 Test Data:	
APF	PENDIX		

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:BTF Testing Lab (Shenzhen) Co., Ltd.Address:F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tar Community, Songgang Street, Bao'an District, Shenzhen, ChinaPhone Number:+86-0755-23146130			
		Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Ta Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

2.1 Application Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.3 Factory Information

Company Name:	GUANGXI SHANCHAUN TECHNOLOGY CO LTD
Address:	The Second Floor of Plant C01, Plant C02, Plant C03 and Plant D03 Guangxi Sannuo Smart Industrial Park, No.3, Gaoke Road, Beihai Industrial Park, BEIHAI, 536000 Guangxi, P.R.China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Laptop Computer		
Test Model Number:	T15RA		
Series Model Number:	N/A		
Software Version:	Win 11 home		
Hardware Version:	N156EAL01_MB_V11		

2.5 Technical Information

	Litize Detterm 450
	Li-ion Battery: 156
	Rated Voltage: 11.55V
Power Supply:	Rated Capacity: 6060mAh/70Wh
	Typical Capacity: 6160mAh/71.14Wh
	Limited Charge Voltage: 13.2V
	Adapter1:TCW-A61S-65W
	Input: 100-240V~50/60Hz 1.5A Max
	Output: PD: 5V-3A 9V-3A 12V-3A 15V-3A 20V-3.25A
Power Adaptor:	PPS:3.3-11V 5A Max
	Adapter2: DS65-2
	Input: 100-240V~50/60Hz 1.5A Max
	Output: 5.0V-3.0A 9.0V-3.0A 12.0V-3.0A 15.0V-3.0A 20.0V-3.25A 65.0W
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	79
Modulation Type: GFSK, π/4 DQPSK, 8DPSK Antenna Type: Integral Antenna	

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

3.2 Uncertainty of Test

Item	Measurement Uncertainty	
Conducted Emission (150 kHz-30 MHz)	±2.64dB	
The following measurement uncertainty levels have been estimated for tests performed on the EUT as		
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately		

3.3 Summary of Test Result

the 95% confidence level using a coverage factor of k=2

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Occupied Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Maximum Conducted Output Power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Separation					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 8 of 84

Test Report Number: BTF230918R00302

RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Number of Hopping Frequencies							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Dwell Time					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emissions in non-restricted frequency bands

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Band edge emissions	Band edge emissions (Radiated)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21		
EZ_EMC	Frad	FA-03A2 RE+	/	/	/		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27		

Emissions in restricted frequency bands (below 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 84

RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Emissions in restricted frequency bands (above 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	1	/	

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
est Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by selec channel and modulations with Fully-charged batte

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:

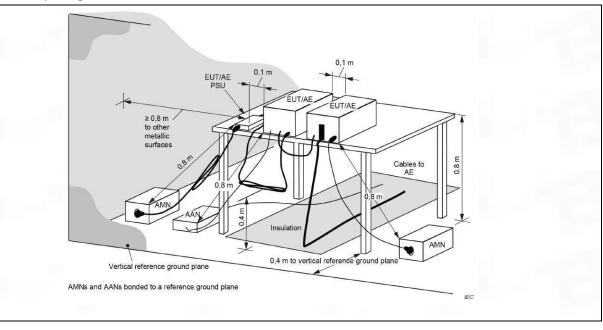
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

BT Antenna

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 14 of 84 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

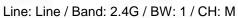
Radio Spectrum Matter Test Results (RF) 6

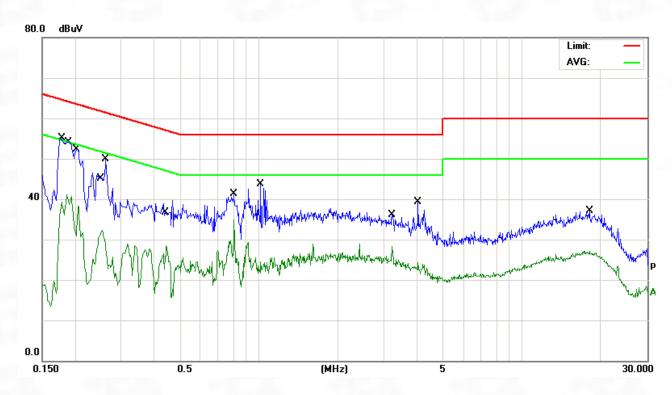

Conducted Emission at AC power line 6.1

	Event on above in non-marks /h	and (a) of this spatian for	· · · · · · · · · · · · · · · · · · ·
Test Requirement:	Except as shown in paragraphs (b that is designed to be connected to frequency voltage that is conducte or frequencies, within the band 15 the following table, as measured u stabilization network (LISN).	o the public utility (AC) po d back onto the AC powe 0 kHz to 30 MHz, shall no	ower line, the radio er line on any frequency ot exceed the limits in
Test Method:	Refer to ANSI C63.10-2013 sectio conducted emissions from unlicen		od for ac power-line
	Frequency of emission (MHz)	Conducted limit (dBµV)	
Test Limit:	, , ,	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of t	ne frequency.	

6.1.1 E.U.T. Operation:

Operating Environment:		
Temperature:	22.4 °C	
Humidity:	52.7 %	
Atmospheric Pressure:	1010 mbar	


6.1.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.1.3

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.1780	44.64	10.45	55.09	64.57	-9.48	QP
2	0.1860	30.60	10.45	41.05	54.21	-13.16	AVG
3	0.2040	41.80	10.45	52.25	63.44	-11.19	QP
4	0.2540	21.90	10.46	32.36	51.62	-19.26	AVG
5	0.2620	39.53	10.46	49.99	61.36	-11.37	QP
6	0.4460	17.96	10.51	28.47	46.95	-18.48	AVG
7	0.8059	24.39	10.54	34.93	46.00	-11.07	AVG
8	1.0180	33.12	10.55	43.67	56.00	-12.33	QP
9	3.2220	17.59	10.72	28.31	46.00	-17.69	AVG
10	4.0340	28.49	10.73	39.22	56.00	-16.78	QP
11	18.0580	25.90	11.11	37.01	60.00	-22.99	QP
12	18.0580	15.97	11.11	27.08	50.00	-22.92	AVG

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 16 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

80.0 dBuV Limit: AVG: 40 peak AVG 0.0 30.000 0.5 0.150 (MHz) 5

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1780	45.37	10.45	55.82	64.57	-8.75	QP
2		0.1819	30.40	10.45	40.85	54.39	-13.54	AVG
3		0.2340	36.84	10.46	47.30	62.30	-15.00	QP
4		0.2460	20.76	10.46	31.22	51.89	-20.67	AVG
5		0.8059	24.70	10.54	35.24	46.00	-10.76	AVG
6		0.8380	29.99	10.54	40.53	56.00	-15.47	QP
7		2.4180	17.13	10.71	27.84	46.00	-18.16	AVG
8		3.6540	10.20	10.73	20.93	46.00	-25.07	AVG
9		4.3060	23.51	10.73	34.24	56.00	-21.76	QP
10		11.1980	5.63	10.92	16.55	50.00	-33.45	AVG
11		13.5660	18.58	11.09	29.67	60.00	-30.33	QP
12		20.1740	19.43	11.05	30.48	60.00	-29.52	QP

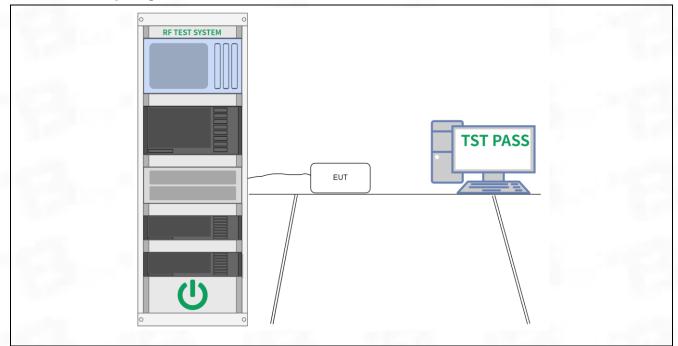
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 17 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 17 of 84

6.2 Occupied Bandwidth

Test Requirement:	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	Occupied bandwidth—relative measurement procedure
Test Limit:	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace or the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the enve

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 18 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly
labeled. Tabular data may be reported in addition to the plot(s).

6.2.1 E.U.T. Operation:

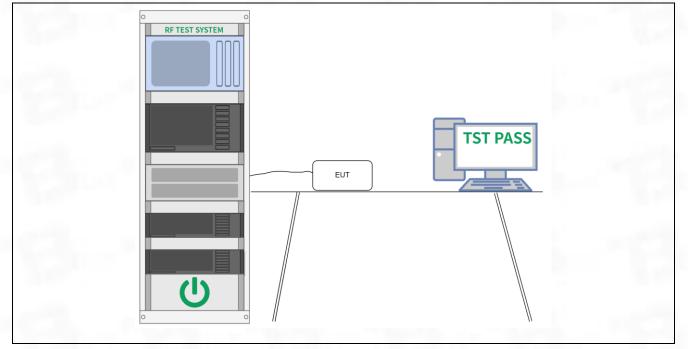
Operating Environment:	
Temperature:	25.6 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.

6.3 Maximum Conducted Output Power


Test Requirement:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	Output power test procedure for frequency-hopping spread-spectrum (FHSS) devices
Test Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.6 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

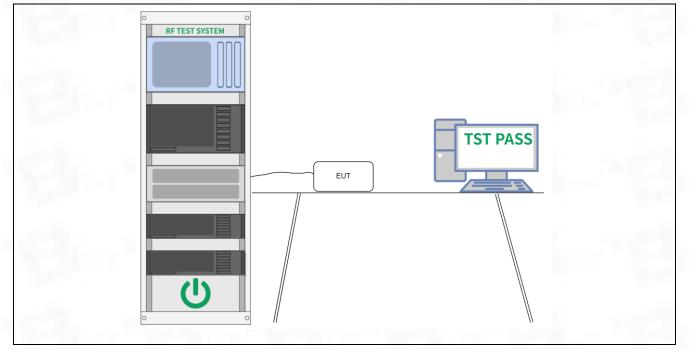
6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

Channel Separation 6.4

Test Requirement:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	Carrier frequency separation
Test Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.


6.4.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.6 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

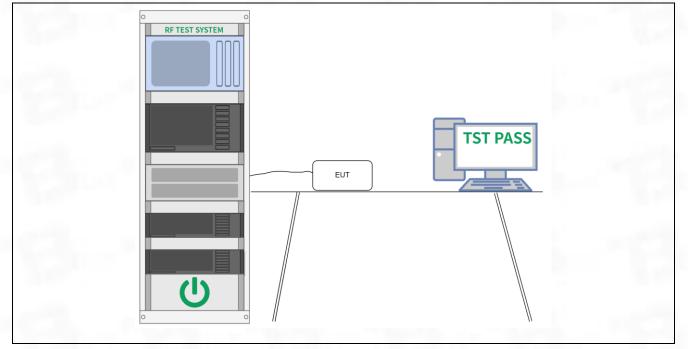
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 22 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

Number of Hopping Frequencies 6.5


Test Requirement:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	Number of hopping frequencies
Test Limit:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

6.5.1 E.U.T. Operation:

Operating Environment:				
Temperature:	25.6 °C	1.00		
Humidity:	50.6 %	100	10.0	100
Atmospheric Pressure:	1010 mbar			

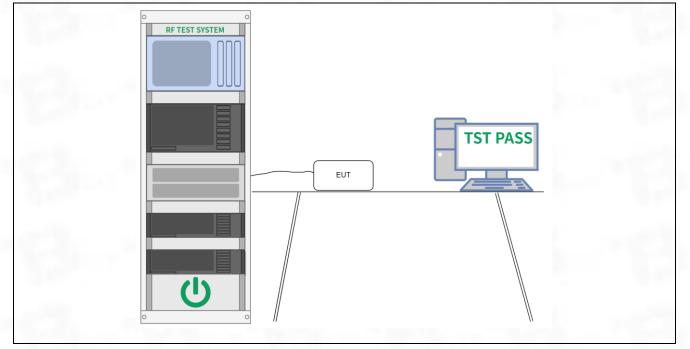
6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Please Refer to Appendix for Details.

6.6 Dwell Time

Test Requirement: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels are used. Test Method: Time of occupancy (dwell time) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels are used. Time of occupancy (dwell time) Test Limit: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period 0.0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delays to that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent fugering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the maxer detera function to determine the transmit time per hop. If	Test Requirement: channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: Time of occupancy (dwell time) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels. The all have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) R8W shall be <= channel spacing and where possible R8W should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Procedure:		
Procedure: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Procedure: Number of hops in the period specified in the requirements, using the following equation:	Procedure: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation:	Test Requirement:	channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15
Procedure: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Procedure: Number of hops in the period specified in the requirements, using the following equation:	Procedure: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Spar. Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation:	Test Method:	Time of occupancy (dwell time)
 Procedure: analyzer settings: a) Span: Zero span, centered on a hopping channel. b) REW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), t	 Procedure: analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:	Test Limit:	channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15
values described in the operational description for the EUT.		Procedure:	 analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.


6.6.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.6 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

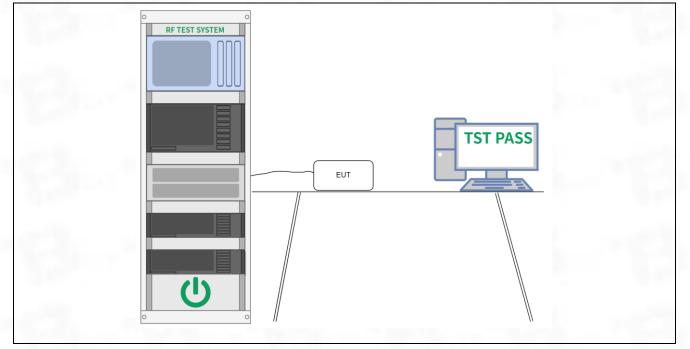
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 26 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Please Refer to Appendix for Details.

6.7 Emissions in non-restricted frequency bands


Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Conducted spurious emissions test methodology
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.7.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.6 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Please Refer to Appendix for Details.

6.8 Band edge emissions (Radiated)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Method:	Radiated emissions test	S	1			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
Test Limit:	88-216	88-216 150 ** 3				
	216-960	200 ** 3				
	Above 960	500	3			
	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands i §§ 15.231 and 15.241.	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.				
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4				
6.8.1 E.U.T. Operation						

Operating Environment:	
Temperature:	24.9 °C
Humidity:	49.4 %
Atmospheric Pressure:	1010 mbar

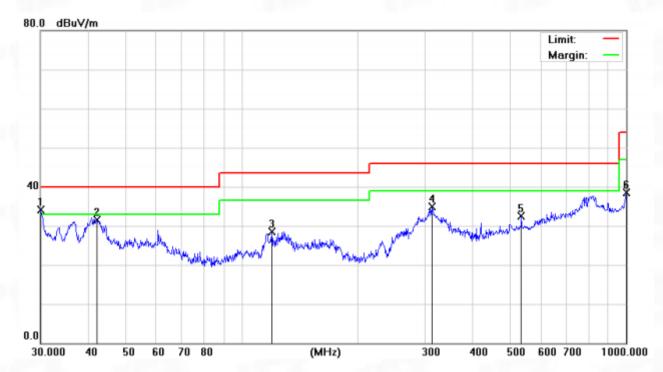
6.8.2 Test Data:

Test result for GFSK Mode(the worst case)

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Cha	nnel			
2390	66.61	-8.73	57.88	74	-16.12	Н	PK
2390	48.92	-8.73	40.19	54	-13.81	н	AV
2390	66.54	-8.73	57.81	74	-16.19	V	PK
2390	51.47	-8.73	42.74	54	-11.26	V	AV
			High Cha	innel			
2483.5	69.22	-8.17	61.05	74	-12.95	Н	PK
2483.5	51.67	-8.17	43.50	54	-10.50	Н	AV
2483.5	68.32	-8.17	60.15	74	-13.85	V	PK
2483.5	50.30	-8.17	42.13	54	-11.87	V	AV

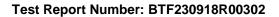
Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Level $(dB\mu V)$ – Limits $(dB\mu V)$

6.9 Emissions in restricted frequency bands (below 1GHz)


Test Requirement:	15.205(a), must also co	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Method:	Radiated emissions test	S						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
Test Limit:	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	radiators operating unde 54-72 MHz, 76-88 MHz,	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.						
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4						
6.9.1 E.U.T. Operation	n:							

Operating Environment:	
Temperature:	24.9 °C
Humidity:	49.4 %
Atmospheric Pressure:	1010 mbar

6.9.2 Test Data:


Note: All the mode have been tested, and only the worst case of GFSK mode are in the report Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.0000	31.97	2.19	34.16	40.00	-5.84	QP
2		42.1542	28.44	3.16	31.60	40.00	-8.40	QP
3		119.8556	27.42	1.16	28.58	43.50	-14.92	QP
4		312.1794	32.37	2.57	34.94	46.00	-11.06	QP
5		533.8321	25.61	6.90	32.51	46.00	-13.49	QP
6		1000.000	22.84	15.72	38.56	54.00	-15.44	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 33 of 84

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

80.0 dBuV/m

										Limit: Margin:	
40 <u>1</u>	herentey	Warner		Num		an and a procession of the	and the second	A more	hudson and a	newenewery	
).0 30.000	40	50	60	70 80)	(MHz)		300 40	0 500	600 700	1000.00
	No.	Mk	. F	req.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
			1	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1	*	36.0	0007	29.04	2.86	31.90	40.00	-8.10	QP	
	2		60.2	2801	25.60	1.92	27.52	40.00	-12.48	QP	
	3		119.8	8556	27.47	1.16	28.63	43.50	-14.87	QP	
	4		312.1	1794	32.37	2.57	34.94	46.00	-11.06	QP	

Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

903.3094

6

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 34 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

22.20

Page 34 of 84

QP

-9.46

14.34

36.54

46.00

6.10 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:		issions which fall in the restricted mply with the radiated emission (c)).				
Test Method:	Radiated emissions test	S	Transfer Transfer			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
Test Limit:	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands i	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g.,				
Procedure:	§§ 15.231 and 15.241. ANSI C63.10-2013 sect	ion 6 6 4				
		1011 0.0.4				
6.10.1 E.U.T. Operation						

Operating Environment:	
Temperature:	24.9 °C
Humidity:	49.4 %
Atmospheric Pressure:	1010 mbar

6.10.2Test Data:

GFSK

~												
	Freq.		Low channel: 2402MHz									
		Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)				
	(MHz)	H/V	PK	AV	PK	AV	PK	AV				
	4804	V	58.42	39.88	74	54	-15.58	-14.12				
	7206	V	58.77	40.81	74	54	-15.23	-13.19				
	4804	Н	59.82	39.84	74	54	-14.18	-14.16				
	7206	Н	58.83	39.83	74	54	-15.17	-14.17				

Free	Middle channel: 2441MHz									
Freq.	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
4882	V	59.48	39.04	74	54	-14.52	-14.96			
7323	V	59.42	39.49	74	54	-14.58	-14.51			
4882	Н	58.54	39.26	74	54	-15.46	-14.74			
7323	Н	58.84	39.84	74	54	-15.16	-14.16			

Frag	High channel: 2480MHz									
Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)			
	H/V	PK	AV	PK	AV	PK	AV			
4960	V	60.30	41.62	74	54	-13.70	-12.38			
7440	V	59.84	40.24	74	54	-14.16	-13.76			
4960	Н	59.78	39.20	74	54	-14.22	-14.80			
7440	Н	58.74	39.74	74	54	-15.26	-14.26			

Note:

- 1. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. 2.
- З. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) 4. was submitted only.

Test Report Number: BTF230918R00302

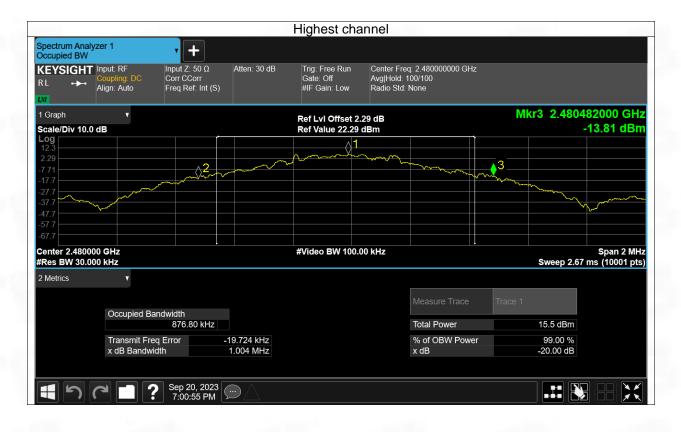
Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 37 of 84BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1. Bandwidth

- 1.1 OBW
- 1.1.1 Test Result

Test channel	20dB Occupy Bandwidth (MHz)								
rest channer	GFSK	π/4-DQPSK	8DPSK	Conclusion					
Lowest	0.94	1.487	1.496	PASS					
Middle	0.932	1.433	1.49	PASS					
Highest	1.004	1.441	1.44	PASS					



1.1.2 Test Graph

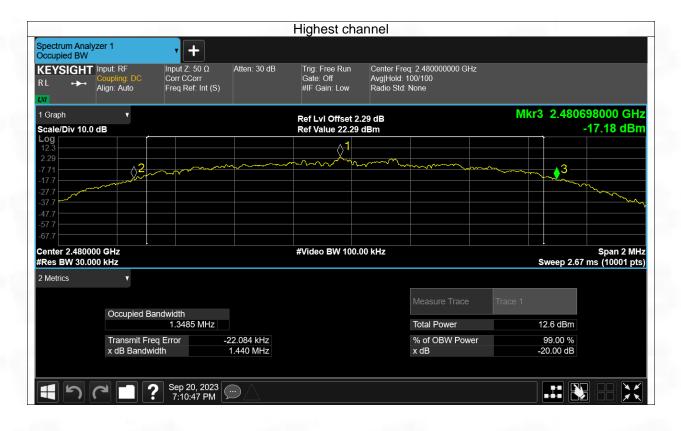
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Pi/4DQPSK Modulation

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

				Highest ch	annel				
Spectrum Analyze	er 1	• +							
	nput: RF coupling: DC lign: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: Radio Std:		Z		
1 Graph Scale/Div 10.0 d	v			Ref LvI Offset Ref Value 22.2			Mkr		93000 GHz 17.63 dBm
Log 12.3 2.29 -7.71	GHz			#Video BW 100	·····			3	Span 2 MHz ms (10001 pts)
2 Metrics	v								
	Occupied Ba	andwidth 1.3606 MHz				Measure Trace Total Power	Trace 1	12.1 dBm	
	Transmit Fre x dB Bandwi		27.663 kHz 1.441 MHz			% of OBW Powe x dB		99.00 % -20.00 dB	
1 50		Sep 20, 2023 7:05:26 PM							

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 84BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



8DPSK Modulation

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

2. Maximum Conducted Output Power

2.1 Power

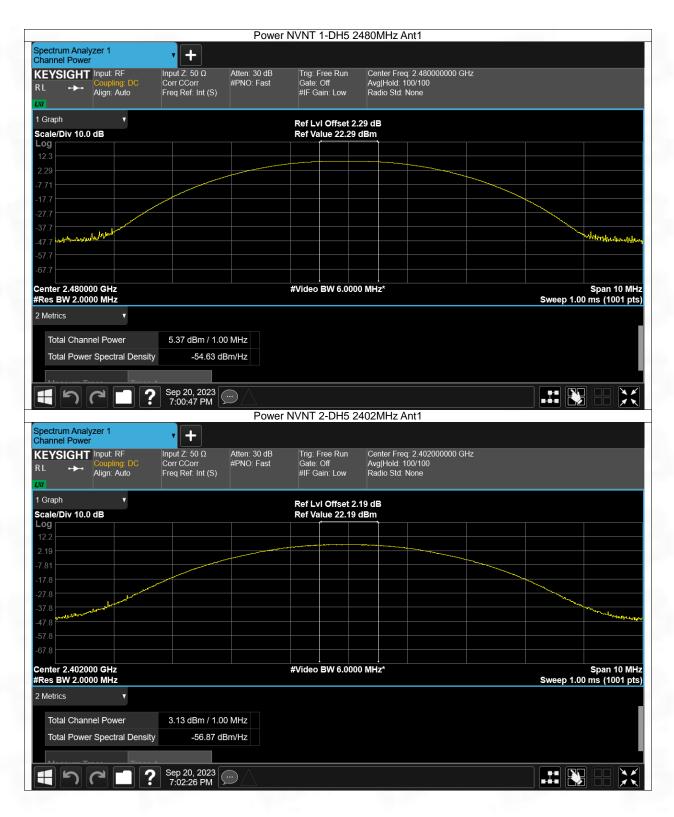
2.1.1 Test Result

GFSK mode								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	5.35	20.97	PASS					
Middle	5.52	20.97	PASS					
Highest	5.37	20.97	PASS					

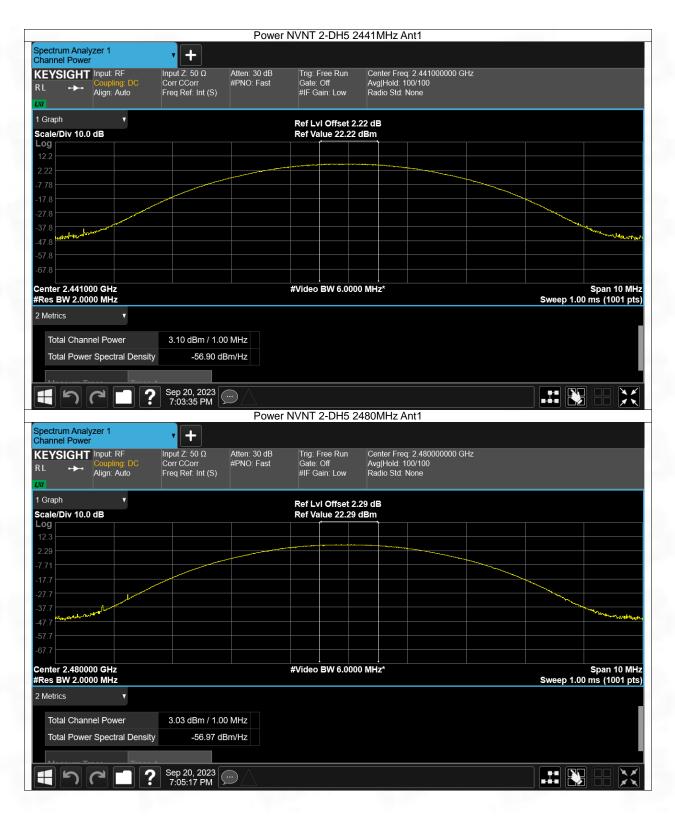
Pi/4DQPSK mode							
Test channel	Result						
Lowest	3.13	20.97	PASS				
Middle	3.1	20.97	PASS				
Highest	3.03	20.97	PASS				

8DPSK mode								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	3.06	20.97	PASS					
Middle	3.16	20.97	PASS					
Highest	2.99	20.97	PASS					

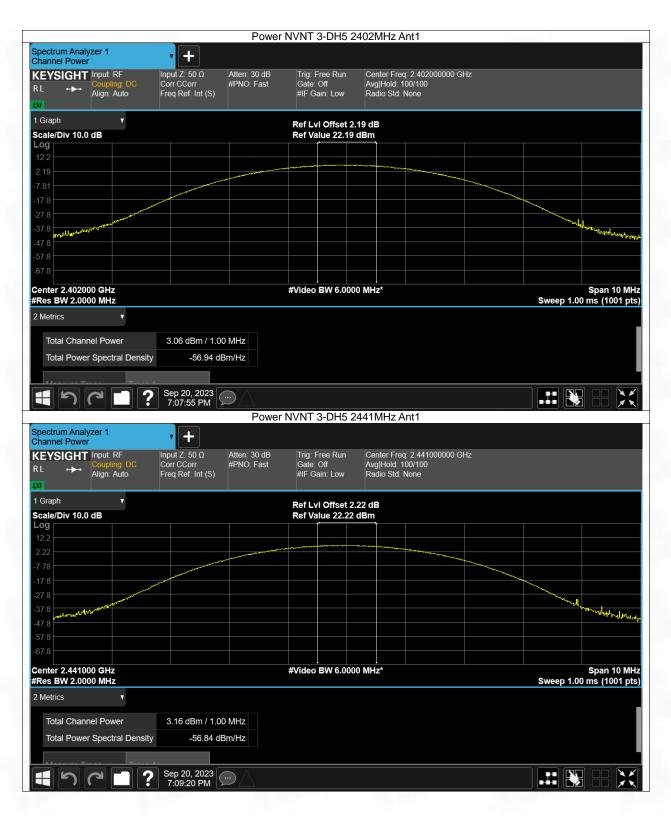
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 45 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

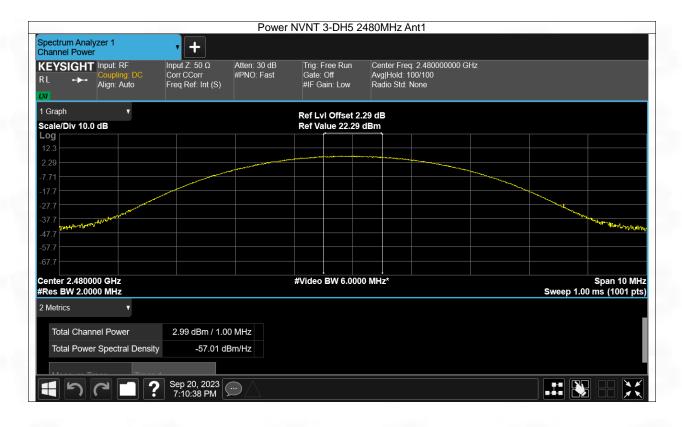


2.1.2 Test Graph


			Power	Test Gra NVNT 1-DH5		Ant1	-		
Spectrum Analy Channel Power	zer 1	• +							
KEYSIGHT	Input: RF	Input Z: 50 Ω	Atten: 30 dB	Trig: Free Rur		eq: 2.402000000 G	iHz		
RL ↔→	Coupling: DC Align: Auto	Corr CCorr Freq Ref: Int (S)	#PNO: Fast	Gate: Off #IF Gain: Low	Avg Hold: Radio Sto				
1 Graph	•	1	1	Ref LvI Offse					
Scale/Div 10.0	dB			Ref Value 22.	19 dBm				
12.2									
2.19									
-7.81									
-27.8									
-37.8	Mr. m.M.							- Marillon	un lat all happender
-47.8									. In all the start of the start
-57.8									
Center 2.40200				#Video BW 6.0	0000 MHz*				Span 10 MH
#Res BW 2.000 2 Metrics								Sweep 1.0	0 ms (1001 pts
2 Metrics	V								
Total Power	Spectral Density								
ま り(Sep 20, 2023 6:57:36 PM							
				NVNT 1-DH	5 2441MHz	Ant1			
Spectrum Analy Channel Power	zer 1	Sep 20, 2023 6:57:36 PM		NVNT 1-DHS	5 2441MHz	Ant1			
Spectrum Analy Channel Power KEYSIGHT RL	zer 1			NVNT 1-DH5 Trig: Free Rur Gate: Off #IF Gain: Low	u Center Fr Avg Hold	eq: 2.441000000 G : 100/100	Hz		
Spectrum Analy Channel Power KEYSIGHT	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off	Center Fr Avg Hold: Radio Sto	eq: 2.441000000 G : 100/100	Hz		
Spectrum Analy Channel Power KEYSIGHT RL +++ UV 1 Graph Scale/Div 10.0 Log	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse	Center Fr Avg Hold: Radio Sto	eq: 2.441000000 G : 100/100	Hz		
Spectrum Analy Channel Power KEYSIGHT RL +++ UV 1 Graph Scale/Div 10.0	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse	Center Fr Avg Hold: Radio Sto	eq: 2.441000000 G : 100/100	Hz		
Spectrum Analy Channel Power KEYSIGHT RL +++ 1 Graph Scale/Div 10.0 Log 12.2	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse	Center Fr Avg Hold: Radio Sto	eq: 2.441000000 G : 100/100	IHZ		
Spectrum Analy Channel Power KEYSIGHT RL I Graph Scale/Div 10.0 Log 12.2 2.22 -7.78 -17.8	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse	Center Fr Avg Hold: Radio Sto	eq: 2.441000000 G : 100/100	Hz		
Spectrum Analy Channel Power KEYSIGHT RL I Graph Scale/Div 10.0 Log 12.2 2.22 -7.78 -17.8 -27.8	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse	Center Fr Avg Hold: Radio Sto	eq: 2.441000000 G : 100/100	Hz		
Spectrum Analy Channel Power KEYSIGHT RL I Graph Scale/Div 10.0 Log 12.2 2.22 -7.78 -17.8	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse	Center Fr Avg Hold: Radio Sto	eq: 2.441000000 G : 100/100	Hz		
Spectrum Analy Channel Power KEYSIGHT RL I Graph Scale/Div 10.0 Log 12.2 2.22 -7.78 -17.8 -27.8 -37.8	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse	Center Fr Avg Hold: Radio Sto	eq: 2.441000000 G : 100/100	Hz		
Spectrum Analy Channel Power KEYSIGHT RL → I Graph Scale/Div 10.0 Log 12.2 2.72 -7.78 -17.8 -27.8 -37.8 -47.8	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse	Center Fr Avg Hold: Radio Sto	eq: 2.441000000 G : 100/100	Hz		
Spectrum Analy Channel Power KEYSIGHT RL → I Graph Scale/Div 10.0 Log 12.2 2.78 -7.78	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse	Center Fr Avg Hold Radio Sto t 2.22 dB 22 dBm	eq: 2.441000000 G : 100/100	Hz		Span 10 MH
Spectrum Analy Channel Power KEYSIGHT RL → I Graph Scale/Div 10.0 Log 12.2 2.73 -17.8 -27.8 -37.8 -47.8 -57.8 -67.8	zer 1 Input: RF Coupling: DC Align: Auto	T Input Ζ: 50 Ω Corr CCorr	Power Atten: 30 dB	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse Ref Value 22.	Center Fr Avg Hold Radio Sto t 2.22 dB 22 dBm	eq: 2.441000000 G : 100/100			alam, alle and
Spectrum Analy Channel Power KEYSIGHT RL → I Graph Scale/Div 10.0 Log 12.2 2.22	Zer 1 Input: RF Coupling: DC Align: Auto dB	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	Power	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse Ref Value 22.	Center Fr Avg Hold Radio Sto t 2.22 dB 22 dBm	eq: 2.441000000 G : 100/100	Hz		Span 10 MH
Spectrum Analy Channel Power KEYSIGHT RL ••• 1 Graph Scale/Div 10.0 Log 12.2 2.22 2.22 2.7.78 -7.8 -7.	Zer 1 Input: RF Coupling: DC Align: Auto dB	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 30 dB #PNO: Fast	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse Ref Value 22.	Center Fr Avg Hold Radio Sto t 2.22 dB 22 dBm	eq: 2.441000000 G : 100/100	Hz		Span 10 MH
Spectrum Analy Channel Power KEYSIGHT RL ••• 1 Graph Scale/Div 10.0 Log 12.2 2.22 2.22 2.7.78 -7.8 -7.	zer 1 Input: RF Coupling: DC Align: Auto dB dB Unuel 0 GHz 0 MHz v el Power	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 30 dB #PNO: Fast	Trig: Free Rur Gate: Off #IF Gain: Low Ref LvI Offse Ref Value 22.	Center Fr Avg Hold Radio Sto t 2.22 dB 22 dBm	eq: 2.441000000 G : 100/100	Hz		Span 10 MH

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 46 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 50 of 84BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

3. Carrier Frequency Separation

3.1 Ant1

3.1.1 Test Result

GFSK mode								
Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result					
Lowest	0.996	2/3*20dB BW	PASS					
Middle	0.85	2/3*20dB BW	PASS					
Highest	0.954	2/3*20dB BW	PASS					

Pi/4 DQPSK mode								
Test channel Carrier Frequencies Separation (MHz) Limit (MHz) R								
Lowest	0.998	2/3*20dB BW	PASS					
Middle	0.998	2/3*20dB BW	PASS					
Highest	1	2/3*20dB BW	PASS					

8DPSK mode									
Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result						
Lowest	0.99	2/3*20dB BW	PASS						
Middle	0.994	2/3*20dB BW	PASS						
Highest	0.994	2/3*20dB BW	PASS						

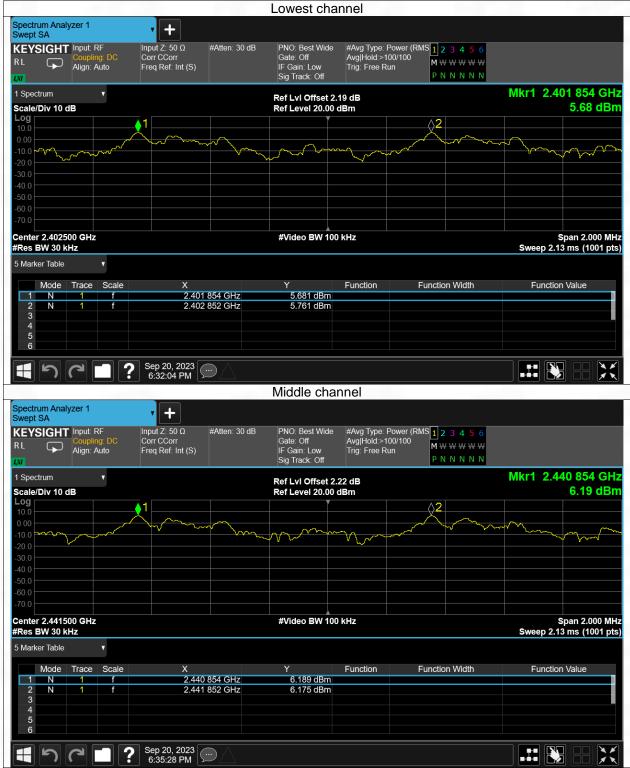
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 51 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 51 of 84

3.1.2 Test Graph

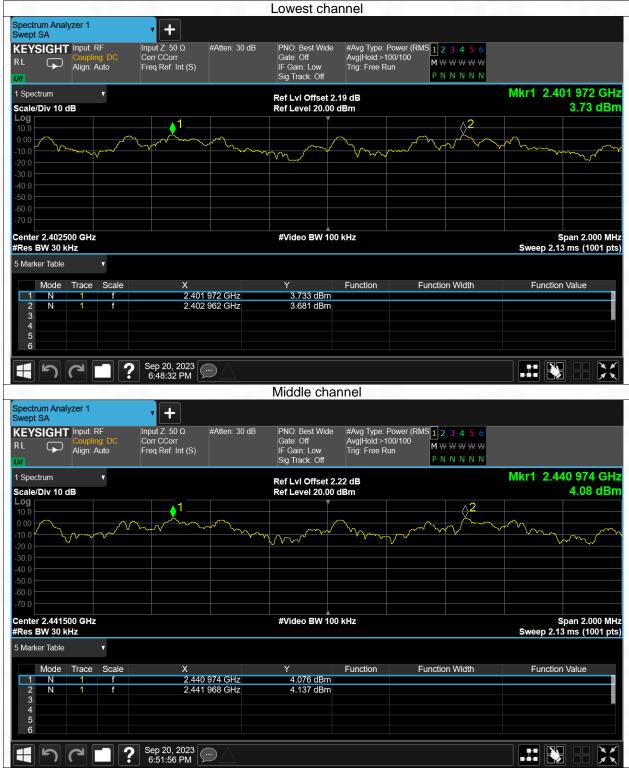
GFSK Modulation

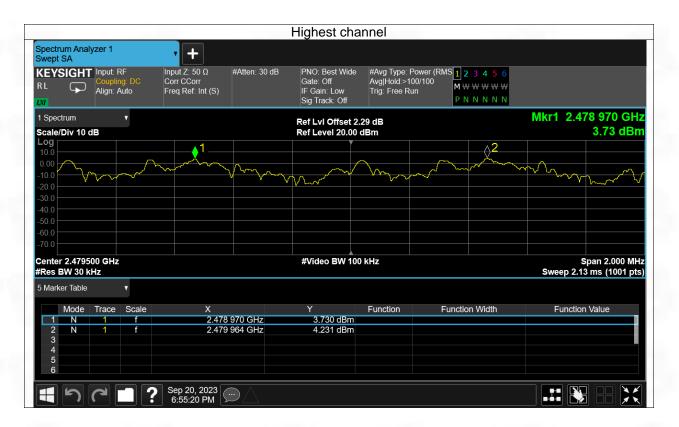
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 53 of 84 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Pi/4DQPSK Modulation


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



8DPSK Modulation

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

4. Number of Hopping Frequencies


4.1 HoppNum

4.1.1 Test Result

Mode	Hopping channel numbers	Limit	Result
GFSK, P/4-DQPSK, 8DPSK	79	15	PASS

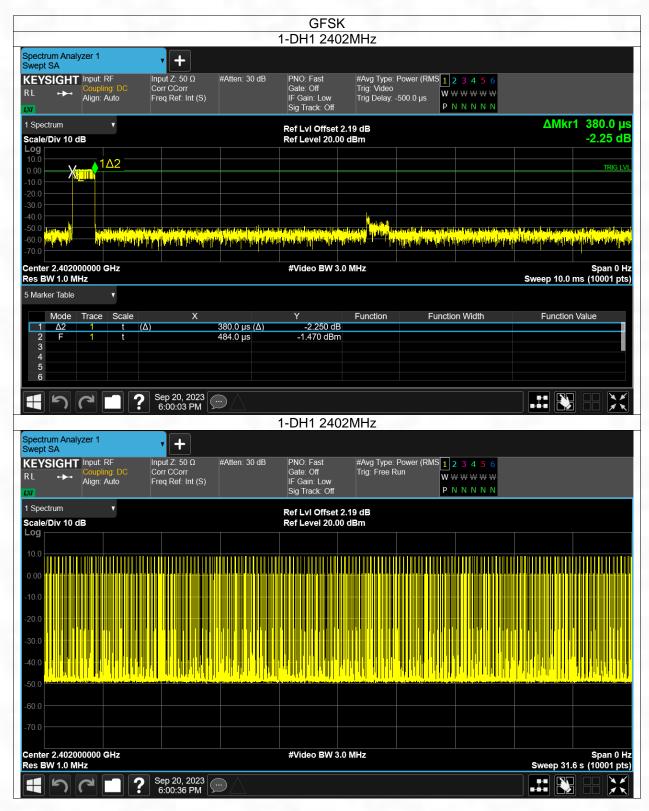
4.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Test Report Number: BTF230918R00302

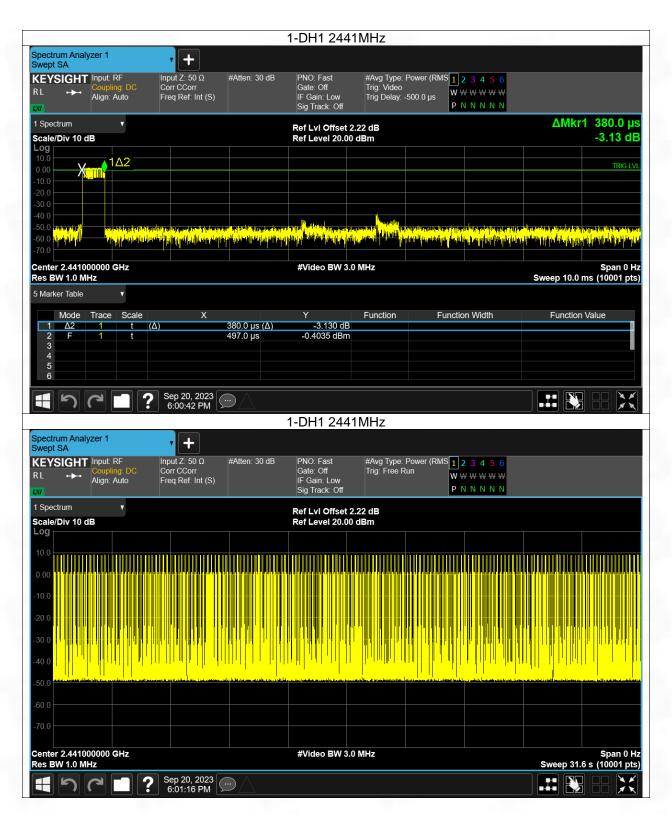
									8DF	Sk	<					
Spectr Swept	rum Anal <u>i</u> SA	yzer 1			• +											
KEY RL	SIGHT	Input: Coupli Align:	ing: DC	Co	ut Z: 50 rr CCori eq Ref: I		#Atten	: 30 dB	PNO: Fast Gate: Off IF Gain: Lo Sig Track: (#Avg Type: Avg Hold:>1 Trig: Free R	Run	23456 1₩₩₩₩₩₩ NNNNNN			
	ctrum /Div 10 c	B	▼						Ref Lvi Off Ref Level 2					Mkr1	2.401	503 0 GHz 2.09 dBm
Log 10.0 - -10.0 - -20.0 - -30.0 - -40.0 - -50.0 - -60.0 - -70.0 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ղ _Ք ՝ _փ երքի	ſvp _t pfvt¥	4 <u>1</u> 44	() () () () () () () () () () () () () ()			p p p	ℯ <u></u> ֈֈℯ℩		՟ՠ֎֍ՠֈՠ	มากริศารรณ เกิดริศารรณ	\4 4\444\444\4444\4444\44444\4444444444		AAAAAA	
	2.40000 BW 100								#Video B\	V 300	0 kHz	1		s		op 2.48350 GHz 0 ms (1001 pts)
5 Mark	ker Table		•													
	Mode	Trace	Scale			Х			Y		Function	Fund	tion Width		Functio	n Value
1 2 3 4 5 6	N N	1	f			2.401 5 2.480 5			2.093 c -1.288 c							
	5	2		? Se	ep 20,∶ 6:45:08	2023 PM	\mathbb{D}									

5. Time of Occupancy (Dwell Time)


5.1 Ant1

5.1.1 Test Result

Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
1-DH1	2402	0.38	121.22	319	31600	400	Pass
1-DH1	2441	0.38	121.22	319	31600	400	Pass
1-DH1	2480	0.381	120.777	317	31600	400	Pass
1-DH3	2402	1.637	252.098	154	31600	400	Pass
1-DH3	2441	1.637	265.194	162	31600	400	Pass
1-DH3	2480	1.637	266.831	163	31600	400	Pass
1-DH5	2402	2.884	294.168	102	31600	400	Pass
1-DH5	2441	2.884	268.212	93	31600	400	Pass
1-DH5	2480	2.885	308.695	107	31600	400	Pass

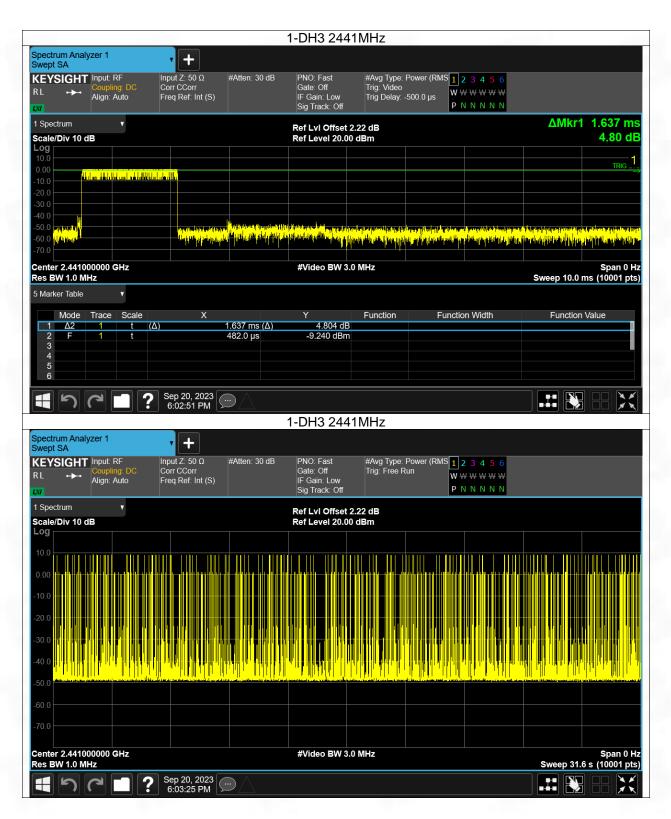


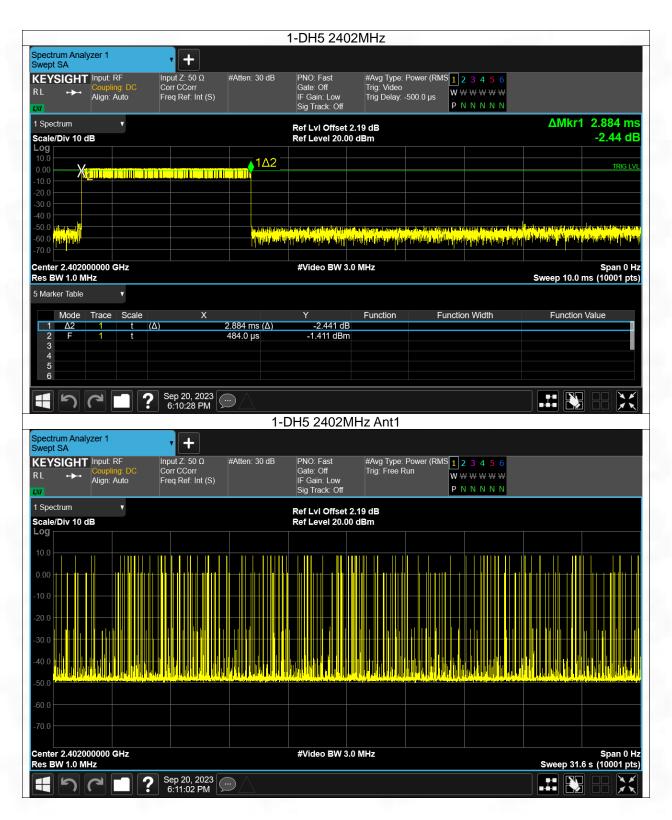
5.1.2 Test Graph

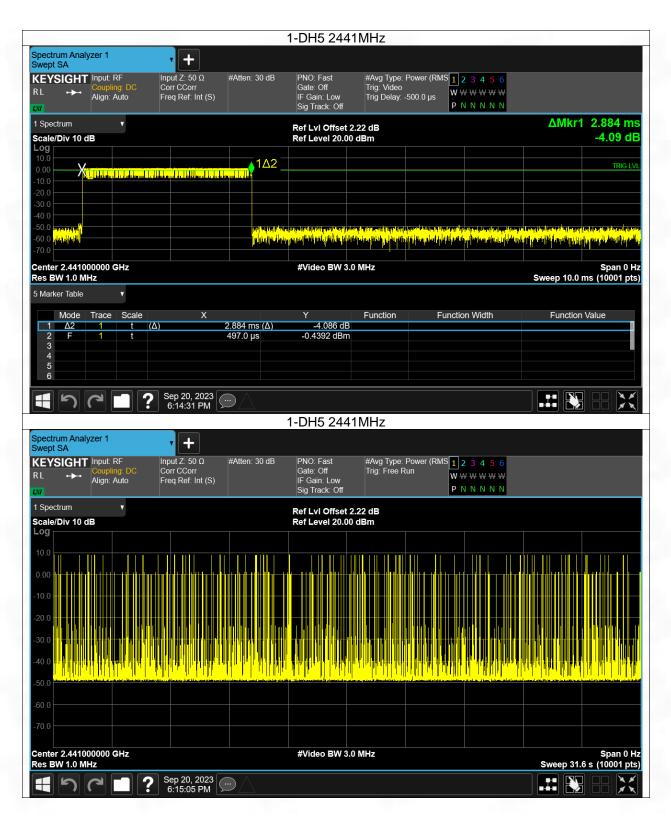


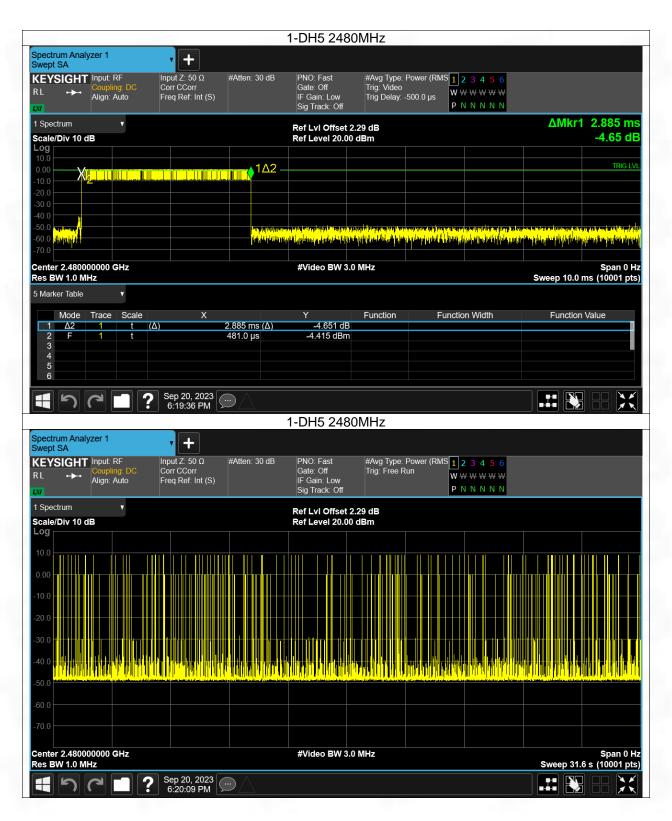
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



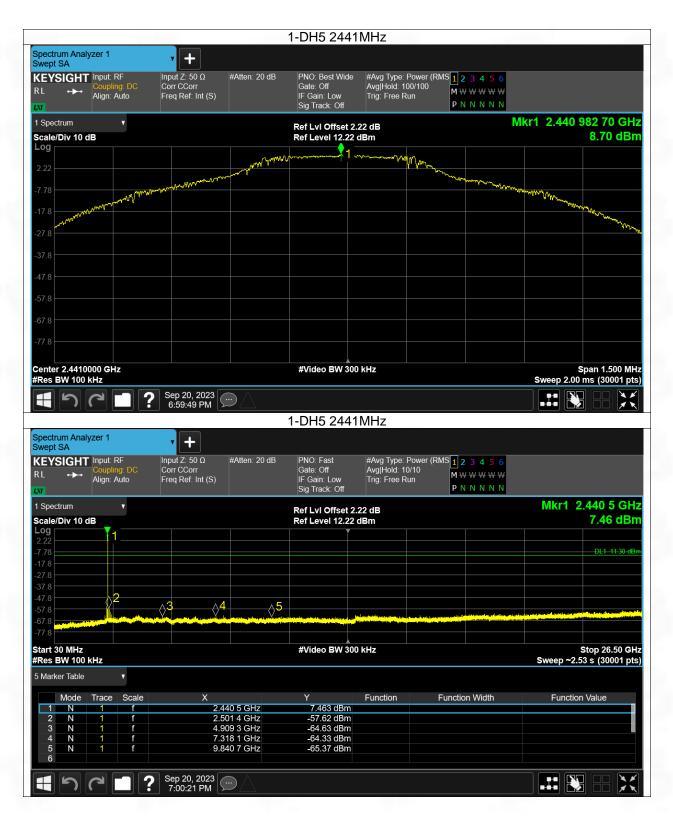




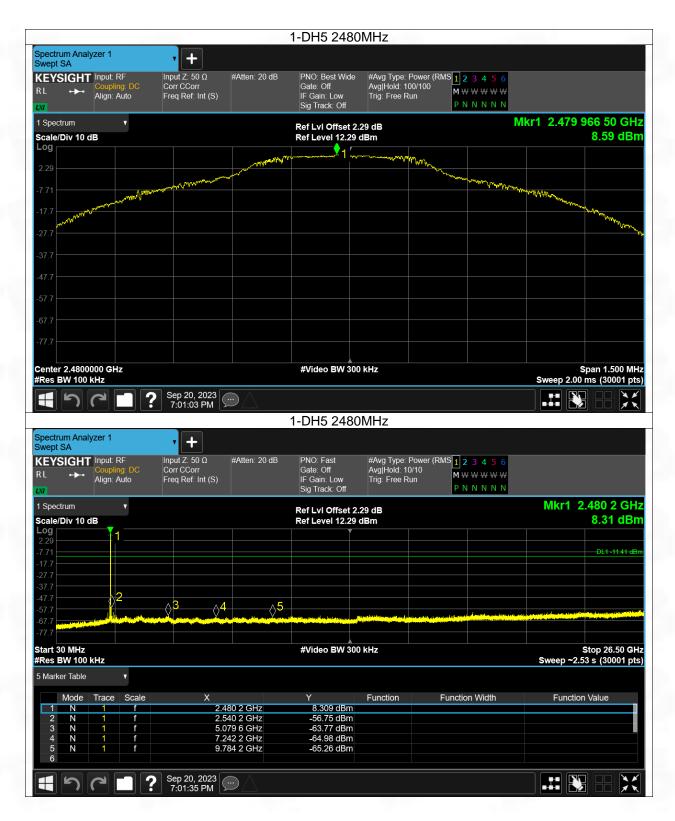




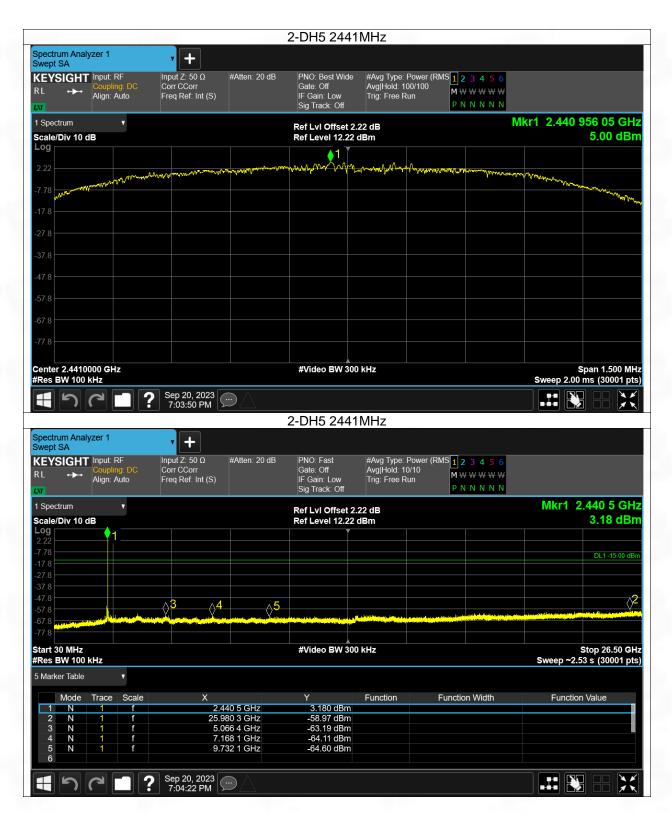
- 6. Unwanted Emissions In Non-restricted Frequency Bands
- 6.1 CSE
- 6.1.1 Test Result(pass)



6.1.2 Test Graph



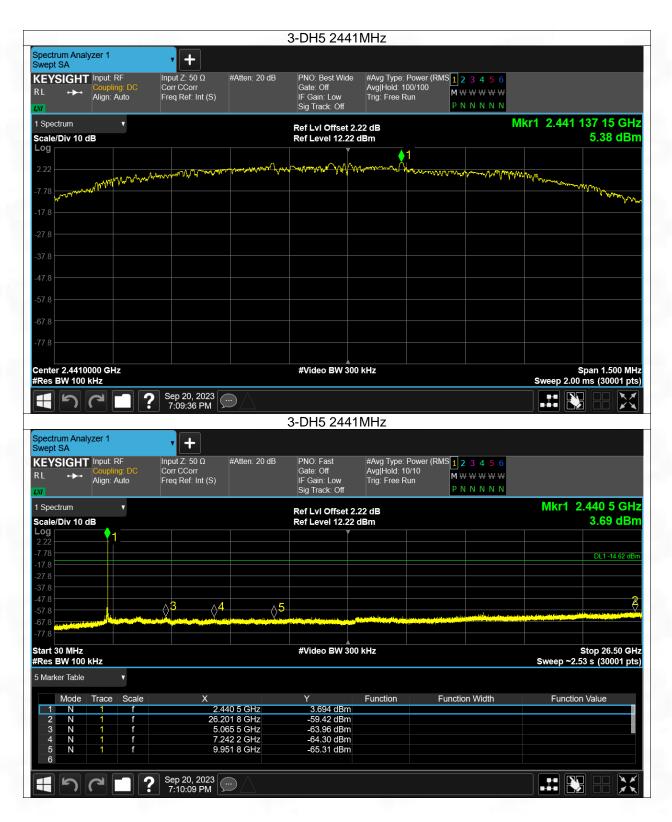
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Pi/4DQPSK mode


2-DH5 2402MHz												
Spectrum Analyzer 1 Swept SA	• +											
KEYSIGHT Input: RF RL ↔ Align: Auto		#Atten: 20 dB PNO: Best Wid Gate: Off IF Gain: Low Sig Track: Off	le #Avg Type: Power (RM Avg Hold: 100/100 Trig: Free Run	IS 1 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩ P N N N N N								
1 Spectrum v		Ref LvI Offset		М	kr1 2.401 984 35 GHz 5.33 dBm							
Scale/Div 10 dB		Ref Level 12.1	19 aBM		5.55 dBii							
2.19	when han many and a start and the	make the second water and	Burren and and and and the second sec	And and a second and a second s	Mary Mary Mary and a second							
-7.81					And the second of the second o							
-17.8												
-37.8												
-47.8												
-57.8												
-67.8												
-77.8												
Center 2.4020000 GHz #Res BW 100 kHz		#Video BW 3	00 kHz		Span 1.500 MHz Sweep 2.00 ms (30001 pts)							
100	Sep 20, 2023 7:02:41 PM											
		2-DH5 240)2MHz									
Spectrum Analyzer 1 Swept SA	• +											
KEYSIGHT Input: RF R L Imput: RF Align: Auto	Input Ζ: 50 Ω # Corr CCorr Freq Ref: Int (S)	#Atten: 20 dB PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (RM Avg Hold: 10/10 Trig: Free Run	IS <mark>1</mark> 23456 M₩₩₩₩₩₩ PNNNNN								
1 Spectrum Scale/Div 10 dB		Ref LvI Offset Ref Level 12.1			Mkr1 2.401 7 GHz 4.51 dBm							
-7.81					DL1 -14.67 dBm							
-27.8												
-47.8 -57.8 -67.8		5		مر من المركز								
-77.8												
Start 30 MHz #Res BW 100 kHz		#Video BW 3	SOU KHZ		Stop 26.50 GHz Sweep ~2.53 s (30001 pts)							
5 Marker Table		×.	Europhieuro E	· · · · · · · · · · · · · · · · · · ·								
Mode Trace Sca 1 N 1 f	2.401	Y 1 7 GHz 4.507 dBm	า	unction Width	Function Value							
2 N 1 f 3 N 1 f		1 5 GHz -58.45 dBm) 8 GHz -64.14 dBm										
4 N 1 f 5 N 1 f 6	7.209	9 5 GHz -64.95 dBn 3 9 GHz -65.59 dBn	n									
	Sep 20, 2023 7:03:14 PM											

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 75 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



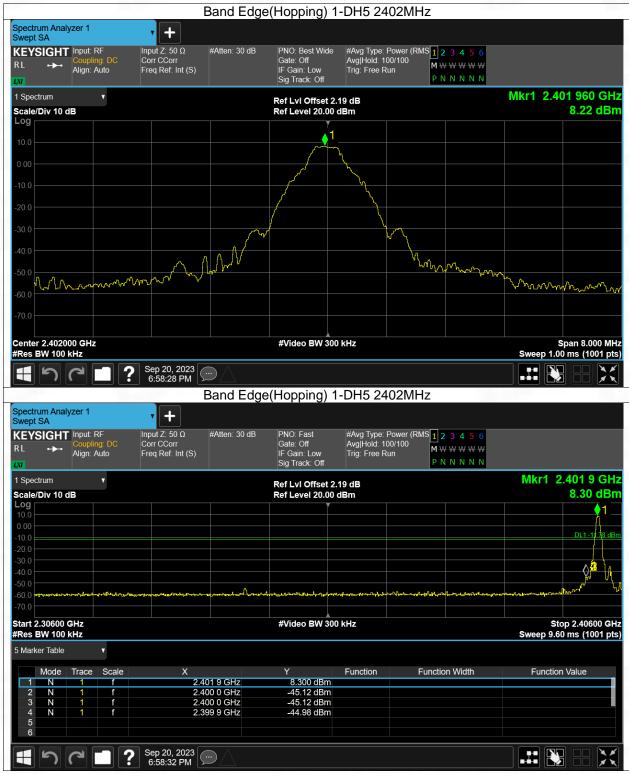
8DPSK mode

				3-DH5 2402	2MHz			
Spectrum An Swept SA	alyzer 1	• +						
RL ++-	Coupling: DC	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 20 dB	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Po Avg Hold: 100/ Trig: Free Run		¥	
1 Spectrum	- -		1	Def Lyl Offert 2			Mkr1 2.402	145 10 GHz
Scale/Div 10				Ref LvI Offset 2 Ref Level 12.19				5.38 dBm
Log				Ĭ	4 1			
2.19		Martin and a state of the state	<mark>፼ገ፠፞፞</mark> ዯኯኯኯኯኯኯኯኯ	www.www.www.	Maria Maria	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	Marma	
7.04	-and man man	and the second s					A. Mar. lander and and and and and and a second	and the second s
-7.81								Mary Mary Mary Mary
-17.8								
-27.8								
07.0								
-37.8								
-47.8								
-57.8								
-67.8								
-77.8								
Center 2.402 #Res BW 10				#Video BW 30	0 kHz			Span 1.500 MHz ms (30001 pts)
4 5		Sep 20, 2023 7:08:10 PM						
				3-DH5 2402	2MHz			
Spectrum An	alvzer 1			0 0110 2402				
Swept SA		• +						
KEYSIGH	Coupling: DC	Input Z: 50 Ω Corr CCorr	#Atten: 20 dB	PNO: Fast Gate: Off	#Avg Type: Po Avg Hold: 10/1	wer (RMS <mark>12345</mark> 6		
RL ↔	Align: Auto	Freq Ref: Int (S)		IF Gain: Low	Trig: Free Run	M ₩ ₩ ₩ ₩		
LXI				Sig Track: Off		PNNNN		
1 Spectrum	•			Ref LvI Offset 2			MKr1 2	.401 7 GHz
Scale/Div 10) dB			Ref Level 12.19	dBm			3.68 dBm
2.19	Ť ¦							
-7.81								DL1 -14.62 dBm
-27.8								
-37.8 -47.8								_
-47.8								<u> </u>
-67.8	And the second s	and the second second						The second s
-77.8								
Start 30 MHz #Res BW 10				#Video BW 30	0 kHz			Stop 26.50 GHz 53 s (30001 pts)
5 Marker Table							Sweep -2.5	5 S (5000 1 pts)
Mode		Х		Y	Function	Function Width	Functior	
Mode 1 N	1 f	2.40	01 7 GHz	7 3.678 dBm	FUNCTION		Function	r value
2 N 3 N	1 f 1 f	26.06	62 4 GHz 76 4 GHz	-58.50 dBm				
4 N	1 f	7.04	1 9 GHz	-64.57 dBm -65.29 dBm				
5 N 6	1 f)9 2 GHz	-65.44 dBm				
ま ち		Sep 20, 2023 7:08:42 PM	$\overline{\mathbf{D}}$					

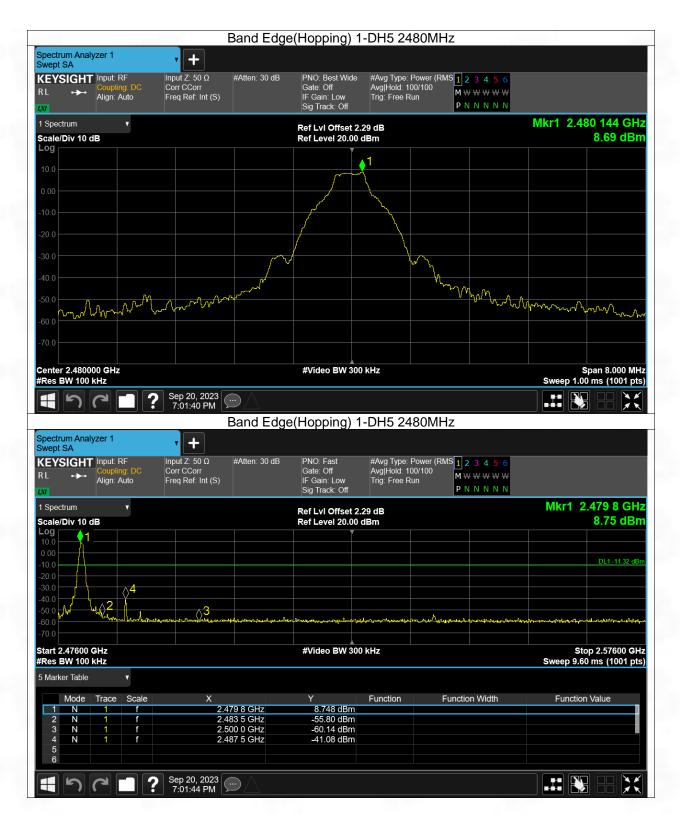
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 78 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230918R00302

6.2 Band Edge


6.2.1 Test Result(Pass)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 81 of 84BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


6.2.2 Test Graph

GFSK Modulation (the worst case)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Test Report Number: BTF230918R00302

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 84 of 84BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China