

Page : 1 of 135 Issued date : June 09, 2005 Issued date : June 14, 2005 FCC ID : EJE-WL0009

SAR EVALUATION REPORT

Report No.: 25FE0221-HO-4-A

A	I
AD	plicant

: FUJITSU LIMITED

Type of Equipment

Personal Computer

Model No.

P1510D

FCC ID

: EJE-WL0009

Test standard

FCC47CFR 2.1093

FCC OET Bulletin 65, Supplement C

Test Result

: Complied (IEEE 802.11a)

Max SAR Measured

(5150-5350MHz Band)

1.05W/kg(Body, 5250MHz Turbo mode)

(5725-5850MHz Band)

0.546 W/kg(Body, 5745MHz Normal mode)

- 1. This test report shall not be reproduced except full or partial, without the written approval of UL Apex Co., Ltd.
- 2. The results in this report apply only to the sample tested.
- 3. This equipment is in compliance with above regulation. We hereby certify that the data contain a true representation of the SAR profile.
- 4. The test results in this test report are traceable to the national or international standards.

Date of test : May 10 and 11, 2005

Tested by

Miyo Ikuta EMC Lab.Head Office

Approved by

9. Maeno

Tetsuo Maeno Site Manager of Head Office EMC Lab.

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 2 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

<u>CONTENTS</u>	PAGE
SECTION 1 : Client information	3
SECTION 2 : Equipment under test	4
SECTION 3: Requirements for compliance testing defined by the FCC	6
SECTION 4 : Dosimetry assessment setup	6
SECTION 5 : Test system specifications	10
SECTION 7 : Measurement uncertainty	17
SECTION 8 : Simulated tissue liquid parameter	18
SECTION 9 : System validation data	20
SECTION 10 : Evaluation procedure	21
SECTION 11 : Exposure limit	22
SECTION 12 : SAR Measurement results (5150-5350MHz)[Normal Mode]	23
SECTION 13 : SAR Measurement results (5725-5850MHz) [Normal mode]	27
SECTION 14 : SAR Measurement results (5150-5350MHz ,5725-5850MHz) [Turbo mode]	31
SECTION 15: Equipment & calibration information	33
SECTION 16: References	34
APPENDIX 1 : Photographs of test setup	
APPENDIX 2 : SAR Measurement data (5150-5350MHz)[Normal mode]	
APPENDIX 3 : SAR Measurement data (5725-5850MHz)[Normal mode]	
APPENDIX 4: SAR Measurement data (5150-5350MHz,5725-5850MHz)[Turbo mode]	
APPENDIX 5: Validation Measurement data	
APPENDIX 6: System Validation Dipole (D5GHzV2,S/N: 1020)	104
APPENDIX 7 : Dosimetric E-field Probe Calibration (EX3DV4, S/N:3540)	
APPENDIX 8: The 5-6GHz Extension (SPEAG information)	
APPENDIX 0 · Power drift massurement	13/

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 135 Issued date : June 09, 2005 Revised date : June 14, 2005 FCC ID : EJE-WL0009

SECTION 1: Client information

Company Name : FUJITSU LIMITED

Brand Name : FUJITSU

Address : 1405 Ohmaru, Inagishi, Tokyo 206-8503, Japan

Telephone Number : 81-42-370-7630

Facsimile Number : 81-42-370-7588

Contact Person : Tsuyoshi Uchihara

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 4 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

SECTION 2 : Equipment under test

2.1 Identification of EUT

Applicant : FUJITSU LIMITED

Type of Equipment : Personal Computer

Model No. : P1510D

Serial No. : R5100002

Country of Manufacture : Japan

Receipt Date of Sample : January 17, 2005

Condition of EUT : Engineering prototype

(Not for sale: This sample is equivalent to mass-produced items.)

Size of EUT(L*W:H) : 160*230*35

Category Identified : Portable device

Supply : DC16.0V / 2.5A

Battery : This PC (model : P1510D) has two types.

Standard Battery (Li ion Battery) Model name CP229720 Serial No. P1510D_Battery_3_01 V / mAh 10.8Vdc / 2600mAh Option Battery(Li ion Battery) Model name CP229725 Serial No. P1510D_Battery_6_01 V / mAh 10.8Vdc / 5200mAh

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 5 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

Photo of EUT

Note type use

Tablet type use

2.2 Product description of Wireless LAN module

This EUT has the Wireless LAN module of IEEE.802.11a/b/g. The description only of the IEEE.802.11a mode is shown below.

Tx Frequency : 5180-5320MHz (5150-5250MHz & 5250-5350MHz Band)

5745-5825MHz (5725-5850MHz Band)

Modulation : OFDM

Rating : DC3.3V

Max.Output Power Tested

(5210MHz) : 13.34 dBm Peak Conducted

Max.Output Power Tested

(5745MHz) : 20.03 dBm Peak Conducted

2.3 Product description of Antenna

Antenna Type : Monopole Antenna(M/N:YCE-5008)

Antenna Connector : U.FL

Antenna Gain : 2.4GHz(Max.) Main -4.78dBi, Aux -1.49dBi

5GHz(Max.) Main 0.90dBi, Aux -0.97dBi

(These antenna gains are values in which antenna were mounted to the PC.)

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 135
Issued date : June 09, 2005
Revised date : June 14, 2005
FCC ID : EJE-WL0009

SECTION 3: Requirements for compliance testing defined by the FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

1 Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).

2 IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

SECTION 4 : Dosimetry assessment setup

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than +/- 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probe EX3DV4, SN: 1020 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [2] with accuracy of better than +/-10%. The spherical isotropy was evaluated with the procedure described in [3] and found to be better than +/-0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEEE P1528 and CENELEC EN50361.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 135 Issued date : June 09, 2005 Revised date : June 14, 2005 FCC ID : EJE-WL0009

4.1 Configuration and peripherals

The DASY4 system for performing compliance tests consist of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows 2000.
- 8. DASY4 software.
- 9. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 135 Issued date : June 09, 2005 Revised date : June 14, 2005 FCC ID : EJE-WL0009

4.2 System components

4.2.1 EX3DV4 Probe Specification

Construction:

Calibration:

Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycol ether)

Basic Broad Band calibration in air: 10-3000 MHz Conversion Factors (CF) for HSL900 and HSL 1800 Additional CF for other liquids and frequencies upon request

Frequency:

10 MHz to > 6GHz; Linearity: +/-0.2 dB(30 MHz to 3 GHz)

Directivity:

+/-0.3 dB in HSL (rotation around probe axis) +/-0.5 dB in tissue material (rotation normal probe axis)

Dynamic Range:

10uW/g to > 100 mW/g;Linearity: +/-0.2 dB(noise: typically < 1uW/g)

Dimensions:

Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

Application:

Highprecision dosimetric measurement in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6GHz with precision of better 30%.

EX3DV4 E-field Probe

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 9 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

4.2.2 SAM Phantom

Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC EN 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness:

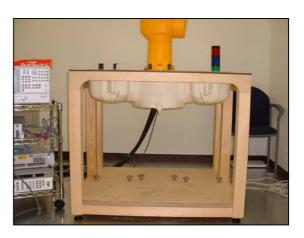
2 +/-0.2 mm

Filling Volume:

Approx. 25 liters

Dimensions:

(H x L x W): 810 x 1000 x 500 mm


In combination with the SAM Twin Phantom V4.0, the Mounting Device enables the rotation of the mounted transmitter

in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations.

To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Device holder couldn't be used at this SAR measurement.

SAM Phantom

Device Holder

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 10 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

SECTION 5 : Test system specifications

Robot RX60L

Number of Axes : 6
Payload : 1.6 kg
Reach : 800mm
Repeatability : +/-0.025mm
Control Unit : CS7M
Programming Language : V+

Manuafacture : Stäubli Unimation Corp. Robot Model: RX60

DASY4 Measurement server

Features: 166MHz low power Pentium MMX

32MB chipdisk and 64MB RAM Serial link to DAE (with watchdog supervision)

16 Bit A/D converter for surface detection system

Two serial links to robot (one for real-time communication which is supervised

by watchdog)

Ethernet link to PC (with watchdog supervision)

Emergency stop relay for robot safety chainTwo expansion slots for future

applications

Manufacture : Schimid & Partner Engineering AG

Data Acquisition Electronic (DAE)

Features : Signal amplifier, multiplexer, A/D converter and control logic

Serial optical link for communication with DASY4 embedded system (fully remote controlled) 2 step probe touch detector for mechanical surface detection

and emergency robot stop (not in -R version)

Measurement Range : $1 \mu V$ to > 200 mV (16 bit resolution and two range settings: 4mV,

400mV)

Input Offset voltage : $< 1 \mu V$ (with auto zero)

Input Resistance : $200 \text{ M}\Omega$

Battery Power : > 10 h of operation (with two 9 V battery)

Dimension : 60 x 60 x 68 mm

Manufacture : Schimid & Partner Engineering AG

Software

Item : Dosimetric Assesment System DASY4

Type No. : SD 000 401A, SD 000 402A

Software version No. : 4.5

Manufacture / Origin : Schimid & Partner Engineering AG

E-Field Probe

 Model
 :
 EX3DV4

 Serial No.
 :
 1020

Construction : Symmetrical design with triangular core

Frequency: 10 MHz to 6 GHz

Linearity : +/-0.2 dB (30 MHz to 3 GHz)

Manufacture : Schimid & Partner Engineering AG

Phantom

Type : SAM Twin Phantom V4.0

Shell Material : Fiberglass
Thickness : 2.0 +/-0.2 mm
Volume : Approx. 25 liters

Manufacture : Schimid & Partner Engineering AG

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 11 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

SECTION 6 : Test setup of EUT

6.1 Photographs of test setup

When users operate or carry this EUT, it could be considered to touch or get close to their bodies.

This EUT can be used also as a Tablet PC. In order to assume these situations, we performed the test at the following positions. Please refer to "APPENDIX 1" for more details.

1.Main Front: The test was performed in touch with main front to the flat section of SAM phantom.

2.Aux Front : The test was performed in touch with aux front to the flat section of SAM phantom.

3.Main Back: The test was performed in distanced 15mm with main back to the flat section of SAM phantom.

4.Aux Back : The test was performed in distanced 15mm with aux back to the flat section of SAM phantom.

5.Main Bottom: The test was performed in touch with main bottom to the flat section of SAM phantom.

6.Aux Bottom: The test was performed in touch with aux bottom to the flat section of SAM phantom.

7.Main Side : The test was performed in touch with main side to the flat section of SAM phantom.

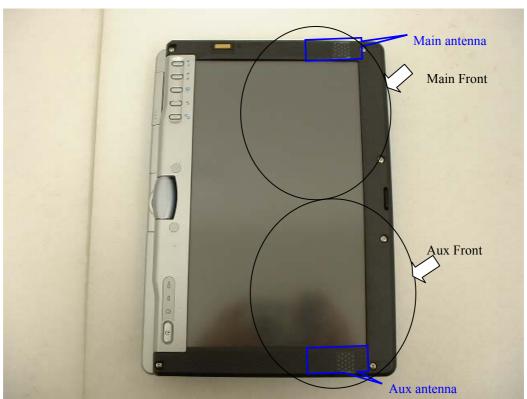
8. Aux Side : The test was performed in touch with aux side to the flat section of SAM phantom.

"Front" and "Side" positions are assumed when users operate in the tablet type use.

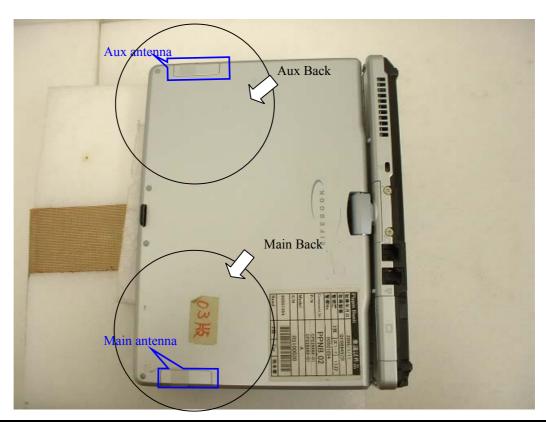
When users operate or carry this EUT, it is can be touched to the user's Body. Therfore,"Front"and "Side" positions were tested in the touch to the phantom.

However, "Back" position is assumed when users operate in the note type use. Therefore "Back" position was tested in the distance15mm from the phantom.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


 Page
 : 12 of 135

 Issued date
 : June 09, 2005


 Revised date
 : June 14, 2005

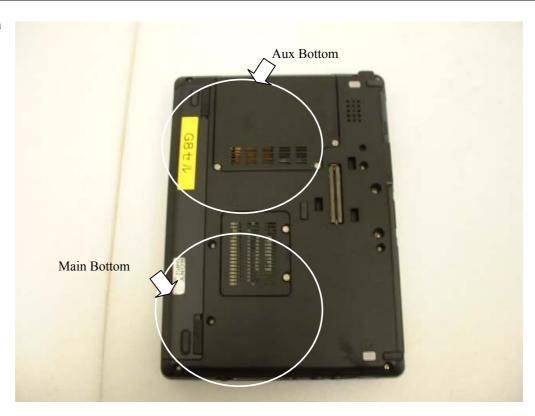
 FCC ID
 : EJE-WL0009

1. Front

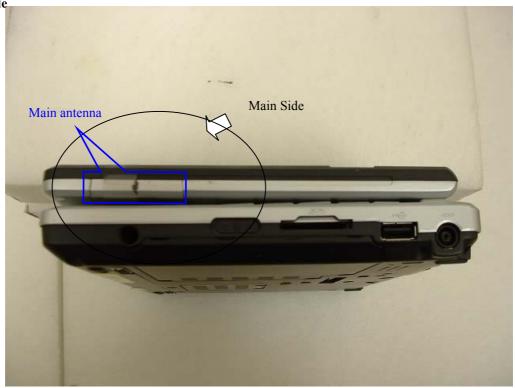
2. Back

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


 Page
 : 13 of 135

 Issued date
 : June 09, 2005


 Revised date
 : June 14, 2005

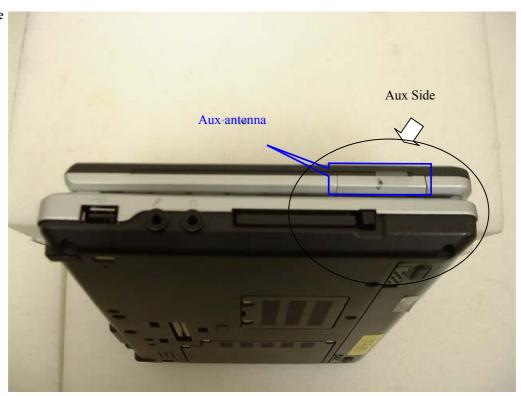
 FCC ID
 : EJE-WL0009

3. Bottom

4. Main Side

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


 Page
 : 14 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

5. Aux Side

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 15 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

6.2 EUT Tune-up procedure

The Wireless LAN module has IEEE.802.11a/b/g.

The frequency range and the modulation used in the testing of IEEE.802.11a are shown as a following.

1. IEEE 802.11a

Frequency band : 5150-5350MHz

Channel : 36ch(5180MHz),52ch(5260MHz),64ch(5320MHz)

Modulation : OFDM(BPSK,QPSK,16QAM,64QAM)

Crest factor : 1

Frequency band : 5725-5850MHz

Channel number : 149ch(5745MHz),157ch(5785MHz),165ch(5825MHz)

Modulation : OFDM(BPSK,QPSK,16QAM,64QAM)

Crest factor : 1

2. IEEE 802.11a / Turbo mode

Frequency band : 5150-5350MHz

Channel number : 42ch(5210MHz),50ch(5250MHz),58ch(5290MHz)

Modulation : OFDM(BPSK,QPSK,16QAM,64QAM)

Crest factor : 1

Frequency band : 5725-5850MHz

Channel number : 152ch(5760MHz),160ch(5800MHz)
Modulation : OFDM(BPSK,QPSK,16QAM,64QAM)

Crest factor : 1

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 16 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

6.3 Method of measurement

1. Normal mode

- Step1. The data rate in the higher peak power of each modulation was decided, then the worst modulation was searched in the SAR testing.
- Step2. The changing of the option Battery

 The test was performed at worst modulation of Step1.
- Step3. The searching of the worst position

 This test was performed at the worst modulation of Step1.
- Step4. The changing of the frequency
 This test was performed at the worst conditions of Step3.

2. Turbo mode

This test in turbo mode test was performed at the worst conditions (Antenna, Modulation and Position) in Normal mode because the difference between Turbo mode and Normal mode was 2 channels transmission at the same time or 1 channel transmission.

3. Distance between PC and Phantom

The measurement was performed with the distance 5mm and 10mm to check if the distance 0mm may not have the worst value st the conditions of the highest SAR value of this EUT. As result, the distance 0mm hadthe worst value.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 17 of 135
Issued date : June 09, 2005
Revised date : June 14, 2005
FCC ID : EJE-WL0009

SECTION 7: Measurement uncertainty

7.1 Uncertainty of 802.11a modes testing

The uncertainty budget has been determined for the DASY4 measurement system according to the APPENDIX 8

documents and is given in the following Table.

Error Description	Uncertainty	Probability	divisor	(ci)1	Standard	vi
	value ± %	distribution		1g	Uncertainty	or
					(1g)	veff
Measurement System						
Probe calibration	±4.8	Normal	1	1	±4.8	∞
Axial isotropy of the probe	±4.7	Rectangular	$\sqrt{3}$	$(1-c_p)^{1/2}$	±1.9	∞
Spherical isotropy of the probe	±9.6	Rectangular	$\sqrt{3}$	$(cp)^{1/2}$	±3.9	∞
Boundary effects	±1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Probe linearity	±4.7	Rectangular	$\sqrt{3}$	1	±2.7	∞
Detection limit	±1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Readout electronics	±1.0	Normal	1	1	±1.0	∞
Response time	±0.8	Rectangular	$\sqrt{3}$	1	±0.5	∞
Integration time	±2.6	Rectangular	$\sqrt{3}$	1	±1.5	∞
RF ambient conditions	±3.0	Rectangular	$\sqrt{3}$	1	±1.7	∞
Mech. constraints of robot	±0.4	Rectangular	$\sqrt{3}$	1	±0.2	∞
Probe positioning	±2.9	Rectangular	$\sqrt{3}$	1	±1.7	∞
Extrap. and integration	±1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Test Sample Related						
Device positioning	±2.9	Rectangular	$\sqrt{3}$	1	±2.9	42
Device holder uncertainty	±3.6	Rectangular	$\sqrt{3}$	1	±3.6	7
Power drift	±10.0	Rectangular	$\sqrt{3}$	1	±5.8	∞
Phantom and Setup						
Phantom uncertainty	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid conductivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid conductivity (meas.)	±5.0	Normal	1	0.64	±2.2	∞
Liquid permittivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid permittivity (meas.)	±5.0	Normal	1	0.6	±2.5	∞
					.12.00	
Combined Standard Uncertainty	y				±13.89	
Expanded Uncertainty (k=2)					±27.8	

The test result shows that the power drift exceeded 5%. Therefore, the uncertainty of power drift expanded to 10%. (Refer to the APPENDIX 9) However, the extended uncertainty (k=2) of a test is less than 30%.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 18 of 135
Issued date : June 09, 2005
Revised date : June 14, 2005
FCC ID : EJE-WL0009

SECTION 8 : Simulated tissue liquid parameter

8.1 Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the HP85070D dielectric probe kit. The dielectric parameters measurement are reported in each correspondent section.

8.1.1 Muscle 5GHz

Type of liquid : Muscle 5GHz
Ambient temperature (deg.c.) : 25.0(May 10 and 11)
Relative Humidity (%) : 35(May 10),36(May 11)

Liquid depth (cm) : 15.2

Measured By : Miyo Ikuta

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS										
Date	Frequency	Liquid Ten	np [deg.c]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]			
Date	[MHz]	Before	After								
10-May	5200	25.0	25.0	Relative Permittivity Er	49.0	46.8	-4.5	+/-5			
10-May	3200	23.0	23.0	Coductivity σ [mho/m]	5.30	5.53	4.3	+/-5			
10-May	5800	25.0	25.0	Relative Permittivity Er	48.2	45.8	-5.0	+/-5			
10-iviay	3800	3800 23.0	23.0	Coductivity σ [mho/m]	6.00	6.29	4.8	+/-5			
11-May	Iav 5800 25.0 25.0		25.0	Relative Permittivity Er	48.2	45.9	-4.8	+/-5			
11-iviay	3800	23.0	23.0	Coductivity σ [mho/m]	6.00	6.3	5.0	+/-5			

8.2 Simulated Tissues Composition of 5GHz

Ingredient	MIXTURE(%)						
	Head 5GHz	Muscle 5GHz					
Water	64.0	78.0					
Mineral Oil	18.0	11.0					
Emulsifiers	15.0	9.0					
Additives and salt	3.0	2.0					

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 19 of 135
Issued date : June 09, 2005
Revised date : June 14, 2005
FCC ID : EJE-WL0009

8.3 Decision on Simulated Tissues of 5200MHz

In the current standards (e.g., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given at 3000MHz and 5800MHz. As an intermediate solution, dielectric parameters for the frequencies between 5000to 5800 MHz were obtained using linear interpolation.

Therefore the dielectric parameters of 5200MHz were decided as following.

(5200MHz Body Tissue/ Relative Permittivity ε r: **49.0**, Conductivity σ : **5.30**)

f (MHz)	Head Tissue		Body	Tissue	Reference
	εr	σ [mho/m]	εr	σ [mho/m]	
3000	38.5	2.40	52.0	2.73	Standard
5800	35.3	5.27	48.2	6.00	Standard
5000	36.2	4.45	49.3	5.07	Interpolated
5100	36.1	4.55	49.1	5.18	Interpolated
5200	36.0	4.66	49.0	5.30	Interpolated
5300	35.9	4.76	48.9	5.42	Interpolated
5400	35.8	4.86	48.7	5.53	Interpolated
5500	35.6	4.96	48.6	5.65	Interpolated
5600	35.5	5.07	48.5	5.77	Interpolated
5700	35.4	5.17	48.3	5.88	Interpolated

Standard and interpolated dielectric parameters for head and body tissue simulating liquidin the frequency range 3000 to 5800MHz.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 20 of 135

 Issued date
 : June 09, 2005

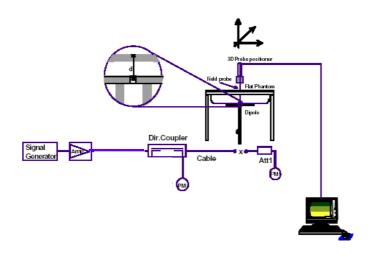
 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

SECTION 9: System validation data

The target values of 5GHz were not defied by IEEE 1528. So, the target values were made into the calibration values of SPEAG. And each of the validation results of 5200MHz and 5800MHz checked (Evaluation of muscle) that it was within +/-10% as compared with the calibration values of SPEAG. The validation results are in the table below. Please refer to APPENDIX5.

Type of liquid : Muscle 5GHz


Ambient temperature (deg.c.) : 25.0(May 10 and 11)
Relative Humidity (%) : 35(May 10),36(May 11)
Dipole : D5GHzV2 SN:1020

Power : **250mW**

Measured By : Miyo Ikuta

	Modeled By . Miyo Rau											
	SYSTEM PERFORMANCE CHECK											
								Systen	n dipole va	alidation ta	rget &	
		Liquid	(Muscle 5	100-5800	MHz)				meas	sured		
				Relative P	ermittivity	Condu	activity			Deviation	Limit	
		Liquid Ter	np [deg.c.]	¥	er	σ [m	σ [mho/m]		g [W/kg]	[%]	[%]	
Date	Frequency	Before	After	Target	Measured	Target	Measured	Target	Measured			
10-May	5200	24.5	24.5	49.0	46.8	5.30	5.53	20.5	22.0	7.3	+/-10	
10-May	5800	24.0	24.0	49.0	45.8	5.30	6.29	19.6	21.2	8.2	+/-10	
11-May	5800	25.0	24.9	48.2	45.9	6.00	6.30	19.6	21.1	7.7	+/-10	

Note: Please refer to Attachment for the result representation in plot forma

5100-5800MHz Systemperformance check setup

Test system for the system performance check setup diagram

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 21 of 135
Issued date : June 09, 2005
Revised date : June 14, 2005
FCC ID : EJE-WL0009

SECTION 10: Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the wireless LAN antenna and the horizontal grid spacing was 10mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 21mm was assessed by measuring 7 x 7 x 8 points. And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- 1. The data at the surface were extrapolated, since the center of the dipoles is 1 mm mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 22 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

SECTION 11: Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

	Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
I	0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average	Spatial Peak	Spatial Peak
(averaged over the whole body	(averaged over any 1g of tissue)	(hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 23 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

SECTION 12 : SAR Measurement results (5150-5350MHz)[Normal Mode]

12.1 Main Antenna

12.1.1 Conducted power of Main antenna

[IEEE802.11a 5150-5350MHz : Main Antenna(by the data rate)]									
Modulation	Data rate	S/A	Cable	Atten.	Result	Converted			
		Reading	Loss						
	[Mbps]	[dBm]	[dB]	[dB]	[dBm]	[mW]			
BPSK	6	2.00	1.11	10.00	13.11	20.46			
DISK	9	2.01	1.11	10.00	13.12	20.51			
QPSK	12	2.13	1.11	10.00	13.24	21.09			
Qrsk	18	2.13	1.11	10.00	13.24	21.09			
160AM	24	2.07	1.11	10.00	13.18	20.80			
16QAM	36	2.09	1.11	10.00	13.20	20.89			
64QAM	48	2.00	1.11	10.00	13.11	20.46			
04QAW	54	2.17	1.11	10.00	13.28	21.28			

[The worst data rate in SAR result]

1										
[IEEE802.11a 5150-5350MHz: Main Antenna(9Mbps)]										
Ch	Freq.	S/A	Cable	Atten.	Result	Converted				
		Reading	Loss							
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
36	5180.0	1.39	0.94	10.00	12.33	17.12				
52	5260.0	2.01	1.11	10.00	13.12	20.49				
64	5320.0	1.87	1.04	10.00	12.91	19.54				

[IEEE802.11a 5150-5350MHz: Main Antenna(54Mbps)]										
Ch	Freq.	S/A	Cable	Atten.	Result	Converted				
		Reading	Loss							
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
36	5180.0	1.52	0.94	10.00	12.46	17.64				
52	5260.0	2.17	1.11	10.00	13.28	21.28				
64	5320.0	1.99	1.04	10.00	13.03	20.09				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 24 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

12.1.2 Body 5150-5350MHz SAR of Main antenna [Normal mode]

Relative Humidity (%) : 35 Crest factor : 1

Date : May 10,2005 Measured By : Miyo Ikuta

ВОГ	OY SAR MI	EASURE	EMENT RESULTS	OF MAI	N ANTE	NNA(IEEE802.1	1a 5150-53	50MHz	NORM	AL MODE)
Frequency			Modulation	Phantom Section	EUT Set-ı	p Conditions		Liquid Temp.[d	leg.c]	SAR(1g) [W/kg]
Band	Channel	[MHz]			Antenna	Position	Separation [mm]	Before	After	Maximum value of multi-peak
5150- 5350MH:	z Step1 M	odulatio	n search	<u>-</u>	•			•		
	52	5260	BPSK(9Mbps)	Flat	Main	Main side	0	24.8	24.8	1.04
	52	5260	QPSK(12Mbps)	Flat	Main	Main side	0	24.7	24.5	0.989
	52	5260	16QAM(36Mbps)	Flat	Main	Main side	0	24.5	24.5	0.988
	52	5260	64QAM(54Mbps)	Flat	Main	Main side	0	24.4	24.4	1.01
	Step2 Ba	ittery ch	ange (option battery	/) *1						
	52	5260	BPSK(9Mbps)	Flat	Main	Main side	0	24.4	24.4	1.03
	Step3 Po	sition se	arch			•	•	•		•
	52	5260	BPSK(9Mbps)	Flat	Main	Main Front	0	24.4	24.4	0.497
	52	5260	BPSK(9Mbps)	Flat	Main	Main Back	15	24.4	24.4	0.047
	52	5260	BPSK(9Mbps)	Flat	Main	Main Bottom	0	24.4	24.4	0.026
	Step4 Fr	equency	Change							
	36	5180	BPSK(9Mbps)	Flat	Main	Main side	0	24.4	24.4	0.736
	64	5320	BPSK(9Mbps)	Flat	Main	Main side	0	24.4	24.4	0.883
ANSI / II	EEE C95.1	1992 - SA	AFETY LIMIT					Body S	SAR: 1.6	6 W/kg
Spatial P	eak Uncont	rolled E	xposure / General P	opulatio	n			(avera	ged over	r 1 gram)

^{*1}

This EUT has two types of batteries.(The same voltage, only difference of capacity)

The comparison test was performed in the same conditions (Main side / Mid ch / worst modulation) on two types of batteries. As a result, the SAR value of a standard battery was a little higher than the SAR value of the option battery. Therefore, the other tests were performed with a standard battery.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 25 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

12.2 Aux Antenna

12.2.1 Conducted power of Aux Antenna

[IEEE802.1	1a 5150-5	350MHz:	Aux A	ntenna (by 1	the data rat	e)]
Modulation	Data rate	S/A	Cable	Atten.	Result	Converted
		Reading	Loss			
	[Mbps]	[dBm]	[dB]	[dB]	[dBm]	[mW]
BPSK	6	1.65	1.11	10.00	12.76	18.88
DI SIX	9	1.71	1.11	10.00	12.82	19.14
QPSK	12	1.72	1.11	10.00	12.83	19.19
QLSIX	18	1.68	1.11	10.00	12.79	19.01
16QAM	24	1.72	1.11	10.00	12.83	19.19
10QAW	36	1.73	1.11	10.00	12.84	19.22
64QAM	48	1.65	1.11	10.00	12.76	18.88
04QAW	54	1.75	1.11	10.00	12.86	19.32

[IEEE802.1	[IEEE802.11a 5150-5350MHz: Aux Antenna(54Mbps)]											
Ch	Freq.	S/A	Cable	Atten.	Result	Converted						
		Reading	Loss									
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]						
36	5180.0	1.30	0.94	10.00	12.24	16.75						
52	5260.0	1.75	1.11	10.00	12.86	19.32						
64	5320.0	1.18	1.04	10.00	12.22	16.68						

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 26 of 135
Issued date : June 09, 2005
Revised date : June 14, 2005
FCC ID : EJE-WL0009

12.2.2 Body 5150-5350MHz SAR of Aux antenna [Normal mode]

: P1510D Liquid Depth (cm) : 15.2 Model : R5100002 Parameters $\varepsilon_r = 46.8, \sigma = 5.53$ Serial No. Ambient temperature (deg.c.) : **25.0** Modulation : OFDM Relative Humidity (%) : 34 Crest factor : 1

Date : May 10,2005 Measured By : Miyo Ikuta

В	ODY SAR	MEASU	REMENT RESULTS	OF AUX	ANTENNA	(IEEE802.11	a 5150-5350	MHz NO	RMAL M	IODE)
Frequency			Modulation	Phantom Section	EUT Set-u	p Conditions		Liquid Temp.[deg		SAR(1g) [W/kg]
Band	Channel	[MHz]			Antenna	Position	Separation [mm]	Before		Maximum value of multi-peak
5150- 5350MHz	Step1 Mo	odulatio	n search						•	
	52	5260	BPSK(9Mbps)	Flat	Aux	Aux Side	0	24.5	24.5	0.917
	52	5260	QPSK(12Mbps)	Flat	Aux	Aux Side	0	24.5	24.5	0.850
	52	5260	16QAM(36Mbps)	Flat	Aux	Aux Side	0	24.5	24.5	0.863
	52	5260	64QAM(54Mbps)	Flat	Aux	Aux Side	0	24.5	24.5	0.938
	Step3 Po	sition se	arch							
	52	5260	BPSK(54Mbps)	Flat	Aux	Aux Front	0	24.4	24.3	0.391
	52	5260	BPSK(54Mbps)	Flat	Aux	Aux Back	15	24.0	24.0	0.026
	52	5260	BPSK(54Mbps)	Flat	Aux	Aux Bottom	0	24.5	24.5	0.019
	Step4 Fr	equency	Change							
	36	5180	BPSK(54Mbps)	Flat	Aux	Aux Side	0	24.5	24.5	0.477
	64	5320	BPSK(54Mbps)	Flat	Aux	Aux Side	0	24.4	24.4	0.591
ANSI / IEEF Spatial Peak			TY LIMIT sure / General Populat	ion				Body SAI (averaged		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 27 of 135
Issued date : June 09, 2005
Revised date : June 14, 2005
FCC ID : EJE-WL0009

SECTION 13: SAR Measurement results (5725-5850MHz) [Normal mode]

13.1 Main Antenna

13.1.1 Conducted power of Main antenna

[IEEE802.1	11a 5725-	-5850MHz: N	Iain Ante	nna (by th	e data rate)]	
Modulation	Data rate	S/A	Cable	Atten.	Result	Converted
		Reading	Loss			
	[Mbps]	[dBm]	[dB]	[dB]	[dBm]	[mW]
BPSK	6	7.67	1.16	10.00	18.83	76.42
DISK	9	7.45	1.16	10.00	18.61	72.65
QPSK	12	7.37	1.16	10.00	18.53	71.32
Qrsk	18	7.47	1.16	10.00	18.63	72.98
16QAM	24	7.85	1.16	10.00	19.01	79.66
IOQAM	36	7.66	1.16	10.00	18.82	76.25
64QAM	48	7.72	1.16	10.00	18.88	77.31
04QAWI	54	8.11	1.16	10.00	19.27	84.57

[The worst data rate in SAR result]

[IEEE802.	[IEEE802.11a 5725-5850MHz: Main Antenna(54Mbps)]											
Ch Freq. S/A Cable Atten. Result Converte												
		Reading	Loss									
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]						
149	5745.0	8.83	1.20	10.00	20.03	100.67						
157	5785.0	8.11	1.16	10.00	19.27	84.57						
165	5825.0	7.87	1.19	10.00	19.06	80.57						

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 28 of 135
Issued date : June 09, 2005
Revised date : June 14, 2005
FCC ID : EJE-WL0009

13.1.2 Body 5725-5850MHz SAR of Main antenna [Normal mode]

: P1510D : 15.2 Liquid Depth (cm) Model : R5100002 Parameters $\varepsilon_r = 45.8, \sigma = 6.29$ Serial No. Ambient temperature (deg.c.) : **25.0** Modulation : OFDM Relative Humidity (%) : 35 Crest factor : 1

> Date : May 10,2005 Measured By : Miyo Ikuta

I	BODY SAR	MEASUI	REMENT RESULTS (OF MAIN	ANTENN	A(IEEE802.11a 5	5725-5850MI	Hz NOR!	MAL MO	ODE)
Frequency			Modulation	Phantom Section	EUT Set-ı	p Conditions		Liquid Temp.[deg.c]		SAR(1g) [W/kg]
Band	Channel	[MHz]			Antenna	Position	Separation [mm]	Before	After	Maximum value of multi-peak
5725-5850MH	z Step1 M	odulatio	n search							
	157	5785	BPSK(6Mbps)	Flat	Main	Main side	0	24.0	24.0	0.265
	157	5785	QPSK(18Mbps)	Flat	Main	Main side	0	24.0	24.0	0.284
	157	5785	16QAM(24Mbps)	Flat	Main	Main side	0	24.1	24.1	0.286
	157	5785	64QAM(54Mbps)	Flat	Main	Main side	0	24.1	24.3	0.296
	Step2 Ba	ittery (change (option batte	ry)*1						
	157	5785	64QAM(54Mbps)	Flat	Main	Main side	0	24.2	24.3	0.294
	Step3 Po	sition se	earch							
	157	5785	64QAM(54Mbps)	Flat	Main	Main Front	0	24.2	24.3	0.201
	157	5785	64QAM(54Mbps)	Flat	Main	Main Back	15	24.1	24.2	0.028
	157	5785	64QAM(54Mbps)	Flat	Main	Main Bottom	0	24.4	24.2	0.024
	Step4 Fr	equency	Change	·		·				
	149	5745	64QAM(54Mbps)	Flat	Main	Main side	0	24.2	24.0	0.349
	165	5825	64QAM(54Mbps)	Flat	Main	Main side	0	24.0	24.1	0.263
ANSI / IEEE (C95.1 1992 -	SAFETY	LIMIT					Body S.	AR: 1.6 V	W/kg
Spatial Peak U	Jncontrolled	l Exposur	e / General Population	1				(averag	ed over	l gram)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 29 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

13.2 Aux Antenna

13.2.1 Conducted power of Aux Antenna

[IEEE802.	11a Aux <i>A</i>	antenna (by t	he data ra	ate)]		
Modulation	Data rate	S/A	Cable	Atten.	Result	Converted
		Reading	Loss			
	[Mbps]	[dBm]	[dB]	[dB]	[dBm]	[mW]
BPSK	6	7.31	1.16	10.00	18.47	70.34
DISK	9	7.38	1.16	10.00	18.54	71.49
QPSK	12	7.15	1.16	10.00	18.31	67.80
Qrsk	18	7.25	1.16	10.00	18.41	69.38
16OAM	24	7.65	1.16	10.00	18.81	76.07
16QAM	36	7.56	1.16	10.00	18.72	74.51
64QAM	48	7.66	1.16	10.00	18.82	76.25
04QAM	54	7.91	1.16	10.00	19.07	80.76

[The Worst data rate in SAR result]

[IEEE802.	[IEEE802.11a: Aux Antenna(9Mbps)]												
Ch	Freq. S/A Cable Atten. Result Convert												
		Reading	Loss										
	[MHz] [dBm] [dB] [dB] [dBm] [mW]												
149	5745.0	8.32	1.20	10.00	19.52	89.52							
157	5785.0	7.38	1.16	10.00	18.54	71.49							
165	5825.0	7.18	1.19	10.00	18.37	68.74							

[IEEE802.	[IEEE802.11a: Aux Antenna(54Mbps)]												
Ch	Freq.	S/A	Cable	Atten.	Result	Converted							
		Reading	Loss										
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]							
149	5745.0	8.80	1.20	10.00	20.00	99.98							
157	5785.0	7.91	1.16	10.00	19.07	80.76							
165	5825.0	7.64	1.19	10.00	18.83	76.42							

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 30 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

13.2.2 Body 5725-5850MHz SAR of Aux antenna [Normal mode]

: P1510D : 15.2 Liquid Depth (cm) Model : R5100002 Parameters $\varepsilon_r = 45.9, \sigma = 6.30$ Serial No. Ambient temperature (deg.c.) : **25.0** Modulation : OFDM Relative Humidity (%) : 36 Crest factor : 1

> Date : May 11,2005 Measured By : Miyo Ikuta

	BOD1 SAK	MEASU	REMENT RESULTS	OF AUX A	LITERINA	IEEE002.11a	3723-36301411	Liquid	TAL IVI	ODE)
Frequency			Modulation	Phantom	EUT Set-ı	p Conditions		Temp.[c	deg.c]	SAR(1g)
			_	Section						[W/kg]
Band	Channel	[MHz]			Antenna	Position	Separation	Before	After	Maximum value
							[mm]			of multi-peak
5725-5850MI	Hz Step 1 M	Iodulatio	on search							
	157	5785	BPSK(9Mbps)	Flat	Aux	Aux Side	0	24.8	24.7	0.474
	157	5785	QPSK(18Mbps)	Flat	Aux	Aux Side	0	24.7	24.6	0.438
	157	5785	16QAM(24Mbps)	Flat	Aux	Aux Side	0	24.6	24.6	0.434
	157	5785	64QAM(54Mbps)	Flat	Aux	Aux Side	0	24.5	24.5	0.429
	Step 3 P	osition s	earch	·						·
	157	5785	BPSK(9Mbps)	Flat	Aux	Aux Front	0	24.5	24.5	0.250
	157	5785	BPSK(9Mbps)	Flat	Aux	Aux Back	15	24.4	24.3	0.035
	157	5785	BPSK(9Mbps)	Flat	Aux	Aux Bottom	0	24.5	24.5	0.019
	Step 4 F	requency	y Change							
	149	5745	BPSK(9Mbps)	Flat	Aux	Aux Side	0	24.4	24.4	0.546
	165	5825	BPSK(9Mbps)	Flat	Aux	Aux Side	0	24.5	24.5	0.448
	Separati	on chan	ge							
	149	5745	BPSK(9Mbps)	Flat	Aux	Aux Side	5	23.5	23.5	0.125
	149	5745	BPSK(9Mbps)	Flat	Aux	Aux Side	10	23.5	23.5	0.068
ANSI / IEEE	C95.1 1992 -	SAFETY	Y LIMIT	•		•	•	Body S	AR: 1.6	W/kg
Snatial Peak	Uncontrolled	Exposur	e / General Population	1				(average	ed over	1 gram)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 31 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

SECTION 14: SAR Measurement results (5150-5350MHz, 5725-5850MHz) [Turbo mode]

14.1 Conducted power

[The data rate of SAR testing (Main Antenna)]

[IEEE802.11a 5150-5350MHz: Main Antenna(18Mbps[9*2])]											
Freq.	S/A	Cable	Atten.	Result	Converted						
[MHz]	Reading [dBm]	Loss [dB]	[dB]	[dBm]	[mW]						
Turbo 5210MHz (18Mbps[9*2])	2.37	0.94	10.00	13.31	21.43						
Turbo 5250MHz (18Mbps[9*2])	2.08	1.07	10.00	13.15	20.65						
Turbo 5290MHz (18Mbps[9*2])	2.12	1.18	10.00	13.30	21.36						

[The data rate of SAR testing (Aux Antenna)]

[IEEE802.11a 5725-5850MHz : Aux Antenna(18Mbps[9*2])]									
Freq.	S/A	Cable	Atten.	Result	Converted				
	Reading	Loss							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
Turbo 5760MHz (18Mbps[9*2])	-0.74	1.15	10.00	10.41	10.99				
Turbo 5800MHz (18Mbps[9*2])	-1.31	1.17	10.00	9.86	9.68				

[IEEE802.11a 5150-5350MHz: Main Antenna(108Mbps[54*2])]									
Freq.	S/A	Cable	Atten.	Result	Converted				
	Reading	Loss							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
Turbo 5210MHz (108Mbps)	2.40	0.94	10.00	13.34	21.58				
Turbo 5250MHz (108Mbps)	2.16	1.07	10.00	13.23	21.04				
Turbo 5290MHz (108Mbps)	2.15	1.18	10.00	13.33	21.50				

[IEEE802.11a 5725-5850MHz: Main Antenna(108Mbps[54*2])]									
Freq.	S/A	Cable	Atten.	Result	Converted				
	Reading	Loss							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
Turbo 5760MHz (108Mbps)	-0.93	1.15	10.00	10.22	10.52				
Turbo 5800MHz (108Mbps)	-1.72	1.17	10.00	9.45	8.81				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 32 of 135
Issued date : June 09, 2005
Revised date : June 14, 2005
FCC ID : EJE-WL0009

14.2 Body 5150-5350MHz , 5725-5850MHz SAR (Turbo mode)

Body 5150-5350MHz (Turbo mode)

Liquid Depth (cm) 15.2 Model : P1510D Parameters $\varepsilon_r = 46.8, \ \sigma = 5.53$ Serial No. : R5100002 Ambient temperature (deg.c.) 25.0 Modulation : OFDM Relative Humidity (%) 34 Crest factor : 1

Body 5725-5850MHz SAR (Turbo mode)

Relative Humidity (%) : 36 Crest factor : 1

Date : May 10 and 11,2005 Measured By : Miyo Ikuta

			DODY CAD MI	ACHDEM	ENT DEC	ш те ое т	UDDO MOI		iiyo ikuu	
			BODY SAR ME	ASUKEM	ENI KES	ULIS OF TO	UKBO MOI	DE 		
				Phantom				Liquid		SAR(1g)
Frequency			Section	EUT Set-up Conditions			Temp.[deg.c]		[W/kg]	
							Separation	ì		Maximum value
Band	Channel	[MHz]	Modulation		Antenna	Position	[mm]	Before	After	of multi-peak
	Turbo m	ode		•	•	*	*	•	-	
5150- 5350MHz	42	5210	BPSK(18Mbps) [9*2]	Flat	Main	Main Side	0	24.0	24.0	0.922
	50	5250	BPSK(18Mbps) [9*2]	Flat	Main	Main Side	0	24.0	24.0	1.05
	58	5290	BPSK(18Mbps) [9*2]	Flat	Main	Main Side	0	24.0	24.0	0.970
	Separatio	on change		*	*	*	*	•	-	
	50	5250	BPSK(18Mbps) [9*2]	Flat	Main	Main Side	5	24.1	24.1	0.235
	50	5250	BPSK(18Mbps) [9*2]	Flat	Main	Main Side	10	24.3	24.3	0.120
5725- 5850MHz	152	5760	BPSK(18Mbps) [9*2]	Flat	Aux	Aux Side	0	24.3	24.3	0.359
	160	5800	BPSK(18Mbps) [9*2]	Flat	Aux	Aux Side	0	24.3	24.3	0.400
ANSI / IE	EE C95.1	1992 - SA	FETY LIMIT					Body SA	AR: 1.6 W	//kg
Spatial Po	Spatial Peak Uncontrolled Exposure / General Population					(averaged over 1 gram)				

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 33 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

SECTION 15: Equipment & calibration information

Name of Equipment	Manufacture	Model number	Serial number	Calibration		
,— , 1 ,				Last Cal	due date	
Power Meter	Agilent	E4417A	GB41290639	2004/11/09	2005/11/08	
Power Sensor	Agilent	E9300B	US40010300	2004/11/15	2005/11/14	
Power Sensor	Agilent	E9327A	US40440545	2004/11/23	2005/11/22	
Spectrum Analyzer	Agilent	E4448A	MY44020357	2004/06/12	2005/06/11	
S-Parameter Network Analyzer	Agilent	8753ES	US39174808	2003/10/23	2006/10/22	
Signal Generator	Rohde&Schwarz	SML40	100023	2005/01/05	2006/01/04	
RF Amplifier	TSJ	CBP02063033	-	2004/2/24	2005/2/23	
Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	1020	2005/1/14	2006/1/13	
Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE3	516	2005/3/10	2006/3/09	
Robot,SAM Phantom	Schmid&Partner Engineering AG	DASY4	1021834	N/A	N/A	
Attenuator	Agilent	US40010300	08498-60012	2004/12/16	2005/12/15	
Attenuator	Orient Microwave	BX10-0476-00	-	2005/03/16	2006/03/15	
Microwave Cable (Conducted cable)	Suhner	SUCOFLEX 104	233011/4	2005/02/03	2006/02/02	
Microwave Cable (Conducted cable)		U.FL-2LP-066-A- (200)	-	2004/07/22	2005/07/21	
5GHz System Validation Dipole			1020	2004/2/23	2005/2/22	
Dual Directional Coupler			3702	N/A	N/A	
Body 5800MHz	N/A	N/A	N/A	N/A	N/A	
Ambient Noise <0.012W/kg	SAR room	-	-	2005/5/10 2005/5/11	-	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 34 of 135

 Issued date
 : June 09, 2005

 Revised date
 : June 14, 2005

 FCC ID
 : EJE-WL0009

SECTION 16: References

- [1] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [2] Katja Pokovic, Thomas Schmid, and Niels Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM '97, Dubrovnik, October 15-17, 1997, pp. 120-124.
- [3] Katja Pokovic, Thomas Schmid, and Niels Kuster, "E-_field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [4] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992.
- [6] Barry N. Taylor and Christ E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN