Issue Date : April 10, 2006 Page 1 of 37

EMC EMISSION - TEST REPORT

JQA APPLICATION No.	: <u>KL80050800</u>
Name of Product	: <u>WCDMA & Tri-band GSM Dual mode Mobile Phone / Bluetooth</u> Enable
Model/Type No.	: <u>705SH</u>
FCC ID	: <u>APYHRO00048</u>
Applicant	: Sharp Corporation, Communication Systems Group
Address	: <u>2-13-1, Iida Hachihonmatsu, Higashihiroshima-city,</u> : <u>Hiroshima 739-0192, JAPAN</u>
Manufacturer	: Sharp Corporation, Communication Systems Group
Address	: <u>2-13-1, Iida Hachihonmatsu, Higashihiroshima-city,</u> : <u>Hiroshima 739-0192, JAPAN</u>
Receive date of EUT	: March 28, 2006
Final Judgement	: passed

TEST RESULTS IN THIS REPORT are obtained in use of equipment that is traceable to National Institute of Advanced Industrial Science and Technology (AIST) under METI Japan and National Institute of Information and Communications Technology(NICT) under MPHPT Japan.

THE TEST RESULTS only responds to the test sample. This test report shall not be reproduced except in full.

Authorized by:

9. Fukumot

Yuichi Fukumoto, Manager JQA KITA-KANSAI Testing Center

Page 2 of 37

DIRECTORY

	Page
A) Documentation	
Directory	2
Test Regulation / General Information	3 - 4
Test Conditions	5 - 18
Configuration of EUT / Operation mode of the EUT	19 - 20
EUT Modification / Responsible Party / Deviation from Standard	21
Test results / Measurement Uncertainty	22 - 24
Summary	25
Test System-Arrangement (Drawings)	26
Test-setup (Photographs) at worst case	27 - 28
B) Test data	
- PCS1900 -	
Transmitter Power(TP)	29
Antenna Conducted Spurious Emission	30 - 31
Transmitter Power(EIRP)	32
Unwanted Radiation	33 - 34
Occupied Bandwidth	35
Band-Edge Emission	36
Frequency Stability	37

Page 3 of 37

TEST REGULATION

FCC Rules and Regulations Part 24 (October 1, 2004)

1900 MHz systems (Part 24)

- - Narrowband PCS
- - Broadband PCS

Test procedure:

The tests were performed according to FCC Rules and Regulations Part 2 (October 1, 2003), and ANSI C63.4 (2003).

GENERAL INFORMATION

Test facility:

1) Test Facility located at Kita-Kansai	: 1st Open Site (3 m Site)
Test Facility located at Kameoka	: 1st Open Site (3, 10 and 30 m, on common plane)
	: 2nd Open Site (3 and 10 m, on common plane)
FCC filing No. : 31040/SIT 1300F2	

2) KITA-KANSAI TESTING CENTER is recognized under the National Voluntary Laboratory Accreditation Program for satisfactory compliance established in Title 15, Part 285 Code of Federal Regulations. NVLAP Lab Code: 200191-0

Definitions for symbols used in this test report:

- - Black box indicates that the listed condition, standard or equipment is applicable for this Report.
- \bigcirc Blank box indicates that the listed condition, standard or equipment is not applicable for this Report.

Page 4 of 37

Description of the Equipment Under Test (EUT):

1) Name	:	WCDMA & Tri-band GSM Dual mode Mobile Phone / Bluetooth Enable
2) Model/Type No.	:	705SH
3) Product Type	:	Pre-production(Serial No.: 004401/11/013020/6)
4) Category	:	Broadband PCS
5) EUT Authorization	:	\bigcirc - Verification \bigcirc - Certification \bigcirc - D.o.C.
6) Transmitting Frequency	:	1850.2 MHz (512 ch) - 1909.8 MHz (810 ch)(PCS1900)
7) Receiving Frequency	:	1930.2 MHz (512 ch) - 1989.8 MHz (810 ch) (PCS1900)
8) Integrated Antenna	:	L Type antenna
9) Emission Designations	:	245KGXW(PCS1900)
10) Maximum RF Output Power	:	1.862W(EIRP)(PCS1900)
11) Power Rating	:	4.0VDC
12) Channel Numbers and Frequencies	:	

PCS1900

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

TX frequency (in MHz) = $1850.2 + 0.2 \times (n - 512)$ RX frequency (in MHz) = $1930.2 + 0.2 \times (n - 512)$ Where n : Channel Number ($512 \le n \le 810$)

13) Modulation Type : GMSK

14) Type of Communication System : GSM

Page 5 of 37

TEST CONDITIONS

Transmitter Power (TP) Measurement (§2.1046(a))

Test Procedure :

The Transmitter Power was measured with a power meter, two 10 dB attenuators and a short, low loss cable.

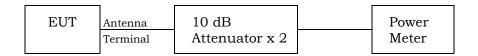


Fig.1 Transmitter Power Measurement

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
O - Shielded room
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
O - Shielded room

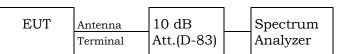
Used test instruments and sites :

Model No.	Device ID	Last Cal. Date	Cal. Interval
 E4417A E9321A - 6-20 - 4T-10 - 4T-10 - 2-10 - 2-10 	B - 51 B - 52 D - 27 D - 73 D - 74 D - 79 D - 80	August, 2005 June, 2005	1 Year 1 Year
● - 54-10 ● - 54-10	D - 82 D - 83	May, 2005 May, 2005	1 Year 1 Year
		5,	

Environmental conditions :

Temperature: <u>21 °C</u> Humidity: <u>55 %</u>

Page 6 of 37


Antenna Conducted Spurious Emission Measurement (§2.1051,§24.238)

Test Procedure :

The Antenna Conducted Emission was measured with a spectrum analyzer. The test system is shown as follows:

PCS1900

1) Frequency Range : 9kHz - 2GHz

2) Frequency Range : 2GHz - 20GHz

EUT	Antenna	10 dB	HPF	Spectrum	
	Terminal	Att.(D-83)	(D-96)	Analyzer	

Fig.2 Antenna Conducted Spurious Emission Measurement

The setting of the spectrum analyzer are shown as follows :

Frequency Range	9kHz - 150kHz	150kHz - 30 MHz	30 MHz - 20 GHz
Res. Bandwidth	200 Hz	10 kHz	1 MHz
Video Bandwidth	1 kHz	30 kHz	3 MHz
Sweep Time	AUTO	AUTO	AUTO
Trace	Maxhold	Maxhold	Maxhold

Page 7 of 37

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
- Shielded room
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
- Shielded room

Used test instruments:

Model No.	Device ID	Last Cal. Date	Cal. Interval
○ - 8566B	A - 13		
● - E4446A	A - 39	November, 2005	1 Year
○ - 4T-10	D - 73		
○ - 4T-10	D - 74		
○ - 2-10	D - 79		
○ - 2-10	D - 80		
○ - 54-10	D - 82		1 Year
• - 54-10	D - 83	May, 2005	1 Year
○ - BRM50701	D - 93		
○ - HPM13900	D - 95		
● - HPM13899	D - 96	February, 2006	1 Year

Environmental conditions:

Temperature: <u>21 °C</u> Humidity: <u>55 %</u>

Page 8 of 37

Transmitter Power (EIRP) Measurement (§24.232)

Test Procedure :

Step 1) The test was set-up shown as Fig.3 (a). In order to obtain the maximum emission, the EUT is placed at the height 1.8m on the non-conducted support and was varying at three orthogonal axes(Refer to pages 27 - 28), at the distance 3m from the receiving antenna (Horn Antenna) and rotated around 360 degrees. The receiving antenna height was varied from 1 m to 4 m. The EUT on the table was placed to be maximum emission against the receiving antenna polarized (Vertical and Horizontal). Then the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V).

Step 2) The test was set-up shown as Fig.3 (b). The EUT was replaced to Horn antenna at the same polarized under the same condition as step 1. The RF power was fed to the transmitting Antenna (Horn Antenna) through the RF amplifier from the signal generator. In order to obtain the maximum emission level, the height of the receiving antenna is varied from 1 m to 4 m. The level of the signal generator was adjusted so that the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V), same as the recorded level in step 1. Then the RF power into the substitution horn antenna was P(dBm).

The EIRP is calculated in the following equation.

EIRP (dBm) = P (dBm) + Gh (dBi)

Where, Gh (dBi) : Gain of the substitution horn antenna

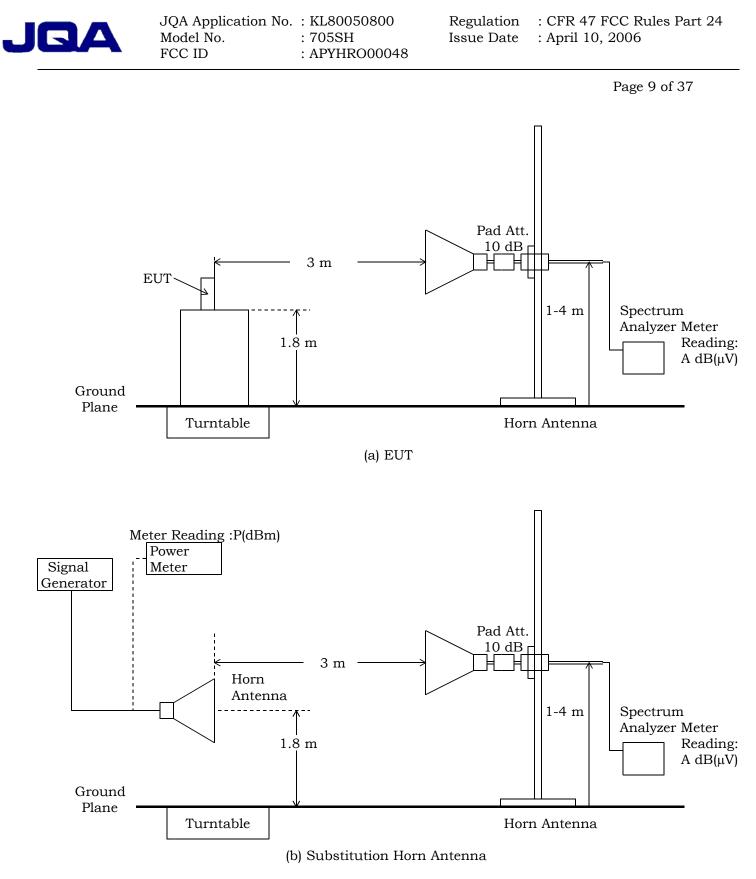


Fig.3 Maximum Transmitter Power (EIRP) Measurement

JAPAN QUALITY ASSURANCE ORGANIZATION

Page 10 of 37

Test location:

KITA-KANSAI Testing Center				
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan				
• - 1st open test site (3 meters)				
KAMEOKA EMC Branch				
9-1, Ozaki, Inukanno, Nishibet	suin-Cho, K	ameoka-Shi,	Kyoto, 621-0126, Japan	
\bigcirc - 1st open test site	O - 3 m	O - 10 m	○ - 30 m	
\bigcirc - 2nd open test site	O - 3 m	O - 10 m		

Used test instruments:

Model No.	Device ID	Last Cal. Date	Cal. Interval
O - ESCS 30	A - 1		
\odot - ESCS 30	A - 9		
○ - 8566B	A - 13		
• - E4446A	A - 39	November, 2005	1 Year
\bigcirc - ESV	A - 6		
• - 4T-10	D - 73	May, 2005	1 Year
○ - 4T-10	D - 74		
○ - 2-10	D - 79		
○ - 2-10	D - 80		
● - 91888-2	C - 40 - 1	May, 2005	1 Year
● - 91888-2	C - 41 - 1	May, 2005	1 Year
○ - 91889-2	C - 40 - 2		
○ - 91889-2	C - 41 - 2		
 Cable 	C - 40 - 11	May, 2005	1 Year
 Cable 	C - 40 - 12	May, 2005	1 Year
● - E4417A	B - 51	August, 2005	1 Year
● - E9321A	B - 52	June, 2005	1 Year
● - MG3681A	B - 3	February, 2006	1 Year
○ - 6062A	B - 44		

Temperature: <u>20 °C</u> Humidity: <u>53 %</u>

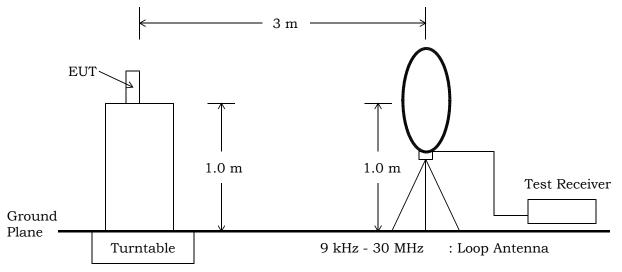
Page 11 of 37

Unwanted Radiation Measurement (§2.1053,§22.917,§24.238) - ERP method -

Test Procedure :

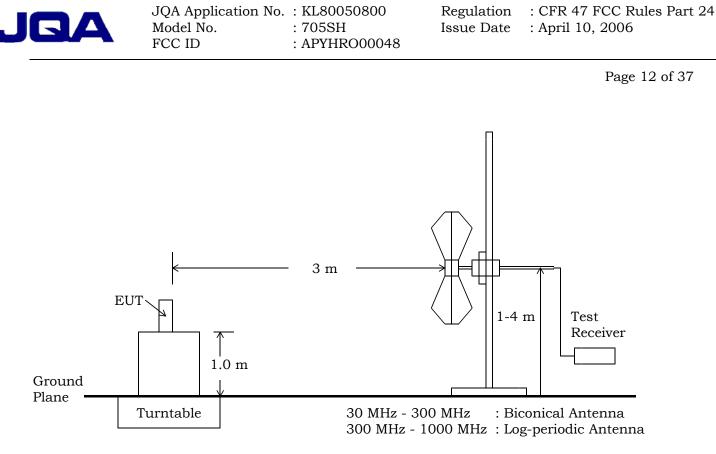
Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 1.0 m in height and was varying at three orthogonal axes(Refer to pages 27 - 28). The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

This test was carried out using the loop antenna for up to 30 MHz, using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

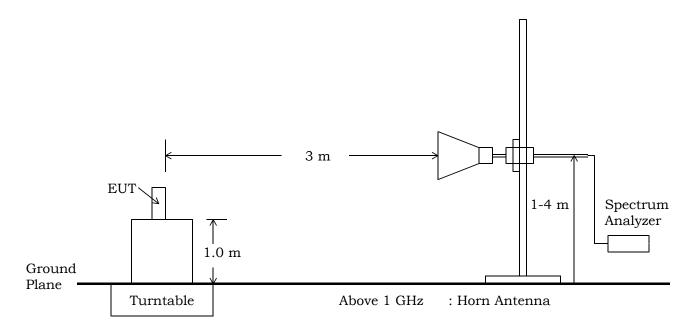

Step 2) The ERP measurement was carried out with according to Step 2 in page 9. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The EIRP is calculated in the following equation.

A) Up to 1 GHz ERP(dBm) = P (dBm) - (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss(dB)


B) Above 1 GHz ERP(dBm) = P (dBm) + Gh(dBi)- Gd(dBi) Where, Gh(dBi) : Gain of the substitution horn antenna Gd(dBi) : Gain of the substitution half-wave dipole antenna

The respective calculated ERP of the spurious and harmonics were compared with the EIRP and ERP of fundamental frequency by specified attenuation limits, $43+10\log_{10}$ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.



(a) Measurement set up for up to 30 MHz

(b) Measurement set up for up to 1 GHz

(c) Measurement set up for above 1GHz

Fig.4 Unwanted Radiation Measurement

Page 13 of 37

Test location:

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
● - 1st open test site (3 meters)
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
○ - 1st open test site
○ - 3 m
○ - 10 m
○ - 30 m
○ - 3 m
○ - 10 m

Validation of Site Attenuation:

1) Last Confirmed Date	:	October 3, 2005
2) Interval	:	1 Year

Used test instruments :

Model No.	Device ID	Last Cal. Date	Cal. Interval
• - ESCS 30	A - 1	August, 2005	1 Year
○ - ESCS 30	A - 9		
○ - ESH 2	A - 2		
○ - ESH 2	A - 3		
● - HFH2-Z2	C - 2	August, 2005	1 Year
\odot - HFH2-Z2	C - 3		
• - Cable	Н - 28	August, 2005	1 Year
• - ESV/ESV-Z3	A - 6 / A - 20	June, 2005	1 Year
\odot - ESVS 10	A - 5		
• - VHA9103/BBA9106	C - 43	August, 2005	1 Year
• - UHALP9107	C - 42	August, 2005	1 Year
• - VHA9103/FBAB9177	C - 27	August, 2005	
• - UHALP9108-A1	C - 26	August, 2005	
○ - KBA-511	C - 12		1 Year
○ - KBA-611	C - 22		1 Year
 Cable 	H - 5	August, 2005	1 Year
	- con	tinue -	

Page 14 of 37

Used test instruments :

Model No.	Device ID	Last Cal. Date	Cal. Interval
○ - 8566B	A - 13		
• - E4446A	A - 39	November, 2005	1 Year
O - 4T-10	D - 73	1.0.011201, 2000	1 Year
O - 4T-10	D - 74		1 Year
• - 54-10	D - 82	May, 2005	1 Year
• - 54-10	D - 83	May, 2005	1 Year
● - WJ-6611-513	A - 23	May, 2005	1 Year
● - WJ-6882-824	A - 21	May, 2005	1 Year
● - DBL-0618N515	A - 33	May, 2005	1 Year
● - ALN-22093545-1	A - 37	February, 2006	1 Year
● - 91888-2	C - 40 - 1	May, 2005	1 Year
• - 91889-2	C - 40 - 2	May, 2005	1 Year
• - 94613-1	C - 40 - 3	May, 2005	1 Year
● - 91891-2	C - 40 - 4	May, 2005	1 Year
• - 94614-1	C - 40 - 5	May, 2005	1 Year
● - 91888-2	C - 41 - 1	May, 2005	1 Year
● - 91889-2	C - 41 - 2	May, 2005	1 Year
• - 94613-1	C - 41 - 3	May, 2005	1 Year
● - 91891-2	C - 41 - 4	May, 2005	1 Year
● - 94614-1	C - 41 - 5	June, 2005	1 Year
• - 3160-09	C - 48	December, 2005	2 Years
● - 8673D	B - 2	April, 2005	1 Year
• - Cable	C - 40 - 11	May, 2005	1 Year
• - Cable	C - 40 - 14	May, 2005	1 Year
• - Cable	C - 53	February, 2006	1 Year
• - Cable	C - 54	February, 2006	1 Year

Environmental conditions :

Temperature: <u>20 °C</u> Humidity: <u>53 %</u>

Page 15 of 37

Occupied Bandwidth Measurement (§2.1049, §24.238)

Test Procedure :

The measurement test-setup is shown in Fig.5.

Fig.5 Occupied Bandwidth Measurement

The setting of the spectrum analyzer are shown as follows :

	PCS 1900
Res. Bandwidth	10 kHz
Video Bandwidth	30 kHz
Span	1 MHz
Sweep Time	>350msec
Trace	Maxhold

Test location :

KITA-KANSAI Testing Center

7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan

Shielded room

KAMEOKA EMC Branch

9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan

 \bigcirc - Shielded room

Used test instruments:

Device ID	Last Cal. Date	Cal. Interval
A - 13		
A - 39	November, 2005	1 Year
D - 73		
D - 74		
D - 79		
D - 80		
D - 82		
D - 83	May, 2005	1 Year
	A - 13 A - 39 D - 73 D - 74 D - 79 D - 80 D - 82	A - 13 A - 39 D - 73 D - 74 D - 79 D - 80 D - 82

Environmental conditions:

Temperature: <u>21 °C</u> Humidity: <u>55 %</u>

Page 16 of 37

Band-Edge Emission Measurement (§2.1049, §22.917, §24.238)

Test Procedure :

The measurement test-setup is shown in Fig.6.

Fig.6 Band-Edge Emission Measurement

The setting of the spectrum analyzer are shown as follows :

	PCS 1900
TX Frequency	1850.20 MHz / 1909.8 MHz
Band-edge Frequency	1850.00 MHz / 1910.0 MHz
Res. Bandwidth	3 kHz
Video Bandwidth	10 kHz
Span	2 MHz
Sweep Time	AUTO
Trace	Maxhold

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
● - Shielded room
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
○ - Shielded room

Used test instruments:

○ - 8566B	A - 13		
• - E4446A	A - 39	November, 2005	1 Year
○ - 4T-10	D - 73		
○ - 4T-10	D - 74		
○ - 2-10	D - 79		
○ - 2-10	D - 80		
○ - 54-10	D - 82		
• - 54-10	D - 83	May, 2005	1 Year

Environmental conditions:

Temperature: <u>21 °C</u> Humidity: <u>55 %</u>

Page 17 of 37

Frequency Stability Measurement(§2.1055, §24.235)

Test Procedure :

a) Frequency Stability Measurement versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

b) Frequency Stability Measurement versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the Ending Voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

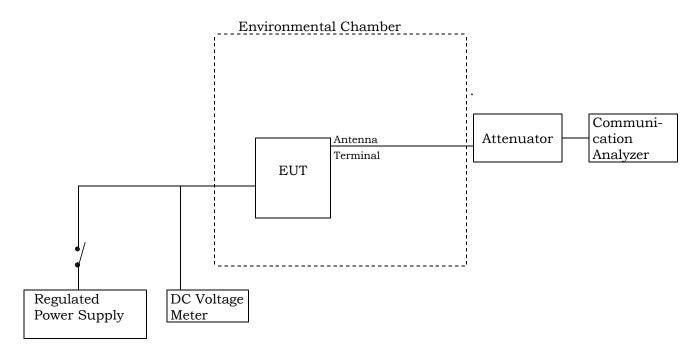


Fig.7 Frequency Stability Measurement

Page 18 of 37

Test location:

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
Shielded room
- Environment Testing Room
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
- Shielded room

Used test instruments and sites :

Model No.	Device ID	Last Cal. Date	Cal. Interval
 PL-4K SRF106AS00000M11 NL035-10 6032A CMU200 TR5212 	G47001018-1	Novermber, 2005	1 Year
	G47001018-3	Novermber, 2005	1 Year
	F - 4	April, 2005	1 Year
	F - 5	April, 2005	1 Year
	B - 21	April, 2005	1 Year
	B - 30	March, 2006	1 Year

Page 19 of 37

CONFIGURATION OF EUT

The Equipment Under Test (EUT) consists of :

Description	Applicant (Manufacturer)	Model No. (Serial No.)	FCC ID
WCDMA & Tri-band GSM Dual mode Mobile Phone / Bluetooth Enable	Sharp Corporation (Sharp Corporation)	705SH (004401/11/013 020/6)	APYHRO00048
Lithium-ion Battery	Sharp Corporation (Sharp Corporation)	SHBAL1 ()	N/A
AC CHARGER	Sharp Corporation (Sharp Corporation)	SHCAA1 ()	N/A
Stereo Headset	Sharp Corporation (Sharp Corporation)XN-1HS90 ()		N/A
Handsfree Microphone Unit	Sharp Corporation (Sharp Corporation)	XN-1HU90 ()	N/A

The measurement was carried out with the following equipment connected :

Description	Grantee/Distributor	Model No. (Serial No.)	FCC ID
None			

Type of Interface Cable(s) and the AC Power Cord used with the EUT :

	Description	Port	Shielded Cable	Shell Material	Ferrite Core	Cable Length
1	Mobile Phone	Charger/USB	NO		NO	1.5 m
1	DC Power Cord(AC Charger)		NO		NO	1.5 m
0	Mobile Phone	EARPHONE	NO		NO	0.75 m
2	Handsfree Microphone Unit		NO		NO	0.75 m
3	Handsfree Microphone Unit		NO		NO	0.0
3	Stereo Headset		NO		NO	0.9 m

Page 20 of 37

Test Configuration:

Operation - mode of the EUT:

The tests were carried out under one modulation type shown as follows : Modulation Burst Signal : DATA TSC 5 in accordance with GSM 05.02.

The Radiated Emission tests were carried under 3 test configurations in page 26 shown as follows:

	Test Configuration	The condition of the transmitting antenna
1	Single Unit	Integrated antenna
2	AC Charger used	Integrated antenna
3	Stereo Headset used	Integrated antenna

The test configuration on the worst data at the unwanted radiation measurement is Stereo Headset used.

Test system:

The Mobile Phone has 2 ports shown as follows :

- 1) EARPHONE port : is connected to the Stereo Headset.
- 2) Charger/USB port : is connected to the AC Charger or the personal computer.

Special accessories:

None

Detailed Transmitter portion:

PCS1900	
Transmitting frequency	: 1850.2 MHz(512ch) - 1909.8 MHz(810ch)
Local frequency	: 1850.2 MHz(512ch) - 1909.8 MHz(810ch)

Detailed Receiver portion:

PCS1900	
Receiving frequency	: 1930.2 MHz(512ch) - 1989.8 MHz(810ch)
Local frequency	: 3860.4 MHz(512ch) - 3979.6 MHz(810ch)

Other Clock Frequency:

RTC	: 32.768 kHz
Reference frequency	: 13.0 MHz

Page 21 of 37

EUT Modification

- - No modifications were conducted by JQA to achieve compliance to applied levels.
- \bigcirc To achieve compliance to applied levels, the following change(s) were made by JQA during the compliance test.

- The modification(s) will be implemented in all production models of this equipment.

Applicant	:	N/A	Date	:	N/A
Typed Name	:	N/A	Position	:	N/A

Responsible Party

Responsible Party of 7	fest Item(Product)		
Responsible party	:		
Contact Person	:	Signatory	-

Deviation from Standard

• - No deviations from the standard described in page 3.

 \odot - The following deviations were employed from the standard described in page 3.

Page 22 of 37

TEST RESULTS PCS1900

Transmitter Power(TP)

The transmitter power is	<u>749.9</u> mW	at	1909.80	MHz
Uncertainty of measurement results at Amplitude	<u>±0.19</u> dB(2o)		
Remarks:				
Antenna Conducted Spurious Emission				
The requirements are	• - Passed		○ - Not P	assed
Min. limit margin	<u>32.7</u> dB	at	5550.600	MHz
Max. limit exceeding	dB	at		MHz

Remarks:

Transmitter Power(EIRP)

The requirements are	• - Passed	\odot - Not Passed		
The Maximum EIRP is	<u>1.862</u> W	at	1880.00	MHz
Min. limit margin	<u>0.3</u> dB	at	1880.00	MHz
Max. limit exceeding	dB	at		MHz
Uncertainty of measurement results	<u>+1.3</u> dB(2e	σ)	-1.3	dB(2σ)
Remarks:	measurement 11	ncert	ainty	

The measurement result is within the range of measurement uncertainty.

Page 23 of 37

Unwanted Radiation (9 kHz - 20 GHz)

The requirements are	• - Pass	sed	0 - Not	Passed	
Min. limit margin		9.4	dB at	16920.00	MHz
Max. limit exceeding			dB at		MHz
Uncertainty of measurement results	9 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 20 GHz	+2.5 +4.1 +3.1	dB(2σ) dB(2σ) dB(2σ)	-4.2	dB(2σ) dB(2σ) dB(2σ)

Remarks:

Occupied Bandwidth

The requirements are	• - Passed	\odot - Not Passed	
The 26dB Bandwidth is The 99% Bandwidth is The results(Occupied Bandwidth)	<u>322.6</u> kHz at <u>245.0</u> kHz at Refer to pages* 2 -		
Uncertainty of measurement results at Frequency Uncertainty of measurement results at Amplitude	$\begin{array}{c} \pm 1.7 \\ \pm 0.24 \end{array} \begin{array}{c} \text{kHz}(2\sigma) \\ \text{dB}(2\sigma) \end{array}$		
Remarks: <u>*:</u> The Page is one in the Attachment A.			

Band-Edge Emission

The requirements are	• - P:	assed	○ - Not Passed
The Band-Edge level is	40.2	dBcat	<u>1910.00</u> MHz
The results(Band-edge Emission)	Refer to	pages* 6 -	7
Uncertainty of measurement results at Uncertainty of measurement results at	· · ·	kHz(2σ) dB(2σ)	

Remarks: *: The Page is one in the Attachment A.

Page 24 of 37

Frequency Stability

Frequency Stability :	<u>+0.06</u> ppm a	at <u>1880.000</u>	MHz
Uncertainty of measurement results	<u>±10</u> Hz		
Remarks:			

Page 25 of 37

SUMMARY

GENERAL REMARKS :

The EUT was tested according to the requirements of FCC Rules and Regulations Part 24 (October 1, 2004) under the test configuration, as shown in page 26.

The conclusion for the test items of which are required by the applied regulation is indicated under the final judgement.

FINAL JUDGEMENT :

The "as received" sample;

- - fulfill the test requirements of the regulation mentioned on page 3.
- - fulfill the test requirements of the regulation mentioned on page 3, but with certain qualifications.
- \odot doesn't fulfill the test regulation mentioned on page 3.

Begin of testing : March 31, 2006

End of testing : <u>April 5, 2006</u>

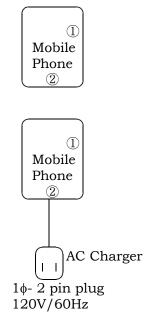
- JAPAN QUALITY ASSURANCE ORGANIZATION -

Reviewed by :

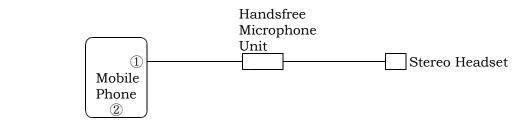
Shigeru Kinoshita Deputy Manager EMC Div. JQA KITA-KANSAI Testing Center

Tested by :

osoda


Akio Hosoda Manager EMC Div. JQA KITA-KANSAI Testing Center

Page 26 of 37


Test System-Arrangement (Drawings)

1) Single Unit

2) AC Charger used

3) Stereo Headset used

Note:

① : EARPHONE

②: Charger/USB

Page 27 of 37

Test-Setup (Photographs) at worst case

This page is CONFIDENTIAL. Refer to PDF(TestSetup_Photo_Part24)

Page 28 of 37

Test-Setup (Photographs) at three orthogonal axis

This page is CONFIDENTIAL. Refer to PDF(TestSetup_Photo_Part24)

Page 29 of 37

٦

Transmitter Power (TP) Measurement (PCS 1900 MHz Band)

		,	,		Date: April 5, 2006 1 °C, Humi: 55 %
Transm	itting Frequency	Correction Factor	Meter Reading (Peak)	Results	(Peak)
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]
512	1850.200	20.00	8.56	28.56	717.8
661	1880.000	20.00	8.67	28.67	736.2
810	1909.800	20.00	8.75	28.75	749.9

Sample of calculated result at 1909.800 MHz, as the Maximum Level point: Correction Factor = 20.00 dBm						
+) Meter Reading	=	8.75 dB				
Result	=	28.75 dBm = 749.9 mW				
The point shown on "" is the Maximum Level Point.						

Note: The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

Tester: Shigeru Kinoshita

Page 30 of 37

Antenna-Conducted Spurious Emission Measurement (PCS 1900 MHz Band)

<u>Test Date: April 5, 2006</u> <u>Temp.: 21 °C, Humi: 55 %</u>

	ansmitting Frequency	Measured Frequency	Corr. Factor	Meter Readings [dBm]	Limits [dBm]	Results [dBm]	Margin [dB]	Remarks
СН	[MHz]	[MHz]	[dB]					
512	1850.200	3700.400	11.3	< -60.0	-13.0	< -48.7	> +35.7	С
		5550.600	11.3	-57.0	-13.0	-45.7	+32.7	С
		7400.800	11.1	< -60.0	-13.0	< -48.9	> +35.9	С
		9251.000	11.1	< -60.0	-13.0	< -48.9	> +35.9	С
		11101.200	11.4	< -60.0	-13.0	< -48.6	> +35.6	С
		12951.400	11.6	< -60.0	-13.0	< -48.4	> +35.4	С
		14801.600	11.8	< -60.0	-13.0	< -48.2	> +35.2	С
		16651.800	11.9	< -60.0	-13.0	< -48.1	> +35.1	С
		18502.000	12.1	< -60.0	-13.0	< -47.9	> +34.9	С
661	1880.000	3760.000	11.3	< -60.0	-13.0	< -48.7	> +35.7	С
		5640.000	11.3	-58.0	-13.0	-46.7	+33.7	С
		7520.000	11.1	< -60.0	-13.0	< -48.9	> +35.9	С
		9400.000	11.1	< -60.0	-13.0	< -48.9	> +35.9	С
		11280.000	11.4	< -60.0	-13.0	< -48.6	> +35.6	С
		13160.000	11.6	< -60.0	-13.0	< -48.4	> +35.4	С
		15040.000	11.8	< -60.0	-13.0	< -48.2	> +35.2	С
		16920.000	11.9	< -60.0	-13.0	< -48.1	> +35.1	С
		18800.000	12.1	< -60.0	-13.0	< -47.9	> +34.9	С
810	1909.800	3819.600	11.3	< -60.0	-13.0	< -48.7	> +35.7	С
010	1909.000	5729.400	11.2	-57.0	-13.0	-45.8	+32.8	C
		7639.200	11.1	< -60.0	-13.0	< -48.9	> +35.9	C
		9549.000	11.2	< -60.0	-13.0	< -48.8	> +35.8	C
		11458.800	11.4	< -60.0	-13.0	< -48.6	> +35.6	C
		13368.600	11.6	< -60.0	-13.0	< -48.4	> +35.4	C
		15278.400	11.8	< -60.0	-13.0	< -48.2	> +35.2	C
		17188.200	12.0	< -60.0	-13.0	< -48.0	> +35.0	С
		19098.000	12.1	< -60.0	-13.0	< -47.9	> +34.9	С

Page 31 of 37

Sample of calculated result at 5550.6 MHz, as the Minimum Margin point: Corr. Factor = 11.3 dB +) Meter Reading = -57.0 dB(μ V) Result = -45.7 dB(μ V) Minimum Margin: -13.0 - (-45.7) = 32.7 (dB) The point shown on " ____" is the Minimum Margin Point.

Applied Limits: -13.0 [dBm] = 10log(TP[mW]) - (43 + 10log(tp[W])) = 10log(TP[mW]) - (43 + (10 log(TP[mW]) - 30)) where tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal 10log(tp[W]) = 10log(TP[mW]) - 30

Correction factor details: Cable Loss + 10dB Pad Att. [dB] (9 kHz - 2.0 GHz) Cable Loss + 10dB Pad Att. + High Pass Filter Loss (D-96)

Note: 1) The spectrum was scanned 9 kHz to 20 GHz and all emissions not reported were more than 20 dB below the applied limits.

2) The spectrum analyzer displays were printed out in Attachment B.

Detector FunctionRES B.W.V.B.W.Sweep TimeAPeak200 Hz1 kHzAUTOBPeak10 kHz300 kHzAUTOCPeak1 MHz3 MHzAUTO	Remarks:				
B Peak 10 kHz 300 kHz AUTO		Detector Function	RES B.W.	V.B.W.	Sweep Time
	А	Peak	200 Hz	1 kHz	AUTO
C Peak 1 MHz 3 MHz AUTO	В	Peak	10 kHz	300 kHz	AUTO
	С	Peak	1 MHz	3 MHz	AUTO

Tester : Shigeru Kinoshita

Page 32 of 37

Transmitter Power (EIRP) Measurement (PCS 1900 MHz Band)

1. Measurement Results

Test Date: March 31, 2006 Temp.: 20 °C, Humi: 53 %

	ransmitting Frequency	Emission Measurement [dB(µV)]		Substitution Measurement $[dB(\mu V)]$		Supplied Power to Substitution Antenna	Gain of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dBm]	[dB]
512	1850.200	95.4	93.2	77.1	77.3	0.0	14.3
661	1880.000	95.6	94.3	77.4	77.3	0.0	14.5
810	1909.800	95.6	94.2	77.5	77.5	0.0	14.6

2. Calculation Results

Transm	itting Frequency	Peak El	[RP [dBm]	Maximum Peak EIRP	Limits	Margin
СН	[MHz]	(EIRPh)	Vert. (EIRPv)	[W]	[dBm]	[dB]
512	1850.200	32.6	30.2	1.824	33.0	+ 0.4
661	1880.000	32.7	31.5	1.862	33.0	+ 0.3
810	1909.800	32.7	31.3	1.845	33.0	+ 0.3

Sample of calculated result at 1880.000 MHz, as th	e Minimu	m Margin poi	nt:				
Emission Measurment Mh	=	95.6	dB(μV)				
Substitution Measurement Msh = $-77.4 \text{ dB}(\mu \text{V})$							
Supplied Power to Substitution Antenna	=	0.0	dBm				
+) Gain of Substitution Antenna	=	14.5	dB	_			
Result	=	32.7	dBm = 1.862 W	-			
EIRPh = Mh - Msh + Ps + Gs							
EIRPv = Mv - Msv + Ps + Gs							
Minimum Margin: 33.0 - 32.7 = 0.3 (dB)							
The point shown on " " is the Minimum Margin Point.							

Detector FunctionResolution B.W.V.B.W.Sweep TimePeak1 MHz1 MHz20 msec.	Remarks	:			
Peak 1 MHz 1 MHz 20 msec.	[Detector Function	Resolution B.W.	V.B.W.	Sweep Time
		Peak	1 MHz	1 MHz	20 msec.

Tester: Akio Hosoda

Page 33 of 37

Unwanted Radiation Measurement (PCS 1900 MHz Band)

Test Configuration : Single Unit

<u>Test Date: March 31, 2006</u> <u>Temp.: 20 °C, Humi: 53 %</u>

	ransmitting Frequency	Measured Frequency		RP Bm]	Limits [dBm]	Margin [dB]	Remarks
СН	[MHz]	[MHz]	Hori.	Vert.			
512	1850.200	3700.400	-29.2	-30.5	-13.0	+16.2	С
		5550.600	< -30.0	< -30.0	-13.0	> +17.0	С
		7400.800	< -27.6	< -27.6	-13.0	> +14.6	С
		9251.000	< -33.6	< -33.6	-13.0	> +20.6	С
		11101.200	-30.7	-28.4	-13.0	+15.4	С
		12951.400	< -27.3	< -27.3	-13.0	> +14.3	С
		14801.600	< -26.6	< -26.6	-13.0	> +13.6	С
		16651.800	< -28.0	< -28.0	-13.0	> +15.0	С
		18502.000	-27.5	-27.1	-13.0	+14.1	С
661	1880.000	3760.000	-27.2	-29.6	-13.0	+14.2	С
		5640.000	< -29.9	< -29.9	-13.0	> +16.9	С
		7520.000	< -27.2	< -27.2	-13.0	> +14.2	С
		9400.000	< -33.7	< -33.7	-13.0	> +20.7	С
		11280.000	-25.8	-23.3	-13.0	+10.3	С
		13160.000	< -26.9	< -26.9	-13.0	> +13.9	С
		15040.000	< -26.8	< -26.8	-13.0	> +13.8	С
		16920.000	-22.4	-24.6	-13.0	+ 9.4	С
		18800.000	-28.5	-27.4	-13.0	+14.4	С
810	1909.800	3819.600	-27.0	-27.9	-13.0	+14.0	С
		5729.400	< -29.7	< -29.7	-13.0	> +16.7	С
		7639.200	< -33.5	< -33.5	-13.0	> +20.5	С
		9549.000	< -33.9	< -33.9	-13.0	> +20.9	С
		11458.800	-27.5	-25.1	-13.0	+12.1	С
		13368.600	< -26.2	< -26.2	-13.0	> +13.2	С
		15278.400	< -27.4	< -27.4	-13.0	> +14.4	С
		17188.200	-27.2	< -28.0	-13.0	+14.2	С
		19098.000	-31.1	-30.8	-13.0	+17.8	С

Page 34 of 37

Sample of calculated result at 16920.0 MHz, as the Minimum Margin point: Minimum Margin: -13.0 - (-22.4) = 9.4 (dB) The point shown on "_____" is the Minimum Margin Point.

Applied Limits: -13.0 [dBm] = 10log(TP[mW]) - (43 + 10log(tp[W])) = 10log(TP[mW]) - (43 + (10 log(TP[mW]) - 30)) where tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal 10log(tp[W]) = 10log(TP[mW]) - 30

Test system connection setup: Cable (9 kHz - 1 GHz) Cable + 20dB Pad Att. - Pre-Amplifier (1.0 GHz - 3.6 GHz) Cable + 20dB Pad Att. - Pre-Amplifier (3.6 GHz - 7.6 GHz) Cable + 10dB Pad Att. - Pre-Amplifier (7.6 GHz - 18 GHz) Cable + 20dB Pad Att. - Pre-Amplifier (over 18 GHz)

Note: The spectrum was scanned 9 kHz to 20 GHz and all emissions not reported were more than 20 dB below the applied limits.

Remarks:

	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	10 kHz	30 kHz	20 msec.
В	Peak	100 kHz	300 kHz	20 msec.
С	Peak	1 MHz	3 MHz	20 msec.

Tester: Akio Hosoda

Page 35 of 37

Occupied Bandwidth Measurement PCS1900

Test Date: April 5, 2006 Temp.: 21 °C ; Humi.: 55 %

СН	Transmitting	26dB	99%	Data	
No.	Frequency(MHz)	Bandwidth	Bandwidth	Page*	
512	1850.200	322.6 kHz	244.5 kHz	Page 2	
661	1880.000	316.1 kHz	243.5 kHz	Page 3	
810	1909.800	318.0 kHz	245.0 kHz	Page 4	

Note) 1. *: The Data Page is one in Attachment A. 2. The point shown on "_____" is the Maximum Margin Point.

Tester : Shigeru Kinoshita

Page 36 of 37

Band-Edge Emission Measurement PCS1900

Test Date: <u>April 5, 2006</u> Temp.: <u>21 °C</u>; Humi.: <u>55 %</u>

1) Low	Band-Edg	ge Measurement			
	CH	Transmitting	Band-Edge	Band-Edge	Data
		Frequency(MHz)	Frequency(MHz)	Level[dBc]	Page*
	512	1850.200	1850.000	-43.0	Page 6
					-
2) High	Band-Ed	ge Measurement			
	CH	Transmitting	Band-Edge	Band-Edge	Data
		Frequency(MHz)	Frequency(MHz)	Level[dBc]	Page*
_	810	1909.800	1910.000	-40.2	Page 7
-					

Note) 1. *: The Data Page is one in Attachment A.

2. The point shown on "_____" is the Minimum Point.

Tester : <u>Shigeru Kinoshita</u>

Page 37 of 37

Frequency Stability Measurement (PCS 1900 MHz Band)

Test Date: April 4, 2006

1. Frequency Stability Measurement versus Temperature

Transmitting Frequency DC Supply Voltage		: 1880.000 MHz (: 4.0 VDC	661 ch)			
Ambient		Deviat	ion [ppm]		Limits	Margin
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
-30	+ 0.06	+ 0.04	+ 0.04	+ 0.04	N/A	N/A
-20	+ 0.06	+ 0.05	+ 0.01	+ 0.04	N/A	N/A
-10	+ 0.06	+ 0.04	+ 0.04	+ 0.03	N/A	N/A
0	+ 0.01	+ 0.04	+ 0.04	+ 0.02	N/A	N/A
10	- 0.03	- 0.02	+ 0.02	+ 0.01	N/A	N/A
20	+ 0.03	+ 0.02	+ 0.02	+ 0.03	N/A	N/A
30	- 0.03	+ 0.02	+ 0.03	- 0.02	N/A	N/A
40	- 0.03	+ 0.03	+ 0.02	- 0.02	N/A	N/A
50	- 0.03	+ 0.02	- 0.02	- 0.02	N/A	N/A

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Free DC Supply Voltag		: 1880.000 MHz (: 20 °C	661 ch)			
Ambient		Deviation [ppm]			Limits	Margin
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
4.0	+ 0.03	+ 0.02	+ 0.02	+ 0.03	N/A	N/A
3.7(Ending)	- 0.03	+ 0.02	+ 0.03	+ 0.03	N/A	N/A

Test condition example as the Maximum Deviation point:Ambient Temperature: -30 °CDC Supply Voltage: 4 VDCThe Maximum Deviation Point is shown on a thick letter.

Note: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.

Tester: Yuichi Fukumoto