Report No.: DACE250306019RL001

DVC

	RF TEST RE	PORT
	For	
Shenzhe	en Weofly Innovation T	echnology Co.,LTD
	Product Name: Sma	rt Watch
	Test Model(s): E	dge 2
Report Reference No.	: DACE250306019RL001	
FCC ID	: 2BF3T-EDGE2	
NC .		

FCC ID	:	2BF3T-EDGE2
Applicant's Name	:	Shenzhen Weofly Innovation Technology Co.,LTD
Address	:	Factory Building 601-11,Nankeng Second Industrial Zone,Nankeng Community, Bantian Street, Longgang District, Shenzhen, China
Testing Laboratory	:	Shenzhen DACE Testing Technology Co., Ltd.
Address	:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Test Specification Standard	:	47 CFR Part 15.247
Date of Receipt	:	March 6, 2025
Date of Test	:	March 6, 2025 to March 14, 2025
Data of Issue	b	March 14, 2025
Result	:	Pass
	Applicant's Name Address Testing Laboratory Address Test Specification Standard Date of Receipt Date of Test Data of Issue	Applicant's Name:Address:Testing Laboratory:Address:Test Specification Standard:Date of Receipt:Date of Test:Data of Issue:

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DAG

Apply for company information

Applicant's Name	:	Shenzhen Weofly Innovation Technology Co.,LTD
Address	:	Factory Building 601-11,Nankeng Second Industrial Zone,Nankeng Community, Bantian Street, Longgang District, Shenzhen, China
Product Name	:	Smart Watch
Test Model(s)	:	Edge 2
Series Model(s)	•	Aurora, Aurora 2, Aurora 3, Aurora 4, Aurora 5, Aurora 6, Aurora Lite, Aurora Pro, Power 2, Power 3, Power 4, Power 5, Power 6, Power Lite, Power Pro, Edge 3, Edge 4, Edge 5, Edge 6, Edge Lite, Edge Pro, Ultra, Ultra 2, Ultra 3, Ultra 4, Ultra 5, Ultra 6, Ultra Lite, Ultra Pro, Spirit 2, Spirit 3, Spirit 4, Spirit 5, Spirit 6, Spirit Lite, Spirit Pro, Explorer 4, Explorer 5, Explorer 6, Active 4, Active 5, Active 6, Navigator 4, Navigator 5, Navigator 6, Pioneer 4, Pioneer 5, Pioneer 6, Energy 4, Energy 5, Energy 6, Vive 4, Vive 5, Vive 6, Curve 4, Curve 5, Curve 6, Conquer 4, Conquer 5, Conquer 6, Turbo 4, Turbo 5, Turbo 6
Test Specification Standard(s)	:	47 CFR Part 15.247

NOTE1:

NC

DA(

Die

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Keren Huang

Keren Huang / Test Engineer March 14, 2025

Supervised by:

Ben Tang

Ben Tang / Project Engineer

March 14, 2025

Approved by:

Machael MJ

Machael Mo / Manager March 14, 2025

AC

C

D7C	V1.0		Report No.: DACE250306
		vision History Of Repor	DÀC
Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE250306019RL001	March 14, 2025
	DAG	DA	E
	E		
	270		

D

١

CONTENTS

V1.0	
	Report No.: DACE250306019RL001
CONTENTS	
1 TEST SUMMARY	25
1.1 Test Standards	
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION	
2.2 DESCRIPTION OF DEVICE (EUT)	
2.3 DESCRIPTION OF TEST MODES 2.4 DESCRIPTION OF SUPPORT UNITS	
2.5 Equipments Used During The Test	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
4.1.2 Test Data:	
4.2 6DB BANDWIDTH	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 Power Spectral Density	
4.4.1 E.U.T. Operation:	
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.5.1 E.U.T. Operation:	2
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6 BAND EDGE EMISSIONS (RADIATED)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
4.7.1 E.U.T. Operation:	
4.7.2 Test Data:	
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	
	ç
4.8.1 E.U.T. Operation:	·······

DVG -			
6 PHOTOS O	F THE EUT		
16DB	BANDWIDTH		
3. DUTY		 	
5. POW 6. BANI	ER SPECTRAL DENSITY	 <u> </u>	
7. Spur	RIOUS EMISSION		2

C

-

TEST SUMMARY 1

1.1 Test Standards

DAG

Ne

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
6dB Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

C

)AC

DA	V1.0		Report No.: DACE250306019RL001
2	GENERAL INF	0	RMATION
	Applicant's Name	:	Shenzhen Weofly Innovation Technology Co.,LTD
	Address	:	Factory Building 601-11,Nankeng Second Industrial Zone,Nankeng Community, Bantian Street, Longgang District, Shenzhen, China
	Manufacturer	:	Shenzhen Weofly Innovation Technology Co.,LTD
	Address	:	Factory Building 601-11, Nankeng Second Industrial Zone, Nankeng Community, Bantian Street, Longgang District, Shenzhen, China
2.2	Description of Devi	се	(EUT)
	Product Name:	S	mart Watch
	Model/Type reference:	E	dge 2
DA	Series Model:	P 3 5 L	urora,Aurora 2,Aurora 3,Aurora 4,Aurora 5,Aurora 6,Aurora Lite,Aurora ro ,Power 2,Power 3,Power 4,Power 5,Power 6,Power Lite,Power Pro,Edge ,Edge 4,Edge 5,Edge 6,Edge Lite,Edge Pro ,Ultra, Ultra 2,Ultra 3,Ultra 4,Ultra ,Ultra 6,Ultra Lite,Ultra Pro,Spirit 2,Spirit 3,Spirit 4,Spirit 5,Spirit 6,Spirit ite,Spirit Pro,Explorer 4,Explorer 5,Explorer 6,Active 4,Active 5,Active ,Navigator 4,Navigator 5,Navigator 6,Pioneer 4,Pioneer 5,Pioneer 6,Energy

	6,Navigator 4,Navigator 5,Navigator 6,Pioneer 4,Pioneer 5,Pioneer 6,Energy 4,Energy 5,Energy 6,Vive 4,Vive 5,Vive 6,Curve 4,Curve 5,Curve 6,Conquer 4,Conquer 5,Conquer 6,Turbo 4,Turbo 5,Turbo 6
Model Difference:	The product has many models, only the model name and color is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	Weofly
Power Supply:	DC 5V/1A from adapter Battery:DC3.8V 400mAh
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	Internal
Antenna Gain:	OdBi
Hardware Version:	V1.0
Software Version:	V1.0

Des(Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for This data and the related calculations associated with it)

	Operation	n Frequency ea	ch of chanr	nel				
	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	_1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
Þ	3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
	4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
	5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
	6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
	7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Report No.: DACE250306019RL001

8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

DAC

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: -

Test channel	Frequency (MHz)	
rest channer	BLE	J.
Lowest channel	2402MHz	-
Middle channel 🔩	2440MHz	
Highest channel	2480MHz	
Remark:Only the data of the	e worst mode would be recorded in this report.	

2.3 Description of Test Modes

No	Title	Description				
TM1	I1 Lowest channel Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.					
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.				
ТМ3	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.				
2		SE C				
Descr	iption of Support Uni					

2.4 Description of Support Units

NE

	Title	Manufacturer	Model No.	Serial No.
A	dapter	SHENZHEN GROSUN TECHNOLOGY CO.,LTD	GS-P120150E663	

e

)AC

Se

2.5 Equipments Used During The Test

DAG

Conducted Emission	at AC power line	200			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
loop antenna	EVERFINE	LLA-2	80900L-C	2024-12-19	2025-12-18
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-05-20	2025-05-19
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	
Cable	SCHWARZ BECK	1	/	2024-05-20	2025-05-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	1
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11
L.I.S.N	R&S 🚽	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13
Pulse Limiter	CYBERTEK	EM5010A	/	2024-09-27	2025-09-26
EMI test software	EZ -EMC	EZ	V1.1.42	/	/
		-	-		

6

6dB Bandwidth

Maximum Conducted Output Power **Power Spectral Density** Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	/	210
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	/
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 9 of 63

1

/	1		n	
~	1	٠	v	

DVC

1

3

DAG

JI

Emissions in frequence Band edge emissions Emissions in frequence	(Radiated)	- NC		DA	E
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/
Positioning Controller	MF	MF-7802	C /	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2023-05-19	2025-05-18
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-05-19	2025-05-18
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	/	/	2024-12-19	2025-12-18
Cable(LF)#1	Schwarzbeck	/	1	2024-12-19	2025-12-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-05-20	2025-05-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-05-20	2025-05-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

DAG

)DE

DAG

DAG

)DE

5

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

DA

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an ex	nanded uncertainty expressed at approximately the 05%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Identification of the Responsible Testing LocationCompany Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:+86-13267178997Fax Number:+86-13267178997Fax Number:Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:CN1342Test Firm DeviatoritienCN1342	
Address:Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Sl ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Identification of the Responsible Testing LocationCompany Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Sl ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342	
Fax Number:86-755-29113252Identification of the Responsible Testing LocationCompany Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342	
Identification of the Responsible Testing LocationCompany Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342	C.
Company Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342	C
Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342	
Address:Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Sl ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342	
Fax Number:86-755-29113252Designation Number:CN1342	
Designation Number: CN1342	20
	V
Test Firm Registration 778666 778666	
A2LA Certificate Number: 6270.01	

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Page 11 of 63

Evaluation Results (Evaluation) 3

CC

CC.

3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

-

DAG

0

Test Requirement:

DΔC

NE

)De

NE

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

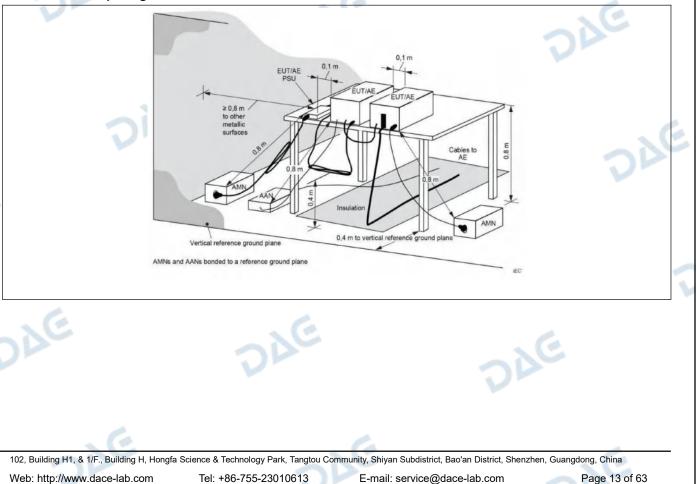
NG

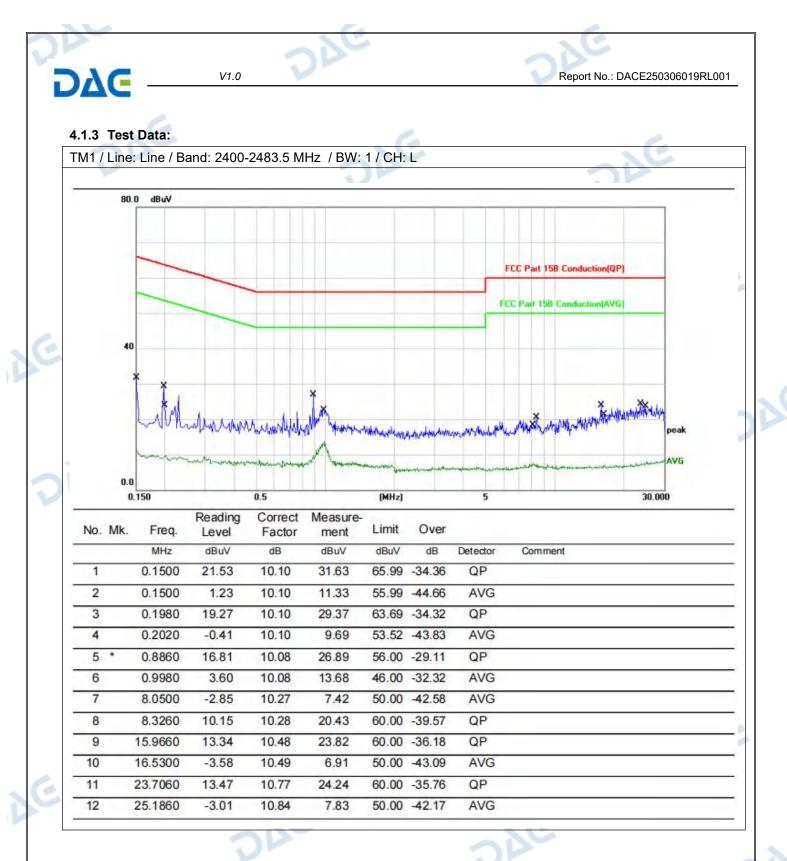
6

Report No.: DACE250306019RL001

Radio Spectrum Matter Test Results (RF) 4

4.1 Conducted Emission at AC power line


Test Requirement:	Refer to 47 CFR 15.207(a), Except a section, for an intentional radiator th utility (AC) power line, the radio freq AC power line on any frequency or f MHz, shall not exceed the limits in th μ H/50 ohms line impedance stabilized	at is designed to be conne uency voltage that is cond requencies, within the ban ne following table, as meas	ected to the public lucted back onto the ld 150 kHz to 30	
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)		
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of the	frequency.		
Test Method:	ANSI C63.10-2013 section 6.2	J.	1	
Procedure:	Refer to ANSI C63.10-2013 section conducted emissions from unlicense		for ac power-line	
4.1.1 E.U.T. Operation:	.e		4	


4.1.1 E.U.T. Operation:

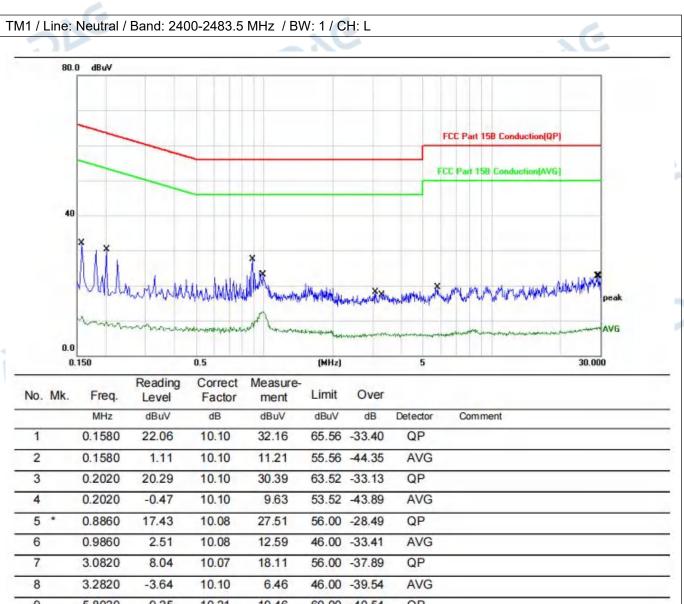
DAG

Operating Environment:						
Temperature:	22.5 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1			V	
Final test mode:		TM1				

4.1.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De


DAG

DAG

DAC

DAG

Report No.: DACE250306019RL001

12	29.8540	-2.99	11.13	8.14	50.00 -41.86	AVG	
11	29.1580	11.70	11.09	22.79	60.00 -37.21	QP	
10	5.8060	-3.97	10.21	6.24	50.00 -43.76	AVG	
9	5.8020	9.25	10.21	19.46	60.00 -40.54	QP	
8	3.2820	-3.64	10.10	6.46	46.00 -39.54	AVG	

)AC

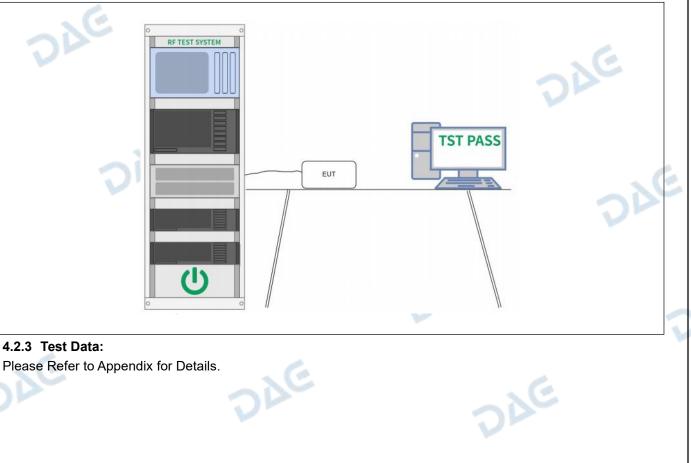
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 15 of 63

DAG

4.2 6dB Bandwidth

DAG


Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

e.

4.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.5 °C	_	Humidity:	56 %	Atmospheric Pressure:	101 kPa		
Pretest mode:		TM1,	TM2, TM3			6		
Final test mode: TM1, TM2, TM3								
400 Test Ost								

4.2.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

Report No.: DACE250306019RL001

,AC

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power
1e	Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total
DAC	number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

6

4.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa	
Pretest mode:		TM1,	TM2, TM3				
Final test mode:		TM1,	TM2, TM3				

4.3.2 Test Setup Diagram:

NE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 17 of 63

Se

DAG	V1.0	Report No.: DACI	E250306019RL001
DAC DAC	© © © RF TEST SYSTEM	20	E
Ð		EUT	DAC
4.3.3 Test Data: Please Refer to Ap	<u> </u>	EDIE	
		DIE	
		DAC	
	ding H, Hongfa Science & Technology Par	rk, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangd	ong, China Page 18 of 63

~

Report No.: DACE250306019RL001

4.4 Power Spectral Density

DΔC

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6

4.4.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa	
Pretest mode: TM1, TM2, TM3			TM2, TM3				
Final test mode:TM1, TM2, TM3							

4.4.2 Test Setup Diagram:

4.4.2 Test Setup Diagra			
		\$	E
DIG		TST PASS	DIE DIE
4.4.3 Test Data: Please Refer to Appendix	k for Details.	DAG	
102, Building H1, & 1/F., Building H, H	ongfa Science & Technology Park, Tangtou Community, Shi	yan Subdistrict, Bao'an District, Shenzher	n, Guangdong, China

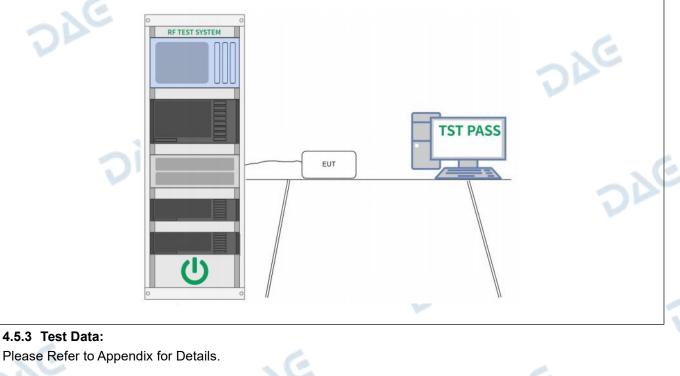
Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Report No.: DACE250306019RL001

4.5 Emissions in non-restricted frequency bands


Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

DVC

Operating Environment:								
Temperature:	22.5 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa		
Pretest mode:		TM1,	TM2, TM3			6		
Final test mode: TM1, TM2, TM3			TM2, TM3					

4.5.2 Test Setup Diagram:

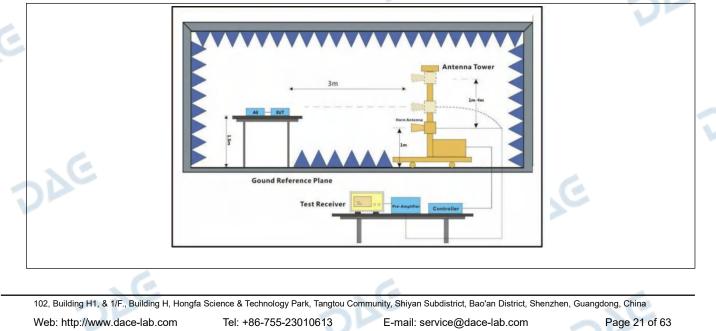
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

Report No.: DACE250306019RL001

4.6 Band edge emissions (Radiated)

DγG


Test Requirement:	restricted bands, as defi	(d), In addition, radiated emissic ned in § 15.205(a), must also co in § 15.209(a)(see § 15.205(c))	omply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
24	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
N E	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands if and 15.241. In the emission table ab The emission limits show employing a CISPR qua 110–490 kHz and above	paragraph (g), fundamental em er this section shall not be locate 174-216 MHz or 470-806 MHz. s permitted under other sections ove, the tighter limit applies at th wn in the above table are based si-peak detector except for the f a 1000 MHz. Radiated emission bents employing an average detector	ed in the frequency bands However, operation within s of this part, e.g., §§ 15.237 ne band edges. on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	on 6.10 7 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sect	on 6.10.5.2	10
4.6.1 E.U.T. Operation:			~~~

6

4.6.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.5 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa		
Pretest mode: TM1			TM2, TM3		6			
Final test mode:	DP	TM1,	TM2, TM3					

4.6.2 Test Setup Diagram:

DΔG V1.0 Report No.: DACE250306019RL001 4.6.3 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 110.0 100 90 80 FCC Part 15C (F 70 60 FCC P 50 40 30 AVG 20 10 0.0 2310.000 2320.000 2330.000 2340.000 2350.000 (MHz) 2370.000 2380.000 2390.000 2400.000 2410.000 Frequency Reading Factor Level Limit Margin Height Azimuth P/F Detector Remark No. (deg.) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) 2310.000 41.65 -3.63 74.00 P 1 38.02 -35.98 peak 150 2310.000 30.50 P 2 -3.63 26.87 54.00 -27.13 AVG 150 3 2390.000 42.27 -3.42 38.85 74.00 -35.15 150 P peak 4 * 31.27 -3.42 150 P 2390.000 27.85 54.00 -26.15 AVG

DAG

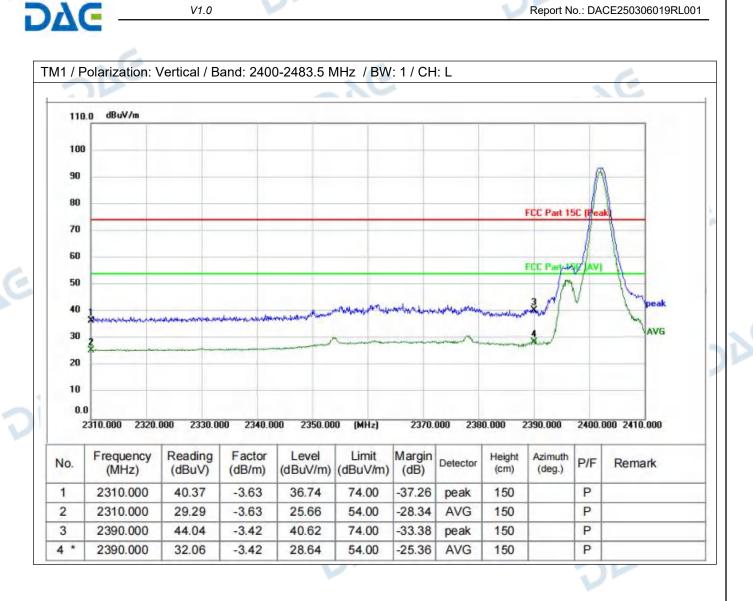
♦

DAG

DAG

)AC

DAG


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)AC

DE

Report No.: DACE250306019RL001

DAE

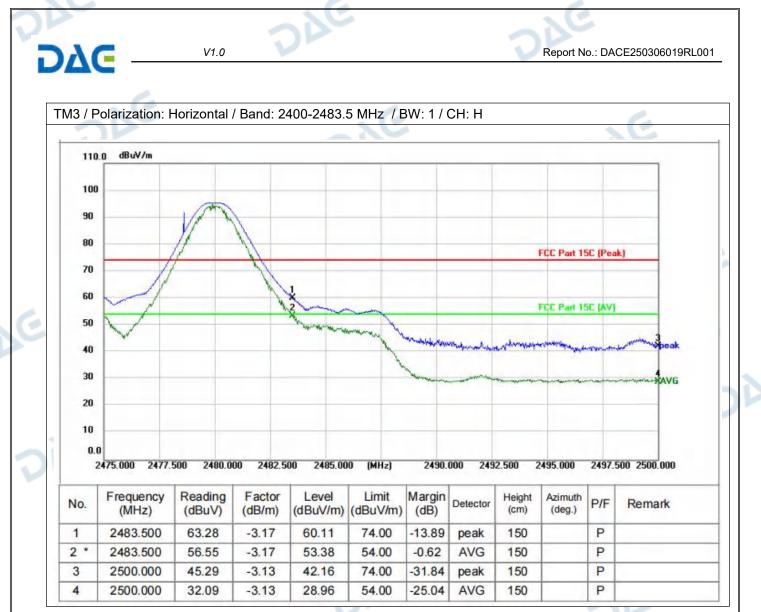
4

DAG

DAG

)AC

DAG


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

Page 23 of 63

)DE

DAE

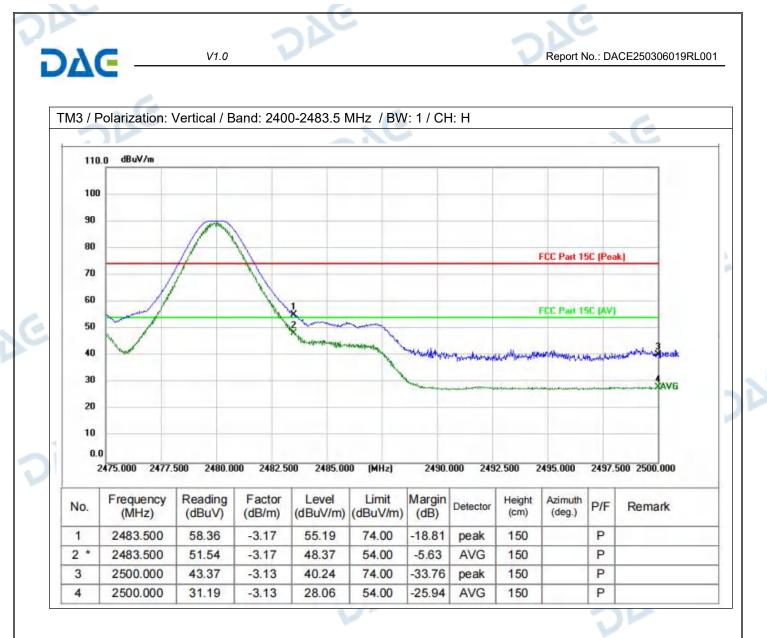
4

DAG

DAG

2AC

DAG


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

Page 24 of 63

)De

DAE

4

DAG

DAG

24C

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

DAG

Page 25 of 63

DE

DγG

4.7 Emissions in frequency bands (below 1GHz)

 102, Building H1, & 1/F., Building H, Hongta Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdor

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 P

	DAG -	V1.	0		Repo	ort No.: DACE250306019
	240	2 F F 3 v f c s t	 channel. Only the worst case is recorded in the report. 2) The field strength is calculated by adding the Antenna Factor, Cable Factor Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below was very low. The points marked on above plots are the highest emissions found when testing, so only above points had been displayed. The amplitu spurious emissions from the radiator which are attenuated more than 20dE the limit need not be reported. Fundamental frequency is blocked by filter, spurious emission is shown. 			as follows: ole Factor C GHz and below 30MH nest emissions could d. The amplitude of nore than 20dB below
-	4.7.1 E.U.T. Op	peration:				2
	Operating Envir	onment:				
2	Temperature:	22.5 °C	Humidity:	56 %	Atmospheric Pressure:	101 kPa
ļ	Pretest mode:	-	⁻ M1		. 6	
	Final test mode:	Т	M1		24	
			2			

Page 27 of 63

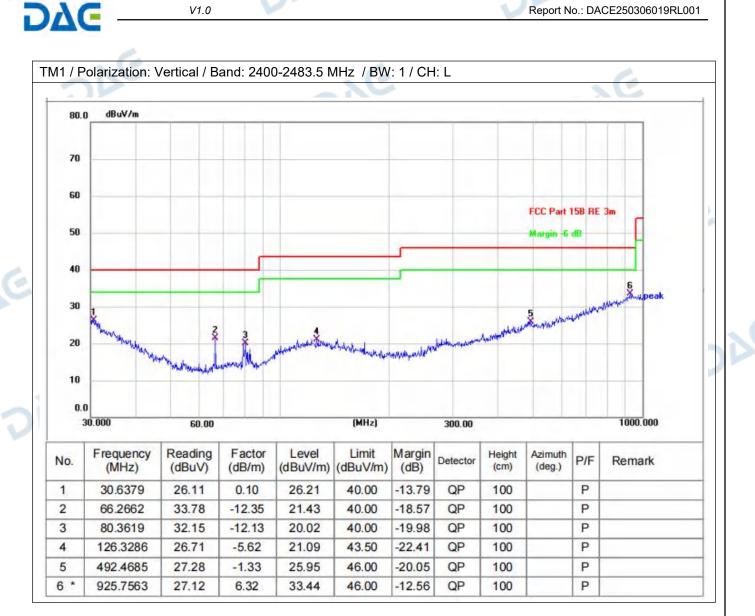
DAC V1.0 Report No.: DACE250306019RL001 4.7.2 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 80.0 70 60 FCC Part 15B RE 3m 50 6 16 40 5 30 X 20 10 0.0 (MHz) 30.000 1000.000 60.00 300.00 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (dBuV/m) (dBuV/m) (deg.) (MHz) (dBuV) (dB/m) (dB) (cm) QP 1 30.5306 26.91 0.16 27.07 40.00 -12.93 100 P P 2 119.8556 27.15 -5.60 21.55 -21.95 QP 43.50 100 27.33 21.27 -24.73 P 3 295.1469 -6.06 46.00 QP 100 26.96 489.0269 -1.14 25.82 46.00 -20.18 QP 100 P 4 5 677.5798 26.46 1.84 28.30 46.00 -17.70 QP 100 P 6 * 942.1305 27.03 6.41 33.44 46.00 -12.56 QP 100 P

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC


)AC

\$

DAG

-

Report No.: DACE250306019RL001

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)AC

1

DD

DAG

DAG

)AC

Page 29 of 63

NE

DγG

Report No.: DACE250306019RL001

4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	and 15.241. In the emission table abo The emission limits show employing a CISPR quas 110–490 kHz and above are based on measurem	s permitted under other sections ove, the tighter limit applies at th <i>n</i> in the above table are based si-peak detector except for the f 1000 MHz. Radiated emission ents employing an average dete	e band edges. on measurements requency bands 9–90 kHz limits in these three bands			
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	 RDB 558074 D01 15.247 Meas Guidance V0502 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency or below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and ther reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. 					
	Remark:					

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

1	ΟΔC –		V1.0		Rep	oort No.: DACE250306019F	
	DAC		 channel. Only the worst case is recorded in the report. 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and on spurious emission is shown. 				
ſ	4.8.1 E.U.T. Op						
	Operating Envir			E0 01	· · · -		
-	Temperature:	22.5 °C	Humidity:	56 %	Atmospheric Pressure:	101 kPa	
	Pretest mode:		TM1, TM2, TM3		<u>.</u>		
	Final test mode:		TM1, TM2, TM3				
						2	

DΔC V1.0 Report No.: DACE250306019RL001 4.8.2 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 AVG 6 40 30 20 10 0.0 1000.000 2175.000 10400.000 11575.00012750.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 Reading Frequency Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) 4807.000 1 50.09 3.31 53.40 74.00 -20.60 peak 150 P 2 4807.000 34.36 3.31 37.67 54.00 -16.33 AVG 150 P 3 7204.000 44.58 10.37 54.95 74.00 -19.05 peak 150 P 4 * 7204.000 31.00 10.37 41.37 54.00 -12.63 AVG 150 P 9601.000 37.68 P 5 15.09 52.77 74.00 -21.23 150 peak

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

6

DAG

9601.000

26.26

15.09

)De

\$

41.35

)AC

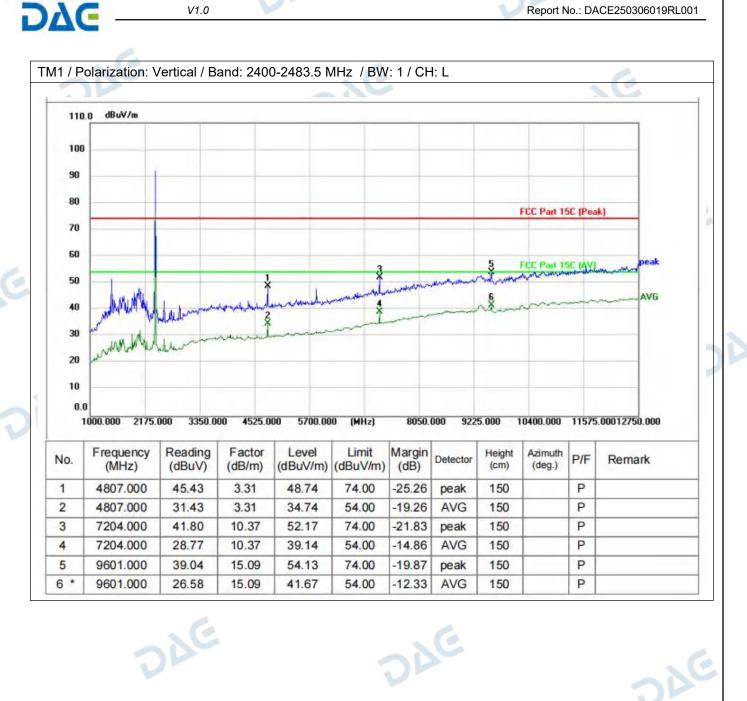
54.00

-12.65

AVG

150

)AC


DAG

P

Page 32 of 63

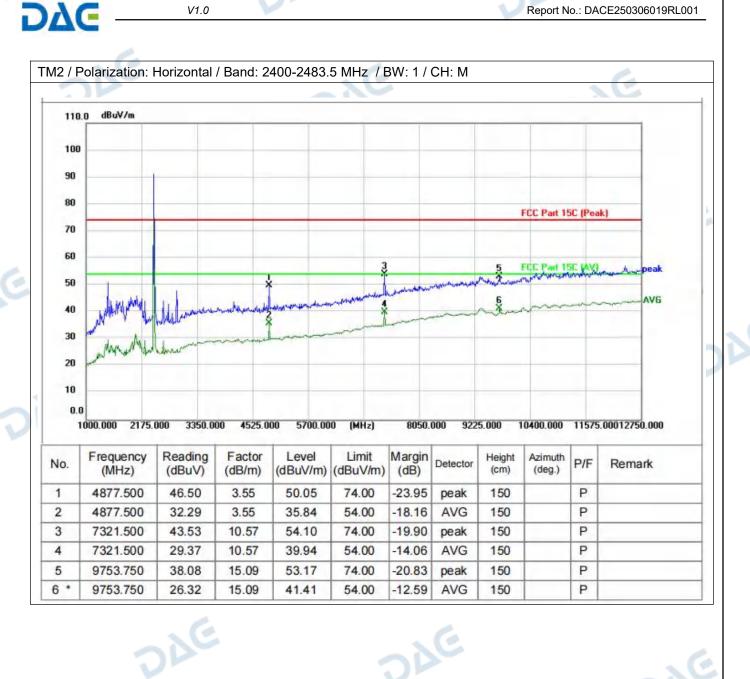
126

Report No.: DACE250306019RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)AC


)AC

DAG

)AC

Page 33 of 63

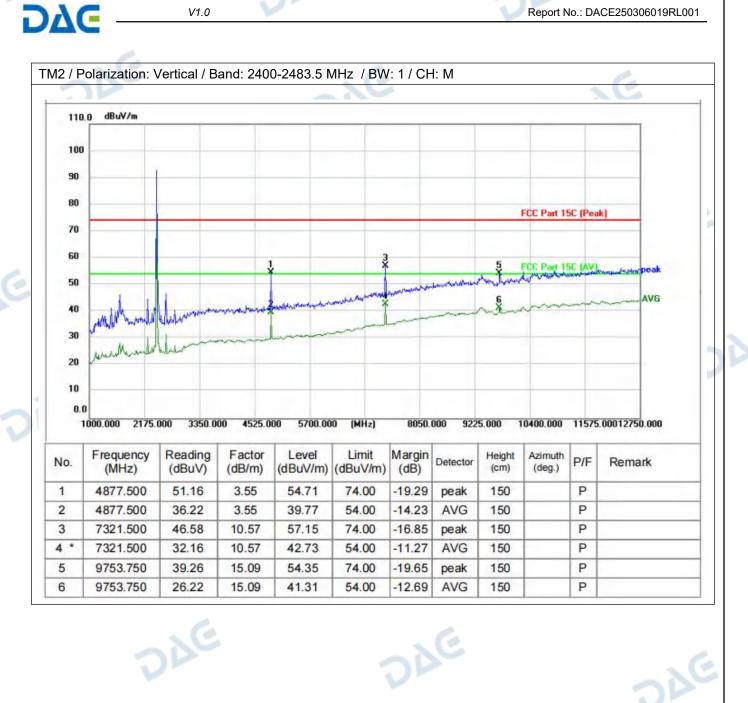
Report No.: DACE250306019RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)AC

DAG


DAG

)AC

Page 34 of 63

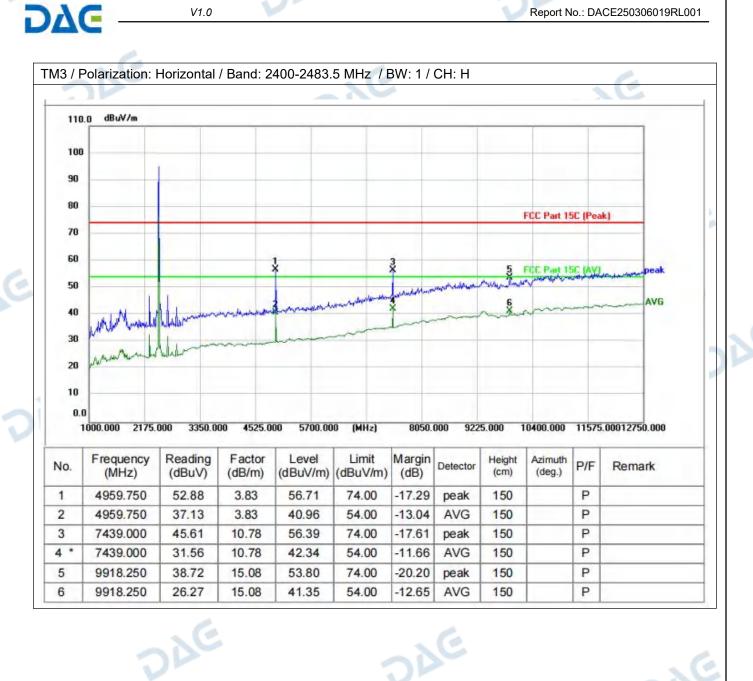
)DE

Report No.: DACE250306019RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG


)AC

DAG

)De

Page 35 of 63

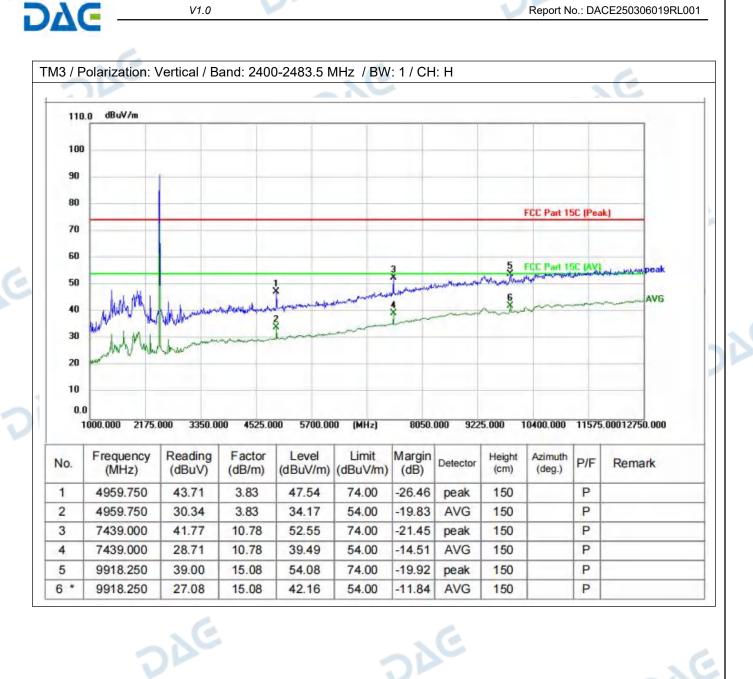
Report No.: DACE250306019RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

DAG


Page 36 of 63

DAG

)AC

NE

Report No.: DACE250306019RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

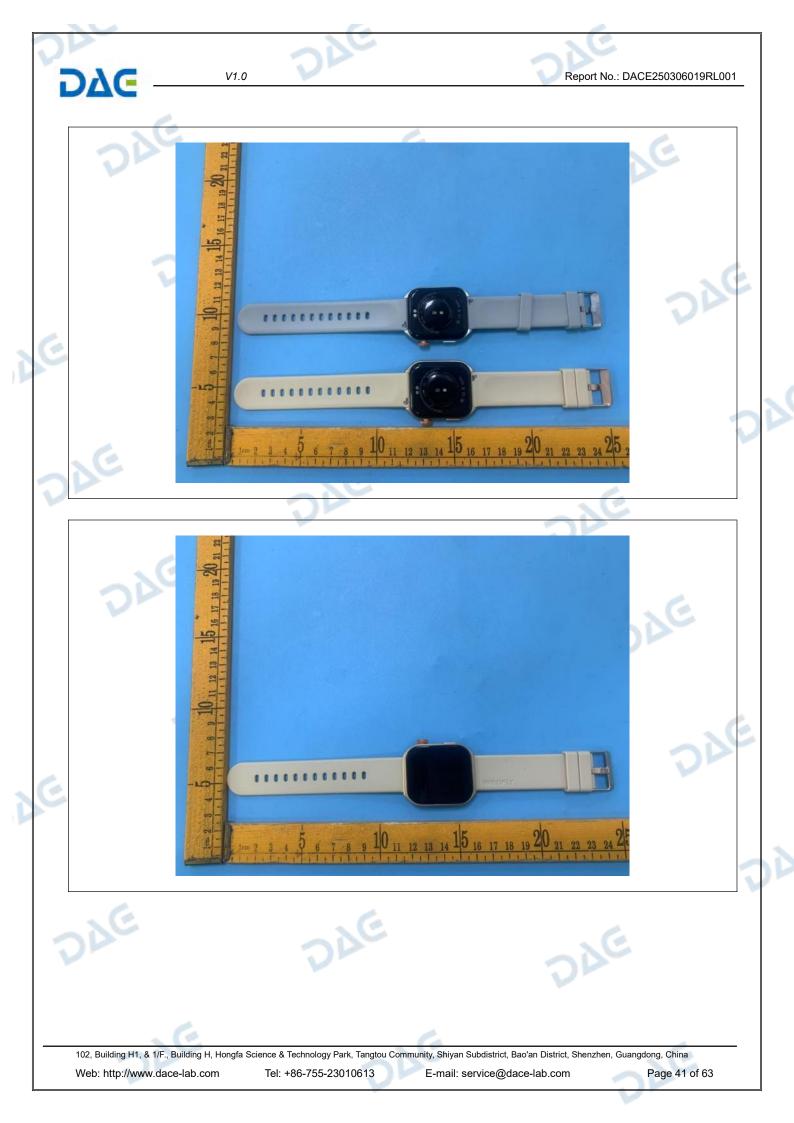
DAG

)AC

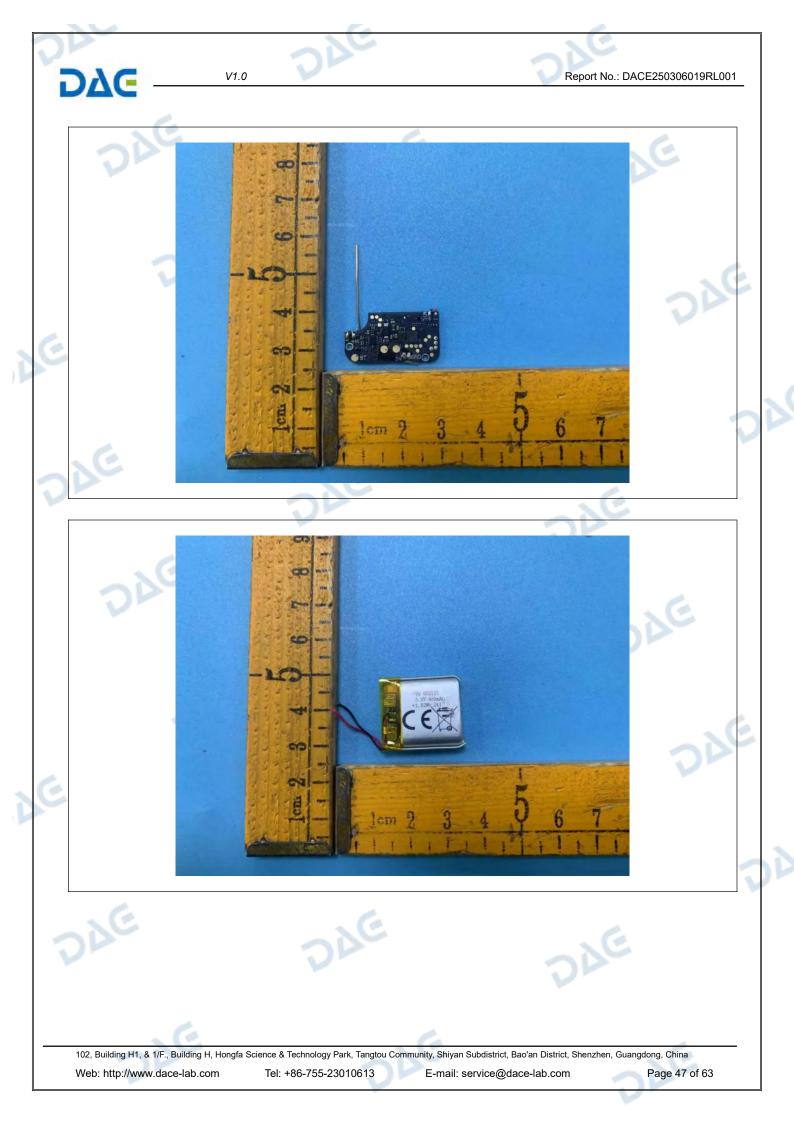
)ÀC

Page 37 of 63

DAG

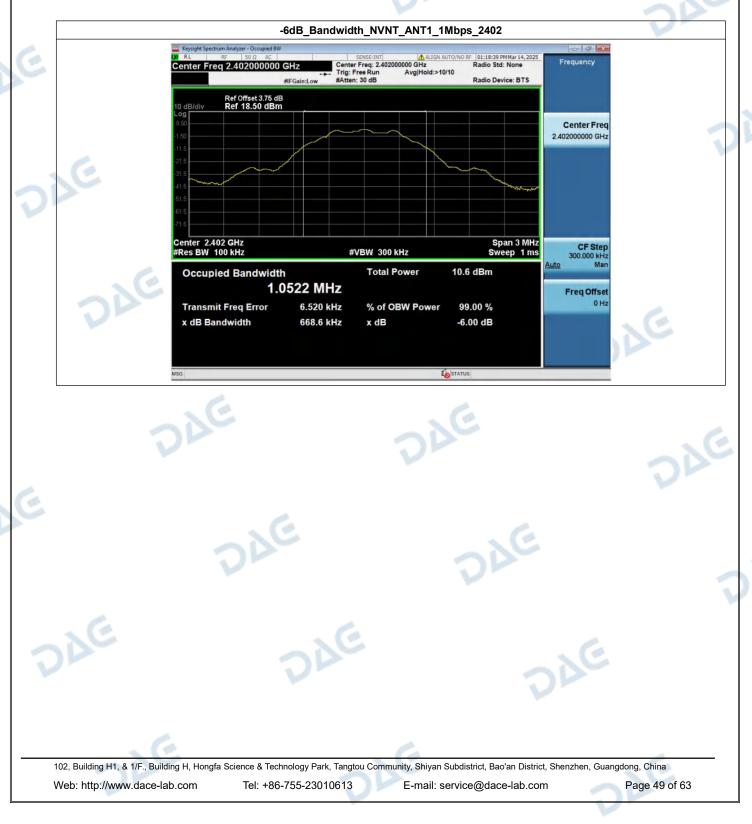

)AC

DE



Report No.: DACE250306019RL001

.


HT250306011--Smart Watch--Edge FCC_BLE (Part15.247) Test Data

1. -6dB Bandwidth

V1.0

DAG

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	668.60	500	Pass
NVNT 🦳	ANT1	1Mbps	2440.00	669.65	500	Pass
NVNT 🔰	ANT1	1Mbps	2480.00	680.05	500	Pass

DAG V1.0 Report No.: DACE250306019RL001 -6dB_Bandwidth_NVNT_ANT1_1Mbps_2440 10 SENSE:INT Center Freq: 2.44000000 GHz Trig: Free Run Avg|Hold #Atten: 30 dB 01:22:22 PM Mar 14, 2025 Radio Std: None Frequency Center Freq 2.440000000 GHz ld:>10/10 #IFGain:Low Radio Device: BTS Ref Offset 3.72 dB Ref 18.44 dBm Center Freq 2.44000000 GHz Span 3 MHz Sweep 1 ms Center 2.44 GHz #Res BW 100 kHz CF Step #VBW 300 kHz **Occupied Bandwidth** Total Power 10.6 dBm 1.0466 MHz Freq Offset % of OBW Power 0 Hz Transmit Freq Error 7.442 kHz 99.00 % -6.00 dB x dB Bandwidth 669.6 kHz x dB . STATU -6dB_Bandwidth_NVNT_ANT1_1Mbps_2480 1 B X SENSE:INT Center Freq: 2.480000000 GHz Trig: Free Run Avg|Hold:>10/10 #Atten: 30 dB 01:25:41 PM Mar 14, 2025 Radio Std: None Frequency Center Freq 2.480000000 GHz ø #IFGain:Low Radio Device: BTS Ref Offset 3.85 dB Ref 22.70 dBm **Center Freq** 2.48000000 GHz Center 2.48 GHz #Res BW 100 kHz Span 3 MHz Sweep 1 ms CF Step 300.000 kH #VBW 300 kHz Auto 10.5 dBm **Occupied Bandwidth** Total Power 1.0494 MHz Freq Offset 0 Hz Transmit Freq Error 6.807 kHz % of OBW Power 99.00 % 680.0 kHz x dB Bandwidth x dB -6 00 dB **E**STATU DAG)AC DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 50 of 63

Report No.: DACE250306019RL001

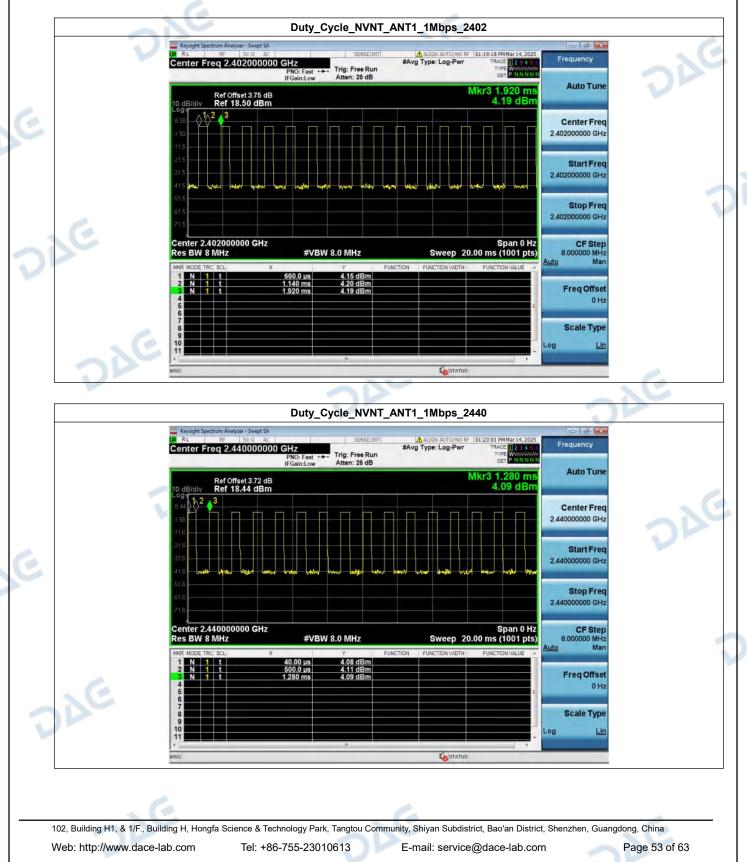
2. 99% Occupied Bandwidth

DAG

Condition	Condition Antenna		Condition Antenna Rate Frequency (MHz		Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1Mbps	2402.00	1.027		
NVNT	ANT1	1Mbps	2440.00	1.031		
NVNT	ANT1	1Mbps	2480.00	1.035		

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com


	12	99%_Occup Keysight Spectrum Analyzer - Occupied BW RL BF 50 0 AC nter Freq 2.480000000 GHz	Died_Bandwidth_NVNT	ALIGN AUTO/NO RF 01:26:02 PM Mar 14, 2025	Frequency	
		#FGain:Lo Ref Offset 3.85 dB dB/dly Ref 18.70 dBm	Trig: Free Run Avg Ho	Id: 10/10 Radio Device: BTS		
			mm	×	Center Freq 2.480000000 GHz	6
	-31 -41 -51 -61				1	
	#R	nter 2.48 GHz es BW 30 kHz	#VBW 100 kHz	Span 3 MHz Sweep 3.2 ms	CF Step 300.000 kHz uuto Man	
		Occupied Bandwidth 1.0348 Transmit Freq Error 10.6	Total Power MHZ 501 kHz % of OBW Pov	11.2 dBm wer 99.00 %	Freq Offset 0 Hz	
. 6		x dB Bandwidth 1.2	29 MHz x dB	-26.00 dB		V
	мбо	2	<u>y-</u>	I STATUS	<u>.</u> e	

Report No.: DACE250306019RL001

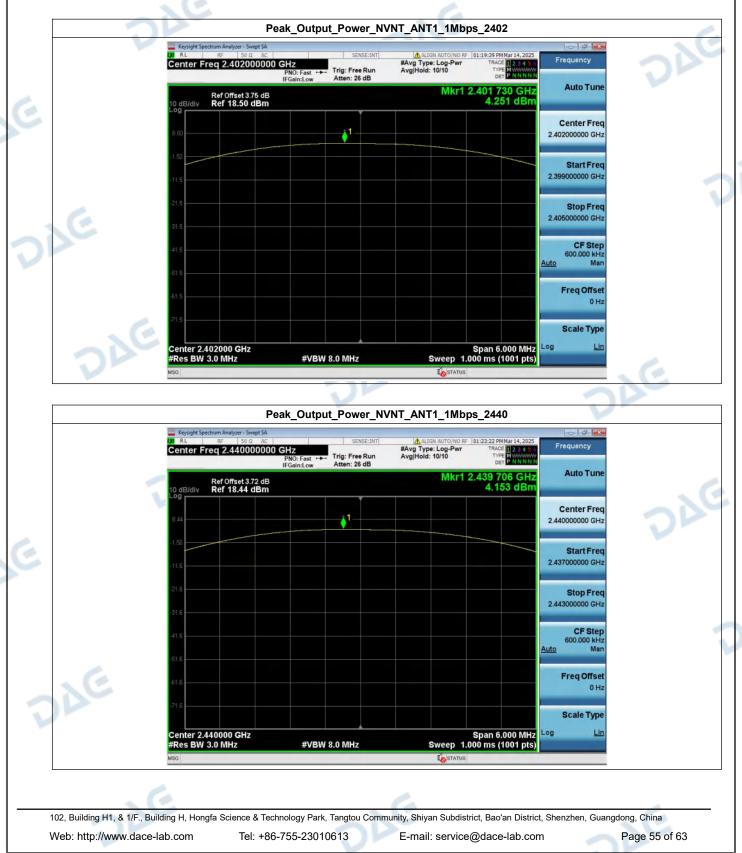
3. Duty Cycle

DAG

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	38.10	4.19
NVNT	ANT1	1Mbps	2440.00	37.10	4.31
NVNT	ANT1	1Mbps	2480.00	39.68	4.01

DAC -	V1.0	Report No.: DAC	E250306019RL001
- NG	Duty_Cycle_NVNT_AN		6
D	Exploit Spectrum Analyzer-Swept SA Di RL pp 50 0 AC PNO: Fast →→ Trig: Free Run IFGain:Low Ref Offset 3.85 dB 10 dB/dlv Ref 18.70 dBm Log 11 3 -1	Autornovic Are Di 26:20 PHMar 14, 2025 Avg Type: Log-Pwr Trice 12 3 4 Trice 12 3 4	
E	Image: State of the s	Span 0 Hz Sweep 20.00 ms (1001 pts) N FUNCTION WIDTH FUNCTION VALUE FUNCTION VALUE CF Step 8.000000 MHz Auto Man Freq Offset 0 Hz Scale Type Log Lin	
	MSG		

Report No.: DACE250306019RL001

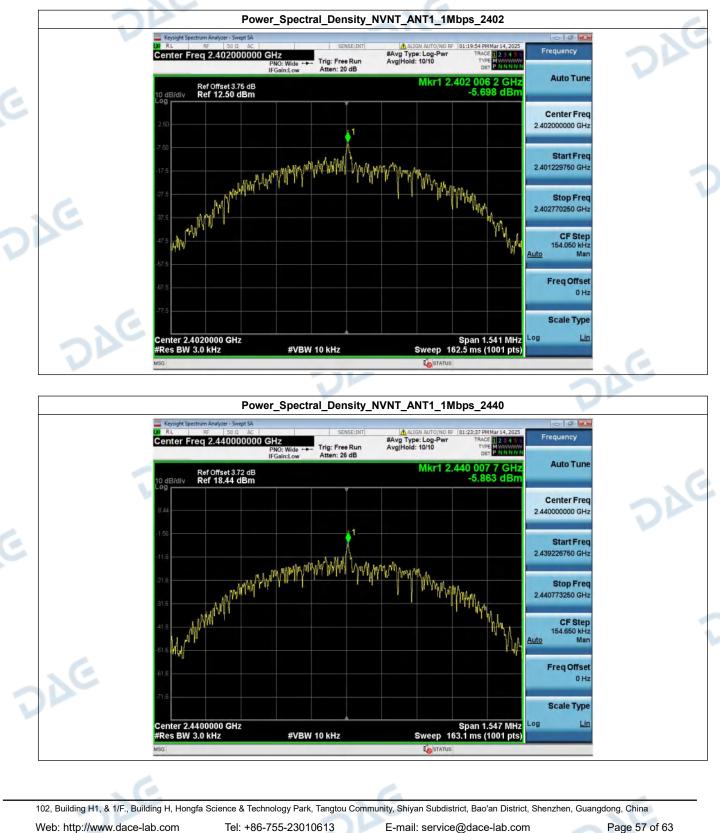

V1.0

4. Peak Output Power

DΔC

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	4.25	2.66	1000	Pass
NVNT	ANT1	1Mbps	2440.00	4.15	2.60	1000	Pass
NVNT	ANT1	1Mbps	2480.00	3.96	2.49	1000	Pass

C


DAG -	Pea	k_Output_Power_NVNT	_ANT1_1Mbps_2480		
20	Keysight Spectrum Analyzer - Swept SA RL BF 50 0 AC Center Freq 2.480000000 G Ref Offset 3.85 dB 10 dB/div Ref 18.70 dBm -11.3	HZ FGain:Low FGain:Low 1	ALIGN AUTO/NO RF 01:26:40 PM Mar Avg Type: Log-Pwr Avg Hold: 10/10 Trve Mkr1 2.479 670 3.958	3 4 5 0 Frequency NNNN Auto Tune	E
	-31.3 -31.3 -41.3 -51.3 -61.3 -71.3 Center 2.480000 GHz		Span 6.000	Stop Freq 2.48300000 GHz CF Step 600.000 kHz Auto Man Freq Offset 0 Hz Scale Type	50
)AG	#Res BW 3.0 MHz	#VBW 8.0 MHz	Sweep 1.000 ms (100		

Report No.: DACE250306019RL001

5. Power Spectral Density

DΔC

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm/3kHz)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-5.70	8	Pass
NVNT	ANT1	1Mbps	2440.00	-5.86	8	Pass
NVNT	ANT1	1Mbps	2480.00	-5.96	8	Pass

Page 57 of 63

240	Power_Spectral_Density_NV Keynight Spectrum Analyzer - Swept SA R.L RF SEG. AC SENSE::INT SENSE::INT	NT_ANT1_1Mbps_2480	
	Center Freq 2.480000000 GHz PN0: Wide +++ IFGain:Low Trig: Free Run Atten: 28 dB Ref Offset 3.85 dB Ref 20.70 dBm	Mkg1 2.480 006 2 GHz -5.956 dBm	
2	0.700	Center 1 2.48000000	GHz
	0.8. -19.3 -19.3 -29.3 -29.3 -29.3 -29.4 -29	2.479223750 Stop I 2.480776250	Freq
3	29.3 -29.3 	CF 5	Step
	-49.3 4	Freq O	ffset 0 Hz
E	^{-63.3} Center 2.4800000 GHz #Res BW 3.0 kHz #VBW 10 kHz	Span 1.553 MHz Sweep 163.7 ms (1001 pts)	ype Lin
	MSG	G ISTATUS	

Report No.: DACE250306019RL001

V1.0

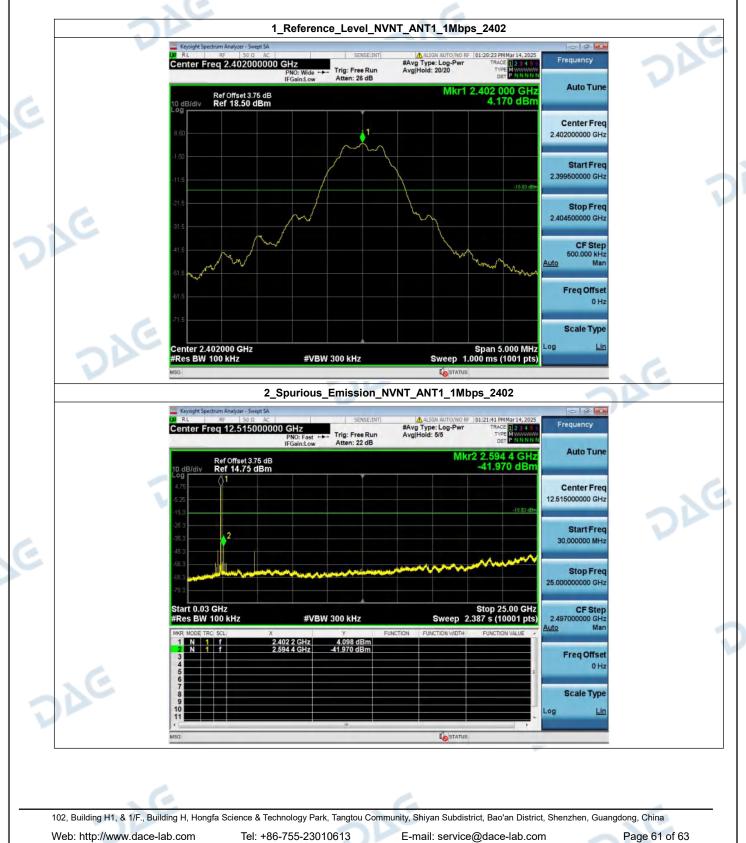
6. Bandedge

DΔG

	0							
Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark_freq(MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2395.975	4.170	-38.915	-15.830	Pass
NVNT	ANT1	1Mbps	2480.00	2483.750	3.813	-42.474	-16.187	Pass

E-mail: service@dace-lab.com

Page 60 of 63


Report No.: DACE250306019RL001

7. Spurious Emission

DAG

Condition	Antenna	Modulation	TX_Frequency (MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	4.170	-41.970	-15.830	Pass
NVNT	ANT1	1Mbps	2440.00	4.092	-42.832	-15.908	Pass
NVNT	ANT1	1Mbps	2480.00	3.813	-41.377	-16.187	Pass

6



Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 62 of 63

m Pa

Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 63 of 63