

RADIO TEST REPORT FCC ID: 2AUARTDSD

Certificate #4298.0

Product: ECHO HD
Trade Mark: DND, THINKCAR, MUCAR, dollarfix
Model No.: TDSD
Family Model: N/A
Report No.: S24032001801001
Issue Date: Apr 10, 2024

Prepared for

THINKCAR TECH CO., LTD.

2606, building 4, phase II, Tianan Yungu, Gangtou community, Bantian Longgang District, Shenzhen

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community,Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED Certificate #4298.01

ilac-MR

1	TES	ST RESULT CERTIFICATION	3
2	SUI	MMARY OF TEST RESULTS	4
3	FAC	CILITIES AND ACCREDITATIONS	5
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4	GE	NERAL DESCRIPTION OF EUT	6
5	DE	SCRIPTION OF TEST MODES	8
6	SET	TUP OF EQUIPMENT UNDER TEST	9
7	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS ST REQUIREMENTS	
'		CONDUCTED EMISSIONS TEST	
	7.1 7.2 7.3	RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL	16
	7.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
	7.5 7.6	AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST	
	7.7	PEAK OUTPUT POWER	
	7.8 7.9 7.10 7.11	CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8		ST RESULTS	
0	8.1	Dwell Time	
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	Dwell Time Maximum Conducted Output Power -20DB Bandwidth Occupied Channel Bandwidth Carrier Frequencies Separation Number of Hopping Channel. Band Edge Band Edge (Hopping) Conducted RF Spurious Emission.	42 46 50 54 58 60 65

1 TEST RESULT CERTIFICATION

THINKCAR TECH CO.,LTD.
2606, building 4, phase II, Tianan Yungu, Gangtou community, Bantian Longgang District, Shenzhen
THINKCAR TECH CO.,LTD.
2606, building 4, phase II, Tianan Yungu, Gangtou community, Bantian Longgang District, Shenzhen
ECHO HD
TDSD
N/A
S240320018002
Mar 20, 2024 ~ Apr 10, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD/ TEST PROCEDURE	TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

ang ng Reviewed : Aawn Cheng By : Aaron Cheng By : Alex Li (Managura) Gavan Zhang Prepared By ' Gavan Zhang (Project Engineer) (Supervisor) (Manager)

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Remark						
15.207	Conducted Emission	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247(a)(1)	Hopping Channel Separation	PASS				
15.247(b)(1)	Peak Output Power	PASS				
15.247(a)(iii)	Number of Hopping Frequency	PASS				
15.247(a)(iii)	Dwell Time	PASS				
15.247(a)(1)	Bandwidth	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

2. All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description		
CNAS-Lab.	:	The Certificate Registration Number is L5516.
IC-Registration		The Certificate Registration Number is 9270A.
		CAB identifier:CN0074
FCC- Accredited		Test Firm Registration Number: 463705.
		Designation Number: CN1184
A2LA-Lab.		The Certificate Registration Number is 4298.01
Name of Firm	:	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	:	1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei
		Community, Hangcheng Street, Baoan District, Shenzhen, Guangdong,
		China

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted, PSD	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±4.7%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	ECHO HD		
Trade Mark	DND, THINKCAR, MUCAR, dollarfix		
FCC ID	2AUARTDSD		
Model No.	TDSD		
Family Model	N/A		
Model Difference	N/A		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK		
Number of Channels	79 Channels		
Antenna Type	PCB Antenna		
Antenna Gain	-0.58 dBi		
Adapter	N/A		
Battery	N/A		
Power supply	Input: DC12V-24V, Signal: 0-5V		
Hardware version:	N/A		
Firmware version:	N/A		
Software version:	N/A		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
S24032001801001	Rev.01	Initial issue of report	Apr 10, 2024

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for $\pi/4$ -DQPSK modulation) were used for all test. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1	normal link mode	
Note: AC newer line Conducted Emission was tested under maximum output newer		

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 2Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

For AC Conducted Emission Mode AC PLUG C-1 AE-1 EUT Adapter	
For Radiated Test Cases	
EUT	
For Conducted Test Cases Measurement C-2 EUT	
Note: 1. The temporary antenna connector is soldered on the PCB boa and this temporary antenna connector is listed in the equipment list.	ard in order to perform conducted tests

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	ECHO HD	TDSD	N/A	EUT
AE-1	Adapter	MX65Z1-2403000	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测[®]

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2025.03.30	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.05.29	2024.05.28	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment	
------------------------------	--

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

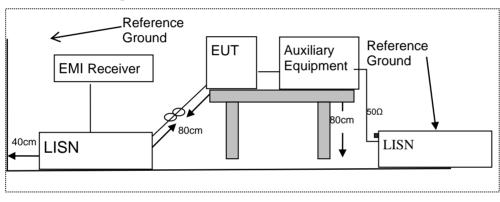
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

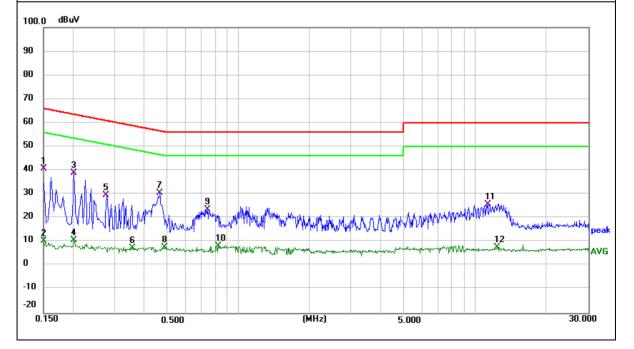
7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

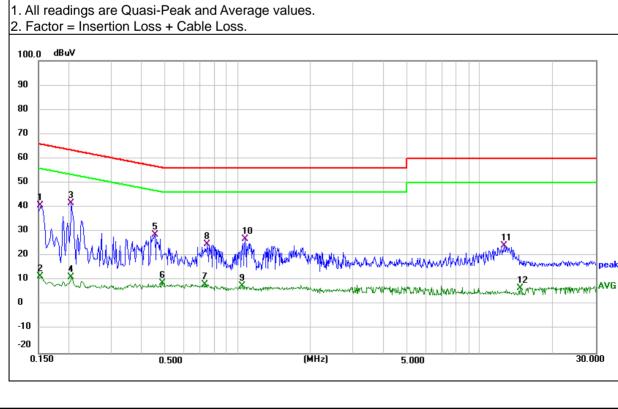

EUT:	ECHO HD	Model Name :	TDSD
Temperature:	22.1 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 24V from adapter AC 120V/60Hz	Test Mode:	Mode 1

1			1			1
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	30.92	9.93	40.85	66.00	-25.15	QP
0.1500	0.45	9.93	10.38	56.00	-45.62	AVG
0.2020	28.83	10.03	38.86	63.53	-24.67	QP
0.2020	0.68	10.03	10.71	53.53	-42.82	AVG
0.2779	19.38	10.20	29.58	60.88	-31.30	QP
0.3557	-2.83	10.36	7.53	48.83	-41.30	AVG
0.4660	19.91	10.59	30.50	56.58	-26.08	QP
0.4900	-2.85	10.63	7.78	46.17	-38.39	AVG
0.7420	12.57	11.13	23.70	56.00	-32.30	QP
0.8220	-2.86	11.30	8.44	46.00	-37.56	AVG
11.3060	16.02	9.69	25.71	60.00	-34.29	QP
12.4819	-1.89	9.70	7.81	50.00	-42.19	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.



EUT:	ECHO HD	Model Name :	TDSD
Temperature:	22.1 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 24V from adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Descrit
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	30.79	9.93	40.72	65.79	-25.07	QP
0.1539	1.58	9.93	11.51	55.79	-44.28	AVG
0.2060	31.57	10.06	41.63	63.37	-21.74	QP
0.2060	1.27	10.06	11.33	53.37	-42.04	AVG
0.4540	18.15	10.55	28.70	56.80	-28.10	QP
0.4863	-1.74	10.63	8.89	46.23	-37.34	AVG
0.7340	-2.64	11.11	8.47	46.00	-37.53	AVG
0.7500	13.74	11.15	24.89	56.00	-31.11	QP
1.0460	-4.02	11.76	7.74	46.00	-38.26	AVG
1.0740	15.06	11.80	26.86	56.00	-29.14	QP
12.5420	14.46	9.70	24.16	60.00	-35.84	QP
14.6540	-2.83	9.70	6.87	50.00	-43.13	AVG

Remark:

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FCC Fait 15.205, Restlicted ballus						
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	/m) (at 3M)
i requency(iiii iz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

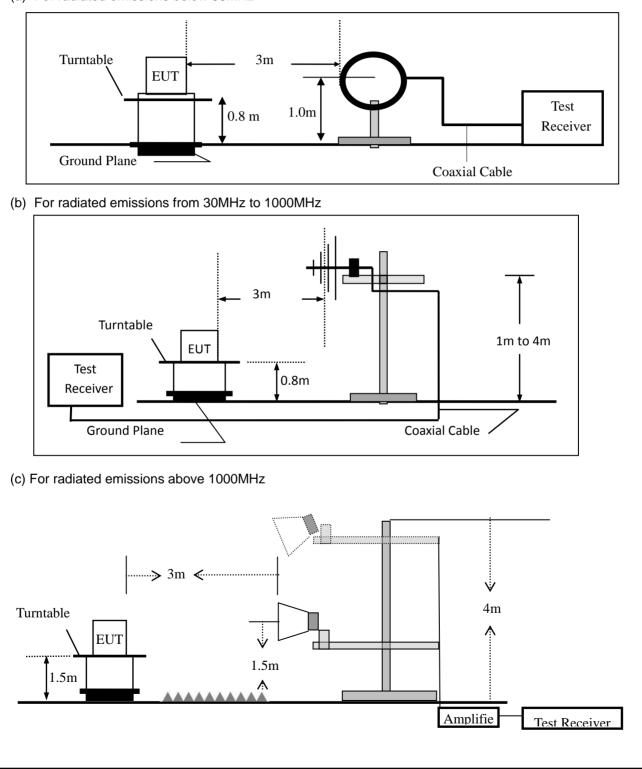
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

ele ale felle wing opeen an analyzer bearing	5.
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

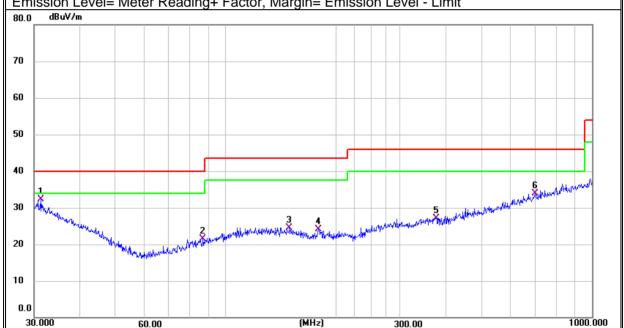
■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	ECHO HD	Model No.:	TDSD
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Certificate #4298.01


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	ECHO HD	Model Name :	TDSD
Temperature:	25.4 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Mode:	π/4-DQPSK CH00
Test Voltage :	DC 24V from adapter AC 1	20V/60Hz	

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	31.2892	6.69	25.63	32.32	40.00	-7.68	QP
V	86.8067	5.36	16.18	21.54	40.00	-18.46	QP
V	149.4857	6.22	18.38	24.60	43.50	-18.90	QP
V	179.3863	7.34	16.80	24.14	43.50	-19.36	QP
V	375.9384	4.44	22.69	27.13	46.00	-18.87	QP
V	699.3043	5.87	27.94	33.81	46.00	-12.19	QP

Remark:

Pola		Frequ	ency		leter ading	J	Fac	tor		ssio evel	n	Lin	nits	Ma	argin	R	emark	
(H/V))	(MHz)		(0	BuV)		(dB) (dl		(dBi	(dBuV/m)		(dBuV/m)		((dB)		Remark	
Н		31.3	992	(6.47		25.	57	32	2.04		40	.00	-7	7.96		QP	
Н		82.9	384	(6.27		15.0	66	21	.93		40	.00	-1	8.07		QP	
Н			18.	71	25.00			43	.50	-1	8.50		QP					
Н		287.9	904	(6.69		19.9	99	26	6.68		46	.00	-1	9.32		QP	
Н	H 499.4245 5.97		24.8	87	30).84		46	.00	-1	5.16		QP					
Н		836.2	2441	(5.83		30.	04	36	6.87		46	.00	-9	9.13		QP	
Emise 80.0	sion l dBuV		Meter	Read	ling+ l	Fac	ctor, N	/largin	<u>= Em</u>	issio	n Le	evel - L	imit					
70 60																		
50 —																		
40										- J						Ъ.	hanner -	
30 4	M. Liberthy	mar and a strand and a strand	wantunderph		2	noth	, Mar 19	manul	humman	www.	, and the a	Service and	with a breat	5	Adamstrace			
20			hand have been been and have b	purpublic	A CONTRACTOR													
10 -																		
0.0																		

UT:	ECHC) HD		Model	No.:	Т	DSD					
emperature:	20 ℃			Relativ	e Humidit	y: 4	48%					
est Mode:	Mode	2/Mode3	/Mode4	Test B	sy:	G	avan Zhan	g				
I the modula	tion modes	have be	en tested,	and the	worst resul	lt was r	eport as bel	ow:				
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment			
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/ı	n) (dB)					
Low Channel (2402 MHz) 2Mbps(π/4-DQPSK)Above 1G												
4804	68.14	5.21	35.59	44.30	64.64	74.00	-9.36	Pk	Vertical			
4804	48.78	5.21	35.59	44.30	45.28	54.00	-8.72	AV	Vertical			
7206	69.21	6.48	36.27	44.60	67.36	74.00	-6.64	Pk	Vertical			
7206	47.21	6.48	36.27	44.60	45.36	54.00	-8.64	AV	Vertical			
4804	69.96	5.21	35.55	44.30	66.42	74.00	-7.58	Pk	Horizontal			
4804	48.02	5.21	35.55	44.30	44.48	54.00	-9.52	AV	Horizontal			
7206	70.63	6.48	36.27	44.52	68.86	74.00	-5.14	Pk	Horizontal			
7206	50.13	6.48	36.27	44.52	48.36	54.00	-5.64	AV	Horizontal			
		Channel (24	41 MHz) 2N	/lbps(π/4-DQ	PSK)Ał	ove 1G						
4882	70.29	5.21	35.66	44.20	66.96	74.00	-7.04	Pk	Vertical			
4882	45.64	5.21	35.66	44.20	42.31	54.00	-11.69	AV	Vertical			
7323	70.53	7.10	36.50	44.43	69.70	74.00	-4.30	Pk	Vertical			
7323	45.9	7.10	36.50	44.43	45.07	54.00	-8.93	AV	Vertical			
4882	68.41	5.21	35.66	44.20	65.08	74.00	-8.92	Pk	Horizontal			
4882	46.48	5.21	35.66	44.20	43.15	54.00	-10.85	AV	Horizontal			
7323	70.8	7.10	36.50	44.43	69.97	74.00	-4.03	Pk	Horizontal			
7323	47.5	7.10	36.50	44.43	46.67	54.00	-7.33	AV	Horizontal			
		High	Channel (24	480 MHz) 2	Mbps(π/4-DC	QPSK)- A	bove 1G					
4960	70.85	5.21	35.52	44.21	67.37	74.00	-6.63	Pk	Vertical			
4960	48.01	5.21	35.52	44.21	44.53	54.00	-9.47	AV	Vertical			
7440	70.41	7.10	36.53	44.60	69.44	74.00	-4.56	Pk	Vertical			
7440	49.83	7.10	36.53	44.60	48.86	54.00	-5.14	AV	Vertical			
4960	68.94	5.21	35.52	44.21	65.46	74.00	-8.54	Pk	Horizontal			
4960	50.56	5.21	35.52	44.21	47.08	54.00	-6.92	AV	Horizontal			
7440	69.95	7.10	36.53	44.60	68.98	74.00	-5.02	Pk	Horizontal			
7440	45.54	7.10	36.53	44.60	44.57	54.00	-9.43	AV	Horizontal			

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S24032001801001

UT:	ECHO HD			Model	No.:	٦	DSD						
emperature:	20 ℃			Relativ	/e Humidit	y: 4	48%						
est Mode:	Mode2/ Mo	ode4		Test B	y:	C	Savan Zhang	1					
All the modu	lation mode	s have b	een testec	d, and the	worst res	ult was	report as be	elow:					
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limit	s Margin	Detector	Comment				
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/	'm) (dB)	Туре					
	2Mbps(π/4-DQPSK)-Non-hopping												
2310.00	69.71	2.97	27.80	43.80	56.68	74	-17.32	Pk	Horizontal				
2310.00	45.06	2.97	27.80	43.80	32.03	54	-21.97	AV	Horizontal				
2310.00	70.95	2.97	27.80	43.80	57.92	74	-16.08	Pk	Vertical				
2310.00	49.76	2.97	27.80	43.80	36.73	54	-17.27	AV	Vertical				
2390.00	69.24	3.14	27.21	43.80	55.79	74	-18.21	Pk	Vertical				
2390.00	45.79	3.14	27.21	43.80	32.34	54	-21.66	AV	Vertical				
2390.00	68.19	3.14	27.21	43.80	54.74	74	-19.26	Pk	Horizontal				
2390.00	45.82	3.14	27.21	43.80	32.37	54	-21.63	AV	Horizontal				
2483.50	70.58	3.58	27.70	44.00	57.86	74	-16.14	Pk	Vertical				
2483.50	50.95	3.58	27.70	44.00	38.23	54	-15.77	AV	Vertical				
2483.50	70.97	3.58	27.70	44.00	58.25	74	-15.75	Pk	Horizontal				
2483.50	49.02	3.58	27.70	44.00	36.30	54	-17.70	AV	Horizontal				
			2Mb	ps(π/4-DQF	SK)-Non-ho	oping							
2310.00	69.65	2.97	27.80	43.80	56.62	74	-17.38	Pk	Horizontal				
2310.00	46.26	2.97	27.80	43.80	33.23	54	-20.77	AV	Horizontal				
2310.00	70.14	2.97	27.80	43.80	57.11	74	-16.89	Pk	Vertical				
2310.00	45.03	2.97	27.80	43.80	32.00	54	-22.00	AV	Vertical				
2390.00	70.22	3.14	27.21	43.80	56.77	74	-17.23	Pk	Vertical				
2390.00	49.30	3.14	27.21	43.80	35.85	54	-18.15	AV	Vertical				
2390.00	68.03	3.14	27.21	43.80	54.58	74	-19.42	Pk	Horizontal				
2390.00	45.71	3.14	27.21	43.80	32.26	54	-21.74	AV	Horizontal				
2483.50	70.13	3.58	27.70	44.00	57.41	74	-16.59	Pk	Vertical				
2483.50	49.35	3.58	27.70	44.00	36.63	54	-17.37	AV	Vertical				
2483.50	69.75	3.58	27.70	44.00	57.03	74	-16.97	Pk	Horizontal				
2483.50	49.73	3.58	27.70	44.00	37.01	54	-16.99	AV	Horizontal				

Note: (1) All other emissions more than 20dB below the limit.

UT:	ECH	D H D		l	Model No.:			TDSD			
Cemperature: 20 ℃			I	Relative Humidity:			48%				
Test Mode: Mode2 / Mode3 / Mode4			ŀ	Test By:			Gavan Zhang				
All the modulation modes have been tested, a			d, a	nd the	d the worst result was report as below:						
Frequency	Reading Level	Cable Loss	Antenna Factor		reamp actor	Emission Level	Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m		(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
3260	69.96	4.04	29.57	44.70		58.87	7	4	-15.13	Pk	Vertical
3260	46.82	4.04	29.57	57 44.70		35.73	5	4	-18.27	AV	Vertical
3260	69.60	4.04	29.57	29.57 4		58.51	7	4	-15.49	Pk	Horizontal
3260	49.58	4.04	29.57	4	4.70	38.49	54		-15.51	AV	Horizontal
3332	69.85	4.26	29.87	4	4.40	59.58 74		4	-14.42	Pk	Vertical
3332	45.59	4.26	29.87	4	4.40	35.32	5	4	-18.68	AV	Vertical
3332	69.89	4.26	29.87	4	4.40	59.62	7	4	-14.38	Pk	Horizontal
3332	47.51	4.26	29.87	4	4.40	37.24	5	4	-16.76	AV	Horizontal
17797	52.75	10.99	43.95	4	3.50	64.19	7	4	-9.81	Pk	Vertical
17797	37.44	10.99	43.95	4	3.50	48.88	5	4	-5.12	AV	Vertical
17788	59.50	11.81	43.69	4	4.60	70.40	7	4	-3.60	Pk	Horizontal
17788	31.55	11.81	43.69	4	4.60	42.45	5	4	-11.55	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	ECHO HD	Model No.:	TDSD
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

7.4.6 Test Results

EUT:	ECHO HD	Model No.:	TDSD
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

Certificate #4298.01

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	ECHO HD	Model No.:	TDSD
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	ECHO HD	Model No.:	TDSD
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	ECHO HD	Model No.:	TDSD
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	ECHO HD	Model No.:	TDSD
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Gavan Zhang

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: -0.58 dBi). It comply with the standard requirement.

NTEK 北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

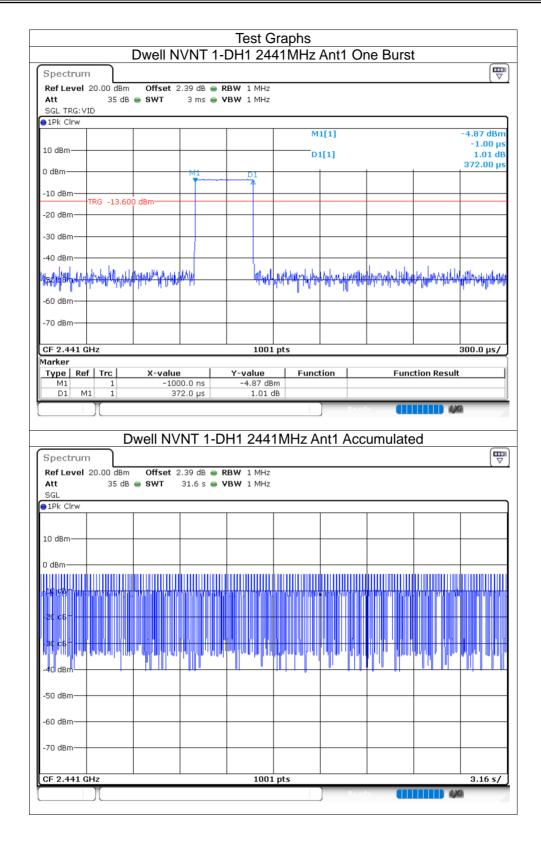
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

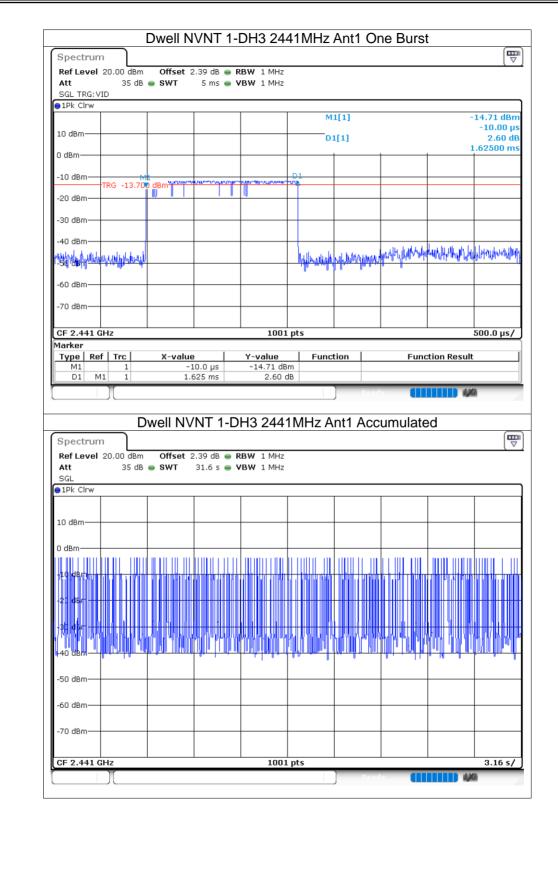
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

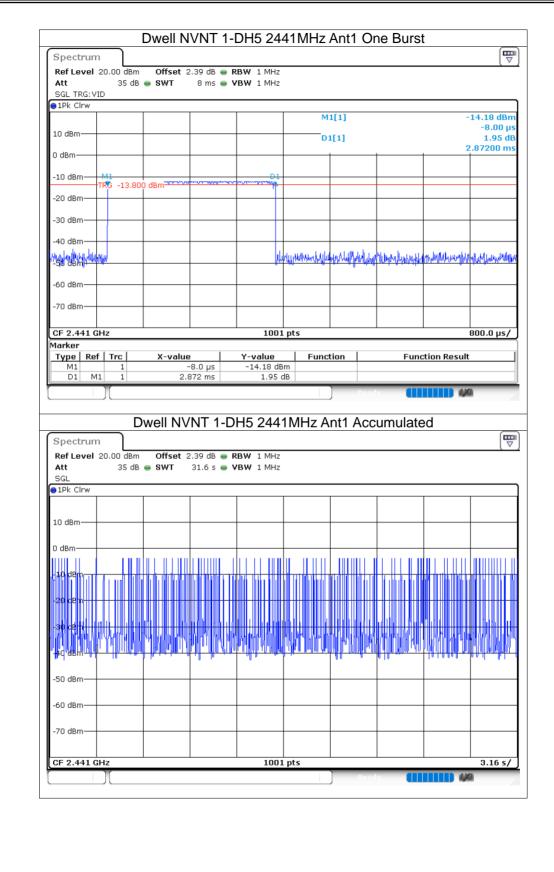
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

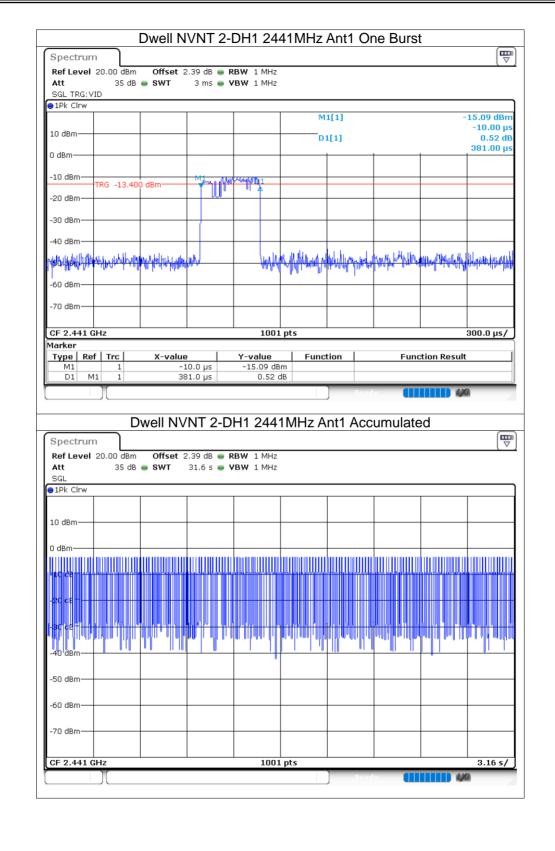
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

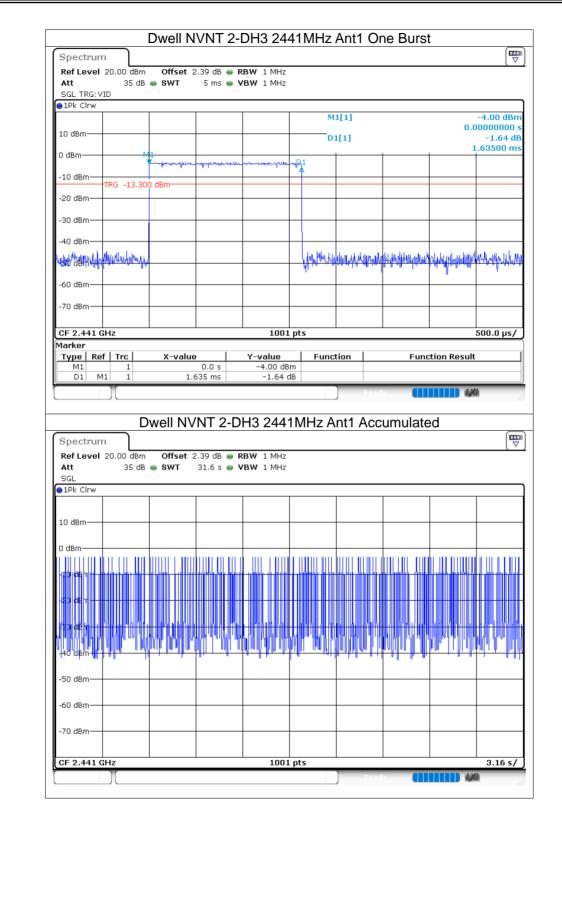

8 TEST RESULTS

8.1 Dwell Time

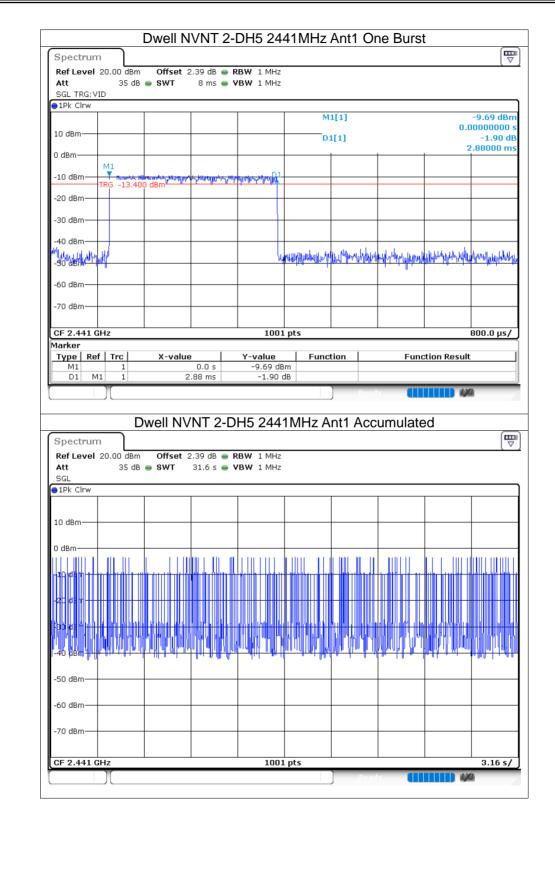

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.372	74.028	199	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.625	196.625	121	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.872	275.712	96	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.381	80.391	211	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.635	215.82	132	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.88	259.2	90	31600	400	Pass

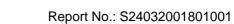

ACCREDITED Certificate #4298.01





Iac-MR


ACCREDITED



8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	1-DH5	2402	Ant1	-3.17	21	Pass
NVNT	1-DH5	2441	Ant1	-3.54	21	Pass
NVNT	1-DH5	2480	Ant1	-4.07	21	Pass
NVNT	2-DH5	2402	Ant1	-2.62	21	Pass
NVNT	2-DH5	2441	Ant1	-2.85	21	Pass
NVNT	2-DH5	2480	Ant1	-3.31	21	Pass

ACCREDITED Certificate #4298.01

ilac-MR

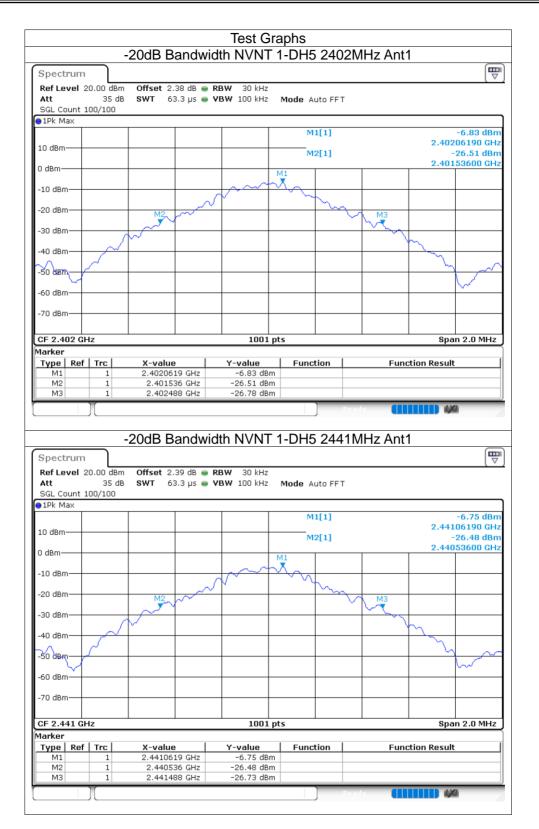
	P	ower NVNT 1-D	H5 2402MHZ /	Anti	G
Spectrum					E C
Ref Level 20.00 Att 3 SGL Count 100/10	5 dB SWT	2.38 dB 👄 RBW 2 MHz 1 ms 👄 VBW 2 MHz	Mode Auto Sweep		
●1Pk Max					
			M1[1]		-3.17 dB
10 dBm				-	2.40189510 GF
0 dBm		M1			
-10 dBm					
-20 dBm					
LU UDIN					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm			<u> </u>		
-70 dBm					
CF 2.402 GHz		100	1 pts		Span 5.0 MHz
Spectrum	Po	ower NVNT 1-D	Re	adv 🚺	
Ref Level 20.00	dBm Offset 2	2.39 dB 👄 RBW 2 MHz	H5 2441MHz /	ady 🚺 Ant1	
Ref Level 20.00	dBm Offset 2 5 dB SWT		H5 2441MHz /	adv 📶	
Ref Level 20.00 Att 3	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	adv 🚺	
Ref Level 20.00 Att 3 SGL Count 100/10	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz /	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 10	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 10	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 0	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 0	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 10 dBm 0 -10 dBm - -20 dBm -	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 10 dBm 0 -10 dBm -10 dBm	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 10 dBm 0 -10 dBm - -20 dBm -	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 10 dBm 0 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 10 dBm 0 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 10 dBm 0 dBm -10 dBm - - -20 dBm - - -30 dBm - - -40 dBm - - -50 dBm - -	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 10 dBm 0 dBm -10 dBm - - -20 dBm - - -30 dBm - - -40 dBm - -	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep		-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 10 dBm 0 dBm -10 dBm - - -20 dBm - - -30 dBm - - -40 dBm - - -50 dBm - -	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep		-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 2 5 dB SWT	2.39 dB 👄 RBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 2 5 dB SWT	2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz M1 M1 VBW 2 MHz	H5 2441MHz / Mode Auto Sweep	Ant1	-3.54 dB)

Certificate #4298.01

Ref Level 20.00 dBm Att 35 dB SGL Count 100/100		.42 dB 👄 RI 1 ms 👄 VI	BW 2 MHz BW 2 MHz	Mode Au	ito Sweep			
●1Pk Max				1	41[1]			-4.07 dB
10 dBm					-		2.479	91510 GH
0 dBm			MI					
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
50 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
							0	n 5.0 MH:
CF 2.48 GHz			1001					
CF 2.48 GHz Spectrum Ref Level 20.00 dBm Att 35 dB	Offset 2	.38 dB 👄 RI	1001 NT 2-DI BW 2 MHz BW 2 MHz	H5 240		av 🚺 .nt1		
Spectrum Ref Level 20.00 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI	H5 240 Mode Au	ito Sweep	nt1		Ţ
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max	Offset 2	.38 dB 👄 RI	NT 2-DI	H5 240 Mode Au		nt1		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2	.38 dB 👄 RI	NT 2-DI	H5 240 Mode Au	ito Sweep	.nt1		-2.62 dB
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max	Offset 2	.38 dB 👄 RI	NT 2-DI	H5 240 Mode Au	ito Sweep	nt1		-2.62 dB
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 PIPk Max 10 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240 Mode Au	ito Sweep	.nt1		-2.62 dB
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240 Mode Au	ito Sweep			-2.62 dB
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240 Mode Au	ito Sweep	nt1		-2.62 dB 81170 GF
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240 Mode Au	ito Sweep			-2.62 dB
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240 Mode Au	ito Sweep	nt1		-2.62 dB 81170 GF
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240 Mode Au	ito Sweep	nt1		-2.62 dB 81170 GF
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240 Mode Au	ito Sweep	nt1		-2.62 dB 81170 GF
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240 Mode Au	ito Sweep			-2.62 dB 81170 GF
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240 Mode Au	ito Sweep			-2.62 dB 81170 GF
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 2	.38 dB 👄 RI	NT 2-DI BW 2 MHz BW 2 MHz	H5 240	ito Sweep	nt1	2,401	-2.62 dB 81170 GF

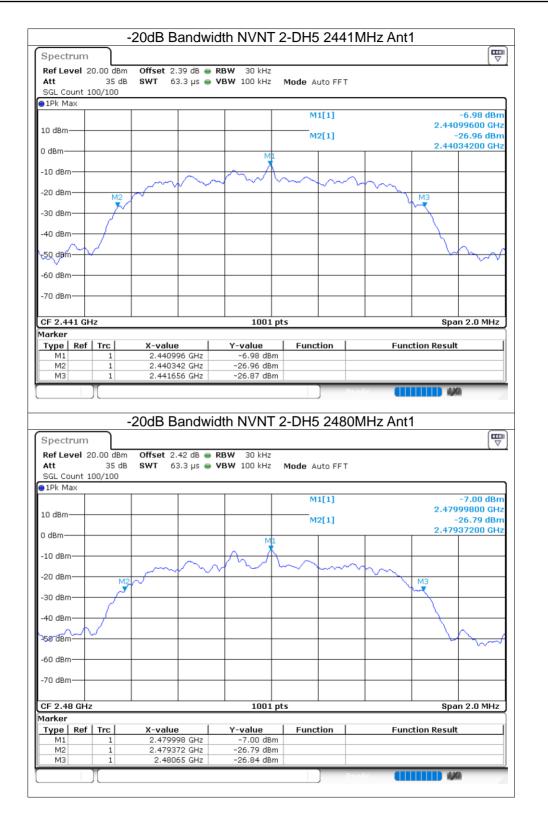
Certificate #4298.01

Ref Level 20.00 dBm Att 35 dB		2.39 dB 👄 RE 1 ms 👄 VE	3W 2 MHz 3W 2 MHz	Mode Au	uto Sweep			
SGL Count 100/100 91Pk Max								
				1	11[1]			-2.85 dB
10 dBm					+	+	2.44	085710 GH
0 dBm			M1					
o ubin			·····					
-10 dBm								
-20 dBm								and the second sec
-30 dBm								and the second
-30 UBIII								
-40 dBm								
-50 dBm								
-60 dBm								
-00 ubm								
-70 dBm								
CF 2.441 GHz			1001					an 6.5 MHz
			100.	- pro			- 40	
Spectrum Ref Level 20.00 dBm Att 35 dB	Offset 2	2.42 dB • RE 1 ms • VE	NT 2-D			Ant1		
Spectrum Ref Level 20.00 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D			Ant1		(Ę
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au		Ant1	2 47	-3.31 dB
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep	Ant1	2.47	
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep	Ant1	2.47	-3.31 dB
Spectrum Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D BW 2 MHz BW 2 MHz	Mode Au	ito Sweep	Ant1	2.47	-3.31 dB
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep	Ant1	2.47	-3.31 dB
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep	Ant1	2.47	-3.31 dB 987010 GF
Spectrum Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max 10 dBm -10 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep	Ant1	2.47	-3.31 dB
Spectrum Ref Level 20.00 dBm Att 35 de SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep	Ant1	2.47	-3.31 dB 987010 GF
Spectrum Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep	Ant1	2.47	-3.31 dB 987010 GF
Spectrum Ref Level 20.00 dBm Att 35 de SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep		2.47	-3.31 dB 987010 GF
Spectrum Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 IPk Max 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep		2.47	-3.31 dB 987010 GF
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep		2.47	-3.31 dB 987010 GF
Spectrum Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 IPk Max 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep		2.47	-3.31 dB 987010 GF
Spectrum Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep			-3.31 dB 987010 GF
Spectrum Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 2	2.42 dB 👄 RE	NT 2-D	Mode Au	ito Sweep			-3.31 dB 987010 GF



8.3 -20DB BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.952	0	Pass
NVNT	1-DH5	2441	Ant1	0.952	0	Pass
NVNT	1-DH5	2480	Ant1	0.944	0	Pass
NVNT	2-DH5	2402	Ant1	1.31	0	Pass
NVNT	2-DH5	2441	Ant1	1.314	0	Pass
NVNT	2-DH5	2480	Ant1	1.278	0	Pass



ilac-MR

ACCREDITED

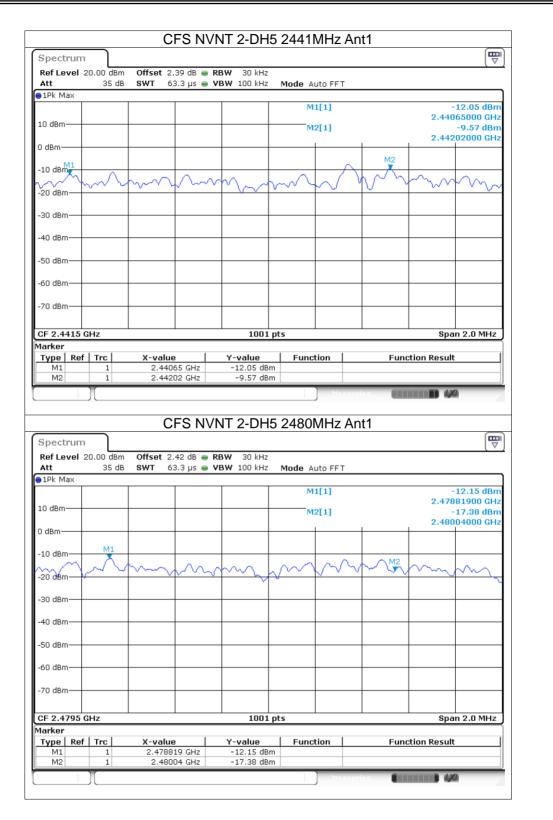
8.4 OCCUPIED CHANNEL BANDWIDTH


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.863
NVNT	1-DH5	2441	Ant1	0.865
NVNT	1-DH5	2480	Ant1	0.851
NVNT	2-DH5	2402	Ant1	1.187
NVNT	2-DH5	2441	Ant1	1.187
NVNT	2-DH5	2480	Ant1	1.197

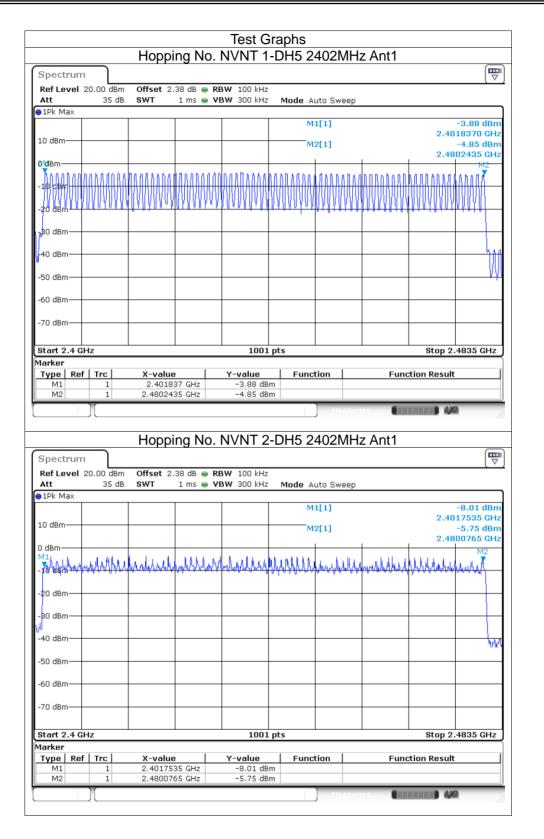


8.5 CARRIER FREQUENCIES SEPARATION

Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.998	2403	1.002	0.635	Pass
NVNT	1-DH5	Ant1	2441	2441.998	0.998	0.635	Pass
NVNT	1-DH5	Ant1	2478.996	2479.98	0.984	0.629	Pass
NVNT	2-DH5	Ant1	2401.996	2402.996	1	0.873	Pass
NVNT	2-DH5	Ant1	2440.65	2442.02	1.37	0.876	Pass
NVNT	2-DH5	Ant1	2478.819	2480.04	1.221	0.852	Pass

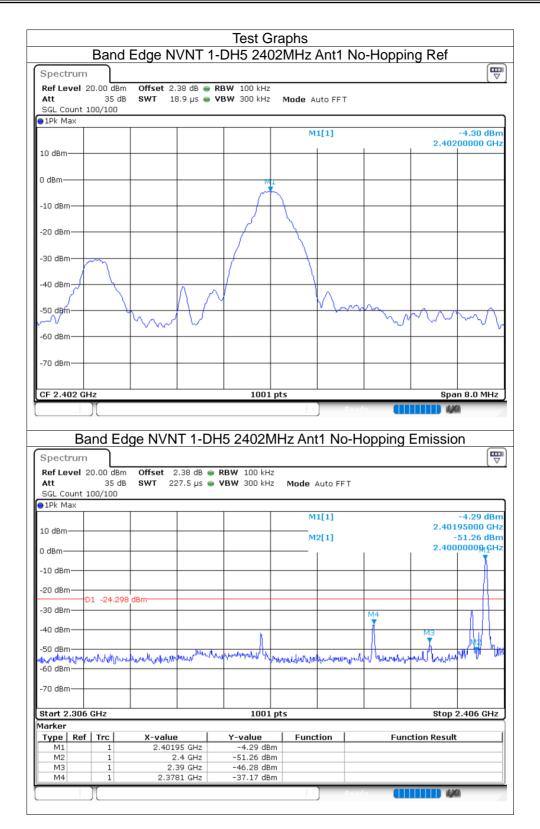


Certificate #4298.01



8.6 NUMBER OF HOPPING CHANNEL

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass



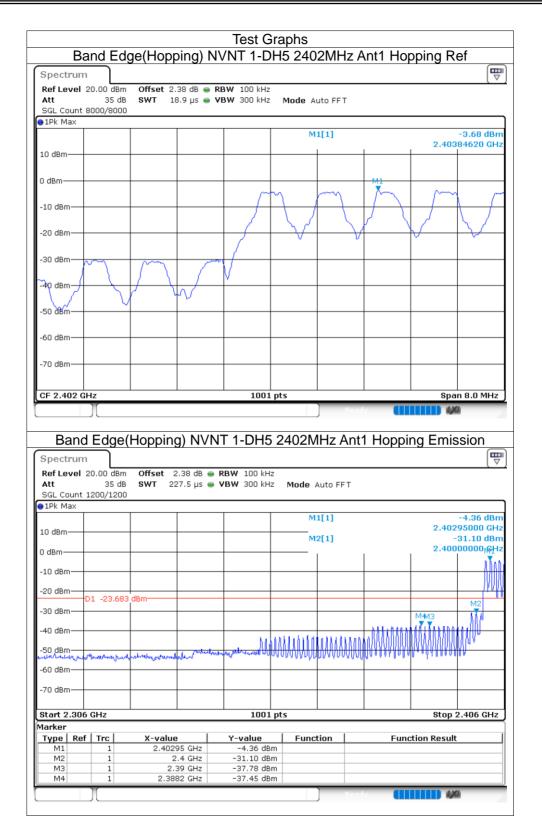
8.7 BAND EDGE

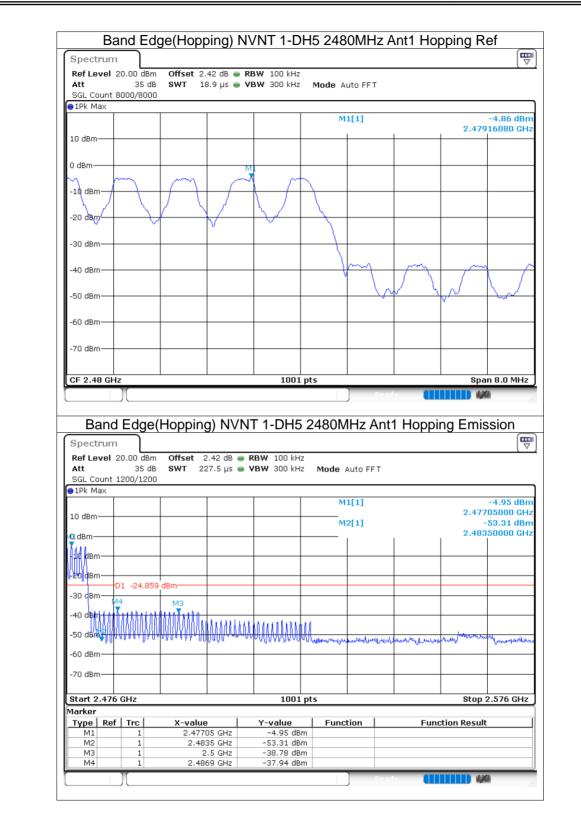
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-32.87	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-42.18	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-31.66	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-43.58	-20	Pass

Spectrun	n)								
-	20.00 dBm	Offset 2.	42 dB 🔵 RE	3W 100 kHz					(`
Att	35 dB	SWT 18	3.9 µs 👄 VE	3W 300 kHz	Mode A	uto FFT			
SGL Count 1Pk Max	100/100								
IPK Max					м	1[1]			-4.98 dBr
						1[1]		2.480	05590 GH
10 dBm									
) dBm——				M	11				
					5				
-10 dBm—									
					\sim				
-20 dBm				7	5				
-30 dBm					\				
-30 aBm	m								
-40 dBm									
	5		$\Lambda \sim$			~			
-50 dBm	<u> </u>		↓ ↓ ↓			V \		A	
\sim		Mm/				× 0	phin	Im	m
-60 dBm									
-70 dBm									
CF 2.48 GH	-								
	and Ed	ge NVN	IT 1-DH	1001 5 2480N) Rear t1 No-H	opping		n m
Spectrun	and Ed			5 2480N	1Hz Ant) Read	opping		n m
Spectrun	and Ed	Offset 2	2.42 dB 👄 R		1Hz Ant	Read	opping		n m
Spectrun Ref Level Att SGL Count	and Ed	Offset 2	2.42 dB 👄 R	5 2480N	1Hz Ant		opping		on 8.0 MHz
Spectrun Ref Level Att	and Ed	Offset 2	2.42 dB 👄 R	5 2480N	1Hz Ant	Auto FFT	opping		a on (Ţ
Spectrun Ref Level Att SGL Count 1Pk Max	and Ed	Offset 2	2.42 dB 👄 R	5 2480N	1Hz Ant		opping	Emissic	2) DN
Spectrun Ref Level Att SGL Count	and Ed	Offset 2	2.42 dB 👄 R	5 2480N	1Hz Ant	Auto FFT	opping	Emissic	-5.03 dBri 985000 GH -49.31 dBri
Spectrun Ref Level Att SGL Count 1Pk Max	and Ed	Offset 2	2.42 dB 👄 R	5 2480N	1Hz Ant	Auto FFT 1[1]	opping	Emissic	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	and Ed	Offset 2	2.42 dB 👄 R	5 2480N	1Hz Ant	Auto FFT 1[1]	opping	Emissic	-5.03 dBri 985000 GH -49.31 dBri
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	and Ed	Offset 2	2.42 dB 👄 R	5 2480N	1Hz Ant	Auto FFT 1[1]		Emissic	-5.03 dBri 985000 GH -49.31 dBri
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	and Ed	Offset 2 SWT 22	2.42 dB 👄 R	5 2480N	1Hz Ant	Auto FFT 1[1]		Emissic	-5.03 dBri 985000 GH -49.31 dBri
Spectrun Ref Level Att SGL Count IPk Max IPk Max O dBm	and Ed	Offset 2 SWT 22	2.42 dB 👄 R	5 2480N	1Hz Ant	Auto FFT 1[1]		Emissic	-5.03 dBri 985000 GH -49.31 dBri
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	and Ed	Offset 2 SWT 22	2.42 dB 👄 R	5 2480N	1Hz Ant	Auto FFT 1[1]		Emissic	-5.03 dBri 985000 GH -49.31 dBri
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	and Ed	Offset 2 SWT 22	2.42 dB 👄 R	5 2480N	1Hz Ant	Auto FFT 1[1]		Emissic	-5.03 dBri 985000 GH -49.31 dBri
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	and Ed	Offset 2 SWT 22	2.42 dB • R 27.5 μs • V	5 2480N	1Hz Ant	Auto FFT 1[1] 2[1]		2.479 2.483	-5.03 dBr -5.03 dBr -49.31 dBr 55000 GH
Spectrun Ref Level Att SGL Count PIPK Max 10 dBm 10 dBm 20 dBm 30 cBm 40 dBm 40 dBm 40 dBm	and Ed	Offset 2 SWT 22	2.42 dB • R 27.5 μs • V	5 2480N	1Hz Ant	Auto FFT 1[1] 2[1]		2.479 2.483	-5.03 dBr -5.03 dBr -49.31 dBr 55000 GH
Spectrun Ref Level Att SGL Count PIPK Max 10 dBm 20 dBm 30 dBm 40 dBm 40 dBm 40 dBm 40 dBm	and Ed	Offset 2 SWT 22	2.42 dB • R 27.5 μs • V	5 2480N	1Hz Ant	Auto FFT 1[1] 2[1]		2.479 2.483	-5.03 dBr -5.03 dBr -49.31 dBr 55000 GH
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm 20 dBm -20 dBm -30 dBm 40 dBm -60 dBm	and Ed	Offset 2 SWT 22	2.42 dB • R 27.5 μs • V	5 2480N	1Hz Ant Mode	Auto FFT 1[1] 2[1]		2.479 2.483	-5.03 dBr -5.03 dBr -49.31 dBr 55000 GH
Spectrun Ref Level Att SGL Count IPK Max I0 dBm	and Ed	Offset 2 SWT 22	2.42 dB • R 27.5 μs • V	5 2480N	IHz Ant	Auto FFT 1[1] 2[1]		2.479 2.483	-5.03 dBr 985000 GH -49.31 dBr 350000 GH
Spectrun Ref Level Att SGL Count IPK Max I0 dBm 	and Ed	Offset 2 SWT 22	2.42 dB • R 27.5 μs • V	5 2480N	IHz Ant	Auto FFT 1[1] 2[1]		2.479 2.483	-5.03 dBr 985000 GH -49.31 dBr 350000 GH
Spectrun Ref Level Att SGL Count PIPK Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 40 dBm 50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	and Ed 20.00 dBm 35 dB 100/100 D1 -24.981 M4 M4 M4 M4 M4 M4 M4	dBm	2.42 dB	5 2480N	1Hz Ant	Auto FFT 1[1] 2[1]		Emissic 2.479 2.480	-5.03 dBr -5.03 dBr -49.31 dBr -49.31 dBr -49.31 dBr -49.31 dBr -25.03 dBr -25.03 dBr -49.31 dBr -49.31 dBr -49.31 dBr -49.31 dBr -25.03 dBr -25.03 dBr -49.31 dBr -25.03 dBr -29.51
Spectrun Ref Level Att SGL Count IPK Max I0 dBm 	and Ed 20.00 dBm 35 dB 100/100 D1 -24.981 M4 M4 M4 M4	Offset 2 SWT 22	2.42 dB	5 2480N	1Hz Ant	Auto FFT 1[1] 2[1]		2.479 2.483	-5.03 dBm -5.03 dBm -49.31 dBm -49.31 dBm -49.31 dBm -49.31 dBm -25.03 dBm -49.31
Spectrun Ref Level Att SGL Count ID dBm 10 dBm 20 dBm 30 dBm 30 dBm 40 dBm 50 dBm 60 dBm 70 dBm 50 dBm 70 dBm Start 2.47 Type Re M1 M2	and Ed 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22 dBm- dBm- x-value 2.479 2.479	2.42 dB	5 2480N	1Hz Ani	Auto FFT 1[1] 2[1]		Emissic 2.479 2.480	-5.03 dBm -5.03 dBm -49.31 dBm -49.31 dBm -49.31 dBm -49.31 dBm -25.03 dBm -49.31
Spectrun Ref Level Att SGL Count ID dBm 10 dBm 20 dBm 30 dBm 30 dBm 40 dBm 50 dBm 30 dBm 50 dBm 30 dBm 40 dBm 50 dBm 70 dBm 51 dErt 2.477 Barker M1	and Ed 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22 dBm- dBm- x-value 2.479 2.48 2	2,42 dB R 27.5 μs V V V V V V V V V V V V V	5 2480N	1Hz Ant	Auto FFT 1[1] 2[1]		Emissic 2.479 2.480	-5.03 dBr -5.03 dBr -49.31 dBr -49.31 dBr -49.31 dBr -49.31 dBr -25.03 dBr -25.03 dBr -49.31 dBr -49.31 dBr -49.31 dBr -49.31 dBr -25.03 dBr -25.03 dBr -49.31 dBr -25.03 dBr -29.51

Spectru		Ŭ						ng Ref	
-	'' 20.00 dBm 35 dB			3W 100 kHz 3W 300 kHz	Mode A	uto FFT			[⊽
SGL Coun									
1Pk Max					M	1[1]			-6.43 dBn
						-L+J		2.40	197600 GH
10 dBm									
0 dBm				м					
-10 dBm—					$\sim \gamma$				
-20 dBm—					\rightarrow				
-30 dBm—					\rightarrow				
-40 dBm-	www		A						
50 Hpm			hand			m.			
-50 dBm—		Low					mm	m	m
-60 dBm—									
-70 dBm—									
CF 2.402									
E	Band Ed	ge NVN	T 2-DH	1001 5 2402N) - Poo t1 No-H	lopping		
E	Band Ed	Offset 2	2.38 dB 👄 F		1Hz Ant) 2000 t1 No-H Auto FFT	lopping		on
E Spectrur Ref Level Att SGL Coun	Band Ed	Offset 2	2.38 dB 👄 F	5 2402N	1Hz Ant		lopping		X
E Spectrur Ref Level Att SGL Coun	Band Ed	Offset 2	2.38 dB 👄 F	5 2402N	1Hz Ant	Auto FFT	lopping		on (₹
E Spectrur Ref Level Att SGL Coun) 1Pk Max	Band Ed	Offset 2	2.38 dB 👄 F	5 2402N	1Hz Ant		lopping	Emissi	on
E Spectrui Ref Level Att SGL Coun 1Pk Max 10 dBm-	Band Ed	Offset 2	2.38 dB 👄 F	5 2402N	1Hz Ant	Auto FFT	lopping	Emissio	-6.74 dBm 205000 GH -53.06 dBm
E Spectrur Ref Level Att SGL Coun) IPk Max 10 dBm	Band Ed	Offset 2	2.38 dB 👄 F	5 2402N	1Hz Ant	Auto FFT	lopping	Emissio	000
E Spectrur Ref Level Att SGL Coun) IPk Max 10 dBm	Band Ed	Offset 2	2.38 dB 👄 F	5 2402N	1Hz Ant	Auto FFT	lopping	Emissio	-6.74 dBm 205000 GH -53.06 dBm
E Spectrur Ref Level Att SGL Coun IPk Max 10 dBm	Band Ed	Offset 2	2.38 dB 👄 F	5 2402N	1Hz Ant	Auto FFT		Emissio	-6.74 dBm 205000 GH -53.06 dBm
E Spectrun Ref Level Att SGL Coun 10 dBm	Band Ed	Offset 2 SWT 22	2.38 dB 👄 F	5 2402N	1Hz Ant	Auto FFT		Emissio	-6.74 dBm 205000 GH -53.06 dBm
E Spectrur Ref Level Att SGL Coun 1Pk Max 10 dBm	Band Ed	Offset 2 SWT 22	2.38 dB 👄 F	5 2402N	1Hz Ant	Auto FFT		Emissio	-6.74 dBr 205000 GH -53.06 dBr M1 ↓
E Spectrur Ref Level SGL Coun 9 IPk Max 10 dBm	Band Ed	Offset 2 SWT 22	2.38 dB 🕳 F 27.5 µs 👄 V	5 2402N	1Hz Ant	Auto FFT	M4	Emissio	-6.74 dBm 205000 GH -53.06 dBm
E Spectrur Ref Level Att SGL Coun 10 dBm	Band Ed	Offset 2 SWT 22	2.38 dB 👄 F	5 2402N	1Hz Ant	Auto FFT 1[1] 2[1]	M4	Emissio	-6.74 dBr 205000 GH -53.06 dBr 000000 GH
E Spectrum Ref Level Att SGL Coun) IPK Max 10 dBm	Band Ed	Offset 2 SWT 22	2.38 dB 🕳 F 27.5 µs 👄 V	5 2402N	1Hz Ant Mode / M	Auto FFT 1[1] 2[1]	M4	2.40 2.40	-6.74 dBr 205000 GH -53.06 dBr 000000 GH
E Spectrum Ref Level Att SGL Coun 10 dBm	Band Ed	Offset 2 SWT 22	2.38 dB 🕳 F 27.5 µs 👄 V	5 2402N	1Hz Ant Mode / M M	Auto FFT 1[1] 2[1]	M4	2.40 2.40	-6.74 dBn 205000 GH -53.06 dBr 000000 GH
E Spectrum Ref Level Att SGL Coun 10 dBm— 10 dBm— -10 dBm— -10 dBm— -20 dBm— -30 dBm— -30 dBm— -50 dBm— -50 dBm— -70 dBm— -70 dBm—	Band Ed	Offset 2 SWT 22	2.38 dB 🕳 F 27.5 µs 👄 V	5 2402N	1Hz Ant Mode / M M	Auto FFT 1[1] 2[1]	M4	2.40 2.40	-6.74 dBr 205000 GH -53.06 dBr 000000 GH
E Spectrur Ref Level Att SGL Coun 10 dBm	Band Edg 20.00 dBm 35 dB 100/100 D1 -26.434 Unp/M.mutlu 16 GHz	Offset 2 SWT 22	2.38 dB	5 2402N	1Hz Ant Mode / M M	Auto FFT 1[1] 2[1]	M4.	Emissie 2.40 2.40 	-6.74 dBm 205000 GH -53.06 dBm 000000 GH
E Spectrum Ref Level Att SGL Coun 10 dBm	Band Edg 20.00 dBm 35 dB 100/100 D1 -26.434 Unp/M.mutlu 16 GHz	Offset 2 SWT 22 dBm տահավ Արևատ X-value	2.38 dB	5 2402N	1Hz Ant Mode / M M M m m m	Auto FFT 1[1] 2[1]	M4.	2.40 2.40	-6.74 dBm 205000 GH -53.06 dBm 000000 GH
E Spectrum Ref Level Att SGL Coun 10 dBm 0 dBm 	Band Ed	Offset 2 SWT 22 dBm	2.38 dB 7.5 μs ×	5 2402N BW 100 kHz BW 300 kHz 300 kHz 300 kHz 100 1001 Y-value -6.74 dBr -53.06 dBr	1Hz Ant Mode / Mode / M M M M pts Func n n	Auto FFT 1[1] 2[1]	M4.	Emissie 2.40 2.40 	-6.74 dBm 205000 GH -53.06 dBm 000000 GH
E Spectrur Ref Level Att SGL Coun JIPk Max 10 dBm -0 dBm -20 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -70 d	Band Ed	Offset 2 SWT 22 dBm dBm <u>م</u>	2.38 dB • F 27.5 μs • V	5 2402N	1Hz Ant	Auto FFT 1[1] 2[1]	M4.	Emissie 2.40 2.40 	-6.74 dBm 205000 GH -53.06 dBm 000000 GH

Spectrum				DH5 248			rioppi	ig i toi	
Ref Level 20 Att	35 dB			3W 100 kHz 3W 300 kHz	Mode A	uto FFT			(`
SGL Count 10 1Pk Max	00/100								
					М	1[1]			-4.29 dBn
LO dBm						1		2.479	84020 GH
) dBm				MI					
				M	\				
10 dBm					han				
20 dBm									
30 dBm	~ ^								
M	N have			/ /					
40 dßm			$\Lambda \Lambda \Gamma$			<u> </u>			
50 dBm		$\sim\sim\sim$	ww			mr.		,	
							m	\sim	hom
60 dBm									
70 dBm									
CF 2.48 GHz				1001	pts			Spa	n 8.0 MHz
Ba	nd Edg	ge NVN	T 2-DH	5 2480N	1Hz Ant]	opping	Emissio	
Spectrum] Peed 1 No-H	opping	Emissio	
		Offset 2	2.42 dB 👄 R	RBW 100 kHz	2		opping	Emissio	
Spectrum Ref Level 20 Att SGL Count 10	D.00 dBm 35 dB	Offset 2	2.42 dB 👄 R		2		opping	Emissio	
Spectrum Ref Level 20 Att	D.00 dBm 35 dB	Offset 2	2.42 dB 👄 R	RBW 100 kHz	2 2 Mode /	Auto FFT	opping	Emissio	
Spectrum Ref Level 20 Att SGL Count 10 91Pk Max	D.00 dBm 35 dB	Offset 2	2.42 dB 👄 R	RBW 100 kHz	2 2 Mode /		opping		-4.88 dBn
Spectrum Ref Level 20 Att SGL Count 10 1Pk Max	D.00 dBm 35 dB	Offset 2	2.42 dB 👄 R	RBW 100 kHz	2 2 Mode / M	Auto FFT	opping	2.479	-4.88 dBn 85000 GH 53.45 dBn
Spectrum Ref Level 20 Att SGL Count 10 91Pk Max	D.00 dBm 35 dB	Offset 2	2.42 dB 👄 R	RBW 100 kHz	2 2 Mode / M	Auto FFT 1[1]	opping	2.479	-4.88 dBn 85000 GH 53.45 dBn
Spectrum Ref Level 20 Att SGL Count 10 1Pk Max	D.00 dBm 35 dB	Offset 2	2.42 dB 👄 R	RBW 100 kHz	2 2 Mode / M	Auto FFT 1[1]	opping	2.479	-4.88 dBn 85000 GH 53.45 dBn
Spectrum Ref Level 20 Att SGL Count 10 10 dBm 10 dBm 10 dBm 20 dBm	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB 👄 R	RBW 100 kHz	2 2 Mode / M	Auto FFT 1[1]	opping	2.479	-4.88 dBn 85000 GH 53.45 dBn
Spectrum Ref Level 20 Att SGL Count 10 10 dBm 10 dBm 20 dBm D 20 dBm D	D.00 dBm 35 dB	Offset 2 SWT 22	2.42 dB 👄 R	RBW 100 kHz	2 2 Mode / M	Auto FFT 1[1]	opping	2.479	-4.88 dBn 85000 GH 53.45 dBn
Spectrum Ref Level 20 Att SGL Count 10 10 dBm 10 dBm 20 dBm 30 dBm	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB 👄 R	RBW 100 kHz	2 2 Mode / M	Auto FFT 1[1]	opping	2.479	-4.88 dBn 85000 GH 53.45 dBn
Spectrum Ref Level 20 Att SGL Count 10 10 dBm 10 dBm 20 dBm 20 dBm 40 dBm	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB 👄 R	RBW 100 kHz	2 2 Mode / M	Auto FFT 1[1]	opping	2.479	-4.88 dBn 85000 GH: 53.45 dBn 50000 GH:
Spectrum Ref Level 20 Att SGL Count 10 10 dBm 10 dBm 20 dBm 30 dBm	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB	28 100 kHz 78 300 kHz	2 Mode / 	Auto FF T 1[1] 2[1]		2.479 - 2.483	-4.88 dBn 85000 GH: 53.45 dBn 50000 GH:
Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 10 dBm 20 dBm 20 dBm 30 dBm	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB ● R .7.5 μs ● V	28 100 kHz 78 300 kHz	2 Mode / 	Auto FFT 1[1]	opping	2.479 - 2.483	-4.88 dBn 85000 GH 53.45 dBn 50000 GH
Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 10 dBm 20 dBm 20 dBm 30 dBm 50 dBm 50 dBm 50 dBm 60 dBm	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB	28 100 kHz 78 300 kHz	2 Mode / 	Auto FF T 1[1] 2[1]		2.479 - 2.483	-4.88 dBn 85000 GH 53.45 dBn 50000 GH
Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 20 dBm 30 dBm 50 dBm	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB	28 100 kHz 78 300 kHz	2 Mode / 	Auto FF T 1[1] 2[1]		2.479 - 2.483	-4.88 dBn 85000 GH 53.45 dBn 50000 GH
Spectrum Ref Level 20 Att SGL Count 10 10 dBm 10 dBm 20 dBm 30 dBm 50 dBm 50 dBm 70 dBm 70 dBm So dBm	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB	28 100 kHz 78 300 kHz	2 Mode / M M M	Auto FF T 1[1] 2[1]		2.479 - 2.483 - -,/m ^{,///} ///w.l.o	-4.88 dBn 85000 GH 53.45 dBn 50000 GH
Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 10 dBm 20 dBm 30 dBm 50 dBm 60 dBm 70 dBm 70 dBm 31 dBm 70 dBm 70 dBm 31 dBm	0.00 dBm 35 dB 00/100 1 -24.294 M4 W GHz	Offset 2 SWT 22	2.42 dB (7.5 μs (7.5	RBW 100 kHz rBW 300 kHz	2 Mode / M M M	Auto FFT 1[1] 2[1]	Land and the second sec	2.479 - 2.483 - //// ^{//} /////-la //// Stop :	-4.88 dBn 85000 GH 53.45 dBn 50000 GH
Spectrum Ref Level 20 Att SGL Count 10 ID dBm 10 dBm 20 dBm 20 dBm 30 dBm 40 dBm 70 dBm	0.00 dBm 35 dB 00/100 1 -24.294 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	Offset 2 SWT 22 dBm	2.42 dB F7.5 μs V V V V V V V V V V V V V	EBW 100 kHz // // // // // // // // // // // // //	2 Mode / M M M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1]	Land and the second sec	2.479 - 2.483 - -,/m ^{,///} ///w.l.	-4.88 dBn 85000 GH 53.45 dBn 50000 GH
Spectrum Ref Level 20 Att SGL Count 10 SG dBm 30 dBm 40 dBm 50 dBm 50 dBm 70 dBm 70 dBm Start 2.476 G arker Type Ref M1 M2	0.00 dBm 35 dB 00/100 1 -24.294 M4 w/w/w/w/w/w/w/w/ GHz Trc 1 1	Offset 2 SWT 22 dBm- www.www.www. x-value 2.4799 2.483	2.42 dB	RBW 100 kHz rBW 300	2 Mode / M M M M M M M M	Auto FFT 1[1] 2[1]	Land and the second sec	2.479 - 2.483 - //// ^{//} /////-la //// Stop :	-4.88 dBn 85000 GH 53.45 dBn 50000 GH
Spectrum Ref Level 20 Att SGL Count 10 ID dBm 10 dBm 20 dBm 20 dBm 30 dBm 40 dBm 70 dBm	0.00 dBm 35 dB 00/100 1 -24.294 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	Offset 2 SWT 22 dBm dBm <u>x-value</u> 2.4796 2.4436 2	2.42 dB F7.5 μs V V V V V V V V V V V V V	EBW 100 kHz // // // // // // // // // // // // //	2 Mode / M M M M M M M M M M	Auto FFT 1[1] 2[1]	Land and the second sec	2.479 - 2.483 - //// ^{//} /////-la //// Stop :	-4.88 dBn 85000 GH: 53.45 dBn 50000 GH:




8.8 BAND EDGE(HOPPING)

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-33.76	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-33.07	-20	Pass
NVNT	2-DH5	2402	Ant1	Hopping	-33.68	-20	Pass
NVNT	2-DH5	2480	Ant1	Hopping	-34.22	-20	Pass

®

NTEK北测

ilac-MR

ACCREDITED

Spectrum Ref Level		Offset 2.3	38 dB 👄 I	RBW 100 kHz					
Att	35 dB			VBW 300 kHz		uto FFT			
SGL Count	8000/8000								
					M	1[1]			-3.58
10 dBm-							1	2.40	384620
TO UBIII									
0 dBm							M1		
							ΙÅ.	Δ _α	
-10 dBm						han the		~~~	ᡩᢇ᠁
00 d0m				17					
-20 dBm									
-30 dBm									
m	\sim	m	m	JN					
-40 dBm									
-50 dBm									
-60 dBm									1
									1
-70 dBm									
CF 2.402 G	Hz			1001	pts) Re	ady 🕕	Spa	an 8.0 M
)[Hopping	g) NVN	1001 IT 2-DH5) IHz An	t1 Hoppi		
Band	I Edge(Hopping	g) NVN) 1Hz An	t1 Hoppi		ssion
Band	J I Edge(2402N) Re 1Hz An	t1 Hoppi		K)
Band Spectrum Ref Level Att	Edge(Offset 2	.38 dB 👄	IT 2-DH5	5 2402N		t1 Hoppi		K)
Band Spectrum Ref Level Att SGL Count	Edge(Offset 2	.38 dB 👄	IT 2-DH5 RBW 100 KH:	5 2402N		t1 Hoppi		K)
Band Spectrum Ref Level Att SGL Count	Edge(Offset 2	.38 dB 👄	IT 2-DH5 RBW 100 KH:	2402N 2 2 Mode /		t1 Hoppi		K)
Band Spectrum Ref Level Att SGL Count 1Pk Max	Edge(Offset 2	.38 dB 👄	IT 2-DH5 RBW 100 KH:	2402W 2 Mode / M	Auto FFT	t1 Hoppi	ng Emi: 2.40	-7.51 (385000
Band Spectrum Ref Level Att SGL Count IPk Max	Edge(Offset 2	.38 dB 👄	IT 2-DH5 RBW 100 KH:	2402W 2 Mode / M	Auto FFT	t1 Hoppi	ng Emi:	ssion -7.51
Band Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm	Edge(Offset 2	.38 dB 👄	IT 2-DH5 RBW 100 KH:	2402W 2 Mode / M	Auto FFT	t1 Hoppi	ng Emi:	-7.51 (385000 -34.17 (
Band Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm	Edge(Offset 2	.38 dB 👄	IT 2-DH5 RBW 100 kH:	2402W 2 Mode / M	Auto FFT	t1 Hoppi	ng Emi:	-7.51 (385000 -34.17 (
Banc Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm	1 Edge(20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dB 👄	IT 2-DH5 RBW 100 kH:	2402W 2 Mode / M	Auto FFT	t1 Hoppi	ng Emi:	-7.51 (385000 -34.17 (
Banc Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm	Edge(Offset 2 SWT 22	.38 dB 👄	IT 2-DH5 RBW 100 kH:	2402W 2 Mode / M	Auto FFT		2.40	-7.51 (385000 -34.17 (000000
Band Spectrum Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	1 Edge(20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dB 👄	IT 2-DH5 RBW 100 kH:	2402W 2 Mode / M	Auto FFT		2.400	-7.51 385000 -34.17 000000
Band Spectrum Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	1 Edge(20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dB 👄	IT 2-DH5 RBW 100 kH: VBW 300 kH:	2402N	Auto FFT 1[1] 2[1]	Market Arabita	2.400	-7.51 0 385000 -34.17 0 000000
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	1 Edge(20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dB 👄	IT 2-DH5 RBW 100 kH: VBW 300 kH:	2402N	Auto FFT	Market Arabita	2.40	-7.51 0 385000 -34.17 0 000000
Banc Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 Edge(20.00 dBm 35 dB 1200/1200	dBm	.38 dB ● .7.5 µs ●	IT 2-DH5 RBW 100 kH: VBW 300 kH:	2402N	Auto FFT 1[1] 2[1]	Market Arabita	2.400	-7.51 0 385000 -34.17 0 000000
Banc Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm	1 Edge(20.00 dBm 35 dB 1200/1200	dBm	.38 dB ● .7.5 µs ●	IT 2-DH5 RBW 100 kH: VBW 300 kH:	2402N	Auto FFT 1[1] 2[1]	Market Arabita	2.400	-7.51 385000 -34.17 000000
Banc Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm	1 Edge(20.00 dBm 35 dB 1200/1200	dBm	.38 dB ● .7.5 µs ●	IT 2-DH5 RBW 100 kH: VBW 300 kH:	2402N	Auto FFT 1[1] 2[1]	Market Arabita	2.400	-7.51 385000 -34.17 000000
Banc Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm	D1 -23.579	dBm	.38 dB ● .7.5 µs ●	IT 2-DH5	2402N	Auto FFT 1[1] 2[1]	Market Arabita	2.400	-7.51 385000 -34.17 000000
Band Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm	D1 -23.579	dBm	.38 dB ● .7.5 µs ●	IT 2-DH5 RBW 100 kH: VBW 300 kH:	2402N	Auto FFT 1[1] 2[1]	Market Arabita	2.400	-7.51 385000 -34.17 000000
Banc Spectrum Ref Level Att SGL Count IPk Max ID dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	D1 -23.579	dBm dBm dBm	38 dB ● .7.5 µs ●	IT 2-DH5	2402N	Auto FFT 1[1] 2[1]	I Control Mark	2.400	-7.51 385000 -34.17 00000 00000 00000 00000 00000 00000 0000
Banc Spectrum Ref Level Att SGL Count I 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm	D1 -23.579	Offset 2 SWT 22 dBm	38 dB ● .7.5 µs ●	IT 2-DH5	2402N	Auto FFT 1[1] 2[1]	I Control Mark	ng Emi: 2.40: 2.40: 4 سبب بر شهر بسر Stop	-7.51 385000 -34.17 00000 00000 00000 00000 00000 00000 0000
Banc Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -0 dBm -50 dBm -50 dBm -70	D1 -23.579	Offset 2 SWT 22 dBm dBm www.www.www.www.www. com x-value 2.4038 2.3	.38 dB • 7.5 µs •	IT 2-DH5 RBW 100 kH: VBW 300 k	2402N	Auto FFT 1[1] 2[1]	I Control Mark	ng Emi: 2.40: 2.40: 4 سبب بر شهر بسر Stop	-7.51 385000 -34.17 00000 00000 00000 00000 00000 00000 0000

ilac-MR/

ACCREDITED Certificate #4298.01

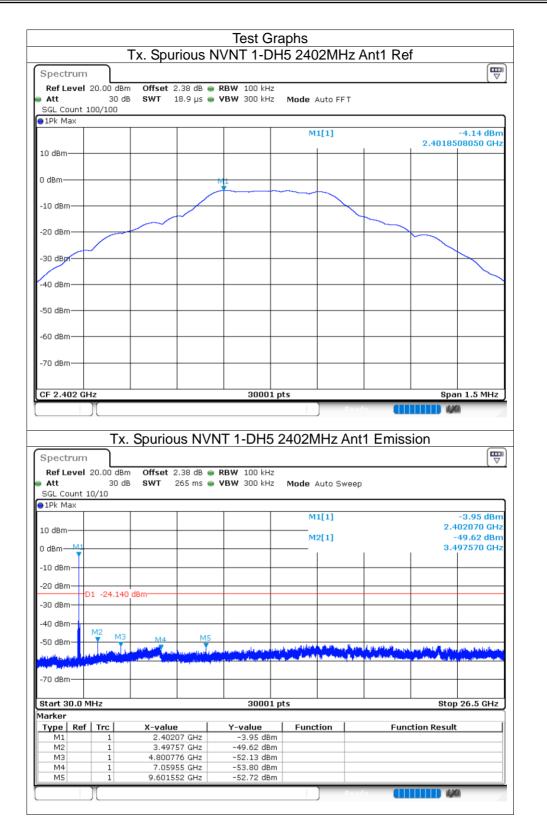
NTEK 北测[®]

Ref Level	20.00 dBm	Offset 2.42	dB 👄 RB	W 100 kHz					
Att	35 dB	SWT 18.9			Mode A	uto FFT			
●1Pk Max	8000/8000								
					М	1[1]		0.47	-4.26 d
10 dBm								2.47	784220 0
0 dBm		Mi							
~	m	ha	m	\sim	Δ				
-10,050,	•~~			\sim	m				
-20 dBm—					\rightarrow				
-30 dBm									
-40 dBm						ha			
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	h	ph~
-50 dBm									
-60 dBm									
-70 dBm									
-70 0.0111									
CF 2.48 GF				1001	nts			Spa	 an 8.0 MH
Band	d Edge(	Hopping)		2-DH5	2480M	) For 1Hz Ant	1 Hoppi	<b></b> ) 4	
Band Spectrum Ref Level Att	d Edge( 1 20.00 dBm 35 dB		2 dB 👄 RI	2-DH5	2480N		1 Hoppi	<b></b> ) 4	ssion [ ¹
Band Spectrum Ref Level Att	d Edge(	Offset 2.4	2 dB 👄 RI	2-DH5	2480M	Auto FFT	1 Hoppi	<b></b> ) 4	
Band Spectrun Ref Level Att SGL Count ● 1Pk Max	d Edge( 1 20.00 dBm 35 dB	Offset 2.4	2 dB 👄 RI	2-DH5	2480M		1 Hoppi	ng Emi	-5.81 dE
Band Spectrun Ref Level Att SGL Count • 1Pk Max 10 dBm	d Edge( 1 20.00 dBm 35 dB	Offset 2.4	2 dB 👄 RI	2-DH5	2480M Mode	Auto FFT	1 Hoppi	ng Emi: 2.470	-5.81 dt 515000 G -44.03 dt
Band Spectrun Ref Level Att SGL Count ● 1Pk Max	d Edge( 1 20.00 dBm 35 dB	Offset 2.4	2 dB 👄 RI	2-DH5	2480M Mode	Auto FFT	1 Hoppi	ng Emi: 2.470	-5.81 dE 515000 G
Band Spectrun Ref Level Att SGL Count • 1Pk Max 10 dBm	d Edge( 1 20.00 dBm 35 dB	Offset 2.4	2 dB 👄 RI	2-DH5	2480M Mode	Auto FFT	1 Hoppi	ng Emi: 2.470	-5.81 dt 515000 G -44.03 dt
Banc Spectrun Ref Level Att SGL Count 10 dBm- 0 dBm- 20 dBm- -20 cBm-	D Edge( 20.00 dBm 35 dB 1200/1200	Offset 2.4 SWT 227.	2 dB 👄 RI	2-DH5	2480M Mode	Auto FFT	1 Hoppi	ng Emi: 2.470	-5.81 dt 515000 G -44.03 dt
Banc Spectrun Ref Level Att SGL Count 10 dBm- 0 dBm- 0 dBm- 20 dBm- -20 cBm- -30 dBm-	d Edge( 1 20.00 dBm 35 dB	Offset 2.4 SWT 227.	2 dB 👄 RI	2-DH5	2480M Mode	Auto FFT	1 Hoppi	ng Emi: 2.470	-5.81 dt 515000 G -44.03 dt
Banc Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- 2 dBm- -20 cBm-	D1 -24.264	dBm	2 dB ● R 5 μs ● V	2-DH5	2480M Mode M	Auto FFT	1 Hoppi	ng Emi: 2.470	-5.81 dt 515000 G -44.03 dt
Banc Spectrun Ref Level Att SGL Count 10 dBm- 0 dBm- 0 dBm- 20 dBm- -20 cBm- -30 dBm- M4	D1 -24.264	dBm	2 dB ● R 5 μs ● V	2-DH5	2480M Mode M	Auto FFT  [1[1] 2[1]		ng Emi: 2.470	-5.81 dt 515000 G -44.03 dt 350000 G
Banc Spectrun Ref Level Att SGL Count 10 dBm 10 dBm 20 dBm -20 cBm -30 dBm 440 dBm	D1 -24.264	dBm	2 dB ● R 5 μs ● V	2-DH5	2480M Mode M	Auto FFT  [1[1] 2[1]		ng Emi: 2.470	-5.81 dt 515000 G -44.03 dt
Banc Spectrun Ref Level Att SGL Count 10 dBm- 0 dBm- 0 dBm- -20 cBm- -30 dBm- -30 dBm- -50 dBm-	D1 -24.264	dBm	2 dB ● R 5 μs ● V	2-DH5	2480M Mode M	Auto FFT  [1[1] 2[1]		ng Emi: 2.470	-5.81 dt 515000 G -44.03 dt 350000 G
Banc Spectrun Ref Level Att SGL Count • 1Pk Max 10 dBm 0 dBm -20 cBm -20 cBm -30 dBm -40 dBm -50 dBm -60 dBm	D1 -24.264	dBm	2 dB ● R 5 μs ● V	2-DH5	2480M Mode M	Auto FFT  [1[1] 2[1]		2.470 2.483	(1
Banc Spectrun Ref Level Att SGL Count ID dBm D dBm D dBm -20 cBm -20 cBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm	D1 -24.264	dBm	2 dB ● R 5 μs ● V	2-DH5	2480M Mode M	Auto FFT  [1[1] 2[1]		2.470 2.483	-5.81 dt 515000 G -44.03 dt 350000 G
Banc Spectrun Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm	D1 -24.264	Offset 2.4: SWT 227.	2 dB <b>• R</b> 5 μs <b>• V</b>	2-DH5	2480N Mode M M M M M M M M M M M M M M M M M M M	Auto FFT  [1[1] 2[1]	had the part of the first state of the part	2.470 2.483	-5.81 dt 515000 G -44.03 dt 350000 G
Banc Spectrun Ref Level Att SGL Count I SGL Count I O dBm 0 dBm -20 cBm -20 cBm -30 cBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dB	D1 -24.264	Offset 2.4: SWT 227.	2 dB 5 μs V V V V V V V V V V V V V	2-DH5 BW 100 kHz BW 300 kHz AMUUUAAA AMUUUAAA 1001 Y-value -5.81 dBn -5.81 dBn -44.03 dBn	2480M	Auto FFT  [1[1] 2[1]	had the part of the first state of the part	2.47( 2.483	-5.81 dt 515000 G -44.03 dt 350000 G
Banc Spectrun Ref Level Att SGL Count 10 dBm 10 dBm 20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	D1 -24.264	Offset 2.4: SWT 227.	2 dB	2-DH5 BW 100 kHz BW 300 kHz AMUUUUUU AMUUUUUUUUUUUUUUUUUUUUUUUUUUU	2480M Mode M M M M M M M M M M M M M M M M M M M	Auto FFT  [1[1] 2[1]	had the part of the first state of the part	2.47( 2.483	-5.81 dt 515000 G -44.03 dt 350000 G

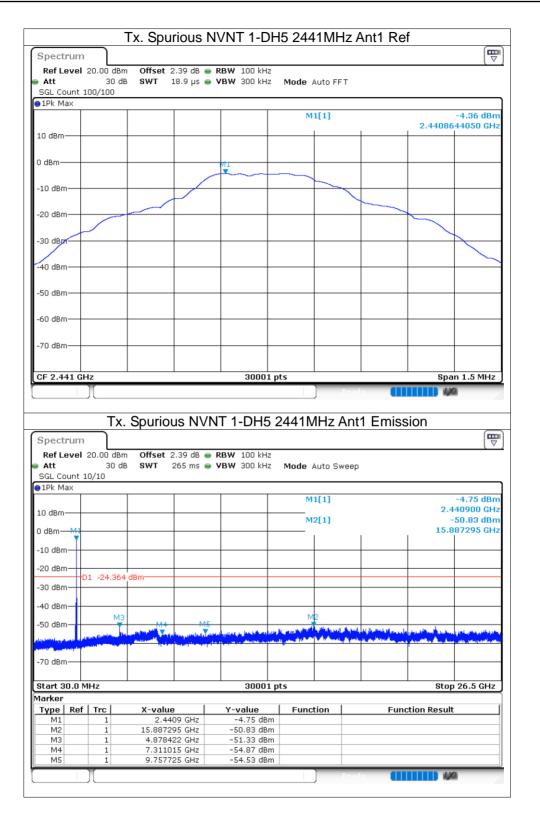
ilac-MR/

ACCREDITED Certificate #4298.01

NTEK 北测[®]







#### 8.9 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	-45.48	-20	Pass
NVNT	1-DH5	2441	Ant1	-46.46	-20	Pass
NVNT	1-DH5	2480	Ant1	-33.8	-20	Pass
NVNT	2-DH5	2402	Ant1	-38.75	-20	Pass
NVNT	2-DH5	2441	Ant1	-40.29	-20	Pass
NVNT	2-DH5	2480	Ant1	-35.95	-20	Pass









ACCREDITED



Spectrum						Ē
Ref Level 20.00 dB	m Offset 2.42 dB 👄	RBW 100 kHz				( v
Att 30 (	dB SWT 18.9 µs 👄	<b>VBW</b> 300 kHz	Mode Auto FFT			
SGL Count 100/100 1Pk Max						
IPK Max			M1[1]			-4.39 dBm
			milit			76050 GHz
10 dBm				+		
) dBm		M1				
		*				
10 dBm						
20 dBm					~	
-30 dBm						
40 dBm	+					
50 dBm	+ +					
60 dBm	+ +					
70 dBm	+					
CF 2.48 GHz					Sna	n 1.5 MHz
	. Spurious NVI	NT 1-DH5 24	480MHz An	t1 Emiss	sion	
Spectrum Ref Level 20.00 dB	om Offset 2.42 dB 🖷	RBW 100 kHz			sion	
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 10/10	om Offset 2.42 dB 🖷	RBW 100 kHz	480MHz An		sion	(IIII)
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 10/10	om Offset 2.42 dB 🖷	RBW 100 kHz	Mode Auto Swee			
Spectrum Ref Level 20.00 dB Att 30 ( SGL Count 10/10 01Pk Max	om Offset 2.42 dB 🖷	RBW 100 kHz				_ ( ⊽
Spectrum Ref Level 20.00 dB Att 30 ( SGL Count 10/10 01Pk Max	om Offset 2.42 dB 🖷	RBW 100 kHz	Mode Auto Swee		2.4	[ \(\neq \)
Spectrum Ref Level 20.00 dE Att 30 d SGL Count 10/10 1Pk Max 10 dBm	om Offset 2.42 dB 🖷	RBW 100 kHz	Mode Auto Swee M1[1]		2.4	-4.88 dBm 79720 GHz
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           DIPK Max         0           0 dBm         Max	om Offset 2.42 dB 🖷	RBW 100 kHz	Mode Auto Swee M1[1]		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           DIPK Max	om Offset 2.42 dB 🖷	RBW 100 kHz	Mode Auto Swee M1[1]		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           D1Pk Max         0           0 dBm         0           10 dBm         0           20 dBm         0	im Offset 2.42 dB  dB SWT 265 ms	RBW 100 kHz	Mode Auto Swee M1[1]		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL         Count         10/10           IPk Max         .0 dBm         .0 dBm           10 dBm         .0 dBm         .0 dBm           20 dBm         .0 1 -24.39	im Offset 2.42 dB  dB SWT 265 ms	RBW 100 kHz	Mode Auto Swee M1[1]		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           1PK Max         .0 dBm           .0 dBm         .0 dBm	im Offset 2.42 dB  dB SWT 265 ms	RBW 100 kHz	Mode Auto Swee M1[1]		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           1Pk Max         .0 dBm           .0 dBm         .0 dBm	im Offset 2.42 dB dB SWT 265 ms 0 dBm	RBW 100 kHz	Mode Auto Swee		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           PIPk Max         10 dBm           10 dBm         10 dBm           10 dBm         10 dBm           20 dBm         D1 -24.35           30 dBm         M2           40 dBm         N	m Offset 2.42 dB ● dB SWT 265 ms ●	RBW 100 kHz	Mode Auto Swee		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           1PK Max         10 dBm           10 dBm         10 dBm           20 dBm         D1 -24.35           30 dBm         M2           40 dBm         N2	im Offset 2.42 dB dB SWT 265 ms 0 dBm	RBW 100 kHz	Mode Auto Swee		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           DPK Max	im Offset 2.42 dB dB SWT 265 ms 0 dBm	RBW 100 kHz	Mode Auto Swee		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           DPK Max	im Offset 2.42 dB dB SWT 265 ms 0 dBm	RBW 100 kHz	Mode Auto Swee		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           D1Pk Max         30 dBm           10 dBm         10 dBm           20 dBm         D1 -24.39           30 dBm         N2           40 dBm         N2           50 dBm         N2           70 dBm         10 dBm	im Offset 2.42 dB dB SWT 265 ms 0 dBm	RBW         100 kHz           VBW         300 kHz	Mode Auto Swee		2.4	-4.88 dBm 79720 GHz 38.20 dBm 04063 GHz
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           IPK Max         10           IO dBm         10           20 dBm         01           20 dBm         01           30 dBm         10           40 dBm         M2           40 dBm         M2           70 dBm         M3           70 dBm         M4           36 dBm         M4	im Offset 2.42 dB dB SWT 265 ms 0 dBm	RBW 100 kHz	Mode Auto Swee		2.4	-4.88 dBm 79720 GHz 38.20 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           PIPk Max	im Offset 2.42 dB JB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Swee	p	2.4	-4.88 dBm 79720 GHz 38.20 dBm 04063 GHz
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           PIPk Max         10           10 dBm         10           20 dBm         10           20 dBm         10           30 dBm         10           30 dBm         10           40 dBm         10           50 dBm         10           70 dBm         10           70 dBm         10           Start 30.0 MHz         10           Iarker         11	im Offset 2.42 dB dB SWT 265 ms 0 dBm	RBW         100 kHz           VBW         300 kHz	Mode Auto Swee	p	2.4 - 2.5	-4.88 dBm 79720 GHz 38.20 dBm 04063 GHz
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           PIPk Max         10           10 dBm         10           10 dBm         10           20 dBm         01           20 dBm         01           30 dBm         10           40 dBm         M2           70 dBm         M1           Start 30.0 MHz         Barker           Type         Ref         Trc           M1         1         1	m Offset 2.42 dB ● JB SWT 265 ms ● SWT 265 ms ● 0 dBm 13 M4 M5 14	RBW         100 kHz           VBW         300 kHz	Mode Auto Swee	p	2.4 - 2.5	-4.88 dBm 79720 GHz 38.20 dBm 04063 GHz
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           PIPk Max	m Offset 2.42 dB ● dB SWT 265 ms ● 38 SWT 265 ms ● 0 dBm 13 M4 M5 13 M4 M5 14 M45 14 M	RBW         100 kHz           VBW         300 kHz	Mode Auto Swee	p	2.4 - 2.5	-4.88 dBm 79720 GHz 38.20 dBm 04063 GHz
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           PIPk Max         10           10 dBm         10           10 dBm         10           20 dBm         01           20 dBm         01           30 dBm         10           40 dBm         M2           70 dBm         M1           Start 30.0 MHz         Barker           Type         Ref         Trc           M1         1         1	m Offset 2.42 dB ● JB SWT 265 ms ● SWT 265 ms ● 0 dBm 13 M4 M5 14	RBW         100 kHz           VBW         300 kHz	Mode Auto Swee	p	2.4 - 2.5	-4.88 dBm 79720 GHz 38.20 dBm 04063 GHz
Spectrum           Ref Level         20.00 dB           Att         30 of           SGL Count         10/10           pIPk Max         10           10 dBm         10           20 dBm         M2           10 dBm         10           20 dBm         M2           40 dBm         M2           40 dBm         M2           70 dBm         M2           70 dBm         M3           30 dBm         M2           40 dBm         M2           40 dBm         M2           70 dBm         M3           30 dBm         M1           1         M2           1         M3           40 dBm         M4	m Offset 2.42 dB ● dB SWT 265 ms ● 38 SWT 265 ms ● 0 dBm 13 M4 13 M4 14 M5 14 M5 14 M5 14 M5 15 M4 14 M5 15 M4 15	RBW         100 kHz           VBW         300 kHz	Mode Auto Swee	p	2.4 - 2.5	-4.88 dBm 79720 GHz 38.20 dBm 04063 GHz



Spectrum				VNT 2-D					
		Offset ?	.38 dB 👄 I	RBW 100 kHz					[⊽
Att				VBW 300 kHz		Auto FFT			
SGL Count	100/100								
●1Pk Max						1511			-3.67 dBm
					IVI	1[1]		2.4018	465050 GHz
10 dBm									-
0 dBm			P.						
10 -10					$\sim$				
-10 dBm	/		-					$\sim$	
-20 dBm									
30 dBm-									$\rightarrow$
-40 dBm				++					+
-50 dBm				++					+
60 db									
-60 dBm									
-70 dBm									
-70 ubili									
				1					
CHE 13 400 C							1		
	Tx.	Spuriou	ıs NVN	30001 T 2-DH5		) – Read	1 Emiss		an 1.5 MHz M
Spectrum	Tx.	Offset 2	2.38 dB 👄 I		2402M				
Spectrum Ref Level Att SGL Count	Tx. 20.00 dBm 30 dB	Offset 2	2.38 dB 👄 I	T 2-DH5	2402M				
Spectrum Ref Level Att SGL Count	Tx. 20.00 dBm 30 dB	Offset 2	2.38 dB 👄 I	T 2-DH5	2402N	Auto Sweep			
Spectrum Ref Level Att SGL Count 1Pk Max	Tx. 20.00 dBm 30 dB	Offset 2	2.38 dB 👄 I	T 2-DH5	2402N			sion	-7.29 dBm 402070 GHz
Spectrum Ref Level Att SGL Count IPk Max	Tx. 20.00 dBm 30 dB	Offset 2	2.38 dB 👄 I	T 2-DH5	2402N Mode /	Auto Sweep		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level 9 Att SGL Count 9 IPk Max 10 dBm 0 dBm	Tx. 20.00 dBm 30 dB	Offset 2	2.38 dB 👄 I	T 2-DH5	2402N Mode /	Auto Sweep 1[1]		sion 2.	-7.29 dBm 402070 GHz
Spectrum Ref Level SGL Count JPk Max 10 dBm 0 dBm	Tx. 20.00 dBm 30 dB	Offset 2	2.38 dB 👄 I	T 2-DH5	2402N Mode /	Auto Sweep 1[1]		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm M1 -10 dBm -20 dBm	Tx. 20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.38 dB 👄 I	T 2-DH5	2402N Mode /	Auto Sweep 1[1]		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm 10 dBm 10 dBm -10 dBm	Tx. 20.00 dBm 30 dB	Offset 2 SWT 2	2.38 dB 👄 I	T 2-DH5	2402N Mode /	Auto Sweep 1[1]		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	Tx. 20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.38 dB 👄 I	T 2-DH5	2402N Mode /	Auto Sweep 1[1]		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level o Att SGL Count IPk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm	Tx. 20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.38 dB 👄 I	T 2-DH5	2402N Mode /	Auto Sweep 1[1]		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Tx. 20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.38 dB 🕳 I 265 ms 🖶 Y	T 2-DH5	2402N Mode / M	Auto Sweep 1[1]		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Tx. 20.00 dBm 30 dE 10/10	dBm	2.38 dB 🕳 I 265 ms 🖶 Y	T 2-DH5	2402M Mode / M	Auto Sweep		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level SGL Count IPk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	Tx. 20.00 dBm 30 dE 10/10	dBm	2.38 dB 🕳 I 265 ms 🖶 Y	T 2-DH5	2402M Mode / M	Auto Sweep		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level SGL Count IPk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	Tx. 20.00 dBm 30 dE 10/10	dBm	2.38 dB 🕳 I 265 ms 🖶 Y	T 2-DH5	2402M Mode / M	Auto Sweep		sion 2.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -70 dBm	Tx. 20.00 dBm 30 dE 10/10 D1 -23.668 M2 M2 M3 M3	dBm	2.38 dB 🕳 I 265 ms 🖶 Y	T 2-DH5	2402N	Auto Sweep		2. 3.	-7.29 dBm 402070 GHz -42.42 dBm
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Tx. 20.00 dBm 30 dE 10/10 D1 -23.668 M2 M3 M2 M3 M2 M4 M3	dBm	2.38 dB  265 ms	T 2-DH5	2402N Mode / M	Auto Sweep		2. 3. 	-7.29 dBm 402070 GHz -42.42 dBm 419042 GHz
Spectrum Ref Level Att SGL Count IPK Max 10 dBm 10 dBm -10 dBm -20 dBm -30	Tx. 20.00 dBm 30 dE 10/10 D1 -23.668 M2 M3 MHz MHz	dBm M4 X-value	2.38 dB • 1 265 ms • 1	T 2-DH5	2402N Mode / M m	Auto Sweep		2. 3.	-7.29 dBm 402070 GHz -42.42 dBm 419042 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm	Tx. 20.00 dBm 30 dE 10/10 D1 -23.668 M2 M3 M2 M3 M2 M4 M3	dBm M4 X-value		T 2-DH5	2402N Mode / M m pts Func	Auto Sweep		2. 3. 	-7.29 dBm 402070 GHz -42.42 dBm 419042 GHz
Spectrum           Ref Level           Att           SGL Count           IPk Max           10 dBm           -10 dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -70 dBm           Start 30.0 f           Marker           Type           Ref           M1           M2           M3	Tx. 20.00 dBm 30 dE 10/10 D1 -23.668 M2 M2 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	Offset 2 SWT 2 SWT 2 dBm dBm M4 M4 SWA SWT SWT SWT SWT SWT SWT SWT SWT SWT SWT	2.38 dB  265 ms  265 ms  X  X  X  X  X  X  X  X  X  X  X  X  X	T 2-DH5	2402N Mode / M M M M M	Auto Sweep		2. 3. 	-7.29 dBm 402070 GHz -42.42 dBm 419042 GHz
Att           SGL Count           SGL Count           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0 fm           Marker           Type           M1           M2	Tx. 20.00 dBm 30 dE 10/10 D1 -23.668 M2 M2 M3 MHz MHz Trc 1 1	Contract 2 Contract 2 Contre	2.38 dB • 1 265 ms • 1 5 5 5 6 7 7 GHz 12 GHz 76 GHz 78 GHz 78 GHz	T 2-DH5	2402N	Auto Sweep		2. 3. 	-7.29 dBm 402070 GHz -42.42 dBm 419042 GHz



Spectrum						₩
Att 30 c	m Offset 2.39 dB 👄 dB SWT 18.9 µs 👄		Mode Auto FFT			
SGL Count 100/100						
1Pk Max			M1[1]			-5.06 dBm
						02500 GHz
10 dBm						
0 dBm						
o abiii		M1				
-10 dBm						
-20 dBm						
30 dBm						
-SO UBIII						
-40 dBm	<u> </u>					
-50 dBm	+ +					
60 dBm						
-60 dBm						
-70 dBm	<u> </u>					
T×	. Spurious NVI	30001 pt: NT 2-DH5 2-	R	nt1 Emis		n 1.5 MHz
Spectrum Ref Level 20.00 dB	Spurious NVI m Offset 2.39 dB ● #B swT 265 ms ●	NT 2-DH5 2	R			n 1.5 MHz
Tx Spectrum Ref Level 20.00 dB Att 30 of SGL Count 10/10	m Offset 2.39 dB 🖷	NT 2-DH5 2	441MHz A			
Tx Spectrum Ref Level 20.00 dB Att 30 d SGL Count 10/10 1Pk Max	m Offset 2.39 dB 🖷	NT 2-DH5 2	441MHz A		sion	-3.89 dBm
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 10/10 1Pk Max	m Offset 2.39 dB 🖷	NT 2-DH5 2	441MHz A		sion 2.4	
Tx Spectrum Ref Level 20.00 dB Att 30 of SGL Count 10/10 1Pk Max 10 dBm	m Offset 2.39 dB 🖷	NT 2-DH5 2	441MHz A Mode Auto Swe		sion 2.4	-3.89 dBm 40900 GHz
Tx Spectrum Ref Level 20.00 dB Att 30 d SGL Count 10/10 1Pk Max 10 dBm 0 dBm	m Offset 2.39 dB 🖷	NT 2-DH5 2	441MHz A Mode Auto Swe		sion 2.4	-3.89 dBm 40900 GHz 45.35 dBm
Tx Spectrum Ref Level 20.00 dB Att 30 of SGL Count 10/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	m Offset 2.39 dB MB SWT 265 ms	NT 2-DH5 2	441MHz A Mode Auto Swe		sion 2.4	-3.89 dBm 40900 GHz 45.35 dBm
Tx Spectrum Ref Level 20.00 dB Att 30 of SGL Count 10/10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -25.06	m Offset 2.39 dB MB SWT 265 ms	NT 2-DH5 2	441MHz A Mode Auto Swe		sion 2.4	-3.89 dBm 40900 GHz 45.35 dBm
Tx Spectrum Ref Level 20.00 dB Att 30 c SGL Count 10/10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	m Offset 2.39 dB MB SWT 265 ms	NT 2-DH5 2	441MHz A Mode Auto Swe		sion 2.4	-3.89 dBm 40900 GHz 45.35 dBm
Tx Spectrum Ref Level 20.00 dB Att 30 of SGL Count 10/10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 d	m Offset 2.39 dB B SWT 265 ms 4 dBm	NT 2-DH5 2	441MHz A Mode Auto Swe		sion 2.4	-3.89 dBm 40900 GHz 45.35 dBm
Spectrum           Ref Level         20.00 dB           Att         30 d           SGL         Count         10/10           IPk Max         10 dBm	m Offset 2.39 dB B SWT 265 ms 4 dBm	NT 2-DH5 2	441MHz A Mode Auto Swe	зер 	sion 2.4	-3.89 dBm 40900 GHz 45.35 dBm
Tx Spectrum Ref Level 20.00 dB Att 30 of SGL Count 10/10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 d	m Offset 2.39 dB B SWT 265 ms 4 dBm	NT 2-DH5 2	Mode Auto Swe	зер	sion 2.4	-3.89 dBm 40900 GHz 45.35 dBm
Tx           Ref Level 20.00 dB           Att 30 d           SGL Count 10/10           1Pk Max           10 dBm           0 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm	m Offset 2.39 dB B SWT 265 ms 4 dBm	NT 2-DH5 2	Mode Auto Swe	зер	sion 2.4	-3.89 dBm 40900 GHz 45.35 dBm
Tx           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         M1           -10 dBm         -01 -25.06           -30 dBm         -11 -25.06           -30 dBm         -11 -25.06           -70 dBm         -10 -25.06	m Offset 2.39 dB B SWT 265 ms 4 dBm	NT 2-DH5 2	441MHz A	зер	2.4 	-3.89 dBm 40900 GHz 45.35 dBm 19042 GHz
Tx Spectrum Ref Level 20.00 dB Att 30 of SGL Count 10/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	m Offset 2.39 dB B SWT 265 ms 4 dBm	NT 2-DH5 2	Mode Auto Swe	зер	2.4 	-3.89 dBm 40900 GHz 45.35 dBm
Tx Spectrum Ref Level 20.00 dB Att 30 of SGL Count 10/10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 d	m Offset 2.39 dB B SWT 265 ms 4 dBm	NT 2-DH5 2	Mode Auto Swe		2.4 	-3.89 dBm 40900 GHz 45.35 dBm 19042 GHz
Tx           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           1Pk Max         10           10 dBm         40           -10 dBm         -10           -20 dBm         -11           -30 dBm         -10           -50 dBm         -10           -50 dBm         -10           -50 dBm         -10           -50 dBm         -10           -70 dBm         -10	m Offset 2.39 dB He SWT 265 ms	NT 2-DH5 2- RBW 100 kHz VBW 300 kHz 	441MHz A Mode Auto Swe M1[1] M2[1]		2.4 	-3.89 dBm 40900 GHz 45.35 dBm 19042 GHz
Tx           Spectrum           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         41           -10 dBm         -01           -20 dBm         01           -30 dBm         102           -50 dBm         102           -50 dBm         102           -50 dBm         102           -70 dBm         102           -70 dBm         102           -70 dBm         103           -70 dBm         104           -70 dBm         105           -70 dBm         105           -70 dBm         105           -70 dBm <t< td=""><td>m Offset 2.39 dB B SWT 265 ms 4 dBm 3 M4 M5 4 dBm X-value</td><td>NT 2-DH5 2</td><td>441MHz A Mode Auto Swe M1[1] M2[1]</td><td></td><td>2.4 </td><td>-3.89 dBm 40900 GHz 45.35 dBm 19042 GHz</td></t<>	m Offset 2.39 dB B SWT 265 ms 4 dBm 3 M4 M5 4 dBm X-value	NT 2-DH5 2	441MHz A Mode Auto Swe M1[1] M2[1]		2.4 	-3.89 dBm 40900 GHz 45.35 dBm 19042 GHz
Tx           Ref Level         20.00 dB           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         M1           -10 dBm         -0           -20 dBm         -0           -30 dBm         -0           -70 dBm         -0           -70 dBm         -0           Start 30.0 MHz         -0           -10 M1         1           M2         1	m Offset 2.39 dB B B SWT 265 ms C 4 dBm 4 dBm 3 M4 M5 3 M4 M5 4 dBm 3 M4 M5 4 dBm 4 dBm 4 dBm 4 dBm 4 dBm 5 M4 M5 6 M5 6 M5 7 M5	NT 2-DH5 2- RBW 100 kHz VBW 300 kHz 	441MHz A Mode Auto Swe M1[1] M2[1]		2.4 	-3.89 dBm 40900 GHz 45.35 dBm 19042 GHz



10 dBm       2.4601543950         0 dBm       M1         10 dBm       M1         10 dBm       M1         10 dBm       M1         10 dBm       M1         20 dBm       M1         20 dBm       M1         40 dBm       M1         41       30 dB         Spectrum       Spen 1.51         Ref Level 20.00 dBm       Offset 2.42 dB       PBW 100 kHz         Att       30 dB       SWT       265 ms e VBW 300 kHz         M0 dBm       M1       2.480600         10 dBm       M1       4.42020         10 dBm       M1       4.420600         20 dBm       M1       2.503160         10 dBm       M1       4.420600         20 dBm       M1       4.40060         20 dBm       M1       4.40060         40 dBm	ectrum					[₩	
SGL Count 100/100  IPK Max  M1[1]  -6.26  2.4801543950  0 d8m  M1[1]  -0 d8m  20 d8m  -0 d8m -						( '	
1Pk Max       M1[1]       -6.26         10 dbm       2.4801540950         0 dbm       M1         -10 dbm       M1         -20 dbm       M1         -21 dbm       M2         -22 dbm       M2         -20		SWT 18.9 µs 👄	VBW 300 kHz M	ode Auto FFT			
10 dbm     M1[1]     -6.26       10 dbm     2.4801540990       0 dbm     M1       10 dbm     M1       -0 dbm     M1       -20 dbm     -40 dbm       -50 dbm     -60 dbm       -60 dbm     -60 dbm       -60 dbm     -60 dbm       -70 dbm     -60 dbm       -70 dbm     -60 dbm       -70 dbm     -70 dbm       -70 dbm     -70 dbm       -70 dbm     -70 dbm							
10 dBm       2.4601543950         0 dBm       M1         10 dBm       M1         20 dBm       M1         40 dBm       M1         9 Att 30 dB       SWT 265 ms • VBW 300 kHz         9 Att 30 dB       SWT 265 ms • VBW 300 kHz         9 Att 30 dB       M1         9 Att 30 dB       M2         9 At				M1[1]		-6.26 dBm	
10 dBm 0 dBm 10 dBm 10 dBm 20 dBm 20 dBm 40 dBm 50 dBm 60 dBm 60 dBm 60 dBm 60 dBm 60 dBm 70 dBm 70 dBm 10 dBm				(diffi)	2.4	801543950 GHz	
10 dBm     M1       20 dBm     40 dBm       40 dBm     40 dBm       50 dBm     40 dBm       50 dBm     40 dBm       60 dBm     40 dBm       70 dBm     40 dBm       Span 1.5 /       Span 1.5 /       Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission       Spectrum       M1[1]       Sector       M1[1]       0 dBm       M1[1]       0 dBm       M1[1]       0 dBm       M1[1]       0 dBm       M1[1]	Bm						
10 dBm     M1       20 dBm     40 dBm       40 dBm     40 dBm       50 dBm     40 dBm       50 dBm     40 dBm       60 dBm     40 dBm       70 dBm     40 dBm       Span 1.5 /       Span 1.5 /       Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission       Spectrum       M1[1]       Sector       M1[1]       0 dBm       M1[1]       0 dBm       M1[1]       0 dBm       M1[1]       0 dBm       M1[1]							
10 dBm       20 dBm	m						
20 dBm       40 dBm				MI			
#0 dBm       40 dBm         40 dBm       50 dBm         50 dBm       60 dBm         60 dBm       60 dBm         60 dBm       60 dBm         70 dBm       70 dBm         Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission         Spectrum         M1[1]         Att 30 dB         M1[1]         10 dBm         M1[1]         10 dBm         M1[1]         2.48 GHz         M1[1]         PK Max         M1[1]         2.60 Bm         10 dBm         M1[1]         2.60 Bm         10 dBm         M1[1]         2.60 Bm         30 dBm         M1[1]         2.60 Bm         30 dBm         M1[1]         2.60 Bm         30 dBm         M1[2]         10 dBm         M1[2] <td 2"="" colspa="2&lt;/td&gt;&lt;td&gt;JBm&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;20 dBm       40 dBm         40 dBm       50 dBm         50 dBm       60 dBm         60 dBm       60 dBm         60 dBm       60 dBm         70 dBm       70 dBm         Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission         Spectrum         Ref Level 20.00 dBm         M1[1]         Att 30 dB         Att 30 dB         M1[1]         Att 30 dB         Att 40 dBm         Att&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;40 dBm       40 dBm       40 dBm       40 dBm         50 dBm       50 dBm       50 dBm       50 dBm         60 dBm       60 dBm       60 dBm       60 dBm         70 dBm       70 dBm       70 dBm       70 dBm         Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission         Spectrum         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         O dBm       Militation of fiset 2.&lt;/td&gt;&lt;td&gt;JBm&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;40 dBm       40 dBm       40 dBm       40 dBm         50 dBm       50 dBm       50 dBm       50 dBm         60 dBm       60 dBm       60 dBm       60 dBm         70 dBm       70 dBm       70 dBm       70 dBm         Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission         Spectrum         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Att 30 dB SWT 265 ms @ VBW 300 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         Militation of fiset 2.42 dB @ RBW 100 kHz         O dBm       Militation of fiset 2.&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;40 dBm       40 dBm       40 dBm       40 dBm         50 dBm       50 dBm       50 dBm       50 dBm         60 dBm       60 dBm       60 dBm       60 dBm         70 dBm       70 dBm       70 dBm       70 dBm         Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission         Spectrum         Milling colspan=">Milling colspan="2"&gt;CF 2.48 GHz         Spectrum         Milling colspan="2"&gt;Colspan="2"&gt;Milling colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Milling colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Milling colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Milling colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspa=""2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Col</td> <td>JBm</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Milling colspan="2">CF 2.48 GHz         Spectrum         Milling colspan="2">Colspan="2">Milling colspan="2">Colspan="2">Colspan="2">Milling colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Milling colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Milling colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspa=""2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Colspa="2"Col	JBm					
50 dBm       60 dBm       60 dBm       60 dBm       60 dBm       60 dBm         -70 dBm       70 dBm       70 dBm       70 dBm       70 dBm       70 dBm         CF 2.48 GHz       Spen 1.5 f         Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission         Spectrum         Ref Level 20.00 dBm       Offset 2.42 dB • RBW 100 kHz         Att       30 dB       SWT       265 ms • VBW 300 kHz       Mode Auto Sweep         SGL Count 10/10       9 PK Max       M1[1]       -9.81         10 dBm       M1[1]       -2.480600         -20 dBm       M1[1]       -2.480600         -20 dBm       M1[1]       -2.480600         -20 dBm       M1[1]       -2.480600         -20 dBm       -2.503180         -20 dBm       -2.503180         -20 dBm       -2.503180         -20 dBm       -2.503180         -20 dBm       -2.50 dBm       -2.503180         -2.60 dBm       -2.60 dBm       -2.60 dBm <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
50 dBm       60 dBm       60 dBm       60 dBm       60 dBm       60 dBm         -70 dBm       70 dBm       70 dBm       70 dBm       70 dBm       70 dBm         CF 2.48 GHz       Spen 1.5 f         Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission         Spectrum         Ref Level 20.00 dBm       Offset 2.42 dB • RBW 100 kHz         Att       30 dB       SWT       265 ms • VBW 300 kHz       Mode Auto Sweep         SGL Count 10/10       9 PK Max       M1[1]       -9.81         10 dBm       M1[1]       -2.480600         -20 dBm       M1[1]       -2.480600         -20 dBm       M1[1]       -2.480600         -20 dBm       M1[1]       -2.480600         -20 dBm       -2.503180         -20 dBm       -2.503180         -20 dBm       -2.503180         -20 dBm       -2.503180         -20 dBm       -2.50 dBm       -2.503180         -2.60 dBm       -2.60 dBm       -2.60 dBm <td< td=""><td>JBm</td><td></td><td></td><td></td><td></td><td></td></td<>	JBm						
60 dBm							
60 dBm         -70 dBm         70 dBm         CF 2.48 GHz       Spen 1.5 f         Provide       Spen 1.5 f         Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission         Spectrum         Ref Level 20.00 dBm       Offset 2.42 dB • RBW 100 kHz         Att       30 dB       SWT       265 ms • VBW 300 kHz         Male         M1[1]       -8.81         10 dBm       M1[1]       -8.81         M1[1]       -42.22         0 dBm       M1[1]       -42.22         0 dBm       M1[1]       -42.22         -30 dBm       -42.22       -42.02         -30 dBm       -42.22       -42.22         -40 dBm       -42.48 6       -42.48 6         -40 dBm       -42.22         -40 dBm       -42.48 6         -40 dBm       -42.48 6         -40 dBm       -40 dBm							

ACCREDITED Certificate #4298.01

END OF REPORT