Application for Certification For a Transmitter.

Icon Health & Fitness 1500 South 1000 West West Logan, UT 84321

DTS Transmitter

M/N: SBACCEL

FCC ID: OMCSBACCEL IC : 3673A-SBACCEL

REPORT # UT16043A-001

This report was prepared in accordance with the requirements of the FCC Rules and Regulations Part 2, Subpart J, 2.1033, Part 15.247, RSS-247 Issue 2, and other applicable sections of the rules as indicated herein.

Prepared By:

DNB Engineering, Inc. 1100 E Chalk Creek Road Coalville, UT 84017

10 Nov 2020

TABLE OF CONTENTS

Paragraph numbers in this report follow the application section numbers found in the FEDERAL COMMUNICATIONS COMMISSION Rules and Regulations, Part 2, Subpart J for Certification of electronic equipment.

TABLE	OF CO	ONTENTS		. <u>2</u>
	1.0 1.1 1.2	Certifications	ATIVE DATA and Qualifications	. 3
	1.2 1.3		Repeatability Information nt List	
	1.5 1.4	1 1	Cross Reference	
	1.4	•	Uncertainty	_
	1.5	Wiedsureineint	Uncertainty	<u> </u>
2.1033	(b,2)	FCC Identifier		. <u>7</u>
2.1033	(b,3)	Installation and	d Operating Instructions	. <u>8</u>
2.1033	(b,4)	Brief Descript	ion of Circuit Function	. <u>8</u>
2.1033	(b,5)	Block Diagram	n	. <u>8</u>
2.1033	(b,7)	Equipment Ph	otographs	. <u>8</u>
2.1033	(b.6)	Report of Mea	surements	. 9
	15.203	- F	Antenna Requirement	_
	15.207		Conducted Emissions	
	15.209		Radiated Emissions (General Provisions)	14
	15.247	(b,2)	Output Power (DTS)	
	15.247	(e)	Power Spectral Density (PSD)	
	15.247	(d)	Band-edge RF Conducted	
	15.247	(a,2)	DTS Bandwidth	29
1	RSS-G	en 6.7	99% Occupied Bandwidth	33
	15.247	(d)	Conducted Spurious	37
	15.247	(d)	Radiated Spurious Emissions	<u>50</u>
	15.247	(d)	Restricted Bands	
End of I	Report	UT16043A-00	1	<u>79</u>

1.0 ADMINISTRATIVE DATA

1.1 Certifications and Qualifications

I certify that DNB Engineering, Inc conducted the tests performed in order to obtain the technical data presented in this application. Also, based on the results of the enclosed data, I have concluded that the equipment tested meets or exceeds the requirements of the Rules and Regulations governing this application.

1.2 Measurement Repeatability Information

The test data presented in this report has been acquired using the guidelines set forth in FCC Part 2.1031 through 2.1057, Part 15. The test results presented in this document are valid only for the equipment identified herein under the test conditions described. Repeatability of these test results will only be achieved with identical measurement conditions. These conditions include: The same test distance, EUT Height, Measurement Site Characteristics, and the same EUT System Components. The system must have the same Interconnecting Cables arranged in identical placement to that in the test set-up, with the system and/or EUT functioning in the identical mode of operation (i.e. software and so on) as on the date of the test. Any deviation from the test conditions and the environment on the date of the test may result in measurement repeatability difficulties.

All changes made to the EUT during the course of testing as identified in this test report must be incorporated into the EUT or identical models to ensure compliance with the FCC regulations.

Coffayne II

C. L. Payne III (Para. 1.1) Facility Manager Coalville Facility. DNB Engineering, Inc. Tel. (435) 336-4433 FAX (435) 336-4436

1.3 Test Equipment List

TEST EQUIPMENT LIST - CONDUCTED EMISSIONS								
Description	Description Manufacturer Model No. Asset # Serial # Cal Due							
LISN	Fisher Custom Communications	FCCLISN5032401	U-286	2020	03 Feb 2021			
Spectrum Analyzer	Rhode & Schwarz	FSV30	U-248	101367	27 Aug 2021			
TILE Software	ETS Lindgren	3.4.11.13	U-317	8112006	07 Mar 2021			

TEST EQUIPMENT LIST - RADIATED EMISSIONS							
Description	Manufacturer	Model No.	Asset #	Serial #	Cal Due		
Pre-Amplifier	Hewlett Packard	8447D	U-068	2727A06184	04 Aug 2021		
Pre-Amplifier	DNB	S-21G	U-095	U-095-1	03 Feb 2021		
BiConiLog Antenna	ETS - Lindgren	3142E	U-255	154973	03 Sep 2021		
DRG Horn Antenna	AH Systems	SAS-571	U-071	417	11 Jul 2021		
Spectrum Analyzer	Rhode & Schwarz	FSV30	U-248	101367	27 Aug 2021		
TILE Software	ETS- Lindgren	3.4.11.13	U-317	8112006	07 Mar 2021		

TEST EQUIPMENT LIST - ANTENNA CONDUCTED						
Description	Serial #	Cal Due				
Spectrum Analyzer	Rhode & Schwarz	FSV30	U-248	101367	27 Aug 2021	

1.4 Test Summary Cross Reference

Test Item	FCC Requirement	IC Requirement	Test Method	Result
Antenna Requirement	15.203/15.247	RSS-Gen 6.8		Pass
Conducted Emissions (General Provisions)	15.207	RSS-Gen 8.8	ANSI C63.10-2013	N/A
Radiated Emissions (General Provisions)	15.209	RSS-Gen 8.9	ANSI C63.10-2013	Pass
Output Power (DTS)	15.247 (b,2)	RSS-247 5.4 d)	ANSI C63.10-2013 Clause 11.9.1.1	Pass
Power Spectral Densisty	15.247 (e)	RSS-247 5.2 b)	ANSI C63.10-2013 Clause 11.10.2	Pass
Band-edge RF Conducted	15.247 (d)	RSS-247 5.5	ANSI C63.10-2013 Clause 11.13.2	Pass
DTS Bandwidth	15.247 (a,2)	RSS-247 5.2 a)	ANSI C63.10-2013 Clause 11.8.1	Pass
99% Occupied Bandwidth	N/A	RSS-Gen 6.7	ANSI C63.10 Clause 6.9.3	Pass
Conducted Spurious	15.247 (d)	RSS-247 5.5	ANSI C63.10-2013 Clause 11.11.3	Pass
Radiated Spurious Emissions	15.247 (d)	RSS-247 5.5	ANSI C63.10-2013Clause 11.12.2.7	Pass
Restricted Bands	15.247 (d)	RSS-Gen 8.10	ANSI C63.10-2013 Clause 11.12.2	Pass

RSS-GEN	Issue 5	Mar 2019
RSS-247	Issue 2	Feb 2017

Preliminary scans were performed to determine worst case modulation, packet length, and data rates. Only worst case data has been recorded within the body of the test report.

1.5 Measurement Uncertainty

Measurement Type	Uncertainty
AC Conducted Emissions	$\pm 1.67 \text{ dB}$
OATS - Radiated Emissions - Vertical Biconical (30-300MHz)	$\pm 4.17 \text{ dB}$
OATS - Radiated Emissions - Horizontal Biconical (30-300MHz)	$\pm 4.22 \text{ dB}$
OATS - Radiated Emissions - Vertical Log Periodic (300-100MHz)	$\pm 4.92 \text{ dB}$
OATS - Radiated Emissions - Horizontal Log Periodic (300-1000MHz)	± 4.79 dB
OATS - Radiated Emissions - Vertical DRG Horn (> 1GHz)	± 5.74 dB
OATS - Radiated Emissions - Horizontal DRG Horn (>1GHz)	$\pm 5.80 \text{ dB}$
Antenna Conducted Measurements	$\pm 1.96 \text{ dB}$

2.1033 (b) (1) Application for Certification

Name of Applicant:	Icon Health & Fitness 1500 South 1000 West West Logan, UT 84321
FRN Number:	0009109950
Description:	DTS Transmitter
Model Number(s):	SBACCEL
Anticipated Production Quantity:	Multiple Units
Frequency Band:	2402 - 2480 MHz
Rated Power:	0.07 dBm (1mW)
Type of Signal:	Digital Transmission System (DTS)
Max Data Rate:	1Mpbs
Antenna Type:	Integral - Chip - Monopole
Antenna Gain:	1.3 dBi

Model Number: SBACCEL FCC ID: OMCSBACCEL IC: 3673A-SBACCEL HVIN: SBACCEL

> Input Voltage 3VDC Model: SBACCEL FCC ID: OMCSBACCEL HVIN: SBACCEL IC: 3673A-SBACCEL Made in China

2.1033 (b,3)	Installation and Operating Instructions -	Supplied separately.
2.1033 (b,4)	Brief Description of Circuit Function -	Supplied separately.
2.1033 (b,5)	Block Diagram -	Supplied separately.
2.1033 (b,7)	Equipment Photographs -	Supplied separately.

2.1033 (b,6) Report of Measurements

15.203 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Pass - Antenna gain is equal to or less than 1.3dBi

Pass - Antenna is an integral monopole chip antenna

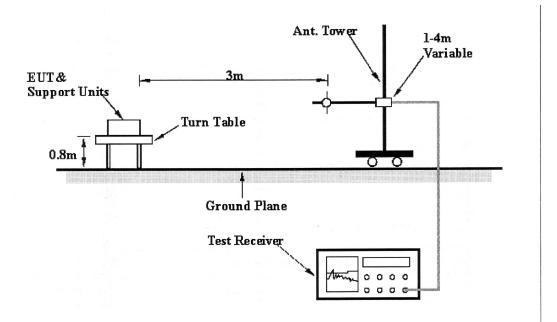
15.209 Radiated Emissions (General Provisions)

Test Procedure: ANSI C63.10-2013

The EUT was measured on an open area test site (OATS).

A measuring distance of at least 3 m shall be used for measurements at frequencies up to 1 GHz. For frequencies above 1 GHz, any suitable measuring distance may be used. The equipment size (excluding the antenna) shall be less than 20 % of the measuring distance.

Sufficient precautions shall be taken to ensure that reflections from extraneous objects adjacent to the site do not degrade the measurement results, in particular:


- no extraneous conducting objects having any dimension in excess of a quarter wavelength of the highest frequency tested shall be in the immediate vicinity of the site;

- all cables shall be as short as possible; as much of the cables as possible shall be on the ground plane or preferably below; and the low impedance cables shall be screened.

- EUT was positioned in three orthogonal axis - only the worst case data (X-Axis) has been recorded

The EUT shall be placed upon a non-conductive table (wooden for below 1GHz and styrene above 1GHz) 0.80 meters above the ground plane for frequencies from 30 to 1000MHz and 1.5 meters above the ground plane above 1 Ghz and shall be placed in the "worst case" transmitting mode. The EUT shall be rotated 360 degrees to find the azimuth maxima. The receive antenna shall then be raised and lowered between 1 to 4 meters to find the maximum signal emanating from the EUT. This signal strength is then recorded on the data sheets.

Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measurement Distance (meters)
.0009 - 0.490	2400/F(kHz)	20*(Log ₁₀ (2400/F(kHz))	300
0.490 - 1.705	24000/F(kHz)	20*(Log ₁₀ (24000/F(kHz))	30
1.705 - 30.0	30	29.5	30
30 - 88	100	40.0	3
88 - 216	150	43.5	3
216 - 960	200	46.0	3
Above 960	500	54.0	3

1100 E Chalk Creek Road Coalville, UT 84017 (435) 336-4433 FAX (435) 336-4436					R	adiate	ed Em	nission	1S (Gene	eral)	
DNB Job N	umber:	1604	3			Date:	28 S	ep 2020	S	pecificatio	on
Customer:		Icon	Health &	Fitness					[X] 15.	200	
Model Num	iber:	SBA	CCEL							SI C63.10	0-2013
Description	:	DTS	Transmit	ter							
EUT	is in confo	ormance v	with FCC	15.209	X	YES	NO S	Signed		Y Staples	
				Ra	diated En	issions					
FREQ	S/A	Corre	ction Factor	rs (dB)		dBuV/m			Positions		
(Mhz)	Reading	Ant	Cbl	Amp	Corr	Lim	Delta	Тур	Tbl	Pl	Hgt
746.382	32.2	27.4	5.7	27.5	37.72	47	-9.28	QP	100	Horz	4.00
858.347	36.0	27.8	6.5	27.3	42.98	47	-4.02	QP	10	Horz	2.29
32.620	37.5	18.8	0.6	26.6	30.29	40	-9.71	QP	0	Vert	1.00
220.801	34.6	15.3	2.6	26.0	26.47	40	-13.53	QP	0	Vert	1.00
858.347	38.2	27.8	6.5	27.3	45.19	47	-1.81	QP	34	Vert	3.42
892.411	32.7	28.1	6.7	27.2	40.30	47	-6.70	QP	0	Vert	1.00
938.629	36.1	28.5	6.8	27.1	44.31	47	-2.69	QP	326	Vert	2.49

EUT was placed in the normal operating position.

15.247 (b,2) Output Power (DTS)

11.9.1 Maximum peak conducted output power

11.9.1.1 RBW > DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW \geq DTS bandwidth.
- b) Set $VBW \ge [3 \times RBW]$.
- c) Set span $\geq [3 \times RBW]$.
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Requirement: FCC Part 15.247 Clause (b,3)

- 15.247 Operation within the bands 902-928 MHz.
- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Limit : 1 watt or 30dBm

Client: Icon He	ealth & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Tran	smitter		Model No: SBACCEL
Requirement ≤ 1	Watt or 30dBm		Tech: CL Payne
Data Rate	1Mb/s		
Low Channel:	2402 MHz	Power: 0.07 dBm	Result: Pass

Ref Level	20.00 dBn	n Offset 20.0	10 dB 🥃 F	RBW 3 MHz					
Att	20 dB	B SWT	8 ms 🥃 🎙	BW 10 MHz	Mode S	weep			
1Pk View									
					M	1[1]			0.07 dBn
10 dBm		_					+ +	2.401	81890 GH
				M1					
0 dBm				VII					
-10 dBm									
-20 dBm		-							
-30 dBm									
-40 dBm									
50.10									
-50 dBm									
-60 dBm									
-00 ubiii									
-70 dBm									
CF 2.402 G				0001 at	-			0 m m	- 0.0 MU-
CF 2.402 G larker	Π <u></u>			8001 pt	.5			spa	n 9.0 MHz
Type Ref	Trc	X-value	1	Y-value	Funct	tion	Funct	ion Result	
M1	1	2.4018189	GHz	0.07 dBm					

Date: 2.NOV.2020 09:22:19

Date: 2 Nov 2020

DNB Job: 16043

Model No: SBACCEL

EUT: DTS Transmitter

Requirement \leq 1 Watt or 30dBm

Data Rate 1Mb/s

Mid Channel: 2440 MHz

Power: -0.74 dBm

Result: Pass

Tech: CL Payne

Spectrum Ref Level 20.00 di	3m Offset 20.00 dB	RBW 3 MHz			(\
Att 20	dB SWT 8 ms	👄 VBW 10 MHz	Mode Sweep		
1Pk View					
			M1[1]		-0.74 dBn 2.43983690 GH
10 dBm				+ +	2.43903090 GH
		M1			
0 dBm			1		
-10 dBm					
-10 0.011					
-20 dBm					
-30 dBm					
-40 dBm					
-40 UBIII					
-50 dBm					
-60 dBm					
-70 dBm					
-70 aBm					
CF 2.44 GHz Marker		8001 pt	s		Span 9.0 MHz
Type Ref Trc	X-value	Y-value	Function	Funct	ion Result
M1 1	2.4398369 GHz	-0.74 dBm			
			Measuring.		02.11.2020 10:04:55

Date: 2.NOV.2020 10:04:56

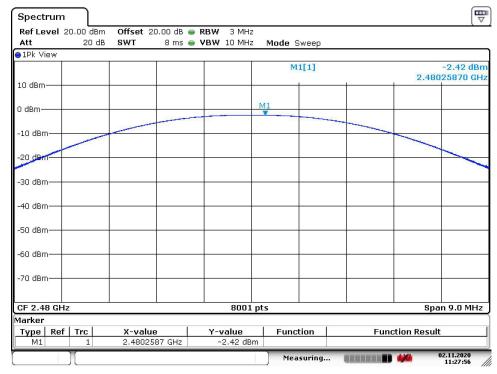
Date: 2 Nov 2020

DNB Job: 16043

Model No: SBACCEL

Tech: CL Payne

Requirement ≤ 1 Watt or 30dBm


Data Rate 1Mb/s

EUT: DTS Transmitter

High Channel: 2480 MHz

Power: -2.42 dBm

Result: Pass

Date: 2.NOV.2020 11:27:57

15.247 (e) Power Spectral Density (PSD)

Clause 11.10.2 Method PKPSD (peak PSD)

The following procedure shall be used if the maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency
- b) Set the span to 1.5 times the DTS bandwidth
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz
- d) Set the VBW \geq [3 x RBW]
- e) Detector = peak
- f) Sweep time = auto couple
- g) Trace mode = max hold
- h) Allow trace to fully stabilize
- i) Use the peak marker function to determine the maximum amplitude level within the RBW
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat
- k) Submit plots

Requirement: FCC Part 15.247 Clause (e)

15.247 Power Spectral Density.

(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Date: 2 Nov 2020

DNB Job: 16043

Model No: SBACCEL

EUT: DTS Transmitter

 $Requirement \, \leq \, 8dBm$

Data Rate 1Mb/s

Low Channel: 2402 MHz

Power: -0.35 dBm

Result: Pass

Tech: CL Payne

Ref Level 3 Att	20.00 dBm 20 dB	Offset 2 SWT	 RBW 100 k VBW 300 k 		Mode Sv	veen			
●1Pk View			 			p			
					M1[[1]		2.402	-0.35 dBn 025430 GH
10 dBm	01 8.000 di	Bm							
0 dBm			Second Proto Color	M1		14			_
-10 dBm									
-10 uBm									
-20 dBm							 		
-30 dBm							 		
-40 dBm									
-50 dBm				-					-
-60 dBm				_			 		-
70 40									
-70 dBm									
CF 2.402 G	-lz	I	 800)1 pts				Sp	an 1.1 MHz
Marker	1 1								
Type Ref M1	1 Trc	2.402025	<u>Y-value</u> -0.35 d	dBm	Function	on	 Func	tion Resul	. <u>t</u>
) <u> </u>	2, 102023	0.33 (Measu	uring		4/4	02.11.2020 11:16:34

Date: 2.NOV.2020 11:16:34

Date: 2 Nov 2020

DNB Job: 16043

Model No: SBACCEL Tech: CL Payne

 $Requirement \leq 8 dBm$

EUT: DTS Transmitter

Data Rate 1Mb/s

Mid Channel: 2440 MHz

Power: -1.00 dBm

Result: Pass

20 dB	SWT 8 ms	🔵 VBW 300 kHz	Mode Sweep		
	awi olisi	• • • • • • • • • • • • • • • • • • •	Mode Sweep		
			M1[1]	2	-1.00 dB .440022820 GI
. 8.000 dBr	n				
			M1		
		8001	pts		Span 1.1 MH
Trc	X-value	Y-value	Function	Function F	lesult
			Image: Constraint of the second sec	8.000 dBm	8.000 dBm M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1

Date: 2.NOV.2020 10:52:11

Date: 2 Nov 2020

DNB Job: 16043

Model No: SBACCEL Tech: CL Payne

 $Requirement \leq 8 dBm$

EUT: DTS Transmitter

Data Rate 1Mb/s

High Channel: 2480 MHz

Power: -2.75 dBm

Result: Pass

Spectrum Ref Level		Offset 20.00 c	B 😑 RBW 100 kHz			(\
Att	20 dB	SWT 8 m	is 👄 VBW 300 kHz	Mode Sweep		
∋1Pk View						
				M1[1]		-2.75 dBr 2.480018840 GH
10 dBm	D1 8.000 0	18m				2.400010040 GH
	010000		N			
0 dBm				in the second se		
-10 dBm						
-20 dBm						
-30 dBm						
-30 ubiii						
-40 dBm						
-50 dBm						
-60 dBm						
AND						
-70 dBm						
CF 2.48 GH	łz		8001 p	ts		Span 1.1 MHz
Marker Type Re	f Trc	X-value	Y-value	Function	Fund	tion Result
Type Re M1	1	2.48001884 GH		Function	Func	cion Result
ì	1			Measuring.		02.11.2020 11:20:04

Date: 2.NOV.2020 11:20:04

15.247 (d) Band-edge RF Conducted

For band-edge measurements, use the band-edge procedure in 6.10. Band-edge measurements shall be tested both on single channels, and with the EUT hopping.

6.10 Band-edge testing

The following procedure shall be used when band-edge measurements are required.

6.10.1 Band-edge data reporting requirements

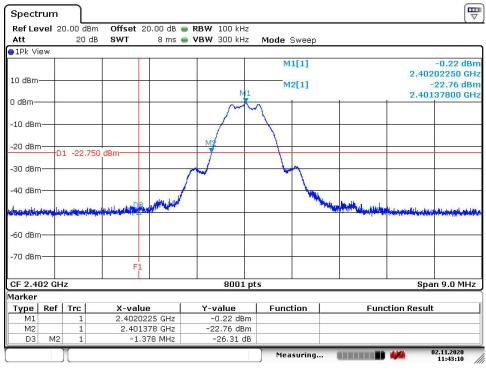
These reporting requirements are applicable to all devices for which band-edge measurements are required. On each operating frequency measured, band-edge emissions shall be reported by providing plots of the measuring instrument display. The axes, the scale units per division, and the limit shall be clearly labeled in the test report. Tabular data are not suitable for reporting band-edge emissions.

6.10.4 Authorized-band band-edge measurements (relative method)

These procedures are applicable for determining compliance at authorized-band band-edges where the requirements are expressed as a value relative to the in-band signal level.

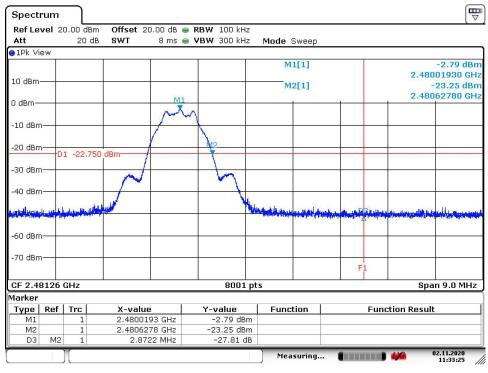
For devices that support frequency hopping, this test sequence shall be performed twice: once with the hopping function turned OFF and then repeated with the hopping function turned ON.

- a) Connect the EMI receiver or spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described in step e) (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).
- b) Set the EUT to the lowest frequency channel (for the hopping on test, the hopping sequence shall include the lowest frequency channel).
- c) Set the EUT to operate at maximum output power and 100% duty cycle, or equivalent "normal mode of operation".
- d) Blank
- e) Perform the test as follows:
 - 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.


15.247 (d) Band-edge RF Conducted (continued)

- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) Resolution bandwidth: 100 kHz
- 6) Video bandwidth: 300 kHz
- 7) Detector: Peak.
- 8) Trace: Max hold.
- f) Allow the trace to stabilize. For the test with the hopping function turned ON, this can take several minutes to achieve a reasonable probability of intercepting any emissions due to oscillator overshoot.
- g) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- h) Repeat step c) through step e) for every applicable modulation.
- i) Set the EUT to the highest frequency channel (for the hopping on test, the hopping sequence shall include the highest frequency channel) and repeat step c) through step d).
- j) The band-edge measurement shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Requirement: FCC Part 15.247 Clause (d)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

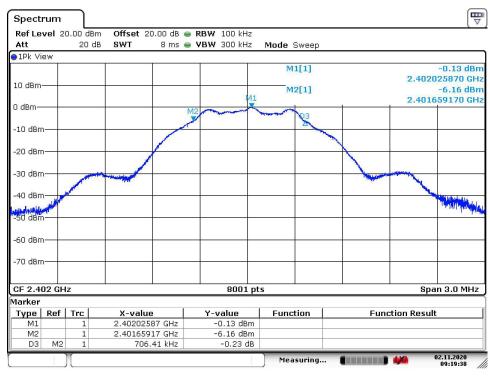
Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Band-Edge Compliance (DTS)		Tech: CL Payne
Low Channel: 2402 MHz	Data Rate: 1Mb/s	Result: Pass

Date: 2.NOV.2020 11:43:10

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Band-Edge Compliance (DTS)		Tech: CL Payne
High Channel: 2480 MHz	Data Rate: 1Mb/s	Result: Pass

Date: 2.NOV.2020 11:33:25

15.247 (a,2) DTS Bandwidth


DTS bandwidth measurement procedure

- a) Set RBW = 100 kHz
- b) Set the VBW \geq [3 x RBW]
- * per ANSI C63.10-2013 clause 6.9.2 Set the span to 2 to 5 times the OBW
- c) Detector = peak
- d) Trace mode = max hold
- e) Sweep = auto couple
- f) Allow trace to stabilize
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.
- h) Submit this plot(s).

Requirement: FCC Part 15.247 Clause (a,2)

The 6 dB DTS bandwidth shall be greater than 500 kHz.

Client: Icon He	alth & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Trans	smitter		Model No: SBACCEL
Requirement: 6d	Tech: CL Payne		
Data Rate:	1 Mb/s		
Low Channel:	2402 MHz	6dB Bandwidth = 706.41 kHz	Result: Pass

Date: 2.NOV.2020 09:19:39

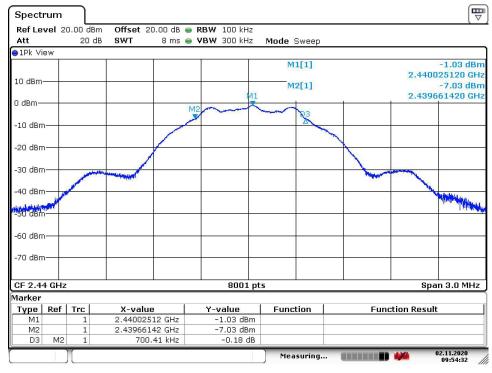
Date: 2 Nov 2020

DNB Job: 16043

Model No: SBACCEL

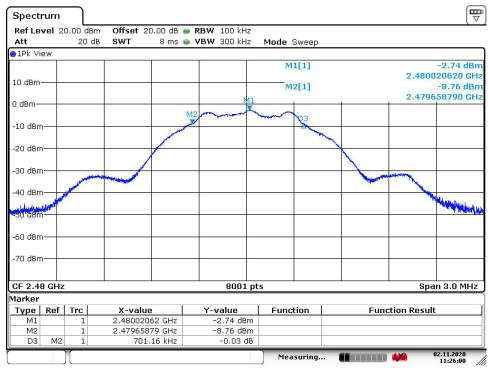
EUT: DTS Transmitter

Requirement: 6dB Bandwidth greater than 500kHz


Data Rate: 1 Mb/s

Mid Channel: 2440 MHz

6dB Bandwidth = 700.41 kHz


Result: Pass

Tech: CL Payne

Date: 2.NOV.2020 09:54:32

Client:Icon Health & FitnessDate: 2 Nov 2020DNB Job: 16043EUT: DTS TransmitterModel No: SBACCELRequirement:6dB Bandwidth greater than 500kHzTech: CL PayneData Rate:1 Mb/sHigh Channel:2480 MHz6dB Bandwidth = 701.16 kHzResult: Pass

Date: 2.NOV.2020 11:26:00

Occupied bandwidth—power bandwidth (99%) measurement procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

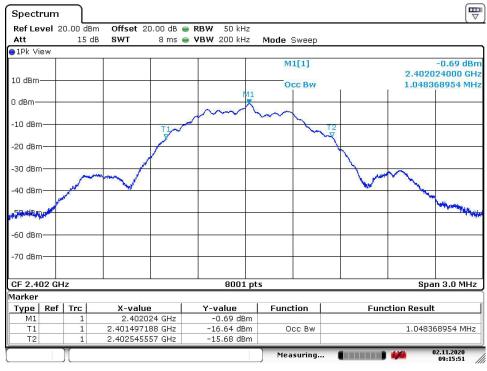
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Date: 2 Nov 2020

DNB Job: 16043

Model No: SBACCEL

EUT: DTS Transmitter


Requirement: 99% Occupied Bandwidth

Data Rate: 1 Mb/s

Low Channel: 2402 MHz

Tech: CL Payne

99% Occupied Bandwidth = 1.048368954 MHz

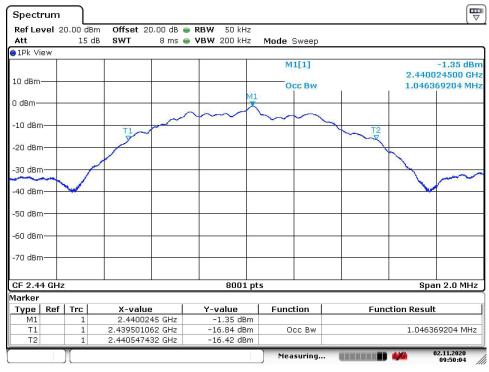
Date: 2.NOV.2020 09:15:51

Date: 2 Nov 2020

DNB Job: 16043

Model No: SBACCEL

EUT: DTS Transmitter


Requirement: 99% Occupied Bandwidth

Data Rate: 1 Mb/s

Mid Channel: 2440 MHz

Tech: CL Payne

99% Occupied Bandwidth = 1.046369204 MHz

Date: 2.NOV.2020 09:50:04

Date: 2 Nov 2020

DNB Job: 16043

Model No: SBACCEL

EUT: DTS Transmitter


Requirement: 99% Occupied Bandwidth

Data Rate: 1 Mb/s

High Channel: 2480 MHz

Tech: CL Payne

99% Occupied Bandwidth = 1.051743532 MHz

Date: 2.NOV.2020 11:22:39

15.247 (d) Conducted Spurious

Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers.

Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

Requirement: FCC Part 15.247 Clause (d)

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious em	ission <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75	dBm (Worst case)
Low Channel: 2402 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 30MHz to 6	.2725GHz	

Spectrum												(H
Ref Level					RBW 100 k							
Att	0 d	B SWT	62.5 ms	•	VBW 300 k	Hz	Mode	Sweep).			
∋1Pk Max		1	1									
							M	1[1]			0	-54.39 dBi
0 dBm		_						0141			2	274230 GH
							IVI	2[1]			0	-55.42 dBi
-10 dBm		_					_		_	I	2	330100 GF
-20 dBm		1										-
	01 -22.750) dBm										
-30 dBm		-	_	_								
-40 dBm												
24224 1201 2444												
-50 dBm			MB									
Standard Sam analasan			T 1		2							
-60 dBm					d							
		55	ala ^b	h h	No.		anterna i tanà		malada	shiel after a part of	A. Mark Lupinson	and the shall be
- Haladada	A Statement	Adams & Asard Barris	lasta Li	11		-		-			and the second second	
		a second a s										
-80 dBm		-							_			
Start 30.0 M	AL 1-2				1600	1	-				Oten	6 0705 011-
The second second second	MHZ				1600	r br	<u> </u>				Stup	6.2725 GHz
/larker				_		- 1		-			2	
Type Ref		X-value			Y-value		Func	tion		Fund	ction Resu	It
M1 M2	1		23 GHz 16 GHz		-54.39 dB -55.42 dB							
M2 M3	1		16 GHZ 67 GHZ		-55.42 UB -56.21 dB							
	20	2.102			55,21 db							02.11.2020
	Л						Mea	suring.	1		444	11:49:44

Date: 2.NOV.2020 11:49:44

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious emis	ssion <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75	dBm (Worst case)
Low Channel: 2402 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 6.2725GHz to	12.515GHz	

Spectrum											
Ref Level	10.00 dBm	Offset 2	20.00 dB 🥃	RBW 100) kHz						(
🕨 Att	0 dB	SWT	62.5 ms 🥃	VBW 300) kHz	Mode	Sweep				
∋1Pk View											
						M	1[1]			1	-61.69 dBn
0 dBm											472050 GH
0 UBIII						M	2[1]				-61.77 dBn
-10 dBm										6.	858280 GH
-20 dBm					_						
	D1 -22.750	dBm									
-30 dBm											
-40 dBm					_						
-50 dBm											
M1M3 M2											
-60 dBm					-		1.2				
on all the same states of the same	a Managara Lagara	In All will be and	La Breedewellingelil	d all and a state of the state	and a star	Mary Mary	I. hunder	-	and additional because	Jahr Jack Land	a factor of the behavior
-70 dBm	Designation of the state of the	(In stations	-	de manuelles	And the state of the	Alexandra Maria	Children and Child	Search	deline de la constitue en	(above possible spat)	
-80 dBm											
-80 UBIII											
Start 6.272	25 GHz			16	001 pt	S				Stop 1	.2.515 GHz
Marker											
Type Ref		X-value		Y-value		Func	tion		Fund	tion Resul	t
M1	1		05 GHz	-61.69							
M2 M3	1		28 GHz 08 GHz	-61.77							
MI3	1	0.037	uo GHZ	-01.92	uBm						
	Д					Mea	suring.			444	02.11.2020 11:51:48
											~

Date: 2.NOV.2020 11:51:48

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious emiss	ion <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75	dBm (Worst case)
Low Channel: 2402 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 12.515GHz to	18.7575GHz	

Spectrum									
Ref Level	10.00 dBm	Offset 2	20.00 dB 🧉	• RBW 100 k	Hz				
🕨 Att	0 dB	SWT	62.5 ms 🧉	VBW 300 k	Hz Mode	Sweep)		
●1Pk View									
0 dBm						12[1]		16.1	-60.57 dBm 153560 GHz -61.38 dBm
-10 dBm						5		15.9	009340 GH
-10 UBII									
-20 dBm						-			
C	01 -22.750	dBm							
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm					MER MI				
AND		and an an a start	60.0000	Is an an in the second	and below here had		and the state of the state of the state		
ر المربق المربق المربق المحمل الم مراجع ومن مقالم معالمات وقائل		an an ann an	And the second second	ale phone and the state of the	and a strange of the	and served	and the particular of	an participation of the second	and had been strong of the
-80 dBm									
Start 12.51	5 GHz		1	1600	1 pts	1	1	Stop 18	.7575 GHz
Marker									
Type Ref	Trc	X-value	.	Y-value	Fund	tion	Fur	iction Result	t
M1	1	16,153	56 GHz	-60.57 dB	im				
M2	1	15.909		-61.38 dB					
M3	1	15.958	89 GHz	-61.50 dB	m				
])[]				Me.	asuring.		-	02.11.2020 11:53:00 //

Date: 2.NOV.2020 11:53:00

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043						
Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043						
EUT: DTS Transmitter		Model No: SBACCEL						
EU1: DIS TransmitterModel No: SBACCELRequirement: Conducted spurious emission <20dB								
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75 dl	Bm (Worst case)						
Low Channel: 2402 MHz	Requirement = -22.75 dBm	Result: Pass						
Frequency range: 18.7575GHz to	25GHz							

Spectru											7
	el 10.00 de			RBW 100 k							
Att	0.0	db SWT	62.5 ms	👄 VBW 300 k	Hz	Mode	Sweep)			
∋1Pk View											
						M	1[1]				-59.81 dBr
0 dBm										19	.491140 GH
						M	2[1]			00	-60.53 dBi
-10 dBm—		_						_		20	.271020 GH
-20 dBm—											
	D1 -22.75	i0 dBm									
-30 dBm—		_									-
-40 dBm—	-										
-50 dBm—											
	M1	M2									N
-60 dBm—		T									
All and a second second	In the second second	A la los di Maria la seda	A STREET, STRE	المروم الملك متي المطالبة المتعمر ويري		human	allight to be	way the p	male with the state of a lick	lan a start and	and performance of the
-70 dBm—			and the state of the state of the	and the state of the state	a policiero	inter her fall	Marking Marking	and the	Alat in the second second	and the second second	
-80 dBm—										-	
Start 10	7575 GHz			1600	1 ntc					et.	op 25.0 GHz
darker	7575 012			1000	r pra					30	5p 25.0 driz
	- ë - -		. 1	ta non-locat	1	-		1	E	tion Berry	
Type R M1	ef Trc	X-value 19,491		<u>Y-value</u> -59.81 dB	lm	Func	uon		Fund	ction Resu	nt –
M2	1	20.271		-60.53 dB							
M3	1	24.925		-60.55 di							
							suring.				02.11.2020

Date: 2.NOV.2020 11:54:19

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious em	ission <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75	dBm (Worst case)
Mid Channel: 2440 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 30MHz to 6	.2725GHz	

Spectrum												[₩
Ref Level	10.00 dBr	m Offset 2	20.00 dB		RBW 100 k	Hz						
Att	0 d	B SWT	62.5 ms		VBW 300 k	Hz	Mode	Sweep				
1Pk View												
							M	1[1]				-50.57 dBn
D dBm											2.4	61110 GH
J UBIII							M	2[1]				-57.06 dBn
-10 dBm											2.3	12470 GH
TO GDIII												
-20 dBm												
	01 -22.750) dBm		+								
-30 dBm												
00 00111												
-40 dBm												
				N								
-50 dBm		_		1		<u> </u>						
			M	2	мз							
-60 dBm		-			I.	-						
			10 d	40	d " Mary holeftler	- Lor	dist for	. hale man	upu. 44	مامال بالغديا وماعدة فيه	المقبل وباللمور بالعارا	a dia mandria di Inda dia
Z F al Particular	description of the	ما مع الم معد إل ما	Land Land	, II.		-	-		te but t		No. of the Local Division of the Local Divis	
			197.707		2.70							
-80 dBm												
Start 30.0 M	/IHz				1600	1 pt	s				Stop 6	.2725 GHz
1arker												
Type Ref	Trc	X-value	.		Y-value	1	Func	tion		Func	tion Result	t
M1	1	2.461	11 GHz		-50.57 dE	3m						
M2	1		47 GHz		-57.06 dE							
M3	1	2.5	68 GHz		-57.84 dE	3m						
)(Mea	suring.	. 1		446	02.11.2020 11:59:23

Date: 2.NOV.2020 11:59:24

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious emis	ssion <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75	dBm (Worst case)
Mid Channel: 2440 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 6.2725GHz to	12.515GHz	

Spectrum											
Ref Level	10.00 dBm	Offset 2	20.00 dB 📢	RBW 100 k	Hz						
🕨 Att	0 dB	SWT	62.5 ms 📢	📄 VBW 300 k	Hz Mode	Sweep	L. C.				
⊖1Pk View											
0 dBm					000	1[1] 2[1]		-61.21 dE 6.795860 G -64.06 dE			
-10 dBm						-		12.	405570 GH:		
00.45											
-20 dBm-0	01 -22.750	dBm									
-30 dBm	Goressinn.										
-40 dBm											
-50 dBm											
-60 dBm	1							MS			
-70 dBm	Additional parts	Looks on Australia States		and a second	alastin (Jau), adala			ALC LADOR OF THE OWNER OF THE OWN	1		
-80 dBm	in react in										
Start 6.272	5 GHz			1600	1 pts			Stop :	12.515 GHz		
Marker											
Type Ref		X-value		Y-value	Func	tion	Fun	iction Resu	lt		
M1	1		36 GHz	-61.21 dB							
M2	1	12.405		-64.06 dB							
M3	1	11.418	14 GHZ	-64.63 dB	m						
Ì	Л				Mea	suring.		6/6	02.11.2020 12:01:07		

Date: 2.NOV.2020 12:01:07

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious emissi	on <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75	dBm (Worst case)
Mid Channel: 2440 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 12.515GHz to	18.7575GHz	

Spectrum									
Ref Level	l 10.00 dBm	n Offset 2	20.00 dB 🍯	• RBW 100 k	Hz				
📄 Att	0 de	SWT	62.5 ms 🍯	VBW 300 k	Hz Mo	de Swee	o l		
⊖1Pk View									
0 dBm						M1[1]	16.16995		
								15.	757580 GHz
-10 dBm									
-20 dBm		ļ				_			
	D1 -22.750	dBm							
-30 dBm						_			
-40 dBm									
-50 dBm									
					M2	M1		MB	
-60 dBm		10 10 1a		and the second s		Lines of the		La Colora Indiana Indiana	a shallow an
Richard Western History	"Las huma has did		and start and start and	and the party of the second second		and the second second	helpitana pata darata	was provide the shift of the second	n ay and a bit has the set. She
and the second	and the second secon	a second s		18 B					
-80 dBm									
Start 12.5:	15 GHz			1600	1 pts			Stop 1	8.7575 GHz
Marker									
Type Rei	f Trc	X-value	.	Y-value	Fu	nction		Function Resu	lt
M1	1	16.169	95 GHz	-60.85 dB	3m				
M2	1	15.757		-60.89 dB					
M3	1	17.838	15 GHz	-61.33 dE	Sm				
					<u> </u>	1easuring		•	02.11.2020 12:02:00

Date: 2.NOV.2020 12:02:00

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious emissio	n <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75 d	Bm (Worst case)
Mid Channel: 2440 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 18.7575GHz to	25GHz	

Spectrun	n											
Ref Leve	l 10.00 dBr	n Offset 2	0.00 dB 🌘	• RBW 100 k	Hz							
Att	o di	B SWT (52.5 ms 🌘	> VBW 300 k	Hz	Mode	Sweep	0				
∋1Pk View												
						M	1[1]				-6	i0.40 dBn
0 40											19.48	9970 GH
0 dBm						M	2[1]					i0.89 dBn
-10 dBm											20.33	9290 GH
-10 0600												
-20 dBm												
-20 ubm	D1 -22.750) dBm								-		
-30 dBm												
So abin												
-40 dBm												
TO GBII												
-50 dBm										_		
	M1 M2	140										
-60 dBm-	M1 M3	M2										
		all and the law of	والمتعالية المسادرية		LI.L.UL	المحاسبان	Charles and a surely	a his	and a local ballo	and her south	ale register	un hild un en her
-70 dBm	(Inter-	Stand Statistics Looking	and a state of the second	and the later of a line of the second	-	the state of the second	hadron to a serve	Charles and the second	Antolikishtinee	dist freedor	a segue par par en a	dines, educates,
-80 dBm												
Start 18.7				1600	1						Otera	25.0 GHz
POC ADMO TATION OF	373 GHZ			1000	1 pts	,					scop	23.0 GH2
Marker	6 L L		- 1		-	-			-			
Type Re M1		X-value	7 6115	<u>Y-value</u> -60,40 dB	1.000	Func	tion		Fu	nction	Result	
M1 M2	1	19.4899 20.3392		-60.89 dB								
M2 M3	1	19.8680		-61.26 dB								
	1 -1	19.0000		01.20 40							07	.11.2020
						Mea	suring.	- 1		. 444		12:02:40

Date: 2.NOV.2020 12:02:40

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious emis	ssion <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75 c	dBm (Worst case)
High Channel: 2480 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 30MHz to 6.2	2725GHz	

Spectrum										H ∀		
Ref Level	10.00 dBn	Offset 2	0.00 dB 📢	• RBW 100 k	Hz							
🗎 Att	0 d8	SWT (52.5 ms 🕻	VBW 300 k	Hz Mode	Sweep	0					
●1Pk View												
0 dBm										-57.07 dBm 2.351870 GHz		
o ubili				T	M	2[1]				-57.44 dBn		
-10 dBm						1			2.6	508190 GH:		
-20 dBm	01 -22.750	dBm					_					
-30 dBm												
-40 dBm												
-50 dBm			M	ивм2								
-60 dBm			, I							, i Julian saariila oo		
ZDudboye	A REAL PROPERTY OF		Land Barriel	a here a here a second	A configentiation of	and the later	North Party	(Links and the states)	المعارية، إسارة المانية المعارية من المارية المانية	Street, Stickeling		
-80 dBm	and the balance		and a state of the	n Henrichten eine eine eine eine eine eine eine e								
-00 0011												
Start 30.0 M	/Hz			1600	1 pts				Stop 6	.2725 GHz		
Marker												
Type Ref	Trc	X-value		Y-value	Func	tion		Func	tion Result	t		
M1	1	2.3518	17 GHz	-57.07 dB								
M2	1	2.6081		-57.44 dB								
M3	1	2.4626	7 GHz	-57.78 dB	m							
)[Mea	suring.	. (444	02.11.2020 12:05:48		

Date: 2.NOV.2020 12:05:49

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious emis	ssion <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75	dBm (Worst case)
High Channel: 2480 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 6.2725GHz to	12.515GHz	

Spectrum											E
Ref Level 10	.00 dBm	Offset 2	20.00 dB 🧉	RBW 1	00 kHz						
🗎 Att	0 dB	SWT	62.5 ms 🥃	VBW 3	00 kHz	Mode	Sweep	0			
●1Pk View											
						М	1[1]				-61.97 dBn 726810 GH:
0 dBm						M	2[1]				-62.07 dBn 949960 GH
-10 dBm										0.	
-20 dBm-01	-22.750 (-Bm									
-30 dBm	22// 50										
-40 dBm											
-50 dBm											
-60 HBm	1.070	140.180.000	77.5 au 956.00	20076 200 1		1966 637725					
-70 aBm	Handhacha an Linn Ingine ya kana Mele	eles alle balle d'all barre des	a das ha di internetari Anna per la companya dar	an a	ار استر از در از بار ا معلام رو از مار ا	Alla and a land	and a provide state	and other of the pairs	alanda gana sa ang sa dan da Kana da kana sa	And a start of the second	
-80 dBm	172				204						
Start 6.2725 G	Hz			1	6001 p	ts				Stop 1	.2.515 GHz
Marker											
	rc	X-value		Y-val		Func	tion		Fund	ction Resul	t
M1	1		81 GHz		7 dBm						
M2 M3	1		96 GHz 25 GHz		7 dBm 1 dBm						
)[,) Mea	suring.			4/4	02.11.2020

Date: 2.NOV.2020 12:06:50

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious emission	on <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75 c	lBm (Worst case)
High Channel: 2480 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 12.515GHz to	18.7575GHz	

Spectrum									[₩		
Ref Level 1	10.00 dBn	n Offset	20.00 dB 📢	• RBW 100 kH	z						
🔰 Att	0 dB	SWT	62.5 ms (🕨 VBW 300 kH	z Mode	Sweep					
⊖1Pk Max											
					M	1[1]			-58.99 dBn		
								16	.181650 GH		
0 dBm					M	2[1]		-59.72 dBr			
								17.651280 GH			
-10 dBm											
-20 dBm	1 -22.750	dBm									
D.	1 -22.730	UDIN									
-30 dBm		-							-		
-40 dBm											
-50 dBm		-									
					M1			M2			
-60 dBm				11			Beath and a Brade and a star and a		يانه واليرور الراري		
وروا فأحداد فستدرج الأحط واحت	للم العرف المحالية المحالية من	العرب أوجاد فسأ ومشيناوه	I Sunday and a bout the	in the second second second	Contraction of the		In the other burley building a second	and the second sec	al dia televita de sett		
-70 dBm			a for the second second second	9							
-80 dBm		-									
oo abiii											
Start 12.515	GHz			16001	pts			Stop 1	8.7575 GHz		
Marker											
Type Ref	Trc	X-valu		Y-value	Func	tion	Fun	ction Resu	lt		
M1	1		.65 GHz	-58.99 dBr							
M2	1	17.651	28 GHz	-59.72 dBn	1						
					Mea	suring		-	02.11.2020		
									12:11:19		

Date: 2.NOV.2020 12:11:19

Client: Icon Health & Fitness	Date: 2 Nov 2020	DNB Job: 16043
EUT: DTS Transmitter		Model No: SBACCEL
Requirement: Conducted spurious emis	sion <20dB of peak	Tech: CL Payne
Data Rate: 1Mb/s	Minimum PSD Reading = -2.75	dBm (Worst case)
High Channel: 2480 MHz	Requirement = -22.75 dBm	Result: Pass
Frequency range: 18.7575GHz to	25GHz	

Ref Lo Att	evel :	LO.OO dBi O d			 RBW 100 kH; VBW 300 kH; 		D			
∋1Pk Vi	зw									
0 dBm—						M1[1] M2[1]	-59.13 dBr 19.504800 GH -60.32 dBr			
-10 dBm								24.562860 GH		
-20 dBm	-	1 -22.75	n din er							
-30 dBm		1 -22.75	Jabm							
-40 dBm	(_					
-50 dBm										
-60 dBm	N		discourse in the state	a Landers of	Latra Mathatana an Analita an I	e la serva de surtes a sub <mark>e</mark> terán como ser	attentiales	M2		
-70 dBm										
-80 dBm	ı;									
Start 1	8.757	5 GHz			16001	pts		Stop 25.0 GH:		
1arker										
Type	Ref		X-value		Y-value	Function	Fu	nction Result		
M1 M2		1	19.50 24.562	48 GHz 86 GHz	-59.13 dBm -60.32 dBm					

Date: 2.NOV.2020 12:12:41

15.247 (d) Radiated Spurious Emissions

An additional consideration when performing conducted measurements of restricted-band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than from the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements, the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in 6.3, 6.5, and 6.6. All detected emissions shall comply with the applicable requirements.

This test is required for any spurious emission or modulation product that falls in an Unrestricted Band, as defined in Section 15.209. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Span	=	wide enough to fully capture the emission being measured
RBW	=	1 MHz for f 1 GHz, 100 kHz for f < 1 GHz
VBW	=	RBW
Sweep	=	auto
Detector function	=	peak
Trace	=	max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now repeat the measurement using the average detector of the spectrum analyzer. Submit this data.

- Note 1: Limit listed is the general limit as specified in 15.209 in order to show compliance with the restricted bands of operation as well as the out of band limit in 15.247. No other identifiable signals were observed in the restricted bands as specified in 15.205.
- Note 2: Highest frequency investigated was the tenth harmonic of the fundamental, no radiated emissions were detected above the 1st harmonic.

Requirement: FCC Part 15.247 Clause (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Client: Icon Health & Fitness

Date: 22 Oct 2020

DNB Job: 16043

EUT: DTS Transmitter

Requirement: General limit of 15.209

Low Channel: 2402 MHz

Model No: SBACCEL

Tech: CL Payne

Result: Pass

					Radiate	ed Spurious						
Freq in MHz	Meter Reading (dBuV/m)	Pre-Amp (dB)	Cable (dB)	Antenna (dB)	Corr'd Reading (dBuV/m)	Limit (dBuV/m)	Delta	Azimuth (degrees)	Height (m)	Polarity	Meas Type	Axis
4804.000	41.4	25.9	5.8	32.8	54.10	74.0	-19.90	0	1.56	Horz	Peak	Х
4804.000	28.8	25.9	5.8	32.8	41.50	54.0	-12.50	0	1.56	Horz	Ave	Х
7206.000	37.9	25.3	7.6	35.6	55.77	74.0	-18.23	188	1.6	Horz	Peak	Х
7206.000	27.5	25.3	7.6	35.6	45.41	54.0	-8.59	188	1.6	Horz	Ave	X
9608.000	38.9	24.6	9.1	37.9	61.34	74.0	-12.66	188	1.6	Horz	Peak	Х
9608.000	28.3	24.6	9.1	37.9	50.73	54.0	-3.27	188	1.6	Horz	Ave	Х
4804.000	34.0	25.9	5.8	32.8	46.70	74.0	-27.30	202	1.64	Vert	Peak	Х
4804.000	21.0	25.9	5.8	32.8	33.71	54.0	-20.29	202	1.64	Vert	Ave	Х
7206.000	32.7	25.3	7.6	35.6	50.58	74.0	-23.42	201	1.56	Vert	Peak	Х
7206.000	20.3	25.3	7.6	35.6	38.15	54.0	-15.85	201	1.56	Vert	Ave	X
9608.000	30.9	24.6	9.1	37.9	53.36	74.0	-20.64	201	1.56	Vert	Peak	Х
9608.000	19.9	24.6	9.1	37.9	42.41	54.0	-11.59	201	1.56	Vert	Ave	Х
4804.000	33.9	25.9	5.8	32.8	46.62	74.0	-27.38	198	1.89	Horz	Peak	Υ
4804.000	23.0	25.9	5.8	32.8	35.66	54.0	-18.34	198	1.89	Horz	Ave	Y
7206.000	33.1	25.3	7.6	35.6	51.00	74.0	-23.00	200	1.9	Horz	Peak	Y
7206.000	20.3	25.3	7.6	35.6	38.24	54.0	-15.76	200	1.9	Horz	Ave	Y
9608.000	31.1	24.6	9.1	37.9	53.55	74.0	-20.45	196	1.9	Horz	Peak	Y
9608.000	20.0	24.6	9.1	37.9	42.44	54.0	-11.56	196	1.9	Horz	Ave	Y
4804.000	31.9	25.9	5.8	32.8	44.56	74.0	-29.44	252	1.2	Vert	Peak	Y
4804.000	21.0	25.9	5.8	32.8	33.71	54.0	-20.29	252	1.2	Vert	Ave	Y
7206.000	31.0	25.3	7.6	35.6	48.93	74.0	-25.07	253	1.2	Vert	Peak	Υ
7206.000	19.4	25.3	7.6	35.6	37.31	54.0	-16.69	253	1.2	Vert	Ave	Υ
9608.000	30.9	24.6	9.1	37.9	53.40	74.0	-20.60	253	1.21	Vert	Peak	Υ
9608.000	20.0	24.6	9.1	37.9	42.42	54.0	-11.58	253	1.21	Vert	Ave	Υ
4804.000	33.8	25.9	5.8	32.8	46.52	74.0	-27.48	321	1.33	Horz	Peak	Ζ
4804.000	21.1	25.9	5.8	32.8	33.76	54.0	-20.24	321	1.33	Horz	Ave	Z
7206.000	31.2	25.3	7.6	35.6	49.12	74.0	-24.88	320	1.1	Horz	Peak	Ζ
7206.000	19.6	25.3	7.6	35.6	37.54	54.0	-16.46	320	1.1	Horz	Ave	Ζ
9608.000	30.8	24.6	9.1	37.9	53.31	74.0	-20.69	320	1.35	Horz	Peak	Ζ
9608.000	20.0	24.6	9.1	37.9	42.43	54.0	-11.57	320	1.35	Horz	Ave	Ζ
4804.000	34.6	25.9	5.8	32.8	47.29	74.0	-26.71	221	1.6	Vert	Peak	Ζ
4804.000	24.1	25.9	5.8	32.8	36.81	54.0	-17.19	221	1.6	Vert	Ave	Ζ
7206.000	30.6	25.3	7.6	35.6	48.48	74.0	-25.52	213	1.6	Vert	Peak	Ζ
7206.000	19.9	25.3	7.6	35.6	37.78	54.0	-16.22	213	1.6	Vert	Ave	Ζ
9608.000	32.5	24.6	9.1	37.9	54.96	74.0	-19.04	213	1.6	Vert	Peak	Ζ
9608.000	20.0	24.6	9.1	37.9	42.47	54.0	-11.53	213	1.6	Vert	Ave	Ζ