

NeutrinoE224

Indoor 2x125mW eNB

User Manual

About This Document

This document introduce NeutrinoE224 TDD/FDD indoor base station, and guides users to install and quick setting for the base station.

Copyright Notice

Baicells Technologies, Inc., copyrights the information in this document. No part of this document may be reproduced in any form or means without the prior written consent of Baicells Technologies, Inc.

Disclaimer

The information in this document is subject to change at any time without notice. For more information, please consult with a Baicells technical engineer or the support team.

Revision Record

Date	Version	Description
20 Aug., 2022	01	Initial Released.
22 March, 2023	02	Modify the password of the admin.
2 June, 2023	03	The configuration of Certificate menu add a
		parameter "Initial IPsec tunnel".
6 Dec, 2023	04	Modify the description of dip switch for antenna.

Contact Us

	Baicells Technologies Co., Ltd.	Baicells Technologies North America, Inc.
	China	North America
Address	9-10F, 1st Bldg., No.81BeiqingRoad,	555 Republic Dr., #200, Plano, TX 75074,
	Haidian District, Beijing, China	USA
Phone	400-108-0167	+1-888-502-5585
Email	contact@Baicells.com or	sales_na@Baicells.com or
	support@Baicells.com	support na@Baicells.com
Website	www.Baicells.com	https://na.Baicells.com

Contents

1.	Pro	duct	Overview1
-	1.1	Intr	oduction1
-	1.2	Higł	nlights1
-	1.3	Арр	earance 2
-	1.4	Tecl	nnical Specification
	1.4.	1	Technology 3
	1.4.	2	Interface
	1.4.	3	Performance 4
	1.4.	4	Features 5
	1.4.	5	Link Budget 5
	1.4.	6	Physical 6
2.	Inst	all B	ase Station7
2	2.1	Pac	king List7
Ĩ	2.2	Inst	allation Preparation7
Ĩ	2.3	Inst	all on Ceiling7
ź	2.4	Inst	all on Wall9
Ĩ	2.5	Con	nect Cable
Ĩ	2.6	Pow	ver On
3.	Initi	al C	onfiguration10
3	3.1	Con	figuration Overview10
	3.1.	1	Configuration Procedure 10
	3.1.	2	Ethernet Interface Description
	3.1.	3	Data Planning11
	3.2	Log	in Web Client 11
	3.2.	1	Web Client Environmental Requirements 11
	3.2.	2	Connect Web Client to Base Station

	3.2.3	Set Up Client Computer	11
	3.2.4	Log In	13
	3.2.5	Logout	15
3.3	3 Qui	ck Setting	15
3.4	l Con	figure System Parameter	18
	3.4.1	Configure NTP	18
	3.4.2	Upgrade	19
	3.4.3	Backup	20
	3.4.4	LOG	22
	3.4.5	User Management	24
	3.4.6	Certificate	25
3.5	5 Con	figure Network Interface	28
	3.5.1	Configure WAN/VLAN	28
	3.5.2	Configure LAN Interface	31
	3.5.3	Configure IPsec	33
	3.5.4	Configure LGW	38
	3.5.5	Configure Diagnostics	39
	3.5.6	Configure Static Route	41
	3.5.7	Configure iptables	42
3.6	6 Con	figure eNodeB Parameter	44
:	3.6.1	Configure Security	44
	3.6.2	Configure Management Server	45
	3.6.3	Configure Synchronization	47
	3.6.4	Configure HaloB Function	49
	3.6.5	License Management	51
	3.6.6	Configure Terminal Traffic Control	51
3.7	7 Con	figure LTE Parameter	52
:	3.7.1	Configure LTE Neighbor Frequency and Cell	52

3.7.2	Configure UMTS Neighbor Frequency and Cell 55
3.7.3	Configure GSM Neighbor Frequency and Cell57
3.7.4	Configure 5G Neighbor Frequency and Cell59
3.7.5	Configure Mobility Parameter 60
3.7.6	Configure Advanced Parameter67
3.7.7	Configure MOCN Parameter74
3.7.8	Configure RRC Status Parameter74
3.7.9	SON Function Setting
3.8 Reb	oot
Appendix A	Terminology & Acronym

Figures

Figure 1-1 Network Structure	1
Figure 1-2 NeutrinoE224 Appearance and Interfaces	2
Figure 3-1 Initial eNB Configuration Flow	10
Figure 3-2 Internet Protocol Version (TCP/IPV4)	12
Figure 3-3 GUI Login	13
Figure 3-4 GUI Homepage of the eNB's	14
Figure 3-5 Neighbor Cell State	15
Figure 3-6 Quick Setting	16
Figure 3-7 NTP Server Setting	18
Figure 3-8 Software Upgrade	19
Figure 3-9 Log Configuration	22
Figure 3-10 phyTraceSubsystem/phyTrace Setting	23
Figure 3-11 User Management	25
Figure 3-12 Certificate Management	26
Figure 3-13 IPsec Certificate Application Management	27
Figure 3-14 Configure WAN/VLAN	28
Figure 3-15 Configure to Connect to External Network	.29

Figure 3-16 Configure Multi-link Mode	31
Figure 3-17 Configure LAN Interface	32
Figure 3-18 Enable LAN Internet Function	32
Figure 3-19 Configure IPsec	33
Figure 3-20 IPsec Tunnel Setting - Basic Setting Tab	34
Figure 3-21 IPsec Tunnel Setting - Advanced Setting Tab	36
Figure 3-22 Configure LGW	38
Figure 3-23 Configure Diagnostics	40
Figure 3-24 Configure Static Route	41
Figure 3-25 Static Route Parameters	42
Figure 3-26 iptables Setting	43
Figure 3-27 Security Setting	44
Figure 3-28 Configure Network Management Server	45
Figure 3-29 Synchronization Mode Setting	47
Figure 3-30 HaloB Setting	49
Figure 3-31 Import SIM Information and APN Information	50
Figure 3-32 License Management	51
Figure 3-33 Terminal Traffic Control Setting	52
Figure 3-34 LTE Neighbor Frequency/Cell Setting	53
Figure 3-35 UMTS Neighbor Frequency/Cell Setting	56
Figure 3-36 GSM Neighbor Frequency Setting	57
Figure 3-37 5G Neighbor Frequency Setting	59
Figure 3-38 MOCN Setting	74
Figure 3-39 RRC Status Parameter Setting	75
Figure 3-40 SON Function Setting	76

Tables

Table 1-1 NeutrinoE224 Interface Description	2
Table 1-2 NeutrinoE224 LED Indicators	3

Table 3-1 Environmental Requirements of the Client 1	1
Table 3-2 Quick Setting Parameter Description 1	6
Table 3-3 NTP Server Parameter Description1	9
Table 3-4 LTE Log Level Parameter Description 2	2
Table 3-5 phyTraceSubsystem Parameter Description	3
Table 3-6 phyTrace Parameter Description	4
Table 3-7 IPsec Certificate Management Parameters 2	27
Table 3-8 WAN Interface Parameter Description 2	9
Table 3-9 Protocol Stack Link Parameter Description3	1
Table 3-10 LAN Internet Function Parameter Description 3	2
Table 3-11 IPsec Function Parameter Description	3
Table 3-12 IPsec Tunnel Mode - Basic Parameter Description	5
Table 3-13 IPsec Tunnel Mode Advanced Parameter Description	6
Table 3-14 LGW Parameter Description	9
Table 3-15 Ping Function Parameter Description 4	0
Table 3-16 Static Route Parameter Description4	2
Table 3-17 iptables Parameter Description4	3
Table 3-18 IP and Port Filter Parameter Description4	3
Table 3-19 Security Parameter Description4	4
Table 3-20 NMS Configuration Parameter Description4	6
Table 3-21 KPI and MR Report URL Parameter Description4	6
Table 3-22 SNMP Configuration Parameter Description4	6
Table 3-23 Synchronization Parameter Description4	7
Table 3-24 PTP Mode Parameter Description4	.8
Table 3-25 NL Synchronization Parameter Description4	8
Table 3-26 HaloB Parameter Description	.9
Table 3-27 LTE Neighbor Frequency Parameter Description 5	3
Table 3-28 LTE Neighbor Cell Parameter Description	4
Table 3-29 UMTS Neighbor Frequency Parameter Description 5	6
Table 3-30 UMTS Neighbor Cell Parameter Description	7

Table 3-31 GSM Neighbor Frequency Parameter Description 58
Table 3-32 GSM Neighbor Cell Parameter Description
Table 3-33 5G Neighbor Frequency Parameter Description 59
Table 3-34 5G Neighbor Cell Parameter Description 60
Table 3-35 A3 Event Threshold Parameter Description 61
Table 3-36 A5 Event Threshold Parameter Description 62
Table 3-37 Measurement Control Parameter Description 63
Table 3-38 Heterostructure Measurement Threshold Parameter Description63
Table 3-39 Cell Selection Parameter Description 64
Table 3-40 Cell Reselection Parameter Description 65
Table 3-41 Additional Measurement Parameter Description 66
Table 3-42 Power Control Parameter Description 67
Table 3-43 eNodeB Parameter Description 68
Table 3-44 GAP Setting Parameter Description
Table 3-45 Random Access Parameter Description70
Table 3-46 Capacity Parameter Description70
Table 3-47 Scheduling Algorithms Parameter Description71
Table 3-48 eNodeB Range Parameter Description
Table 3-49 CSFB Parameter Description
Table 3-50 RAT Handover Priority Parameter Description 73
Table 3-51 MOCN Parameter Description
Table 3-52 RRC Status Parameter Description
Table 3-53 Power Headroom Reporting Parameter Description
Table 3-54 SON Function Parameter Description 76

1. Product Overview

Introduction 1.1

Baicells NeutrinoE224 is an indoor base station based on LTE TDD/FDD technology, which supports broadband data access. It supports the backbone network through family broadband way, providing various data service transformation and transmission to realize the wireless coverage of indoor.

The NeutrinoE224 make use of the current transmission resources to reduce the operator investment, construct the LTE network with low cost, and enhance the indoor coverage. It can be widely used in telecom operators and broadband operators to promote the user experience in family, shopping mall, and so on.

The network structure of NeutrinoE224 access to LTE network is shown in Figure 1-1.

1.2 Highlights

- Adopt the integration design of baseband and RF.
- Based on 3GPP LTE TDD/FDD technology; provide high speed data service.
- Support 5MHz/10MHz/15MHz/20MHz operation bandwidth.
- 32 RRC connected users
- Lower power consumption to reduce OPEX
- Fast networking, plug and play and flexible deployment.
- Integration as required, provide accurate coverage and improved network

capacity rapidly.

- Integrated high gain internal antenna.
- Built-in DHCP Server, DNS Client and NAT functionality, providing a strong high speed routing ability.
- Rich security services to provide timely protection against potential security risks and illegal intrusion.
- Adopt Web management, convenient and simple.
- Support perfect network management function, which implement the management, monitor and maintenance.
- ^o Small and exquisite, user friendly LED indicators are easy to monitor device status.

1.3 Appearance

The NeutrinoE224 base station appearance and interfaces are shown in Figure 1-2.

Figure 1-2 NeutrinoE224 Appearance and Interfaces

The NeutrinoE224 interfaces are described in Table 1-1.

Table 1-1 NeutrinoE224 Interface Description

Interface	Description
OPT	(Optional) Optical fiber interface, used for external
	transmission network
LAN	Gigabit Ethernet interface, used for the initial configuration
	or debugging
GPS	(Optional) external GPS antenna, SMA female.
SIM	SIM card slot
PWR	12VDC power supply interface
ANT2	(Reserved) external antenna 2
WAN/POE+	Gigabit Ethernet and PoE+ interface, used for external

Interface	Description
	transmission network and power supply.
EXT-INT	Dip switch for built-in antenna or external antenna, set
	according to scenarios:
	- EXT: external antenna
	- INT: built-in antenna
RST	Power reset button
ANT1	(Optional) external antenna 1

NOTE: Some models support OPT interface and WAN/PoE+ interface simultaneously. Some models only supports WAN/PoE+ interface, refer to the actual device.

The NeutrinoE224 LED indicators are described in Table 1-2.

Color	Status	Description		
PWR	Steady on	The device has powered on.		
	Fast flash	LTE traffic is transmitting.		
LIE	Slow flash	The cell has been activated.		
	Steady on	Alarm that strong interference cell exists arounds the cell.		
ALM	Fast flash	S1 alarm.		
	Slow flash	Other alarms.		

Table 1-2 NeutrinoE224 LED Indicators

1.4 Technical Specification

1.4.1 Technology

Item	Description		
Standard	LTE TDD/FDD RAN (3GPP R15 compliant)		
TDD UL/DL	1, 2 (with Special Subframe Configuration 7)		
Configuration			
Frequency Band ^a	Refer to the device label		
Channel Bandwidth	Band1/2/3/7/40/41: 5/10/15/20 MHz		
	Band5/8: 5/10 MHz		
Multiplexing	MIMO: 2x2 (DL)		
Security	Radio: SNOW 3G/AES-128/ZUC		
	Backhaul: IPsec (X.509 AES-128, AES-256, SHA-128,		
	SHA-256)		

^a Different models support different frequency band.

1.4.2 Interface

Item	Description
Ethernet Interface	One RJ-45 Ethernet backhaul interface (1 GE) and one
	RJ-45 local Mgmt. interface (1 GE)
Power Supply	12VDC, AC adaptor (multiple standards optional), PoE+,
	comply with IEEE 802.3at standard
Protocols Used	IPv4/IPv6 (Dual Stack), UDP, TCP, ICMP, NTP, SSH,
	IPsec, TR-069, HTTP/HTTPs, 1588v2, DHCP
Network	IPv4/IPv6, HTTP/HTTPs, TR-069, SSH, Embedded EPC
Management	
VLAN/VxLAN	802.IQ/VxLAN
LED Indicators	3 x status LED
	PWR/LTE/ALM

1.4.3 Performance

ltem	Description
Peak Data Rate-	20 MHz:
in TDD mode	SA1: DL 80 Mbps, UL 20 Mbps
	• SA2: DL 110 Mbps, UL 10 Mbps
	10MHz:
	SA1: DL 40 Mbps, UL 7 Mbps
	SA2: DL 55 Mbps, UL 5 Mbps
Peak Data Rate-	20MHz: DL 150Mbps, UL 50Mbps
in FDD mode	10MHz: DL 75Mbps, UL 25Mbps
User Capacity	32 RRC connected users
Latency	30 milliseconds
Modulation	MCS0 (QPSK) to MCS28 (64QAM)
	DL: QPSK, 16QAM, 64QAM
	UL: QPSK, 16QAM
Transmit Power	0 to 21 dBm per channel (combined +24dBm, configurable)
Range	(1 dB interval)
Quality of Service	Nine-level priority indicated by QoS Class Identifiers (QCI)
ARQ/HARQ	Supported
Synchronization	GPS, 1588v2, network listening (NL)

NOTE: The test method of receiving sensitivity is proposed by the 3GPP TS 36.104, which is based on 5MHz bandwidth, FRC A1-3 in Annex A.1 (QPSK, R=1/3, 25RB) standard.

1.4.4 Features

Item	Description			
Voice	VoLTE, Circuit Switched Fallback (CSFB) to GSM and UTRAN			
Inter-RAT Mobility	To GSM, UTRAN and 5G NSA/SA			
SON	Self-Organizing Network			
	Automatic setup			
	Automatic Neighbor Relation (ANR)			
	PCI confliction detection			
EPC	HaloB (Embedded EPC)			
Traffic Offload	Local breakout			
Maintenance	Local/Remote Web maintenance			
	Online status management			
	Performance statistics			
	Fault management			
	Local/Remote software upgrade			
	Logging			
	Connectivity diagnosis			
	Automatic start and configuration			
	Alarm reporting			
	User information tracing			

1.4.5 Link Budget

Item	Description				
RF Antenna	Built-in Omni Antenna				
	Horizontal Beamwidth 360°				
	Vertical Beamwidth				
	40°±5@Band40/41, 45°±5@ Band1/3/5/8				
	Polarization: Vertical				
RF Antenna Gain	5dBi@Band7/40/41				
	4 dBi @Band1/3				
	2 dBi @Band5/8				
Power Control	UL Open-loop/Closed-loop Power Control, DL Power				
	Allocation (3GPP TS 36.213 compliant)				

1.4.6 Physical

Item	Description
MTBF	≥ 150000 hours
MTTR	≤ 1 hour
Operating Temperature	23°F to 113°F / -5°C to 45°C
Storage Temperature	14°F to 122°F / -10°C to 50°C
Humidity	5% to 95% RH
Atmospheric Pressure	70 kPa to 106 kPa
Power Consumption	Typical 11.25W, maximum 15W
Weight	1.3 lbs / 570g
Dimonoiono (Hy)//yD)	8.3 x 8.3 x 1.9 inches
	210 x 210 x 45 millimeters
Installation	Ceiling or wall mount, or desktop

2. Install Base Station

To get the signal coverage effect best, please place the Neutrino base station in an unobstructed space.

The NeutrinoE224 base station can be installed on ceiling, wall or place on the desktop. If it is placed on the desktop, there need not any installation steps, connect the cables directly after placed it. The following separately introduces the tools, attentions and detailed installation steps when the NeutrinoE224 is installed on ceiling or on wall.

NOTE: Before installation, make sure the wiring has completed on installation site.

2.1 Packing List

Before opening the box, make sure the package is in good condition, undamaged and not wet. During the unpacking, avoid potential damaging impacts from hits or excessive force.

Once unpacked, check the contents to see if they are consistent with the packing list.

2.2 Installation Preparation

The marker pen and percussion drill will be used during the installation process. The screws and expansion bolts are shipped with the device.

2.3 Install on Ceiling

The NeutrinoE224 can be installed on ceiling.

Attention:

- The thickness of ceiling is not less than 18mm, and bearing weight is larger than 5kg. If the strength is not suitable, the device maybe fall off.
- If the ceiling is made of weak strength materials, such as gypsum ceiling, this
 installation method is not recommended. Because of the environment restriction this
 installation method must be used, please add one layer better panel under screws to
 make sure the device is fastness.

Installation steps is as follows:

- 1. Take down a selected ceiling.
- 2. Place the bracket on center of the ceiling and mark the holes position with a marker pen.

- 3. According to the marked position, drill four holes.
- 4. Using expansion blot to fix the installation bracket on ceiling and tighten screws.

5. Slide the base station according to the direction on the bracket to complete the base station installation.

2.4 Install on Wall

The NeutrionE224 can be installed on wall, the installation steps is the same as installation on ceiling.

NOTE: The arrow on the back of the eNodeB must be upward.

2.5 Connect Cable

- 1. Connect power adaptor to **PWR** port and the other end connects to AC power.
- 2. Connect Ethernet cable to LAN port and the other end connects to the web client.
- 3. Connect Ethernet cable to **WAN** port and the other end connects to the gateway device.
- 4. (Optional) If the eNB supports the optical port, connect optical fiber to **OPT** port and the other end connects to the gateway device.

NOTE: Some eNB models do not support OPT interface, refer to the actual device.

NOTE: If PoE+ power supply is used, connect the WAN/PoE+ port to the PoE port of the PoE adapter first, and then connect the LAN port of the PoE adapter to the switch.

2.6 Power On

Power on the eNB, and wait a few minutes while the eNB boots up. Per the previous Table 1-2, check that the LED indicators are lighting as expected.

3. Initial Configuration

3.1 Configuration Overview

3.1.1 Configuration Procedure

The Baicells eNodeB (eNB) is loaded with its own GUI for configuring its operating parameters. You can log in to the GUI either locally through the Local Maintenance Terminal (LMT), which is an Ethernet port, or remotely via IP address. You can also use the Baicells Operations Management Console (OMC) to configure the eNB; this document, however, focuses only on using the eNB GUI.

When configuring a newly installed eNB, we recommend you follow the flow that is shown in Figure 3-1.

Figure 3-1 Initial eNB Configuration Flow

3.1.2 Ethernet Interface Description

The Ethernet interfaces of the base station include LAN interface and WAN interface, for detailed information, refer to Table 1-1.

• LAN interface usually connects to local area network, that users used for logging in the base station to configure or maintain it.

• WAN interface usually connects to the network connecting to the operator's network, which used for data transmission between base station and operator's core network.

3.1.3 Data Planning

Before configuring, data planning needs to be done first. The data to configure includes local parameters and connecting parameters. These parameters are either provided by the user or determined after negotiation with the customers. The data to prepare include IP address, cell parameters, protocol parameters, and software version, etc.

If you need to complete quick setting, please refer to "3.3 Quick Setting".

3.2 Login Web Client

3.2.1 Web Client Environmental Requirements

Table 3-1 Environmental Requirements of the Client				
Item	Description			
CPU	Above Intel Core 1GHz			
Memory	Above 2G RAM			
Hard disk	No less than 100 MB space available			
Operating system • Microsoft: Windows7 or Windows10 or above				
	Mac: MacOSX10.5 or above			
Screen resolution	Above 1024 x 768			
Browser	Chrome 6 or higher			

Table 3-1 Environmental Requirements of the Client

Table 3-1 describes the requirements on computer of the client.

3.2.2 Connect Web Client to Base Station

Connect the Ethernet interface of the Web client computer to the LAN interface of the base station through the Ethernet cable.

3.2.3 Set Up Client Computer

Before logging into the Web client, the client computer's IP address needs to be set up first so that the connection between the client and the server is possible. Take Windows10 as an example:

- 1. Click "Start>Settings" to enter into Windows Settings page.
- 2. In Windows Settings page, select "Network and Internet" to enter into

networking status and settings page.

- 3. On the left menu, select "Ethernet" to enter into Ethernet settings page.
- 4. In Ethernet settings page, select "**Network and Sharing Centre**" to pop up Network and Sharing Centre dialog box.
- 5. Click "Ethernet" to pop up "Ethernet Status" dialog box.
- 6. In "Ethernet Status", click "Properties" to pop up "Properties of Ethernet".
- 7. Select "Internet Protocol Version (TCP/IPV4)" and click "Properties" to pop up a window as shown in Figure 3-2.

Figure 3-2 Internet Protocol Version (TCP/IPV4)

Internet Protocol Version 4 (TCP/IPv4)	Propertie	s		? 💌
General				
You can get IP settings assigned autor this capability. Otherwise, you need to for the appropriate IP settings.	natically if ask your i	your n networ	etwork s 'k admini	upports strator
Obtain an IP address automatical	ly			
Use the following IP address:				
IP address:				
Subnet mask:				
Default gateway:				
Obtain DNS server address auton	natically			
• Use the following DNS server add	resses:			
Preferred DNS server:				
Alternate DNS server:	•			
Validate settings upon exit			Ad <u>v</u> a	inced
		OK		Cancel

Select either "Obtain an IP address automatically" or "Use the following IP address":

- If "Obtain an IP address automatically" selected, go directly to step 10.
- If "Use the following IP address" selected, follow step 8 ~ step 10.

NOTE: The default of eNB parameter "LAN Internet Enabled" is disabled. Only when this parameter is set to Enabled, the web client can be set to "Obtain an IP address automatically". In general, set the IP address manually.

- 8. Select "Use the following IP address".
- 9. Input IP address, subnet mask, and default gateway, and then click "OK".
 - IP address: 192.168.150. XXX: (recommended XXX: 100~254)

Because the LAN interface of the base station use the IP address of 192.168.150.1, others should avoid using this address.

- Subnet mask: 255.255.255.0
- Default gateway: 192.168.150.1
- 10. In the command window, execute ping 192.168.150.1 and check whether the connection between the client computer and the server works or not.

3.2.4 Login

1. Open a web browser, and enter <u>https://192.168.150.1</u>, as shown in Figure 3-3.

Figure 3-3 GUI Login

8	admin
Ŧ	
	Login

2. Input user name, password, and click "**Login**". The homepage of the Web client is given in Figure 3-4.

The default user name is *admin*, the default password is *eNB*@*xxxx*. *xxxx* is the last/tail 4 digits of the eNB serial number.

For security seasons, you should change the password after you first log in rather than leaving the default admin. Refer "3.4.5 User Management" of this document.

<u>Bricells</u>

Basic Setting	•	Basic Info	
Basic Info	>	Product Type	
Alarm		Hardware Version	
Quick Setting		Software Version	
Neighbor Cell State		SN	1202000091177520063
System	-	514	101000311/75/0005
Network	-	Status Info	
BTS Setting	•	Cell Status	Activated
LTE Setting	-	UpLink Rate(Mbps)	0.0055
Reboot		DownLink Rate(Mbps)	0.0027
Logout		OMC Status	Connected
<u> </u>	_	Synchronization State	Synchronized
		Synchronization Mode	FREE_RUNNING
		Band	3
		WAN Status	Connected
		WAN Link Speed Negotiated	1000 Mbps
		UpLink RSSI	-74.7734dBm
		Effective configuration	
		EARFCN	1400
		PhyCellId	264
		Power Modify	21dBm
		RootSequenceIndex	0
		UE Status	
		UE Count	1

Figure 3-4 GUI Homepage of the eNB's

NOTE: The basic information of the eNB here is indicative. If there is inconsistency between the screen shot and the actual product. The actual product shall govern.

On the upper right of the window, the language can be switch between English and Chinese.

On the left is the function menu of the eNB, including Basic Setting, System Setting, Network Setting, BTS Setting, LTE Setting, Reboot and Logout.

The homepage displays the navigation pane on the left, and shows the window for the first menu: **Basic Setting > Basic Info**. This window is like a dashboard for the eNB. The top of the window shows basic information such as the product type, hardware and software version, serial number.

The Status Info section reports whether the cell is currently active or inactive, if the eNB has a connection to the MME in the core, RF status, OMC connectivity, uplink and downlink rate, synchronization information, and WAN status, etc.

The Effective configuration section reports the important configured parameters, the EARFCN, physical cell identity, Tx power and root sequence index.

The settings for many of these fields are configured in other GUI menus. At the bottom, the window displays information about all user equipment (UE) attached to this eNB,

such as aggregate number of connections, average throughput, and error rate, etc.

"Basic Setting > Alarm" the menu displays the current alarms of the eNB.

"**Basic Setting > Neighbor Cell State**" the menu displays the current information of LTE, UMTS, GSM neighbors, as shown in Figure 3-5.

-	ЪΓ	N a i a la la a u	Call	Ctata
Figure	3-5	noangievi	Cell	State

	-										
Basic Setting 🔷		LTE Neigh	hbor Cell St	tate							
Basic Info											
Alarm		Index 1	PLMN 46008	Other PLMN -	ECI EARFCN 994836 1400	PCI 361	TAC 1	csg-ID -1	CellType small cell	/pe cell <mark>Switch to cor</mark>	
Quick Setting											
Neighbor Cell State	>	UMTS Ne	ighbor Cell	State							
System 🔻											
Network 🔻											
BTS Setting 🔹 🔻											
LTE Setting 🔹		GSM Neig	ghbor Cell S	State							
Reboot										_	
Logout		Index 1	46008 2	1 ECI	rac 1	27 D	and CS1800	100 tr	rstatus ho rue fal	se fals	Discovered e

3.2.5 Logout

In the navigation column in the left, select "Logout" to log out the GUI.

3.3 Quick Setting

The quick settings configure the base station's primary parameters which involves in frequency, EARFCN, PCI, cell ID, etc. These parameters are often planned in advance in the network planning stage as part of the operator's overall network design.

1. In the navigation column in the left, select "**Basic Setting > Quick Setting**" to enter the quick setting page, as shown in Figure 3-6.

Basic Setting	^	Quick Setting	
Basic Info		Activated cell Deactivated cell	
Alarm		Channel bandwidth(MHz)	FARECN
Quick Setting	>	20	1400
Neighbor Cell State			Range: 1300-1850
o 1		Carrier centre frequency(MHz)	PCI
System		1825	264
Network	-		Range:0-503
	-	ECI(ENBID:1048575,CELLID:255)	MME PORT
BIS Setting		268435455	36412
LTE Setting	-	Range:0-268435455	Range:1024-49151
		PLMN	TAC
Kedoot		46008	1
Logout		Range:5-6 Digit	Range:0-65535
	_	s1ConnectionMode	RF Enabled
		One 🔻	ON 🔻
		Power Modify	MME IP
		21dBm(126mW) 🔻	
			10.10.3.190 🔟

NOTE: Here take the GUI of FDD eNB as an example, the parameters of TDD eNB is different from the FDD eNB. The actual product shall govern.

The parameter descriptions of the quick setting are given in Table 3-2.

Mode	Parameter	Description				
	Channel	Select the uplink and downlink bandwidth.				
	bandwidth	• 5MHz				
	(MHz)	• 10MHz				
		• 15MHz				
		• 20MHz				
	EARFCN	The absolute radio frequency channel number,				
		assigned by the operator in network planning phase.				
	Carrier centre	The eNB's operating frequency. The range depends on				
TDD/FDD	frequency(MHz)	the bandwidth and EARFCN.				
	PCI	Physical Cell ID (PCI) allocated by the operator. PCI				
		is an essential Layer 1 cell identity for each cell site in				
		the network. Planning PCIs is crucial for Qos.				
		Range from 0 to 503.				
		NOTE: Baicells does not use and does not work with PCI 0.				
	ECI	Unique identification number for the Cell ID.				
		Range from 0 to 268435455.				
		The value of macro eNB and micro eNB is different.				

Table 3-2 Quick Setting Parameter Description

Mode	Parameter	Description
		For macro eNB, the Cell ID + the eNB ID x 256 comprises the E-UTRAN Cell Identity (ECI), which identifies a cell site in the network.
		For micro eNB, the Cell ID is equal to ECI.
	MME PORT	The MME port of the IP address.
	PLMN	The numerical identifier for the operator's Public Land Mobile Network (PLMN) for this cell. Must be a 5- or 6-digit number.
	TAC	Tracking Area Code of the cell site where the eNB resides. The TAC is used to determine the range of the paging information.
	s1ConnectionMo de	The connection mode of the S1 interface between the eNB and the core network.
		• One: The eNB will connect only to the first MME.
		 All: The ENB will connect to all MMES configured. NOTE: This parameter will not appear in HaloB mode.
	RF Enabled	The eNB displays the RF status.
	Power Modify	The maximum output power on each port. Must be within regulatory guidelines for the region.
		This field may be used in situations where you need to reduce the output power, such as testing the eNB before installing it on a tower; restricting the eNB output to reduce interference with other eNBs in the same geographical area; or staying within Effective Isotropic Radiated Power (EIRP) rules.
	MME IP	IP address that connects to the core network side. If the eNB is connected to the MME directly, enter the IP address of the MME. If the eNB is connected to the MME through a Signaling Gateway (SGW), enter the IP address of the SGW. NOTE : This parameter will not appear in HaloB mode.
TDD	subFrameAssign ment	 Downlink (DL) and uplink (UL) subframe configuration. 1 (DL:UL=2:2) transmission ratio 2 (DL:UL=3:1) transmission ratio
	specialSubframe Patterns	Special subfame pattern

BAICEIIS

Mode	Parameter	Description		
		This is a standard LTE setting that pertains to		
		synchronization of downlink and uplink timing. The		
		guard period between switching from DL to UL or UL		
		to DL determines the maximum supportable cell size.		
		The guard period has to be large enough to cover the		
		propagation delay of DL interferers.		
		Range is 5 or 7. Default is 7.		

2. Click "Save" to complete the quick settings for the base station.

After saving the setting, the base station is activated by default. Click "Activated cell/Deactivated cell" to deactivate the base station or reactivate it.

NOTE: In case of incorrect parameters found before the submission, click "**Reset**" to restore the data before the modification.

3.4 Configure System Parameter

3.4.1 Configure NTP

If the NTP is used by the eNB as an external clock source, up to three NTP servers are supported, where one for master NTP service and the others for backup.

1. In the navigation column on the left, select "**System > NTP**" to enter the NTP setting page, as shown in Figure 3-7.

Figure 3-7 NTP Server Setting

Basic Setting	-	NTP	
System	•	Current Date and Time	Tue, 30 Nov 2021 15:12:48 UTC/GMT +08:00
NTP	>		
Ungrada		TimeZone	7
opgrade		Asia/Shanghai 🔻	
Backup			
106		NTP Servers	
200		Enabled	Port
User Management		ON 🔻	123
CertStore			Range: 1-65535
Certistore	_	Server 1	Server 2
Network	•	0.cn.pool.ntp.org	1.cn.pool.ntp.org
RTS Setting	-	Range: 0-64 Digit	Range: 0-64 Digit
bro setting	_	Server 3	Server After IPSec
LTE Setting	•	2.cn.pool.ntp.org	OFF 🔹
Dahaat		Range: 0-64 Digit	
Rebool	_	Default System Time	
Logout		2000-01-01	
		Range: The format is yyyy-mm-dd, and the time is from 2000-01-01 to 2038- 01-19.	
		Save Reset	

2. The parameter description of the NTP server are given in Table 3-3.

Class	Parameter	Description		
Time Zone	TimeZone	Select the time zone that the base station		
		located.		
NTP Server	Enabled	Whether enable the NTP function.		
	Port	Port number of the master NTP server. Must be		
		consistent with the other end.		
	Server1	Domain name or IP address of the master NTP		
		server. Must be consistent with the other end.		
	Server2	Domain name or IP address of the slave NTP		
		server. Must be consistent with the other end.		
	Server3	Domain name or IP address of the slave NTP		
		server. Must be consistent with the other end.		
	Server After	According to the actual deployed network, select		
	IPsec	whether the NTP server is after IPsec server.		
		• ON : When certificating, the server will not		
		wait for NTP synchronizing.		
		• OFF : When certificating, the server will wait		
		until the NTP has synchronized.		
	Default System	Default time of the eNB.		
	Time			

Table 3-3 NTP Server Parameter Description

3. Click **"Save**" to complete the NTP server configuration.

3.4.2 Upgrade

When the preset version does not meet the actual need, the eNB will update the software. The system support firmware version upgrade and rollback.

In the navigation column on the left, select "System > Upgrade" as shown in Figure 3-8.

Basic Setting 🔹		Upgrade Firmware		
System 🔺		Attempt to Preserve Settings (JMG)	O Do not Preserve Settings (JMG)	O Ungrade Template ("Zip)
NTP		Select File	O be not reserve settings (O opgrade template ()
Upgrade	>			
Backup				
LOG		Version Rollback		
User Management		Current Version BaiBS_OAFA_2.17.5	Previous Version BaiBS OAFA 2.17.5	
CertStore				
Network 🔻		Click Bollback		
BTS Setting				

Figure 3-8 Software Upgrade

3.4.2.1 Firmware Upgrade

- 1. The operator gets the firmware file of new version and save it in local computer.
- 2. Select how to process the current settings.
 - Attempt to Preserve Settings (.IMG)
 - Do not Preserver Settings(.IMG)
 - Update Template (.zip)
- 3. Click "Select File" to select the firmware file.
- 4. Click "**Upload**" to upload the firmware file to the base station.
- 5. Check whether the software version is correct again and then click "Update Now".

Wait for about three minutes, the eNB will reboot completely.

In the "**Basic Setting > Basic Info**" page, the upgraded version will be displayed in "**Software Version**".

3.4.2.2 Rollback

Only one rollback operation is allowed for each upgrade. Under the rollback permission of the base station, the software can roll back to the version before upgrade. After the rollback, a new rollback will not be permitted until an upgrade has taken place.

If the previous version is "-", there is no software version for rollback.

- 1. Click "Click Rollback".
- 2. In the pop-up window click "OK".

Wait for about three minutes, the eNB will reboot completely.

In the **"Basic Setting > Basic Info**" page, the version after rollback will be displayed in **"Software Version**".

3.4.3 Backup

The Backup function is used to back up the current configuration, log files*, crash logs, and the core file, to import configuration files (e.g. to create a new eNB using the configuration from an existing eNB); or to restore all of the default configuration setting of the eNB.

*NOTE: The core backup file may be requested by Baicells support to assist in trouble shooting.

In the navigation column on the left, select "System > Backup" to enter the backup page.

3.4.3.1 Import Configuration File

- 1. Click "Select File" to select the configuration file from the local computer.
- 2. Click "**Upload**" to import the configuration file.
- 3. Click "Import the configuration file" to import the file.

3.4.3.2 Import Default Configuration Files

- 1. Click "Select File" to select the configuration file from the local computer.
- 2. Click "**Upload**" to import the configuration file.
- 3. Click "**OK**" to import the file.

3.4.3.3 Update Factory Configuration Files

- 1. Click "Select File" to select the configuration file from the local computer.
- 2. Click "**Upload**" to import the default board configuration file.
- 3. Click "Import the configuration file" to import the file.

3.4.3.4 Backup Current Configuration

- 1. Click "Get Backup Files".
- 2. In the pop-up download dialog box, select the file path to save the current configuration file to the local computer.

3.4.3.5 Backup Log Files

- 1. Click "Get Log Files".
- 2. In the pop-up download dialog box, select the file path to save the log files to the local computer.

3.4.3.6 Backup Crash Logs

- 1. Click "Get Crash Logs".
- 2. In the pop-up download dialog box, select the file path to save the crash log files to the local computer.

3.4.3.7 Restore Default Configuration

Attention:

After the restore operation, the base station will reboot immediately. Be careful to operate the **"Restore Default Configuration**" restore.

- 1. Click "Restore Settings".
- 2. In the pop-up download dialog box click "OK", the base station will reboot immediately.

Wait for about three minutes, the base station will reboot completely.

3.4.4 LOG

On the left navigation column, select "**System> LOG**" to enter the log configuration page, as shown in Figure 3-9.

Figure 3-9 Log Configuration

Basic Setting 🔹		LTE Log Level	\sim
System 🔺			
NTP			
Upgrade		phyTraceSubsystemConfig	\sim
Backup			
LOG	>		
User Management		phyTraceConfig	\checkmark
CertStore			
Network -			
BTS Setting 🔹		phyTraceNetworkCaptureConfig	0
LTE Setting 🗾		Index Interface PranFilter	
Reboot		1 WAN sctp port 36412 or sctp port 36422 2 LO udo port 3211 or udo port 3222 or udo port 3224 or udo port 5656 or udo port 10157 or udo port	t 15000 or ud
Logout			۶.
		boardConf	~
		Save Reset	

3.4.4.1 LTE Log Level Setting

1. Click "**LTE log level**" to display the LTE log level configuration parameter, which descriptions are given in Table 3-4.

Table 3-4 LTE Log Level Parameter Description

Parameter	Description
L2 log level	The print level of layer2 log.

Parameter	Description
RRC log level	The print level of RRC log.
oamAdapter log level	The print level of OAM adapter log.
RRM log level	The print level of RRM log.
SON log level	The print level of SON log.
OAM log level	The print level of OAM log.

2. Click "Save" to complete the LTE log level setting.

3.4.4.2 phyTraceSubsystem/phyTrace Setting

The signaling trace is set by the eNB automatically. In general, it need not to be set.

1. Click "**phyTraceSubsystemConfig**" to display the trace list for subsystems, as shown in Figure 3-10.

Figure 3-10 phyTraceSubsystem/phyTrace Setting

phyTraceSubsystemCo	onfig			~
Subsystem LTE_L1 APPS_WIRESHARK	streamToRemoteHost false false	logToFile true true	logFileCount 2 5	8
phyTraceConfig wiresharkEnabled false	•			^
phyTraceNetworkCap Index Interface PcapFilt 1 LO udp por 2 WAN sctp po	tureConfig ter Enal rt 54322 or udp port 54323 true rt 36412 or sctp port 36422 true	ble c c c c c c c c t t t t t t t t t t t		•

2. Click 🔯 to modify the configuration of trace of subsystem, which descriptions are given in Table 3-5.

Parameter	Description
Subsystem	Select the subsystem.
streamToRemoteHost	Whether stream to the remote host.
logToFile	Whether save logs to file.
logFileCount	The count of the log file.

Table 3-5 phyTraceSubsystem Parameter Description

- 3. Click "phyTraceConfig" to select whether enable "wiresharkEnabled".
- 4. Click 🛨 to display trace parameters, as shown in Table 3-6.

Table 3-6 phyTrace Parameter Description

Parameter	Description
Interface	The network card address for capturing.
PcapFilter	The filter rule for capturing.
Enable	Whether enable the function.

5. Click "**Save**" to complete the phyTraceSubsystem and phyTrace setting.

3.4.4.3 boardConf Setting

- 1. Click "**boardConf**" to enter board subsystem log level configuration page.
- 2. Set the log level of boardConf subsystem.
 - CRIT
 - ERROR
 - WARNING
 - NOTICE
 - INFO
 - DEBUG
 - DEVEL
- 3. Click "Save" to complete the board subsystem log level setting.

3.4.5 User Management

The eNB supports administrator login and guest login. This function is used to change the administrator's password and set the guest account.

In the navigation column on the left, select "**System > User Management**" to enter the user management page, as shown in Figure 3-11

Figure 3-11 User Management

Basic Setting	-	Change Administrator Password
System	•	Old Password
NTP		Length: 5-64 Characters
Upgrade		New Password
Backup		
LOG		Length: 5-64 Characters
User Management	>	Confirm Password
CertStore		Length: 5-64 Characters
Network	-	Save Reset
BTS Setting	-	Guest Account
LTE Setting	-	UserName
Reboot		Length: 1-20 Characters
Logout		Password
		Length: 5-64 Characters
		Save Reset

Change Administrator Password

Input the parameter "Old Password", "New Password" and "Confirm Password", and then click "**Save**" to complete the administrator password change.

Guest Password

Input the "UserName" and "Password" of guest account, and then click "**Save**" to complete the guest account setting.

3.4.6 Certificate

The certificate function support https certificate, TR069 certificate, IPsec CA certificate, IPsec certificate, etc.

For IPsec private setting, only the *.*der* files need to be operated. The *.*bin* files are generated automatically and do not need to be operated.

In the navigation column on the left, select "**System > CertStore**" to enter the certificate page, as shown in Figure 3-12.

Figure 3-12 Certificate Management

Basic Setting	-	Https Certificate		
System	•	Select File		
NTP		MD5	Size	Option
Upgrade		95cff47c9c8e5682a8cc9114c0adf38d	1.9K	C ū
Backup				
LOG		Tr069 Certificate		
User Management		Select File		
CertStore	>	MD5	Size	Option
Network	-	367446bb8be92a33cb10a380dbbb87	16 981	区面
BTS Setting	-			
LTE Setting	-	IPSec Certificate Application Man	agement	
Reboot		Certificate Management		
Logout		OFF -		
	_	Save Reset		
		IPSec CA Certs		
		Select File		
		Certificate List The		
		IPSec Certs		
		Colored File		
		Certificate List		
		The		
		IPSec Private		
		Select File		
		Certificate List		

Click "Select File" to select the certificate file from the local computer.

After the certificate file is upload to the eNB, you can view the certificate file in the certificate window. This file also can be download or delete from the base station.

C: export the certificate.

it delete the certificate.

NOTE: The following IPsec certificate application management applies only to the scenario where onsite certificate application is required.

If the operator uses a separate IPsec certificate server, IPsec Certificate Application Management should be enabled. The eNB will download and update certificates from the server automatically. The configuration parameters are shown in Figure 3-13.

Figure 3-13 IPsec Certificate Application Management

Certificate Management	CRL Check
ON 🔻	OFF 🔻
CMP URL	CRL URL
http://222.168.43.74:30444/cmp	ldap://222.168.43.74:5389/CN=crl0,OU
Range: 0-512 Digit	Range: 0-512 Digit
Country	CA certificate
CN	-
Range: 0-64 Digit	
Initial certificate	Private key
clientCert.der	clientKey.der 🔻
Reference	Secret
1	
Range: 0-512 Digit	Range: 0-512 Digit
Subject	Initial IPSec Tunnel
	None
Range: 0-512 Digit	
Save Reset	
Initial application certificate Upda	te certificate

IPSec Certificate Application Management

The IPsec certificate management parameters description are shown in Table 3-7.

Table 3-7 IPSec Certificate Management Parameters	Table 3-7	IPsec Certificate	Management	Parameters
---	-----------	-------------------	------------	------------

Parameter	Description					
Certificate Management	Set to ON to enable the certificate management function.					
CRL Check	Whether check the Certificate Revocation List (CRL).					
CMP URL	The URL of Certificate Management Protocol (CMP)					
	server, which is used to get the digital certificate					
	complied with X.509 standard.					
CRL URL	The URL of CRL server, which is used to check					
	revocation certificates.					
Country	This parameter is configured based on the requirements of					
	the server side.					
CA certificate	Certificate authorization (CA) certificate.					
Initial certificate	Select the initial certificate.					
Private key	Select the private key.					
Reference	This parameter is configured based on the requirements of					
	the server side.					

Parameter	Description				
Secret	This parameter is configured based on the requirements of				
	the server side.				
Subject	This parameter is configured based on the requirements of				
	the server side.				
Initial IPsec Tunnel	Select the initial IPsec tunnel.				

Click "Save" to complete the IPsec certificate management setting.

After completing above configuration, if it is the first time to apply the certificate, select "Initial application certificate". If it is the certificate update, select "Update certificate".

3.5 Configure Network Interface

3.5.1 Configure WAN/VLAN

The WAN interface is an external communication portal (Internet connection) the eNB's NMS and the MME. The eNB's NMS may be the Baicells Operations Management Console (OMC) or LTE NMS. The only option for the Interface name field is WAN. The WAN interface supports to configure multiple VLANs.

1. Select "**Network > WAN/LAN**" to enter the WAN interface configuration page, as shown in Figure 3-14.

Basic Setting 🔹		WAN Confi	g					
System 🔻		Mac Config		MTU				
Network 🔺					1500			
WAN/// AN								
	-	WAN Confi	g					
LAN			-					
IPSec		Index 1		Enabled	IP Access Mode	Current 1 10 10 5 3	P 147	5
LGW		2		OFF	-	-	1	5
2011		3		OFF	-	-	1	P
Diagnostics		4		OFF	-	-	1	2
Static Route		5		OFF	-	-		i i
		0		011				
iptables		DNC Confin						
BTS Setting 🔹		DNS CONTIG]					
LTE Sotting		DNS Enabled	ł					
		OFF		•				
Reboot								
Logout		Protocol St	ack Link Co	onfig				
		OMC Link						
		wanConfig	1	•				
		Index	Enabled	S1AP Link	S1 Data Link	X2AP Link	X2 Data Link	- 75
		2	OFF	-	-	-	-	ŏ
		3	OFF	-	-	-		- Ö
		Save		Reset				

Figure 3-14 Configure WAN/VLAN
2. Configure the media access control (MAC) address and Maximum Transmission Unit (MTU).

Input the MAC address of WAN interface, and set the MTU according to the network (Default is 1,500 bytes).

In general, the MAC address no need to be configured. Only when the 1588v2 synchronization is enabled, the MAC address need to be configured.

- 3. Configure the WAN interface to connect to external network. Up to 6 IP addresses are supported.
 - a) Click 😳 to display WAN interface configuration parameters, as shown in Figure 3-15.

Figure 3-15 Configure to Connect to External Network

Enabled		IP Access Mode	
ON	•	Static IP	•
Current IP		Subnet Mask	
DefaultGW		VLAN	
		Demonstration 4004	

b) Input configuration parameters for the WAN1 interface, the descriptions of the parameters are given in Table 3-8.

Parameter	Description
Enabled	Whether enable the interface.
	The eNB supports to configure 6 IP addresses at most.
IP Access Mode	The interface protocol used by WAN interface, include:
	 DHCP: If DHCP is selected, only option 60 the
	parameter needs to be configured.
	• Static IP: the current IP address, netmask, and default
	gateway need to be configured.
	 PPPoE: the username and password need to be
	configured.
	• IPV6 DHCP: If IPV6 DHCP is selected, no parameter is
	needed to be configured.
	• IPV6 Static IP: the current IP address and prefix need to
	be configured
	 IPV6 SLAAC: If SLLAC is selected, no parameter is
	needed to be configured.
	NOTE: The DHCP and static IP is recommended.

Table 3-8 WAN Interface Parameter Description

Parameter	Description
option60	If set "IP Access Mode" to "DHCP", display this
	parameter.
	Type in the value of option60. This parameter is used to
	identify the terminal type.
Current IP	If set "IP Access Mode" to "Static IP" or
	"IPV6 Static IP", display this parameter.
	IP address of the WAN interface.
Subnet Mask	If set "IP Access Mode" to "Static IP", display this
	parameter.
	Subnet mask address of the IP address.
DefaultGW	If set "IP Access Mode" to "Static IP", enter the gateway
	address.
pppAuth	If set "IP Access Mode" to "PPPoE", select the
	Authentication type.
	Options are chap or pap.
pppUser	If set "IP Access Mode" to "PPPoE", enter the
	authenticated user name.
pppPassword	If set "IP Access Mode" to "PPPoE", enter the
	authenticated PAP/CHAP password.
prefix	If set "IP Access Mode" to "IPv6 Static IP", enter the
	prefix of IPv6 address.
VLAN	The VLAN interface's ID, a unique number that must not
	be identical to any other VLAN. Range from 1 to 4094.
	Avoid entering "12", which is commonly used by the LAN
	interface.
	When the operator needs to transmit the data of multi
	types through separate channel, configure more IP
	addresses for WAN interface through VLAN, and assign
	them with different VLAN ID.

- c) Click "Save" to complete the WAN interface configuration.
- 4. Select whether enable Domain Name Server (DNS).
- 5. Select the IP address that OMC link used, the default is "wanConfig1".
- 6. If multiple IP addresses are configured, click 🗘 to enable the protocol stack link configuration to establish the interface binding relationship.
 - a) Enable the multi-link mode switch, as shown in Figure 3-16.

Figure 3-16 Configure	Multi-link	Mode
-----------------------	------------	------

Protocol Stack Link Config

Enabled		S1AP Link	
ON	•	wanConfig1	•
S1 Data Link		X2AP Link	
wanConfig1	•	wanConfig1	•

b) Input protocol stack link configuration parameters, as shown in Table 3-9.

Parameter	Description	
Enabled	Enable or disable the multi-link mode. When more than	
	one IP address is needed, set the switch to "enabled"	
S1AP link	Set the link used by s1ap, must be the enabled WAN	
	interface or IPsec tunnel.	
S1 Data link	Set the link used by s1 data plane, must be the enabled	
	WAN interface or IPsec tunnel.	
X2AP link	Set the link used by x2ap, must be the enabled WAN	
	interface or IPsec tunnel.	
X2 Data Link	Set the link used by x2 data plane, must be the enabled	
	WAN interface or IPsec tunnel.	

Table 3-9 Protocol Stack Link Parameter Description

c) Click "Save" to complete the protocol stack link configuration.

3.5.2 Configure LAN Interface

The Local Network (LAN) fields are used to configure the Local Maintenance Terminal (LMT) port on the eNB. The port may be used during initial eNB setup and configuration.

The default IP address of the LAN interface is **192.168.150.1**. Usually, the initial value does not need to be changed.

 Select "Network > LAN" to enter the LAN interface configuration page, as shown in Figure 3-17.

Figure 3-17 Configure LAN Interface

Basic Setting		LAN Config	
System 🔻		LAN Enabled IP Address	
Network 🔺		ON	
WAN/VLAN		Subnet Mask	
LAN	>	255.255.255.0	
IPSec			
LGW		LAN Internet Config	
Diagnostics		LAN Internet Enabled	
Static Route		OFF	
iptables			
BTS Setting		Save Reset	

2. The LAN interface is enabled by default. If the "**IP address**" and "**Subnet mask**" need to be changed, input new values in the textbox.

If the IP address of LAN interface is modified, the client will be interrupted immediately. You need to log in the client using the new IP address.

3. If select enable the internet access function for LAN interface, enable the "LAN Internet Enable" function, as shown in Figure 3-18.

LAN Internet Config	
LAN Internet Enable	Start IP Address
Enabled 🔹	192.168.150.100
End IP Address	dhcpDNS1
192.168.150.200	0.0.0.0
dhcpDNS2	dhcpDNS3
0.0.0.0	0.0.0.0

Figure 3-18 Enable LAN Internet Function

The parameter description of LAN internet function is shown in Table 3-10.

Parameter	Description	
LAN Internet Enabled	Switch of internet function of LAN interface.	
	Default is disabled.	
Start IP Address	The start IP address of DHCP server.	
End IP Address	The end IP address of DHCP server.	
dhcpDNS1	DNS address 1 for DHCP server.	
dhcpDNS2	DNS address 2 for DHCP server.	
dhcpDNS3	DNS address 3 for DHCP server.	

Table 3-10 LAN Internet Function Parameter Description

4. Click "**Save**" to complete the modification on the LAN interface.

If the IP address of LAN interface is modified, the client will be interrupted immediately. You need to log in the client using the new IP address.

3.5.3 Configure IPsec

The IP Security (IPsec) interface is used to route the control plane information between the eNB and the EPC.

The security gateway in the network can provide security protocol in the network layer to ensure the safety for message transmission. If the operator have deployed the security gateway, the eNB need to enable the IPsec function accordingly.

The eNB will enable the IPsec by default and up to three tunnels are supported.

ATTENTION: If "multi-link mode" does not be enabled (Refer to "3.5.1 Configure WAN/VLAN".), only one IPsec tunnel can be supported and it must be **Tunnel 1**.

NOTE: After the IPsec function is enabled, the LGW mode in "3.5.4 Configure LGW" cannot be configured "Bridge".

 Select "Network > IPsec" to enter the IPsec configuration page, as shown in Figure 3-19.

			Enabled		MTU	
Basic Setting	-	IPSec Setting	ON	-	0	
System	-	Enabled			Range: 0-960	0 (Note:0 unlimited)
		Enabled	softUsim		IMSI	
Network	^	OFF	ON	•		
WAN/VI AN		ON			Range: 1-102	4 Digit
		OFF				
LAN			: key		opc	
		Save	Reset I			
IPSec	>		Range: 1-1024 Digit		Range: 1-102	4 Digit
LGW			L			
Diagnostics		IPSec Tunnel List				
Static Route		Enabled	Gateway			
		1	ON	C 100 C	2	
iptables	_	2	OFF	0)	
BTS Setting	•	3	OFF	0)	

Figure 3-19 Configure IPsec

2. Set the IPsec function, the parameter description is shown in Table 3-11.

Table 3-11 IPsec Function Parameter Description

Parameter	Description
Enabled	Whether enable the IPsec function.
MTU	Set the maximum transmission unit.

Parameter	Description
softUsim	Select whether enable the soft USIM function. When the
	IPsec authentication is set to <i>eap-aka</i> , the parameter can
	be enabled. If disabled, the USIM authentication will not be
	adopted.
	Disabled by default.
IMSI	When "softUsim" is set to "ON", the parameter displays.
	IMSI.
key	When "softUsim" is set to "ON", the parameter displays.
	Key of the IMSI.
орс	When "softUsim" is set to "ON", the parameter displays.
	The operator's code.

- 3. Click "Save" to save the IPsec function setting.
- 4. Configure IPsec tunnel.
 - a) In the "**IPsec Tunnel List**" area, click 🗘 to display the tunnel configuration page. First, configure the basic parameters, as shown in Figure 3-20.

Figure 3-20 IPsec Tunnel Setting - Basic Setting Tab

Tunnel Configure	
Basic Setting Advance Setting	
Enabled	leftAuth
ON 🔻	pubkey 🔻
rightAuth	Gateway
pubkey 🔻	10.10.3.247
	Range:0-64 Digit string
Right Subnet	leftId
0.0.0.0/0	
Range:0-64 Digit string	Range:0-64 Digit string
rightId	leftCert
C=CH, O=strongSwan, CN=server	clientCert.der 🔻
Range:0-64 Digit string	
secretKey	leftSourceIp
clientKey.der 🔹	%config
	Range:0-64 Digit string
leftSubnet	fragmentation
	force 🔻

The description of basic parameters is shown in Table 3-12.

Parameter	Description
Enabled	Enable or disable the IPsec tunnel mode.
	The default value is enabled.
leftAuth	Local authentication type of the IPsec. Must be
	consistent with the security gateway side.
	• psk
	• pubkey
	• eap-aka
rightAuth	Peer authentication type of the IPsec. Must be
	consistent with the security gateway side.
	• psk
	• pubkey
	• eap-aka
Gateway	The security gateway (IPsec server) IP address. Make
	sure the IP address entered here matches the actual IP
	address on the security gateway side.
Right Subnet	IP address of the remote subnet, which must be
	consistent with the security gateway side. Message
	within this address range will be packed as a tunnel.
leftId	Identification of the client end (0-48 digits string). It
	must be consistent with the security gateway side. If
	there is no security gateway left identifier, leave this
	field empty.
rightId	Identification of the server end (0-48 digits string). It
	must be consistent with the security gateway side. If
	there is no security gateway right identifier, leave this
	field empty.
leftCert	If set " leftAuth " to " pubkey ", the parameter need to be
	set.
	Certificate name of the client end. On this version is
	clientCert.derpsk.
secretKey	File name of private key. Default is clientKey.bin. When
	auth is <i>psk</i> , the value is the password of authentication.
leftSourcelp	Virtual address allocation.
	If absent, use the local IP address.
leftSubnet	IP address of the local subnet.
fragmentation	The type of fragmentation.
	• yes
	accept
	• force
	• no

Table 3-12 IPsec Tunnel Mode- Basic Parameter Description

It is highly recommended that for the *Advanced Setting* fields you use the default values. Improper changes may lead to system exception.

The *Advanced Setting* fields become particularly important to network operations as areas become denser the users.

b) Click the "**Advanced Setting**" tag to enter the advanced setting page, as shown in Figure 3-21.

Advance Setting **IKE Encryption** IKE DH Group aes128 modp2048 -**IKE** Authentication ESP Encryption sha256 • aes128 ESP DH Group ESP Authentication modp2048 • • sha1 KeyLife: IKELifeTime: 1 h -4 h Range: 1-8760 RekeyMargin: Dpdaction 3 • • m restart Range: 1-525600 Dpddelay Left Interface 30 none s --Forceencaps no

Figure 3-21 IPsec Tunnel Setting - Advanced Setting Tab

The description of advanced parameters is shown in Table 3-13.

Table 3-13 IPsec Tunnel Mode Advanced Parameter Des	cription
---	----------

Parameter	Description					
IKE Encryption	Internet Key Exchange (IKE) encryption method. IKE is a					
	protocol used to ensure security for virtual private network					
	(VPN) negotiation and remote host or network access.					
	• aes128					

Parameter	Description					
	• aes256					
	• 3des					
	• des					
IKE DH Group	IKE Diffie-Hellman (DF) key computation, or exponential					
	key agreement, to be used between two entities.					
	• modp768					
	• modp1024					
	• modp1536					
	• modp2048					
	• modp4096					
IKE Authentication	Authentication algorithm					
	• sha1					
	• sha1_160					
	• sha256_96					
	• sha256					
ESP Encryption	Encapsulating Security Payload (ESP) – member of the					
	IPsec protocol suite that provides origin authenticity,					
	integrity, and confidentiality protection of packets.					
	• aes128					
	• aes256					
	• 3des					
	• des					
ESP DH Group	ESP Diffie-Hellman (DF) key computation, or exponential					
	key agreement, to be used between two entities.					
	• modp768					
	• modp1024					
	• modp1536					
	• modp2048					
	• modp4096					
ESP	ESP Authentication algorithm					
Authentication	• sha1					
	• sha1_160					
	• sha256_96					
	• sha256					
KeyLife	IPsec security association (SA) renegotiation time.					
	Format: Minutes, Hours or Days.					
IKELifetime	IKE security association renegotiation time.					
	Format: Minutes, Hours or Days.					
RekeyMargin	Renegotiation time before the expiry of IkelifTime					
	(negotiate the IKE security association time before the					
	expiry of IkelifeTime).					
	Format: Minutes, Hours or Days.					

Parameter	Description				
Dpdaction	DPD stands for dead peer detection (DPD) protocol.				
	Determines what action to take when a gateway exception				
	occurs.				
	• none				
	• clear				
	• hold				
	• restart				
Dpddelay	Time interval for sending the DPD detection message.				
	Format: Minutes, Hours or Days.				
Left Interface	The interface in the eNB side, select from configured				
	interface.				
Forceencaps	Forced NAT switch				

5. Click "Save" to complete the IPsec tunnel mode configuration.

3.5.4 Configure LGW

The LGW should be configured when the Baicells Cloudcore EPC is used. The eNB must be rebooted after the LGW configuration completed.

The Baicells eNB splits the data plane and the control plane, so there are two IP addresses per user equipment (UE). The data plane is sent out the local gateway (LGW), while the control plane is routed through an IPsec tunnel to the Cloud Evolved Packet Core (EPC).

 Select "Network > LGW" to enter the LGW configuration page, as shown in Figure 3-22.

Basic Setting	-	LGW Config	
System	-	LGW Enabled	LGW Mode
Network		ON	▼ Router ▼
WAN/VLAN		LGW Source IP	LGW Pool Mask
LAN		172.16.100.0	255.255.254.0
IPSec			
LGW	>		
Diagnostics		Save Reset	

Figure 3-22 Configure LGW

2. Input the LGW configuration parameters, as shown in Table 3-14.

Table 3-14 LGW Param	neter Description
Parameter	Descriptions
LGW Enabled	LGW function switch.
	NOTE: In non-HaloB mode, if the LGW is enabled, you
	should enable the traffic offload function in "3.7.8 Configure
	RRC Status Parameter".
LGW Mode	LGW mode. Select according to the actual situation of the
	operator's network.
	NAT: Packages from internal network to external
	network need NAT translation.
	• Router : select optimized route from the routing table.
	• Bridge: transfer in the data link layer.
	NOTE: When LGW Mode is set to "Bridge", the IPsec function
	cannot be enabled.
	• HaloB: If the eNB operates in HaloB mode, select this
	value.
LGW Source IP	If "LGW Mode" select "Router", this parameter displays.
	The LGW will assign a local IP address for the accessed UE
	to manage the UEs, here configure the first IP address of the
	IP pool.
LGW Mask	If "LGW Mode" select "Router", this parameter displays.
	For example, if the first IP address is 10.10.10.1, and the net
	mask is 255.255.254.0, the IP address pool includes 255 IP
	addresses.

3. Click "Save" to complete the LGW configuration.

3.5.5 Configure Diagnostics

Select "**Network > Diagnostics**" to enter the eNB diagnostics configuration page, as shown in Figure 3-23.

Figure 3-23 Configure Diagnostics

Basic Setting	-	Ping Confi	g							
System	-	Enabled								
Network	•	OFF	_		•					
WAN/VLAN		Save		Reset						
LAN		Ping Resul	+							
IPSec		ring Kesu								
LGW		Index	maxPacket	minPacket	avgPacket	maxPacket	minPacket	avgPacket	packetLoss	reportTim
Diagnostics	>	1	-	-	-	Delay(us) -	Delay(us) -	Delay(us) -	(96) O	e
Static Route		2	-	-	-	-	-	-	0	
iptables		3	-	-	-	-			0	
BTS Setting	-	4							0	
ITE Setting	-	6	-						0	
	-	7	-						0	
Reboot	-	8	-	-	-	-	-	-	0	
Logout		9	-						0	
		10	-	-	-	-	-		0	
		Ping Sumr Ping State Ping State	nary		false					
		Ping Clear Reset MTU Dete	Results							
		Detect MTU Recon	nmended Valu	e	-					

• Configure ping parameters

Input the configuration parameters of ping function, which are given in Table 3-15.

Table 3-15 Ping Function Parameter Description

Parameter	Description			
Enabled	Switch of ping.			
pingDest	Peer IP address.			
pingCount	Count per batch. Range: 1 to 65535.			
pingInterval (s)	Interval of ping. Range: 1 to 600.			
pingTimeout (s)	Overtime of ping. Range: 1 to 10.			
pingDatalen	Length of ping package. Range: 0 to 65000.			
pingBatchInterval (s)	Interval of every batch ping. Range: 1 to 65535.			
pingBatchCount	Count of batch. Range: 0 to 65535.			
packetlossAlarmThreshold (%)	Alarm threshold of packet loss. Range: 1 to 100.			
packetdelayAlarmThreshold	Alarm threshold of packet delay. Range: 1 to			
(ms)	65535.			

In the lower half of the window, you can view the ping result, ping summary and ping state.

Click "Reset" to clear the results of ping operation.

MTU Detect

Click "**Detect**", the eNB will detect the quality of the current network environment and give a recommended value of MTU.

3.5.6 Configure Static Route

This function is for users configure the static route. The eNB supports IPV4 and IPV6 static route.

1. Select "**Network > Static Route**" to enter the static route configuration page, as shown in Figure 3-24.

Basic Setting	-	IPV4 Route Default Config							
System	•	Enabled	Enabled						
Network	•	OFF	OFF 🔹						
WAN/VLAN		IDVC David Data	C // -						
LAN		IPV6 Route Defaul	Config						
IPSec		Enabled	Enabled						
LGW									
Diagnostics		Route Config							
Static Route	>	Index	Enabled	IPV6 Enabled					
iptables		1 2	OFF	I	ő				
BTS Setting	•	3 4	IPV4 Route Stat	us					
LTE Setting	-	5 6	routeId	dest	Netmask	Gateway			
Reboot		7 8	1	0.0.0.0	0.0.0.0	10.10.3.1			
Logout		9 10	2	10.10.3.0	255.255.255.0	0.0.0.0			
		11	3	192.168.150.0	255.255.255.0	0.0.0.0			
		Save	R IPV6 Route Stat	us					

Figure 3-24 Configure Static Route

2. On the "IPV4/IPV6 Route Default Config" zone, select whether enabled the default gateway.

If default gateway is enabled, the gateway configured for WAN1 will be covered.

3. Click 🜣 to display static configuration parameters, as shown in Figure 3-25.

Figure 3-25 Static Route Parameters

Route Config			
Enabled		IPV6 Enabled	
ON	•	OFF	•
Destination Network		Netmask	
0.0.0.0		0.0.0.0	
Gateway		dev	
0.0.0.0			-

4. Input the configuration parameters of static route, which are given in Table 3-16.

Parameter	Description				
Enabled	hether enable the route. Default is disabled.				
IPV6 Enabled	Whether enable IPV6 route.				
Destination Network	The target IP address.				
	NOTE: The target IP address must reachable from the original IP				
	address of WAN interface or VLAN source port.				
prefix	If "IPV6 Enabled" is set to "ON", the parameter displays.				
	The prefix of the IPV6 address.				
Netmask	If "IPV6 Enabled" is set to "OFF", the parameter displays.				
	The subnet mask of target IP address.				
Gateway	The gateway IP address of target IP address.				
dev	Select the interface from the dropdown list.				

Table 3-16 Static Route Parameter Description

5. Click "Save" to complete the static route configuration.

The system supports to configure up to 12 static routes, and at the bottom of the window, you can view the route table that configured.

3.5.7 Configure iptables

1. Select "**Network > iptables**" to enter the iptables page, as shown in Figure 3-26.

Figure 3-26 iptables Setting

Basic Setting 🔹		Basic Setting				
System 🔻		Allow all IP Ping in		DNS Server Enabled		
Network 🔺		ON	•	ON	•	
WAN/VLAN		Allow all IP SSH login		Single IP Address SSH connect	tions limit	
LAN		ON	•	0 Range: 1-10 (Note:0 unlimited		
IPSec		Allow all IP LMT login		Single IP Address LMT connec	tions limit	
LGW		ON	•	0		
Diagnostics				Range: 1-10 (Note:0 unlimited		
Diagnoories						
Static Route		Ip and Port Filter Setting				
Static Route	>	Ip and Port Filter Setting				•
Static Route iptables	>	Ip and Port Filter Setting				
Static Route Iptables BTS Setting	>	Ip and Port Filter Setting				•
Static Route Iptables BTS Setting LTE Setting	>	Ip and Port Filter Setting				
Static Route Iptables ITS Setting Reboot ogout		Ip and Port Filter Setting Current Setting Chain INPUT (policy DROI	he list	is blank tem 659K bytes)		•

2. Input iptables parameters, as shown in Table 3-17.

Table 3-17 iptables Parameter Description

Parameter	Description
Allow All IP ping in	Whether allow all IP addresses to run the ping operation.
DNS Server Enabled	Whether enable the DNS service.
Allow all IP SSH login	Whether allow all IP addresses to log in the eNB from SSH.
Single IP Address	Quantity limitation of SSH connections for a single IP
SSH connections	address.
limit	
Allow all IP LMT login	Whether allow all IP addresses to log in the eNB from LMT.
Single IP Address	Quantity limitation of LMT connections for a single IP
LMT connections limit	address.

3. Click • to display IP filter configuration parameters to set filter rule for dedicated IP addresses, as shown in Table 3-18.

Parameter	Description		
Direction	The direction of data stream. INPUT or OUTPUT.		
IP Address/Mask	IP address and mask.		
Protocol	Protocol.		
	• TCP		

Table 3-18 IP and Port Filter Parameter Description

Parameter	Description					
	• UDP					
	ICMP					
	• SCTP					
	• ALL					
srcPort	The port of the source IP address.					
dstPort	The port of the destination IP address.					
Target	Target operation.					
	• ACCEPT					
	• DROP					
	• REJECT					

4. Click "Save" to complete the iptables configuration.

3.6 Configure eNodeB Parameter

The base transceiver station (BTS), or base station, settings are related to security, management, and synchronization with other network elements.

3.6.1 Configure Security

Be careful to modify the value of the security parameters. In general, keep the default values.

1. On the left navigation column, select "**BTS Setting > Security Setting**" to enter the security setting page, as shown in Figure 3-27.

Figure	3-27	Security	Setting
--------	------	----------	---------

Basic Setting	▼		Security Setting			
System	•		Ciphering Algorithm		Integrity Algorithm	
Network	•		EEAO	•	128-EIA1	
BTS Setting	•					
Security Setting		>				
Management Server			Save Re	eset		

2. Input the security parameters, which descriptions are given in Table 3-19.

Table 3-19 Security Parameter Description

Parameter		Description
Ciphering Algorithm	Encryption algorithm	

	EEA0 (recommended)
	• 128-EEA1
	• 128-EEA2
	• 128-EEA3
Integrity Algorithm	Integrity protection algorithm
	• 128-EIA1
	• 128-EIA2
	• 128-EIA3

3. Click "Save" to complete the security algorithm setting.

3.6.2 Configure Management Server

When a large amount of eNBs are deployed at one time, the Baicells provides initial server to implement the self-start, self-configuration for eNBs, The initial server is deployed in the network, eNBs are pre-configured the address of the initial server and enable the function. Once eNBs are powered on after installation, they will connect to the initial server automatically to acquire the OMC IP address.

For the Network Management System (NMS), an operator has the option to use the Baicells Cloudcore OMC, a local OMC, or other their own management server.

After the NMS settings, you can login the NMS to check whether the eNBs have been added or not. Once added, the eNB can be configured and managed on the NMS.

1. In the left navigation column, select "**BTS Setting > Management Server**" as shown in Figure 3-28.

Basic Setting 🔹 🔻		Management Server			
System -		Initial Management Server Ena	bled	Initial Management Server URL http://baicai.chinacloudapp.cr	n:8080/In
BTS Setting		Management Server URL		Range: 1-255 Digit	
Security Setting		http://172.21.172.54:8080/sm	nallcell/Ac	BaiOMC	•
Management Server	>	Range: 1-255 Digit			
Sync Setting		101.0.0			
HaloB Setting		KPI/MR			
License Management		KPI URL	11 - 11 - 021	MR URL	1.11
Terminal Traffic Control		https://1/2.21.1/2.54:8182/st Range: 0-256 Digit	com2sec	Configuration	mskpi/kp
LTE Setting 🔹			Secname		Source
Reboot		SNMP	rw		default
Logout		Enabled	Range: 0- Communi public Range: 0-	256 Digit ity 256 Digit	Range: 0-256 Digit
		Save Keset	Trap Cor	figuration	
			Communi secret	ity	Host
			Range: 0-	256 Digit	Range: 0-256 Digit

Figure 3-28 Configure Network Management Server

2. Input NMS configuration parameters, as shown in Table 3-20.

Parameter	Description					
Initial Management	Whether enable the initial management server.					
Server Enabled	After this function is enabled, the eNB will connect to the					
	initial management server when startup for the first time,					
	the initial management server will assign NMS address for					
	the eNB.					
Initial Management	The address of the initial management server.					
Server URL	The address is pre-configured, if enabled the function, the					
	eNB will connect to the initial server automatically after					
	powered on, the server will issue OMC address to the eNB.					
Management Server	If Initial Management Server is enabled, the address is					
	issued by the initial server.					
	IP address and port number of the NMS.					
	When the NMS is cloud NMS, the domain name is also					
	supported.					
Management Type	Select the type of the network management system.					
	Baicells					
	Chinamobile					
	• JingXin					

Table 3-20 NMS Configuration Parameter Description

3. If the eNB manages by the third party NMS and reports KPI and MR information, the KPI and MR addresses should be configured. The parameter description is shown in Table 3-21.

Table 3-21 KPI and MR Report URL Parameter Description

Parameter	Description
KPI URL	The URL of KPIs reported.
MR URL	The URL of MRs reported.

4. If the eNB connects to the third party NMS by SNMP, enable the SNMP function and configure corresponding parameters, as shown in Table 3-22.

Class	Parameter	Description	
com2sec	Secname	The name of security community.	
Configuration	Source	The source address of acquiring information.	
	Community	Define a community, default is public.	
Trap	Community	Define a community, default is secret.	
Configuration	Host	The IP address of host.	

Table 3-22 SNMP Configuration Parameter Description

5. Click "Save" to complete the NMS configuration.

3.6.3 Configure Synchronization

The LTE technology standards specify timing and synchronization requirements between adjacent eNBs. Synchronized transmissions help to avoid eNBs interfering with one another, optimizes bandwidth usage, and enhance network capacity.

The Baicells eNBs support the GPS, Network Listening (NL) and free running synchronization.

1. In the left navigation column, select "**BTS Setting > Sync Setting**" to enter the synchronization configuration page, as shown in Figure 3-29.

Basic Setting 🔹		TFCS M	anageme	ent Config								
System 👻		Synchro	nization N	lode		Sync M	ode					
Network -		FREE_F	RUNNING		•	TIME		•				
BTS Setting 🔺		PTP Co	nfig								\sim	
Security Setting			-									
Management Server												
Sync Setting	>	Sync So	ource Swi	tch Config								
HaloB Setting		Sync So	urce Switc	h								
License Management		OFF			•							
Terminal Traffic Control		NI Syn	r List									
LTE Setting 🔹			T'			targetD	mn					Ð
		PT 8 P 3 P3 3										
Reboot		0	TimingAdj	ustment		46001	,46002,	46003,46008				
Reboot Logout		0 Range: ()-9999999 (unit:(10ns)		d6001 Range: separat	, 46002 , Support ed by c	46003,46008 ts up to 4 plmn, ommas in English				
Reboot Logout		Range: (Index 1 2	priority 1	technology LTE LTE	y band 0 3	46001 Range: separat charact charnelNumbe 0 1400	,46002, Support ed by co ers r PCI 0 361	46003,46008 ts up to 4 plmn, ommas in English freqUncertaintyThresh 250 250	nold syncInterva 4 1	I phaseOffse 0 0	00	竝
Reboot Logout		Index 2 NL Syne	priority 1 1 c Cell Info	unit:(10ns) technolog: LTE LTE ormation	y band 0 3	d 46001 Range: separat charact channelNumbe 0 1400	,46002, Support ed by ce ers rr PCI 0 361	46003,46008 ts up to 4 plmn, ommas in English freqUncertaintyThresh 250 250	old syncInterva 4 1	I phaseOffse 0 0	00	ĊŪ
Reboot Logout		Index 1 2 NL Syne	priority 1 1 c Cell Info	technolog: LTE LTE ormation	y band 0 3 mation	4601 Range: separat charact channelNumbe 0 1400	,46002, Support ed by cr ers r PCI 0 361	46003,46008 ts up to 4 plmn, ommas in English freqUncertaintyThresh 250 250	old syncInterva 4 1	I phaseOffse 0 0	00	Ū
Reboot Logout		Range: 0 Range: 0 Index 1 2 NL Syno Geogra Satellitu	priority 1 c Cell Info phic Loca	unit:(10ns) technology LTE LTE ormation ation Information	y band 0 3 mation	4601 Range: separat charact channelNumbe 0 1400	,46002, Support ed by c ers r PCI 0 361	46003,46008 ts up to 4 plmn, ommas in English freqUncertaintyThresh 250 250	old syncInterva 4 1	il phaseOffse 0 0	00	Ū

Figure 3-29 Synchronization Mode Setting

2. Set synchronization mode, the parameter description is shown in Table 3-23.

Table 3-23	Synchronization	Parameter	Description
10010 2 25	Syncinonization	rurumeter	Description

Parameter	Description
Synchronization	Select synchronization source.
Mode	PTP: Precision timing protocol, complied with
	IEEE1588 protocol.
	GNSS: only GPS is supported.
	NL: network listening
	FREE_RUNNING
	NOTE: GPS synchronization can be configured only when the eNB is

Parameter	Description
	connected to a GPS antenna. Some eNB models do not support GPS
	antenna.
Sync Mode	Select synchronization mode.
	• FREQ
	• TIME

3. If Precision Time Protocol (PTP) synchronization mode is selected, set its parameters, as shown in Table 3-24.

Parameter	Description
Mode	The current mode is Mod1.
etherInterface	Select the interface PTP binding, the current version only
	support WAN1 interface.
Mode Switch	Select unicast or multicast.
Domain	Domain, default is 0. Range from 0 to 255.
Sync Interval	Set interval of synchronizing message.
Delay Interval	Set the interval of delaying measurement.
Asymmetry	Set asymmetry time delay.
Startup Time	Set startup time of PTP, range from 0 to 5000.

Table 3-24 PTP Mode Parameter Description

4. Select whether enable the synchronization source switch.

If the function is enable, the synchronization source can switch automatically.

5. If NL synchronization mode is selected, click \bigcirc to add synchronizing cell, parameter description is as shown in Table 3-25.

Parameter	Description
priority	The priority of this synchronizing source. The lower
	the value is, the higher the priority is.
technology	Network mode of the synchronization source.
	• LTE
	• UMTS
	• GSM
band	The frequency of the synchronizing band.
channelNumber	The frequency point of the synchronizing band.
PCI	The PCI of the synchronizing band. If the PCI does
	not be specified, the parameter is set to -1.
freqUncertaintyThreshold	The frequency threshold of the synchronizing band.
syncInterval	Interval of synchronizing measurement.

Table 3-25 NL Synchronization Parameter Description

Parameter	Description
phaseOffset	Phase offset.

After air interface synchronization source is set, the page will display the synchronization source list.

6. Click "**Save**" to complete the synchronization setting.

According to the selected clock source, the corresponding synchronization information, such as NL synchronization cell information, geographic location information, or satellite information, is displayed at the bottom of the page.

3.6.4 Configure HaloB Function

The *HaloB setting* menu is used by operators who have a HaloB license for the eNB. This menu is used to enable/disable the eNB to operate in HaloB mode.

1. In the left navigation column, select "**BTS Settings > HaloB Setting**" to enter the HaloB configuration page, as shown in Figure 3-30.

Basic Setting	•	HaloB Setting
System	•	HaloB
Network	•	OFF 🔻
BTS Setting		
Security Setting		Save Reset
Management Server		
Sync Setting		
HaloB Setting		>

Figure 3-30 HaloB Setting

2. The HaloB function configuration parameters are shown in Table 3-26.

Table 3-26 HaloB Parameter Description	

Parameter	Description
HaloB	Enable or disable the HaloB function. Only when the HaloB
	function is loaded, the function can be set to ON.
HaloB Mode	The HaloB function includes two kinds of mode.
	Standalone mode
	In standalone mode, the client can maintain SIM Information
	locally.
	The administrator needs to import registration information and

Parameter	Description
	APN information from the LMT. It is supported viewing cached
	user information and APN information on the LMT and delete
	the information.
	Centralized mode
	In centralized mode, the eNB needs to connect to the OMC
	which do as an agent to manage the subscription data.
	The APN information needs to be set on the OMC and the
	APN for user access needs to be specified on the BOSS.
	These information displays on this page.
	When a user accesses the system for the first time, he/she
	needs to perform access authentication with the BOSS. After
	authentication, the eNB with HaloB stores the signing
	information of the user. When users access the system again,
	they do not need to perform access authentication to the
	BOSS, but directly perform authentication at the eNB with
	HaloB.
ONOS IP	(Reserved) This parameter is reserved for ONOS in the core
	network if VoLTE is implied.
IMS IP	(Reserved) This parameter is reserved for IMS in the core
	network if VoLTE is implied.

3. Click "Save" to complete the HaloB setting.

NOTE: Only the setting is saved and the eNB is rebooted, the function will take effort.

4. If HaloB Mode is set to "Standalone mode", the SIM information and APN information must be imported, as shown in Figure 3-31

Figure 3-31 Import SIM Information and APN Information

Import SIM Inform	nation		
Select File	Template		
Subscription Data	List		
Import APN Infor	mation		
Select File	Template		
APN Data List			

You need to download the template and import the filled file with SIM card or APN information.

NOTE: If VxLAN function should be used, load the VxLAN license first.

3.6.5 License Management

The *License Management* menu may be used to import license files for optional features, such as HaloB or regulatory certificates of authorization to operate. When imported, the files are stored in the eNB memory and shown in the License List area of this window.

1. In the left navigation column, select "**BTS Settings > License Management**" to enter the synchronization configuration page, as shown in Figure 3-32.

Basic Setting		License				
System 👻		Select File				
Network 🔻		ID	Description	Expiry Time(unit:day)	Remain Time(unit:day)	Capacity
BTS Setting 🔺		FAP001	HaloB with centralized	180	85	
Security Setting		EA. 2002	HaloB with standalone	180	85	
Management Server		141002	mode	100	00	
Sync Setting						
HaloB Setting		1588 License				
License Management	>	Select File				
Terminal Traffic Control		Import Time		FileName		
LTE Setting 🔹		1970-01-01 08:00:11 +	0800	ptp1.lic		
Reboot		1970-01-01 08:00:11 +	0800	ptp.lic		

Figure 3-32 License Management

- 2. Click "Select File" to select License file from the local computer.
- 3. Click "**Import License**" to upload the license file to the eNB.

After the License file is uploaded, it will display in the license list.

3.6.6 Configure Terminal Traffic Control

1. Select "**Network > Terminal Traffic Control**" to enter the terminal traffic control management page, as shown in Figure 3-33.

Figure 3-33 Terminal Traffic Control Setting

Basic Setting 🔹	Terminal Traffic Control
System 🔻	Hotspot Disabled
Network •	Enabled
BTS Setting	
Security Setting	
Management Server	Save Reset
Sync Setting	
HaloB Setting	
License Management	
Terminal Traffic Control	>

- 2. Choose whether enable the hot spot control function.
- 3. Click "Save" to complete the terminal traffic control configuration.

3.7 Configure LTE Parameter

Caution:

It is not recommended to modify the advanced LTE parameters for common operators. It is better to keep the default values. For senior experts in need, please treat it with great caution.

The *LTE* menu contains several sub-menus related to mobility as well as other radiorelated settings. Many LTE parameters are important for efficient wireless network operations.

3.7.1 Configure LTE Neighbor Frequency and Cell

1. Select "LTE Setting > LTE Freq/Cell" to enter the LTE neighbor frequency and cell configuration page, as shown in Figure 3-34.

gure 3-34 LTE N	leighbor Fr	equency/Cell Se	etting	
Basic Setting	-	Neigh Freq List		•
System	-			Ð
Network	-			
BTS Setting	-			
LTE Setting	•			
LTE Freq/Cell	>	Neigh Cell List		•
UMTS Freq/Cell				
GSM Freq/Cell				
5G Freq/Cell				

Users can add, modify, and delete the LTE neighbor frequency and cell. Up to eight LTE neighbor frequencies and 32 LTE neighbor cells can be set.

LTE Neighbor Frequency

2. On the right of the neighbor frequency list, click 🛨 to enter the page for adding a LTE neighbor frequency. The parameter descriptions are given in Table 3-27.

Parameter	Description			
EARFCN	The value is planned in the network planning phase by the			
	operator.			
	In short, this is the frequency point of the neighboring			
	eNB's frequency. Range from 0 to 65,535. EARFCN stands			
	for Envolved Universal Mobile Telecommunications System			
	(UMTS) Terrestrial Radio Access (E-UTRA) Absolute Radio			
	Frequency Channel Number.			
meansBandwidthForE	Select measurement band width.			
arfcn	• 1.4MHz			
	• 3MHz			
	• 5MHz			
	• 10MHz			
	• 15MHz			
	• 20MHz			
qOffsetFreq	Indicates the difference in signal level between the serving			
	and neighboring eNBs, as determined by the received			
	signal level at the UE. If the received signal level is better			
	from a neighboring eNB by at least this amount of			
	difference in dB, the UE will reselect the other cell.			
	The range is -24 to +24. A typical value is 0dB.			

Table 3-27 LTE Neighbor Frequency Parameter Description

Parameter	Description
qRxLevMin	Minimum access level. When the receive signal power of
	UE is larger than this threshold, the UE can resident on the
	cell.
pMax(dBm)	The maximum transmit power that UEs in this cell are
	allowed to use in the uplink. Range is -30 to 33 dBm. A
	typical value is 23 dBm.
tReselectionEutra	Determines when the cell reselection time expires.
	Range is 0 to 7 seconds. A typical value is 0 second.
Reselection Thresh	The cell reselection threshold for higher priority inter-band
High	frequency.
	Represents the access threshold level, at which the UE will
	leave the serving cell and reselect another cell at the target
	frequency (assuming the target frequency cell has a higher
	reselection priority than the serving cell). Range is 0 to
	31dB. A typical value is 18 dB.
Reselection Thresh	The cell reselection threshold for lower priority inter-band
Low	frequency.
	Represents the access threshold level at which the UE will
	leave the serving cell and reselect another cell at the target
	frequency (assuming the target frequency cell has an
	absolute priority lower than the serving cell). Range is 0 to
	31dB. A typical value is 13 dB.
Reselection Priority	Priority of the cell reselection to cells at this frequency.
	Range is 0 to 7 (integer). A typical value is 4.
HeNB PCI Start	PCI start value of the home eNB
HeNB PCI Range	PCI range of the home eNB

3. Click "**Save**" to complete the LTE neighbor frequency setting.

LTE Neighbor Cell

4. On the right of the neighbor cell list, click 🛨 to enter the page for adding a LTE neighbor cell, the parameter descriptions are given in Table 3-28.

Parameter	Description
PLMN	The 5-6 digit PLMN that the neighbor cell belongs to.
ECI	Unique identification number for the Cell ID.
	Range from 0 to 268435455.
	The value of macro eNB and micro eNB is different.

Table 3-28 LTE Neighbor Cell Parameter Description

Parameter	Description			
	For macro eNB, the Cell ID + the eNB ID x 256 comprises			
	the E-UTRAN Cell Identity (ECI), which identifies a cell site			
	in the network.			
	For micro eNB, the Cell ID is equal to ECI.			
EARFCN	Frequency point of the neighbor cell.			
phyCellId	Physical Cell Identifier (PCI) of the neighbor cell.			
qOffset	Frequency offset this neighbor cell. Indicates the difference			
	in signal level between the serving and this neighboring			
	eNB, as determined by the received signal level at the UE.			
	If the received signal level is better from a neighboring eNB			
	by at least this amount of difference in dB, the UE will			
	reselect this cell.			
	Range is +24 to -24. A typical value is 0dB.			
cio	Cell Individual Offset (CIO) is this neighbor eNB's cell			
	offset, which is one of the variables used to determine			
	which eNB will best serve a given UE.			
	Range is 0 to -24. A typical value is 0dB.			
TAC	Tracking Area Code (TAC) of this neighbor cell.			
accessMode	Access mode of the cell.			
	ClosedAccess			
	HybridAccess			
	OpenAccess(Macro)			
	OpenAccess(HeNB)			

5. Click "Save" to complete the LTE neighbor cells setting.

3.7.2 Configure UMTS Neighbor Frequency and Cell

NOTE: If HaloB function is enabled, this menu does not display.

The parameters in this menu is related to how adjacent eNBs operating with UMTS technology work with the Baicells LTE eNB that you are configuring.

1. Select "LTE > UMTS Freq/Cell" to enter the UMTS neighbor frequency and cell configuration page, as shown in Figure 3-35.

Figure 3-35 UMTS Neighbor Frequency/Cell Setting

Basic Setting	-		
System	•	Neigh Freq List	e
Network	-		
TS Setting	-		
TE Setting	•		
LTE Freq/Cell		Neigh Cell List	
UMTS Freq/Cell	>		
GSM Freq/Cell			
5G Freq/Cell			

Users can add, modify, and delete the UMTS neighbor frequency and cell. Up to 12 UMTS neighbor frequencies and 32 UMTS neighbor cells can be set.

UMTS Neighbor Frequency

On the right of the neighbor frequency list, click
to enter the page for adding a
UMTS neighbor frequency. The parameter descriptions are given in Table 3-29.

Parameter	Description
UARFCN	Frequency point of the neighboring eNB's frequency.
qRxLevMin (dBm)	The minimum received signal level at which a UE will detect
	a neighboring eNB's signal. Range is -60 to -13 dBm.
	Only the received signal power measured by the UE is higher
	than this threshold, the UE can camp on this cell.
qQualMin	The threshold for lowest access.
	Range: -24 to 0.
Reselection Priority	Priority of the reselection to cells at this frequency
Reselection Thresh	The cell reselection threshold for a higher priority inter-band
High	frequency.
	Represents the access threshold level at which the UE will
	leave the serving cell and reselect another cell at the target
	frequency (assuming the target frequency cell has a higher
	reselection priority than the serving cell). Range is 0 to 31dB.
Reselection Thresh	The cell reselection threshold for a lower priority inter-band
Low	frequency.
	Represents the access threshold level at which the UE will
	leave the serving cell and reselect another cell at the target
	frequency (assuming the target frequency cell has an
	absolute priority than the serving cell). Range is 0 to 31dB.
pMaxUtra	Maximum transmit power a UE allowed to use in the uplink,
	for limiting the transmit power of the UE within this cell

Table 3-29 UMTS Neighbor Frequency Parameter Description

3. Click "Save" to complete the UMTS neighbor frequency setting.

UMTS Neighbor Cell

4. On the right of the neighbor cell list, click \bigcirc to enter the page for adding a UMTS

neighbor cell. The parameter descriptions shown are given in Table 3-30.

Parameter	Description
PLMN	The PLMN that the neighbor cell belongs to
rncld	The neighbor cell's Radio Network Controller (RNC).
Cell ID	Identify of a cell, allocated by the operator.
	ECI = eNB ID*256+cell ID
	e.g. ECI = 256055, eNB ID=1000,cell ID=55.
lac	Location area code (LAC) of the neighbor cell.
uarfcnDl	UARFAN for download.
uarfcnUl	UARFAN for upload.
pCpichScramblingCo	Scrambling code for main CPICH.
de	
psHoSupported	This neighbor whether support PS domain switchover.

Table 3-30 UMTS Neighbor Cell Parameter Description

5. Click "Save" to complete the UMTS neighbor cells setting.

3.7.3 Configure GSM Neighbor Frequency and Cell

NOTE: If HaloB function is enabled, this menu does not display.

The parameters in this menu is related to how adjacent eNBs operating with GSM technology work with the Baicells LTE eNB that you are configuring.

You will define for the Baicells eNB how to deal with any neighboring GSM eNBs.

1. Select "LTE > GSM Freq/Cell" to enter the GSM neighbor frequency and cell configuration page, as shown in Figure 3-36.

Basic Setting	-	Neigh Freq List	
System	-		G
Network	-		
BTS Setting	-		
LTE Setting	•		
LTE Freq/Cell		Neigh Cell List	
UMTS Freq/Cell			
GSM Freq/Cell	>		
5G Freq/Cell			

Figure 3-36 GSM Neighbor Frequency Setting

Users can add, modify, and delete the GSM neighbor frequency and cell. Up to 12 GSM neighbor frequencies and 32 GSM neighbor cells can be set.

GSM Neighbor Frequency

2. In the neighbor frequency list, click • to enter the page for adding a GSM neighbor frequency. The parameter descriptions are given in Table 3-31.

Parameter	Description
qRxLevMin(dBm)	The minimum received signal level at which a UE will detect
	a neighboring eNB's signal. Range is 0-45dbM.
	Only when the received signal power measured by the UE is
	higher than this threshold, the UE is allowed to camp on this
	cell.
Reselection Priority	Priority of the reselection to cells at this frequency
Reselection Thresh	The cell reselection threshold for a higher priority inter-band
High	frequency.
	Represents the access threshold level at which the UE will
	leave the serving cell and reselect another cell at the target
	frequency (assuming the target frequency cell has a higher
	reselection priority than the serving cell). Range is 0 to 31dB
Reselection Thresh	Represents the access threshold level at which the UE will
Low	leave the serving cell and reselect another cell at the target
	frequency (assuming the target frequency cell has an
	absolute priority than the serving cell). Range is 0 to 31dB.
Band	Channels in which the GSM neighbor eNB operates:
	DCS1800 or PSC1900.
bcchArfcn	ARFCN for GSM neighbor frequency.
pMaxGeran	The allowed max upload transmitted power.

Table 3-31 GSM Neighbor Frequency Parameter Description

3. Click "**Save**" to complete the GSM neighbor frequency setting.

GSM Neighbor Cell

4. In the neighbor cell list, click 🛨 to enter the page for adding a GSM neighbor frequency. The parameter descriptions as given in Table 3-32.

Parameter Description	
Enable	Whether enable the neighbor cell.
PLMN	The PLMN that the neighbor cell belongs to.

Table 3-32 GSM Neighbor Cell Parameter Description

Parameter	Description
lac	Location area code of the neighbor cell
ci	Identify of a cell, allocated by the operator.
	ECI = eNB ID*256+cell ID
	e.g. ECI = 256055, eNB ID=1000,cell ID=55.
Band	Band indicator of the neighbor cell
bcchArfcn	ARFCN of the neighbor cell
bsic	eNodeB identification code of the neighbor cell

5. Click "Save" to complete the GSM neighbor cell setting.

3.7.4 Configure 5G Neighbor Frequency and Cell

NOTE: If HaloB function is enabled, this menu does not display.

1. Select "LTE > 5G Freq/Cell" to enter the 5G neighbor frequency and cell configuration page, as shown in Figure 3-37.

Figure 3-37 5G Neighbor Frequency Setting

Basic Setting	•	Neigh Fre	eq List					
System	-							Ð
Network	-	Index 1	K NRARFCN 504990	subcarrierSpacingSSB kHz30	qRxLevMin(dBm) -50	Reselection Priority 7	freqBandIndicatorNR 41	¢ 🔟
BTS Setting	-							
LTE Setting	•	Neigh Cel	II List					•
LTE Freq/Cell								
UMTS Freq/Cell								
GSM Freq/Cell								
5G Freq/Cell	>							

Users can add, modify, and delete the 5G neighbor frequency and cell.

5G Neighbor Frequency

2. In the neighbor frequency list, click 🔹 to enter the page for adding a 5G neighbor

frequency. The parameter descriptions are given in Table 3-33.

Parameter	Description	
NRARFCN	Absolute Radio Frequency Channel Number (ARFCN) of th	
	NR neighbor cell.	
subcarrierSpacingS	Select the sub carrier spacing.	
SB	• kHz15	
	• kHz30	

Table 3-33 5G Neighbor Frequency Parameter Description

Parameter	r	Description		
		• kHz120		
		• kHz240		
qRxLevMin(dBr	m)	Minimum access level. When the receive signal power of UE		
		is larger than this threshold, the UE can resident on the cell.		
Reselection Pri	ority	Priority of the cell reselection to cells at this frequency.		
		Range is 0 to 7 (integer). A typical value is 4.		
freqBandIndicat	torN	NR frequency band indicator.		
R				

3. Click "Save" to complete the 5G neighbor frequency setting.

5G Neighbor Cell

4. In the neighbor cell list, click to enter the page for adding a 5G neighbor frequency. The parameter descriptions as given in Table 3-34.

Parameter	Description		
PLMN	he PLMN that the neighbor cell belongs to.		
Cell ID	dentity of the neighbor cell. ECI=Cell ID		
NRARFCN	Absolute Radio Frequency Channel Number (ARFCN) of		
	the NR neighbor cell.		
SSBFrequency	Absolute Radio Frequency Channel Number (ARFCN) of		
	the SSB neighbor cell.		
subcarrierSpacingSS	Select the sub carrier spacing.		
В	• kHz15		
	• kHz30		
	• kHz120		
	• kHz240		
phyCellId	Physical cell ID.		
gNB ID	Identify of the gNB neighbor cell.		
ТАС	TAC of the neighbor cell.		

Table 3-34 5G Neighbor Cell Parameter Description

5. Click "Save" to complete the setting of the 5G neighbor cell.

3.7.5 Configure Mobility Parameter

The *Mobility Parameter* menu pertains to how roaming UE sessions are handle between different eNBs in the same service area. When a UE is actively connected to an eNB is referred to as the serving eNB or cell. The other eNBs in the area are referred to as either neighbor or target eNBs or cells.

The process of a device moving from cell to cell and changing over from its serving eNB to a neighbor (target) eNB is called handoff or handover. The UE exchange information with its serving eNB to perform cell selection and reselection based on parameters which you will set for each eNB.

On the left navigation column, select "**LTE Setting > Mobility Parameter**" to enter the mobility parameter configuration page.

3.7.5.1 A1 Event Threshold

The LTE A1 event is triggered when the serving cell's Reference Signal Received Power (RSRP) is better than the A1 threshold. The A1 event can be used to turn off certain inter-cell measurements.

- 1. Click **"A1 Event Threshold**" to display the A1 event threshold configuration parameter.
- 2. Set the value of "A1 Threshold RSRP".
- 3. Click "**Save**" to complete the A1 event threshold setting.

3.7.5.2 A2 Event Threshold

The LTE A2 event is triggered when the serving cell's Reference Signal Received Power (RSRP) is better than the A2 threshold.

- 1. Click **"A2 Event Threshold**" to display the A2 event threshold configuration parameter.
- 2. Set the value of "A2 Threshold RSRP".
- 3. Click "**Save**" to complete the A2 event threshold setting.

3.7.5.3 A3 Event Threshold

The LTE A3 event is triggered when the neighbor cell becomes better than the serving cell by as much as the offset value. The offset can be either positive or negative..

1. Click **"A3 Event Threshold**" to display the A3 event threshold configuration parameters, which descriptions are given in Table 3-35.

Parameter	Description
LTE A3 Offset	The A3 event offset in the scenes of the intra frequency
(*0.5dB)	handover.
	Options: -30~30 integer

Table 3-35 A3 Event Threshold Parameter Description

Parameter	Description
A3 Offfset Anr	The A3 event offset in the scenes of the intra frequency
(*0.5dB)	ANR handover.
	Options: -30~30 integer
	The value must be smaller than the value of " Intra-Freq
	Handover A3 Offset".

2. Click "Save" to complete the A3 event threshold setting.

3.7.5.4 A4 Event Threshold

This version does not support the A4 event setting.

3.7.5.5 A5 Event Threshold

The LTE A5 event is triggered when the serving cell becomes worse than Threshold 1 while a neighbor cell becomes better than Threshold 2. A5 event can control the edge of handover out of the serving cell and the edge of handover in of the neighbor cell.

1. Click **"A5 Event Threshold**" to display the A5 event threshold configuration parameters, which descriptions are given in Table 3-36.

Parameter	Description
Inter-Freq Handover A5 RSRP	RSRP threshold parameter 1 of the A5 event.
Threshold1 (v-140dBm)	Default is 32.
	Options: 0~97 integer
Inter-Freq Handover A5 RSRP	RSRP threshold parameter 2 of the A5 event.
Threshold2 (v-140dBm)	Default is 31.
	Options: 0~97 integer

Table 3-36 A5 Event Threshold Parameter Description

2. Click "Save" to complete the A5 event threshold setting.

3.7.5.6 Measurement Control Parameter

The *Measurement Control* parameters determine how frequently the UE measures the serving and neighboring eNB's RSRP values and at what level of hysteresis-based RSRP triggers a handover. The UE evaluate the RF conditions around it and reports the information to the serving eNB. The eNB's radio resource management function evaluates the measurements and determines whether or not to hand over the session to a neighbor eNB.

1. Click "Measurement Control Parameters" to display the measurement control

parameters configuration parameters, which descriptions are given in Table 3-37.

Parameter	Description
fc	Smoothness factor of LTE measured value.
	Options: 0,1,2,3,4,5,6,7,8,9,11,13,15
Report interval(ms)	Report interval of measurement result, unit is millisecond.
	Options:
	120,240,480,640,1024,2048,5120,10240,60000,360000,7200
	00
	Default is 120.
Hysteresis(*0.5dB)	This parameter Refers to the hysteresis (historical records)
	of the handover measurement event. The value is used to
	avoid the frequent triggering of cell handover evaluation due
	to the fluctuation in wireless signals. This setting tells the UE,
	if you hear another eNB with at least this amount of dB
	better, initiate a handover. The lower the number the sooner
	the handover is initiated. If set too low, it may cause the UE
	to ping-pong between eNBs. Such events are tracked by the
	eNB, but not by the eNB. Range from 0 to 30dB. The default
	is 0. In this example, the recommended value is 5dB.
Time To	Length of time the target cell RSRP value is better than the
Trigger(ms)	serving cell before the UE initiates a handover request.

Table 3-37 Measurement Control Parameter Description

2. Click "Save" to complete the measurement control parameters setting.

3.7.5.7 Heterostructure Measurement Configuration

When the signal quality of serving cell is lower than a threshold, and signal quality of neighbor cell of heterogeneous structure system is better than a threshold, the B2 handover is triggered.

NOTE: If HaloB function is enabled, this menu does not display.

1. Click "Heterostructure Measurement Configuration" to display the heterostructure measurement configuration parameters, which descriptions are given in Table 3-38.

Parameter	Description
B2 RSRP	Threshold parameter 1 of the UTRA TDS B2 event
Threshold1(v-	Range from 0 to 97 (integer)
140dBm)	

Table 3-38 Heterostructure Measurement Threshold Parameter Description

Parameter	Description
UTRA B2 IRAT	Threshold parameter 2 of the UTRA TDS B2 event
Threshold 2(v-	Range from -5 to 91 (integer)
115dBm)	
GERAN B2 IRAT	Threshold parameter 2 of the GERAN B2 event
Threshold2 (v-	Range from 0 to 63 (integer)
110dBm)	
NR B1 IRAT	Threshold parameter 1 of the NR B2 event
Threshold1(v-	Range from 0 to 63 (integer)
156dBm)	
Hysteresis (*0.5dB)	This parameter refers to the hysteresis of the different
	system measurement, the unit is dB. The actual is the
	configured value x 0.5.
Time To	Trigger time of different system event, unit is ms.
Trigger(ms)	Options:
	0,40,64,80,100,128,160,256,320,480,512,640,1024,1280,25
	60,5120
	Default is 0.
Report Interval	Interval of B2 event report.
Report Interval For	Interval of periodic report.
Periodic	

2. Click "**Save**" to complete the B2 event threshold setting.

3.7.5.8 Cell Selection Parameter

1. Click "**Cell Selection Parameter**" to display the cell selection parameters configuration parameters, which descriptions are given in Table 3-39.

Table 3-	-39 Cell	Selection	Parameter	Description
10.010 0	00 00	0010011011		D 0001.101.011

Parameter	Description	
Qrxlevmin (*2dBm)	The minimum acceptable signal level at the UE before	
	cell selection. The unit is dBm.	
	By defining this parameter, it will avoid the UE to access	
	the cell with low receiving signal level. The value of this	
	parameter needs to take factors such as cell size, cell	
	coverage and background noise into comprehensive	
	consideration.	
	Reducing the parameter value will expand the allowable	
	access range of the cell, but it may result in poor call	
	quality.	
Qrxlevminoffset (*2dB)	The minimum level offset (difference) in RSRP at the UE	
	needed for cell selection.	

Parameter	Description	
	When the UE residing on a VPLMN periodically	
	searches for a higher level cell, the minimum threshold	
	value is offset to prevent ping-pong effect.	
openPhyCellIdStart	The start PCI in open access mode for the eNB.	
openPhyCellIdRange	The PCI range in open access mode for the eNB.	
hybridPhyCellIdStart	The start PCI in hybrid access mode for the eNB.	
hybridPhyCellIdRange	The PCI range in hybrid access mode for the eNB.	
csgPhyCellIdStart	The start PCI in closed access mode for the eNB.	
csgPhyCellIdRange	The PCI range in closed access mode for the eNB.	

2. Click "Save" to complete the cell selection parameters setting.

3.7.5.9 Cell Reselection Parameter

When an UE is in idle state, it needs to select a better cell by monitoring the signal quality of the neighbor cell and the serving cell. Cell reselection includes the intra-frequency cell reselection and the inter-frequency cell reselection. The intra-frequency cell reselection mainly solve the problem of wireless coverage. The inter-frequency cell reselection can solve the problem of wireless coverage, but also to achieve the load balance between different frequency points.

1. Click "**Cell Reselection Parameter**" to display the cell reselection parameters configuration parameters, which descriptions are given in Table 3-40.

Parameter	Description
S-IntraSearch(*2dB)	Intra-frequency measurement threshold that must be met
	before the UE will reselect a neighbor eNB. Range is 0
	to 31 (integer). In this example, the recommended value
	is 31 (integer), which means 31*2 = 62 dB.
S-Non	Inter-frequency measurement threshold that must be met
IntraSearch(*2dB)	before the UE will reselect a neighbor eNB.
QrxlevminSib3(*2dBm)	The minimum level for reselection. Range is -70 to -22
	(integer). In this example, the recommended value is -62
	(integer), which means -62*2 = -124 dB.
Reselection Priority	Priority for the reselection. Range is 0 to 7. In this
	example, the recommended value is4.
ThreshServingLow(*2dB	Threshold for reselection to cells of lower priority.
)	
pMax(dBm)	Maximum power.
Qhyst(dB)	Delay time for reselection. General the value of the
	parameter is 2.

Table 3-40 Cell Reselection Parameter Description

Parameter	Description	
	This parameter will overestimate the signal strength of	
	the serving cell to delay the cell reselection.	
Allowed Meas BW(MHz)	Measurement bandwidth allowed.	

2. Click "Save" to complete the cell reselection parameters setting.

3.7.5.10 Additional Measurement Parameter

1. In **"Additional Measurement Parameter**" zone, click \bigcirc to display the configuration parameters, as shown in Table 3-41.

Parameter	Description	
mobilityType	The type of measurement.	
	Options:	
	blind_redirect	
	• irat_data	
	 irat_voice 	
measEvent	The event of measurement.	
	Options:	
	• EVENT_A2	
	• EVENT_B2	
eutranThresholdRsrp(dB	EUTRAN threshold parameter of RSRP for selected	
m)	event.	
eutranThresholdRsrq(dB	3EUTRAN threshold parameter of RSRQ for selected	
m)	event.	
Hysteresis(*0.5dB) This parameter refers to the hysteresis of the diff		
	system measurement, the unit is dB. The actual is the	
	configured value x 0.5.	
Time To Trigger	Delay time of the handover measurement event.	
eutranTriggerQuantity(m	nTrigger quality of mobility measurement of UE caused by	
s)	the operation of the cell.	
A2reportQuantity	The quantity of report of A2 event.	
maxReportCells	The max report cells.	
reportInterval(ms) Report interval of measurement result, unit is		
	millisecond.	
reportAmount	The amount of reports.	
measQuantityUtra	The quantity of utra measurement.	
UTRAThresholdRsCP	UTRA threshold of RSCP measurement.	
UTRAThresholdEcN0	UTRA threshold of ECN0 measurement.	
GERANThreshold	GERAN threshold parameter of selected event.	

Table 3-41 Additional Measurement Parameter Description

2. Click "Save" to complete the additional measurement parameter setting.

3.7.6 Configure Advanced Parameter

Many, if not all, of the *Advanced* settings should be left with their default values. Any modification should be determined only by experienced wireless professionals.

The *Advanced* settings are primarily used to fine-tune the RF settings and configure special features.

On the left navigation column, select "**LTE Setting > Advanced**" to enter the advanced parameter configuration page.

3.7.6.1 Power Control Parameter

The *Power Control Parameters* help to limit UE transmit power to the eNB being configured, including the power of the transmitted reference signals. The parameters factor into the overall RF link budget.

1. Click **"Power Control Parameters**" to display the power control parameters configuration parameters, which descriptions are given in Table 3-42.

Parameter	Description	
Power Ramping	Step size of the PRACH's power ramping	
Preamble Init Target	Initial power of PRACH	
Power(dBm)		
Po_nominal_pusch(d	Physical Uplink Shared Channels (PUSCH) carries user	
Bm)	data. It supports Quadrature Phase Shift keying (QPSK)	
	and 16 Quadrature Amplitude Modulation (QAM), with	
	64QAM being optional. Range is -126 to 24 dB.	
Po_nominal_pucch(d	Physical Uplink Control Channels (PUCCH) is used to carry	
Bm)	Uplink Control Information (UCI). LTE UEs can never	
	transmit both PUCCH and PUSCH during the same	
	subframe. Range is -127 to -96 dB.	
alpha	Power control loss compensation factor, which controls the	
	UE power.	
Target ul sinr	The uplink target SNR corresponding the max pass loss.	

Table 3-42 Power Control Parameter Description

BAICEIIS

Parameter	Description	
ра	Physical Downlink Shared Channel (PDSCH) is the main	
	data bearing channel. Power bossting the reference signal	
	is allocated to UEs on a dynamic and opportunistic basis.	
	The relative PDSCH power is determined by computed	
	parameters: Pa and Pb. Traffic loading must be balance with	
	controlling interference to neighboring cells.	
pb	See description for parameter "PA".	

2. Click "Save" to complete the setting of the power control parameters.

3.7.6.2 eNodeB Setting

The *eNodeB Settings* menu is used to name the eNB you are configuring and select the eNB type.

1. Click "**eNodeB Settings**" to display the eNodeB configuration parameter, which descriptions are given in Table 3-43.

Parameter	Description		
eNodeb Name	An eNB name consists of English letters, numbers and		
	special characters, with a maximum length of 48		
	characters. By default it is HeNB.		
eNodeb Location	The location code of the eNB.		
CellType	The type of the eNB.		
	 Macro: the eNB is covering a large cell area and 		
	the transmission power is on the higher end of the		
	power range.		
	 HeNB: the eNB's transmission power is much 		
	lower than Macro and covers a much smaller area.		
relOfMme	S1 connection protocol version.		
	Options:		
	• R8		
	• R9		
	• R10		
accessMode	Access mode.		
	ClosedAccess: closed group access		
	 HybridAccess: hybrid group access 		
	OpenAccess: open group access		
IMSI access policy-	Range of IMSIs are allowed to access the eNB.		
whitelist			

Table 3-43 eNodeB Parameter Description

Parameter	Description
IMSI access policy-	Range of IMSIs are not allowed to access the eNB.
blacklist	
HeNB PCI Start	The start PCI of the HeNB.
HeNB PCI Range	The PCI range of the HeNB.

2. Click "Save" to complete the eNB setting.

3.7.6.3 GAP Setting

The Inter-frequency Measurement Gap (*Inter-Frequency Means GAP*) field pertains to how a UE measures the signal quality of a neighbor cell that is operating at a different frequency from the serving cell. The gap parameter creates a time gap during which the UE will not receive or transmit with the serving cell. It will switch its frequency to the target cell and perform a measurement of signal quality before coming back to the serving cell.

1. Click "**GAP Settings**" to display the GAP configuration parameter, as shown in Table 3-44.

Parameter	Description		
LTE configuration GAP	GAP type of LTE measurement.		
period	• 40ms		
	• 80ms		
3G configuration GAP	GAP type of UTRAN measurement.		
period	• 40ms		
	• 80ms		
2G configuration GAP	GAP type of GSM measurement.		
period	• 40ms		
	• 80ms		
cdma2000 configuration	GAP type of CDMA measurement.		
GAP period	• 40ms		
	• 80ms		
riggerQuantityForBlock Trigger quality of mobility measurement of UE caused			
	by the operation of the cell.		
a4ThresholdRsrpForBlockRSRP threshold used by A4 event when there is			
	mobility measurement of UE caused by the operation		
	of the cell.		
a4ThresholdRsrqForBlock	RsrqForBlockRSRP threshold NL enable used by A4 event when		
	there is mobility measurement of UE caused by the		
	operation of the cell.		

Table 3-44 GAP Setting Parameter Description

2. Click "Save" to complete the GAP setting.

3.7.6.4 Random Access Parameters

1. Click "**Random Access Parameters**" to display the random access configuration parameter, which descriptions are given in Table 3-45.

Parameter	Description	
Zero Correlation Zone	The corresponding configuration of zero correlation, used	
Config	for generating preamble sequence.	
	• If "Preamble Format" is set to 0, range from 1 to 13.	
	• If "Preamble Format" is set to 4, range from 1 to 6.	
PRACH Freq Offset	Set the frequency offset range.	
	The range determined by the band width set in "3.3 Quick	
	Setting". If the value will exceed this range, you need to	
	modify the band width first, and then modify the value of	
	this parameter.	
	• If "carrierBwMhz" is set to "5MHz", range from 0 to 19.	
	 If "carrierBwMhz" is set to "10MHz", range from 0 to 44. 	
	 If "carrierBwMhz" is set to "15MHz", range from 0 to 69. 	
	 If "carrierBwMhz" is set to "20MHz", range from 0 to 94. 	
rootSequenceIndex	Index of root sequence.	
	Range: 0 to 837.	
Preamble Format	The format of preamble. 0 or 4.	
configurationIndex	Index of configuration. The parameter will be sent to UEs	
	through SIB2 message.	
	 If "Preamble Format" is set to 0, range from 1 to 19 	
	integer (5, 7, 8, 11, 13, 14, 17 and 19 are not	
	supported.).	
	• If "Preamble Format" is set to 4, range from 48 to 57	
	integer.	

Table 3-45 Random Access Parameter Description

2. Click "Save" to complete the random access parameters setting.

3.7.6.5 Capacity Parameters

1. Click "**Capacity Parameters**" to display the capacity configuration parameter, which descriptions are given in Table 3-46.

Table 3-46 Ca	pacity Parameter	Description	

Parameter	Description
Max Ue Num	The maximum value of UE.
maxCsgMembers	The maximum of CSG member.

Parameter		Description	
	resourceReservedForExistingUsers	Reserved UE resource.	

2. Click "**Save**" to complete the capacity parameter setting.

3.7.6.6 Scheduling Algorithm

The *Scheduling Algorithm* fields are important for smooth RF operation and can impact key performance indicators such as cell throughput, cell edge users, Voice over IP (VoIP) capacity, and QoS of data service.

Scheduling strategies commonly used are:

• QOS algorithm

Algorithm based on QoS.

• PF algorithm

Balance between user channel quality and fairness, both cell throughput and user fairness taken into account.

• RR algorithm

Allocate the resource and opportunities to all terminals equally. QoS not taken into account, and memory not used.

1. Click "**Random Access Parameters**" to display the random access configuration parameter, which descriptions are given in Table 3-47.

Parameter	Description	
UL Schd Algorithm	MAC uplink scheduling algorithm. Default is Qos.	
	• PF	
	• RR	
	• Qos	
DL Schd Algorithm	MAC downlink scheduling algorithm. Default is Qos.	
	• PF	
	• RR	
	• Qos	

Table 3-47 Scheduling Algorithms Parameter Description

2. Click "Save" to complete the setting of the scheduling algorithm.

3.7.6.7 eNodeB Range Setting

- **Normal**: Compare the total eNodeB_ID. The matching is success when the 20bits of eNodeB_ID is within the setting range.
- Segment: Compare the eNodeB_ID segmentation, the minimum segment is 4bits. The upper bound determines the length of segment, such as, the upper bound 7 indicates a segment with 4bits; the upper bound 100 indicates a segment with 8bits (96 is greater than 15, smaller than 255, 4bits is not enough, so that the segment is 8bits). If the segment bit length that needs to be set is greater than the bit length of upper bound expressed, it needs to filled with [0] before the value, each [0] indicates 4bits. If the system need to compare the segment with 12bits, the range from 50 to 200, then the segment need to be filled in [0][50-200]. If some segment need to be ignored, it can be filled with [*] to ignore, each * indicates 8bits. For example, [1-300][*][7-11] indicates, the minimum 12bits is between 1 to 300, the middle 4bits is any value, and the last 4bits is between 7 to 11; [**][0][20-100] indicates, the minimum 8bits is any value, the middle 4bits is 0, and the last 8bits is between 20 to 100.
- 1. Click "**eNodeB-ID Range**" to display the eNodeB range configuration parameters, which descriptions are given in Table 3-48.

Parameter	Description		
Enable	Whether enable the eNodeB ID range function.		
enbidType	Type of eNodeB ID.		
	Options:		
	• normal		
	• segment		
enbidRange	Range of eNodeB ID to access the cell.		
	The following describes the expression method of eNodeB		
	ID, "-" indicates the upper and lower bound, "-" before is the		
	lower limit, "-" after is the upper limit.		
	Range: 0 to 512		

Table 3-48 eNodeB Range Parameter Description

2. Click "**Save**" to complete the setting of the eNodeB ID range.

3.7.6.8 CSFB Select Setting

1. Click "**CSFB Select**" to display the CSFB configuration parameters, which descriptions are given in Table 3-49.

<u>Bricells</u>

Table 3-49 CSFB Parameter Description

Parameter	Description	
CSFB Select GSM	The target selection basis of GSM system.	
	• 0: Make use of build-in default cell (Single DAHO cell)	
	 1: based on the result of measurement 	
CSFB Select	The target selection basis of WCDMA system.	
WCDMA	• 0: Make use of build-in default cell (Single DAHO cell)	
	 1: based on the result of measurement 	
CSFB Select	The target selection basis of CDMA2000 system.	
CDMA2000	0: Make use of build-in default cell (Single DAHO cell)	
	 1: based on the result of measurement 	

2. Click "Save" to complete the CSFB setting.

3.7.6.9 RAT Handover Priority

1. Click "**RAT Handover Priority**" to display the RAT handover priority configuration parameters, which descriptions are given in Table 3-50.

Parameter	Description
EUTRAN Priority Order	The priority of LTE mode.
	Options: 0~3
UTRAN Priority Order	The priority of UTRAN mode.
	Options: 0~3
GERAN Priority Order	The priority of GSM mode.
	Options: 0~3
CDMA Priority Order	The priority of CDMA mode.
	Options: 0~3

Table 3-50 RAT Handover Priority Parameter Description

2. Click "Save" to complete the RAT handover priority setting.

3.7.6.10 Web Switch

This function is used for troubleshooting. It does not recommend to be configured by customers.

3.7.6.11 Air Interface Speed Limit Enable

1. Click "**Air Interface Speed Limit Enable**" to display the air interface speed limit window.

- 2. Enable the function or not.
- 3. Click "Save" to complete the air interface speed limit setting.

3.7.7 Configure MOCN Parameter

1. On the left navigation column, select "**LTE Setting > MOCN Parameters**" to enter the MOCN parameter configuration page, as shown in Figure 3-38.

Figure 3-38 MOCN Setting

Basic Setting 🔹	MOCN List	
System 🔻		
Network 👻	Index PLMN cellReservedForOperat 1 46008 notReserved	orUse dedicatedPImnUserResources dedicatedPImnBea 0 0
BTS Setting 🔹		
LTE Setting 🔺	MOCN Setting	
LTE Freq/Cell	PLMN	cellReservedForOperatorUse
UMTS Freq/Cell		not reserved 💌
GSM Freq/Cell	Range: 5-6 Digit	dedicatedPImnBearerResources
5G Freq/Cell	0	0
Mobility Parameter	Range: 0-32	Range: 0-256
Advanced	Save	
MOCN Setting	>	

2. Click 🛨 on the right corner of the window to display the MOCN configuration parameters, as shown in Table 3-51.

Table 3-51 MOCN	Parameter	Description
-----------------	-----------	-------------

Parameter	Description	
PLMN	PLMN assigned by the operator.	
cellReservedForOperatorUse	Whether reserved the cell for operator.	
dedicatedPImnUserResources	The dedicated user resources.	
	Range: 0 to 32	
dedicatedPImnBearerResources	The dedicated user bear resources.	
	Range: 0 to 256	

3. Click "Save" to complete the MOCN setting.

3.7.8 Configure RRC Status Parameter

This function is used for control bearer Qos parameter of every QCI level.

1. On the left navigation column, select "LTE Setting > RRC Parameter" to enter the RRC status parameters page, as shown in Figure 3-39.

<u>Bricells</u>

Figure 3-39 RRC Status Parameter Setting

Basic Setting 🔹	RRC Status Parameters
System 🔻	
Network -	Index UEInactivityTimer QCI QosType priority packetDelayBudget DSCP DossessHoRequired RLCMode logicalChannelGroup pr 0 20 1 GBR 2 100 46 OFF UM 1 16
BTS Setting	1 20 2 GBR 4 150 46 OFF UM 2 1f 2 20 3 GBR 3 50 46 OFF UM 2 1f
LTE Setting	3 20 4 GBR 5 300 46 OFF AM 2 1(4 20 5 Non-GBR 1 100 46 OFF AM 3 1(
LTE Freq/Cell	5 20 6 Non-GBR 6 300 46 OFF AM 3 1(6 20 7 Non-GBR 7 100 46 OFF UM 3 1(
UMTS Freq/Cell	7 20 8 Non-GBR 8 300 46 OFF AM 3 1(8 20 9 Non-GBR 9 300 46 OFF AM 3 1(
GSM Freq/Cell	
5G Freq/Cell	Power Headroom Reporting
Mobility Parameter	•
Advanced	Index applicableQciList periodicPHRTimer prohibitPHRTimer dlPathlossChange 1 1,2,3,4,5,6,7,8,9 sf100 sf100 dB3
MOCN Setting	
RRC Parameter	>

2. Click 🜣 to display the RRC configuration parameters, as shown in Table 3-52.

Parameter	Description		
Index	Index of RRC, assigned automatically by the system.		
UeInactivityTimer	The duration of timer of the eNodeB released when UE		
	has no service, unit is second.		
	"0" represents disabled the function. (Do not release UE		
	automatically).		
QCI	QCI level.		
QosType	RRC type.		
	GBR: Guaranteed Bit Rate		
	Non-GBR: None Guaranteed Bit Rate		
priority	Schedule priority. Range from 1 to 20.		
packetDelayBudget	Budget of package delay, unit is millisecond.		
DSCP	Select DSCP value.		
losslessHoRequired	Lossless handover switch. Enabled or disabled.		
RLCMode	RLC transfer mode. UM or AM.		
logicalChannelGroup	Select logical channel group.		
prioritisedBitRate	Select the priority of bit rate.		
bucketSizeDuration	Select the bucket size duration.		
trafficOffloadRequired	Enable or disable the traffic offload function.		
	If the LGW is enabled, the parameter should be set to		
	enabled.		

Table 3-52 RRC Status Parameter Description

3. Click • on the right corner of the window to display the power headroom report configuration parameters, as shown in Table 3-53.

Table 3-53 Power Headroom Reporting Parameter Description

Parameter	Description	
applicableQciList	The applicable QCI list.	
periodicPHRTimer	Select the period of PHR timer from dropdown list.	
prohibitPHRTimer	Select the prohibited period of PHR timer from	
	dropdown list.	
dlPathlossChange	Select the threshold of downlink loss path from	
	dropdown list.	

5. Click "Save" to complete the setting of the RRC status parameters.

3.7.9 SON Function Setting

1. Select "LTE Setting > SON Function Setting" to enter the SON function page, as shown in Figure 3-40.

Figure 3-40 SON Function Setting

Basic Setting 🔹 🔻		SON Function Enabled	
System 🔻		selfConfigEnabled	lteSonNLEnabled
Network 🔻		true 🔻	true 🔻
BTS Setting 🔹			
LTE Setting		true	true
LTE Freq/Cell	1.		
UMTS Freq/Cell		activeNeighborManagement true	pciCollisionDetectionResolution false
GSM Freq/Cell			
5G Frog/Coll		pciCollisionResolutionUnderControl	pciConfusionResolutionEnabled
50 Fled/Cell		false	true 🔻
Mobility Parameter			
Advanced		x2ConnectionEnabled	IteSonPersistenceDetermination
MOCN Setting		false	true
RRC Parameter		clearPersistence	tpmEnabled
SON Function Setting	>	true 🔻	false 🔻
Reboot		tomMOEnabled	
Logout		false 🔻	

2. Configuration parameters are given in Table 3-54.

Class	Parameter	Description
SON	selfConfigEnabled	When this parameter is set to " true ", the PCI
Function		conflict detection is allowed.
		The default value is true.
	IteSonNLEnabled	Whether enable the NL function.

Table 3-54 SON Function Parameter Description

Class	Parameter	Description
	INL-ANREnabled	Whether enable the assisted NL neighbor
		discovery.
	UE-ANR Enabled	Whether enable the assisted UE neighbor
		discovery.
	activeNeighborManage	Whether activate the neighbor management.
		Whather enable PCI collision detection
	esolution	resolution
	nciConfusionResolutio	Whether enable PCI confusion resolution
	nEnabled	
	x2ConnectionEnabled	Whether enable X2 connection function.
	IteSonPersistenceDete	Whether enable the SON persistence
	rmination	determination function.
	clearPersistence	Whether enable the SON persistence history
		data clear function.
	tpmEnabled	Whether enable the TPM function.
	tpmMOEnabled	Whether enable the MOE function.
SON NL	IteCellDetectThreshRs	Set the RSRP threshold of neighbor cell
Scan	rpForNI	scanning.
	IteFreqDetectThreshR	Set the RSSI threshold of neighbor frequency
	ssi	scanning.
	qRxLevMinForDetectFr	Minimum of Rx level for scanned neighbor
	eq	frequency.
	qQualMinForDetectFre	Minimum of QQual for scanned neighbor
	q	frequency.
	qOffsetForDetectFreq	Quality offset of idle status for scanned
		neighbor frequency.
	cmOffsetForDetectFre	Quality offset of connection status for scanned
	q	neighbor frequency.
	pMaxForDetectFreq	Maximum transmission power of terminal for
		scanned neighbor frequency.
	threshXHighForDetect	Srxlev reselection threshold of high priority for
	Freq	scanned neighbor frequency.
	threshXLowForDetectF	Srxlev reselection threshold of low priority for
	req	scanned neighbor frequency.
	threshXHighQForDete	Squal reselection threshold of high priority for
	ctFreq	scanned neighbor frequency.
	threshXLowQForDetec	Squal reselection threshold of low priority for
	tFreq	scanned neighbor frequency.
	tReselectionForDetect	Reselection duration for scanned neighbor
	Freq	frequency.

_

Class	Parameter	Description
Band Scan	scanBandId	ID of the scanned frequency band.
	earfcnStart	Start EARFCN.
	earfcnSpacing	Spacing for frequency band scanning.
	earfcnNumber	Number for frequency band scanning.

2. Click "Save" to complete the SON function setting.

3.8 Reboot

- 1. In the navigation column on the left, select "**Reboot**" to enter the base station reboot page.
- 2. Click "Reboot Now" to complete the rebooting operation.

Wait for about three mins, the base station will reboot completely. Be careful to operate this operation.

Appendix: Regulatory Compliance

Model No.	Description		
	NeutrinoE224 indoor FDD eNodeB –2x125mW (21 dBm), 2 port,		
pBS42020	5 dBi internal antenna, UL2500–2570MHz/DL2620–2690MHz,		
	Band7		

FCC Compliance

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Warning:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.