

FCC TEST REPORT

FCC ID: 2AFCB-C5 On Behalf of Shanghai EFIX Geomatics Co.,Ltd Geodetic GNSS Receiver Model No.: C5

Prepared for	:	Shanghai EFIX Geomatics Co.,Ltd
Address	:	Building 1, 158 Shuanglian Road, Qingpu District, Shanghai

Prepared By	Shenzhen Alpha Product Testing Co., Ltd.			
Address	Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China			

Report Number	:	A2206032-C02-R05
Date of Receipt	:	June 6, 2022
Date of Test	:	June 6, 2022 - June 30, 2022
Date of Report	:	July 1, 2022
Version Number	:	VO

TABLE OF CONTENTS

De	scrip	tion	Page
1.	Sum	mary of Standards And Results	5
	1.1.	Description of Standards and Results	5
2.	Gen	eral Information	6
	2.1.	Description of Device (EUT)	6
	2.2.	Accessories of Device (EUT)	7
	2.3.	Tested Supporting System Details	7
	2.4.	Block Diagram of connection between EUT and simulators	7
	2.5.	Test Mode	8
	2.6.	Test Conditions	9
	2.7.	Test Facility	9
	2.8.	Measurement Uncertainty	9
	2.9.	Test Equipment List	10
3.	Test	Results and Measurement Data	11
	3.1.	Transmitter Power (Conducted)	11
	3.2.	Occupied Bandwidth and Emission Mask	13
	3.3.	Spurious Emissions (conducted)	19
	3.4.	Radiated Spurious Emission	22
	3.5.	Transient Frequency Behavior	27
	3.6.	Behavior Frequency Stability	29
	3.7.	Modulation Characteristic	32
	3.8.	Adjacent channel power	33

TEST REPORT DECLARATION

Applicant	:	Shanghai EFIX Geomatics Co.,Ltd		
Address	:	Building 1, 158 Shuanglian Road, Qingpu District, Shanghai		
Manufacturer	:	Shanghai EFIX Geomatics Co.,Ltd		
Address	:	Building 1, 158 Shuanglian Road, Qingpu District, Shanghai		
EUT Description	:	Geodetic GNSS Receiver		
		(A) Model No. : C5		

(B) Trademark : EF

Measurement Standard Used:

FCC CFR Title 47 Part 90, FCC CFR Title 47 Part 2, RSS-119 Issue 12, RSS-Gen Issue 5, ANSI C63.26: 2015, ANSI TIA-603-E:2016

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 2, Part 90, RSS-119, RSS-Gen limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....:

Reak Yang Project Engineer

Rom. Ky

Approved by (name + signature).....:

Simple Guan Project Manager

Date of issue.....

July 1, 2022

Revision History

Revision	Issue Date	Revisions	Revised By
V0	July 1, 2022	Initial released Issue	Reak Yang

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Test Item	Test Requirement	Standards Paragraph	Result
Transmitter Power(Conducted)	FCC PART 90§ 90.205,RSS-119§ RSS-119(5.4)		Р
Occupied Bandwidth & Emission Mask	FCC PART 90§ 90.209,§ 90.210RSS-119§ RSS-119(5.5)		Ρ
Spurious Emissions(conducted)	FCC PART 90 RSS-119	§ 90.210, § RSS-119(5.8)	Ρ
Spurious Emissions(Radiated)	FCC PART 90 § 90.210, RSS-119 § RSS-119(5.8)		Р
Transient Frequency Behavior	FCC PART 90 RSS-119	§ 90.214, § RSS-119(5.9)	Р
Frequency Stability	FCC PART 90 RSS-119	§ 90.213, § RSS-119(5.3)	Ρ
Modulation Characteristics - Audio Frequency Response	FCC PART 2 FCC PART 90 § 2.1047(a), § 90.2		N/A
Modulation Characteristics - Modulation Limiting	FCC PART 2 FCC PART 90	PART 2 § 2.1047(b), § 90.207 PART 90	
Adjacent channel power	FCC PART 90	§ 90.221	Р

Note: 1. P is an abbreviation for Pass.

2. F is an abbreviation for Fail.

3. N/A is an abbreviation for Not Applicable.

4. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Description	:	Geodetic GNSS Receiver
Trademark	:	EFIX
Model Number	:	C5
DIFF.	:	N/A
Test Voltage	:	DC 8.4V From Battery, DC 5V From Adapter
UHF		
Operation frequency	:	410MHz-470MHz
Conducted Power	:	0.5W(26.99dBm), 1W(30dBm)
Channel spacing	:	12.5KHz, 25KHz
Modulation type	:	GMSK
Antenna Type	:	External Antenna, Maximum Gain is 4.0dBi. (Antenna information is provided by applicant.)
Software version	:	V1.0
Hardware version	:	V1.7.2

Remark: 1. The worst-case simultaneous transmission configuration was evaluated with no non-compliance found. Results in this report are only for UHF function, and there is no other transmitter involved.

Note: All Conducted Power have been tested, and recorded the worst case 1W(30dBm) results in this report.

2.2. Accessories of Device (EUT)

Accessories	:	AC Adapter
Manufacturer	:	Yisheng Electronics Co., Ltd.
Model	:	EA1012AVRU-050
Ratings	:	Input: AC 100-240V, 1.0A, 50-60Hz Output: DC 5V,2.4A

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDOC
1.	DC Power	JUNKE	JK120100	/	/

2.4. Block Diagram of connection between EUT and simulators

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

2.5. Test Mode

All modes and data rates and positions were investigated. Test modes are chosen to be reported as the worst case configuration below:

Test Mode					
Item	Description of operation mode	Note			
1	GMSK+CS12.5KHz+TX	at maximum rated power for transmitter			
2	GMSK+CS25KHz+TX	at maximum rated power for transmitter			

Note: The worst case modes for all test are the item 1 and item 3.

Description Operation Frequency

GMSK					
Test Channel	Channel spacing (KHz)	Frequency(MHz)			
Low	12.5	410.050			
LOW	25	410.050			
Mid	12.5	451.000			
IVIId	25	451.000			
Llink	12.5	469.950			
High	25	469.950			

2.6. Test Conditions

ltems	Required	Actual
Temperature range:	15-35 ℃	24 ℃
Humidity range:	25-75%	56%
Pressure range:	86-106kPa	980kPa

2.7. Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293631

July 15, 2019 Certificated by IC Registration Number: CN0085

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	1.63dB
Uncertainty for Radiation Emission test in 3m chamber	3.5dB
(below 30MHz)	3.74dB(Polarize: V)
Uncertainty for Radiation Emission test in 3m chamber	3.76dB(Polarize: H)
(30MHz to 1GHz)	3.77dB(Polarize: V)
Uncertainty for Radiation Emission test in 3m chamber	3.80dB(Polarize: H)
(1GHz to 25GHz)	5.06×10 ⁻⁸ GHz
Uncertainty for radio frequency	0.40dB
Uncertainty for conducted RF Power	1.63dB
Uncertainty for temperature	0.2°C
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.9. Test Equipment List

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2020.09.02	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2021.08.25	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2021.08.25	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03-102 082-Wa	2021.08.25	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2021.08.25	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2021.08.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2021.08.30	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00059	2021.08.30	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2021.08.25	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2021.08.25	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2021.08.25	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2021.08.25	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2021.08.25	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2021.08.25	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2021.08.25	1 Year
Horn Antenna	SCHWARZBECK	BBHA9170	/	00946	2021.08.30	2 Year
Preamplifier	SKET	LNPA_1840- 50	/	SK2018101801	2021.08.25	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2021.08.25	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2021.08.25	1 Year
Temp. & Humid. Chamber	Weihuang	WHTH-1000- 40-880	/	100631	2022.04.22	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2021.08.25	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A
Oscilloscope	Agilent	54833A	/	165521	2021.08.25	1Year

Software Information					
Test Item	Software Name	Manufacturer	Version		
RE	EZ-EMC	farad	Alpha-3A1		
CE	EZ-EMC	farad	Alpha-3A1		
RF-CE	MTS 8310	MWRFtest	V2.0.0.0		

3. Test Results and Measurement Data

3.1. Transmitter Power (Conducted)

3.1.1.Test Specification

Test Requirement:	Part 90.205, RSS-119(5.4)			
Test Method:	FCC part 2.1046			
Limits:	Please refer section FCC Part 90.205 and , RSS-119(5.4)			
Test Setup:	Power Meter EUT			
Test Procedure:	a) Connect the equipment as illustrated. b) Turn on the power meter c) Record value			
Test Result:	PASS			

3.1.2. Test Results

	GMSK mode (1W):						
Channel spacing (KHz)	Frequenc y (MHz)	Maximum Conducted Output Power(Peak) (dBm)	Maximum ERP (dBm)	Stated ERP Power (dBm)	Conducte d Output Power Limit (dBm)	Result	
12.5	410.050	29.833	31.683	31.85	30±1	PASS	
25	410.050	29.742	31.592	31.85	30±1	PASS	
12.5	451.000	29.876	31.726	31.85	30±1	PASS	
25	451.000	29.853	31.703	31.85	30±1	PASS	
12.5	469.950	29.846	31.696	31.85	30±1	PASS	
25	469.950	29.883	31.733	31.85	30±1	PASS	

	GMSK mode (0.5W):						
Channel spacing (KHz)	Frequenc y (MHz)	Maximum Conducted Output Power(Peak) (dBm)	Maximum ERP (dBm)	Stated ERP Power (dBm)	Conducte d Output Power Limit (dBm)	Result	
12.5	410.050	26.675	28.525	28.84	26.99±1	PASS	
25	410.050	26.644	28.494	28.84	26.99±1	PASS	
12.5	451.000	26.851	28.701	28.84	$26.99\!\pm\!1$	PASS	
25	451.000	26.773	28.623	28.84	26.99±1	PASS	
12.5	469.950	26.831	28.681	28.84	$26.99\!\pm\!1$	PASS	
25	469.950	26.776	28.626	28.84	26.99±1	PASS	

Note: 1. ERP= Maximum Conducted Output Power(Peak) + Antenna Gain – 2.15dB

3.2. Occupied Bandwidth and Emission Mask

3.2.1.Test Specification

Test Requirement:	FCC Part 90.209, FCC Part 90.210, RSS-119(5.5)
Test Setup:	
	Spectrum Analyzer EUT
Test Procedure:	The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the Frequency band \pm 50KHz from the carrier frequency for Occupied Bandwidth, the resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the Frequency band \pm 100KHz from the carrier frequency for Emission Mask.
Test Result:	PASS

3.2.2.Test data

Occupied Bandwidth:

GMSK 12.5KHz Channel Spacing:						
Channel	Frequency (MHz)	26dB Bandwidth (KHz)	99% Occupied Bandwidth (KHz)	99% Occupied Bandwidth Limit (KHz)	Result	
Low	410.050	12.04	9.941	11.25	PASS	
Mid	451.000	12.14	9.853	11.25	PASS	
High	469.950	12.01	9.848	11.25	PASS	

GMSK 25K	GMSK 25KHz Channel Spacing:					
Channel	Frequency (MHz)	26dB Bandwidth (KHz)	99% Occupied Bandwidth (KHz)	99% Occupied Bandwidth Limit (KHz)	Result	
Low	410.050	21.60	19.137	20	PASS	
Mid	451.000	21.61	19.079	20	PASS	
High	469.950	20.69	19.169	20	PASS	

Emission Mask:

GMSK 12.5KHz Channel Spacing:					
Channel	Frequency (MHz)	Applicable Mask	RBW	Result	
Low	410.050	D	100Hz	PASS	
Mid	451.000	D	100Hz	PASS	
High	469.950	D	100Hz	PASS	

GMSK 25KHz Channel Spacing:						
Channel	Frequency (MHz)	Applicable Mask	RBW	Result		
Low	410.050	С	100Hz	PASS		
Mid	451.000	С	100Hz	PASS		
High	469.950	С	100Hz	PASS		

Test plots as follows: GMSK 12.5KHz Channel Spacing: Occupied Bandwidth

Low: 410.050MHz

Mid: 451.000MHz

High: 469.950MHz

GMSK 25KHz Channel Spacing: Occupied Bandwidth

Agilent Spectrum Analyzer - Occupied BW					
Center Freq 410.050000 Mi	Hz Center Trig: Fr #Atten:	ENSE:INT SOURCE OFF Freq: 410.050000 MHz ee Run Avg Hol 30 dB	ALIGN OFF 07:25:194 Radio Sto d:>10/10 Radio De	M Jun 30, 2022 I: None vice: BTS	Frequency
Ref Offset 11 dB 10 dB/div Ref 35.00 dBm					
250 150 500	horman	man	4		Center Freq 410.050000 MHz
500 500 15.0 25.0 10.1 10	<i>M</i> .		Marry Marry	hong	
-35.0					
Center 410.1 MHz #Res BW 300 Hz	#\	/BW 1 kHz	Sp Sweep	an 50 kHz 527.2 ms	CF Step 5.000 kHz
Occupied Bandwidth 19	.137 kHz	Total Power	36.5 dBm		Auto Man
Transmit Freq Error	125 Hz	OBW Power	99.00 %		0 Hz
x dB Bandwidth	21.60 kHz	x dB	-26.00 dB		

Low: 410.050MHz

Mid: 451.000MHz

00 RF 50 Q AC Center Freq 451.000000 N	AlHz #IFGain:Low → Atten	SENSE:INT SOURCE OFF r Freq: 451.000000 MHz ree Run Avg Hol : 30 dB	ALIGN OFF 07: Rad d>10/10 Rad	26:59 AM Jun 30, 2022 lio Std: None lio Device: BTS	Frequency
Ref Offset 11 dB 10 dB/div Ref 35.00 dBm	<u> </u>				
25.0 15.0 5.00	Marmon	-long Monor	A		Center Freq 451.000000 MHz
500 150 250 360			North Arrest	who who	
-45.0					
Center 451 MHz #Res BW 300 Hz	#1	VBW 1 kHz	Sw	Span 50 kHz eep 527.2 ms	CF Step 5.000 kHz
Occupied Bandwidt	^h 9.079 kHz	Total Power	36.4 dB	m	<u>Auto</u> Man Freg Offset
Transmit Freq Error	144 Hz	OBW Power	99.00	%	0 Hz
x dB Bandwidth	21.61 kHz	x dB	-26.00 c	IB	

High: 469.850MHz

GMSK 12.5KHz Channel Spacing: Emission Mask

Mid: 451.000MHz

High: 469.950MHz

GMSK 25KHz Channel Spacing: Emission Mask

High: 469.950MHz

3.3. Spurious Emissions (conducted)

3.3.1.Test Specification

Test Requirement:	FCC Part 90.210, RSS-119(5.8)
Test Setup:	
	Spectrum Analyzer EUT
Test Limit:	Spectrum Analyzer EUT Modulation Type: GMSK FCC Part 22.359, 74.462, 80.211 and 90.210 and RSS Gen, RSS 119 Issue 12: For 6.25 bandwidth: On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 6.25 kHz at least: 55 + 10 log (Pwatts) = 55 + 10 log (1.0) =55.00 dB Calculation: Limit (dBm) =EL-55-10log10 (TP) Notes: EL is the emission level of the Output Power expressed in dBm, In this application, the EL is 30 dBm for High rated power. High: Limit (dBm) = 30 - 55 - 10log (3.0) = -25 dBm For 12.5 bandwidth: On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz at least: 50 + 10 log (Pwatts) = 50 + 10 log (1.0) =50.00 dB Note: In general, the worst case attenuation requirement shown above was applied. Calculation: Limit (dBm) =EL-50-10log10 (TP) Notes: EL is the emission level of the Output Power expressed in dBm, In this application, the EL is 30 dBm for High rated power. Limit (dBm) = 30.00 - 50 - 10log (1.0) = -20 dBm For 25 kHz bandwidth: On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 62.5 kHz at least: 43 + 10 log (Pwatts) = 43 + 10 log (1.0) = 43.00 dB Note: In general, the worst case attenuation requirement shown above was applied. Calculation: Limit (dBm)
	20 dB down than the limit.
	4. ERP for below 1GHz and EIRP above 1GHz.
Test Result:	PASS

3.3.2.Test data

Test plots as follows:

GMSK 12.5KHz Channel Spacing:

Agiler 00 Mar	t Spectro ker 1	um Anal RF 410.3	lyzer - Swe 50 g 240000	pt SA & 1000 MF	iz PNO: Fast G	Trig: Fre Atten: 3	NSEINT SOUR e Run) dB	CE OFF Avg Type Avg Hold:	ALIGN OFF C Log-Pwr 37/100	08:32:11 AM TRACE TYPE DET	Jun 30, 2022	Trace/Detector	Agilen W Star	t Spectrum t Freq 1	Analyzer - Sw RF 50 s 1.000000	nget SA AC 1000 GH:	Z PNO: Fast G	Trig: Fre Atten: 3	e Run d B	Avg Type Avg Hold	ALIGN OFF : Log-Pwr >100/100	08:33:33 AM TRAC TYS DE	(Jun 30, 2022 2 2 3 4 5 1 7 P 1 1 1 1 1 1	Frequency
10 di	3/div	Ref (Ref	offset 10 30.00 d	dB Bm					M	kr1 410.2 23.41	24 MHz 2 dBm	1	10 dE	R Bidiv R	ef Offset 10 ef 30.00	dBm					N	/kr1 1.2 -36.0	32 GHz 93 dBm	Auto Tune
20.0						1						Clear Write	20.0											Center Freq 3.00000000 GHz
10.0												Trace Average	10.0 0.00											Start Freq 1.000000000 GHz
-10.0											-13 00 dBH	Max Hold	-10.0 -20.0										-13.02 dB+	Stop Freq 5.00000000 GHz
-30.0												Min Hold	-30.0	1			مرور استون	والافار القامهم	لماسول العلوب عالي	to Salas and			whether	CF Step 400.000000 MHz <u>Auto</u> Man
-50.0	h, h, h	Negger	hind	, dende	Westan	Whiteway	heinerei	mung	ara ang sang sang sang sang sang sang sang	oluguitero	pole-milan	View Blank Trace On	-50.0	and the second	an in 1997 a star a star									Freq Offset 0 Hz
-60.0												More 1 of 3	-60.0											
Star #Re MSG	t 30.0 s BW	MHz 100 k	Hz		#VB\	N 300 kHz		ę	Sweep 9	Stop 1.00 2.73 ms (1	000 GHz 001 pts)		Star #Res MISG	t 1.000 (5 BW 1.0	GHZ) MHZ		#VBV	/ 3.0 MHz			Sweep 6	Stop 5 .667 ms (.000 GHz 1001 pts)	

Low: 410.050MHz

Mid: 451.000MHz

High: 469.950MHz

Agilent Spectrum Analyzer - Swept SA		Agilent Spectrum Analyzer - Swept SA	
Kernel 1 470.380000000 MHz Marker 1 470.380000000 MHz Trig: Free Run Avg Type: Log-Pwr Trig: Free	30,2022 2 3 4 5 6 Peak Search	Recall St Row 1 Fig. Free Run Trin: Free Run Availed Spf100 Trin: Free Run Availed Spf100 Trin: Free Run Availed Spf100 Trin: Free Run Trin: Free Run Trin	te
IFGain:Low Atten: 30 dB	NNNNN NextPeak	IFGaint.ow Atten: 30 dB	File
Ref Offset 10 dB 23.650	dBm	Ref Offset 10 dB -34.142 dBm 10 dB/div -34.142 dBm	
	Next Pk Right	200 Edit Reg	ster,
10.0		10.0	
0.00	Next Pk Left	0.00	mpty)
-10.0	-13 00 08M	-18.0	ster 2
-20.0	Marker Delta		mpty)
0.02	Mkr→CF	-3001 Reg	ster 3 mpty)
		-00 marshallet all the design of the second and the second and the second and the second and the second sec	
500 March March Martin Contact March Martin Martin March Mar	Mkr→RefLvl	-500	iter 4 mpty)
-50.0		-600	
Start 30.0 MHz Stop 1.000	0 GHz 1 of 2	Start 1.000 GHz Stop 5.000 GHz	1 of 3
#Res BW 100 kHz #VBW 300 kHz Sweep 92.73 ms (100	01 pts)	#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 6.667 ms (1001 pts)	
MSG STATUS		MSG File <uhf 25k_0001.state="" mask420=""> recalled STATUS</uhf>	

GMSK 25KHz Channel Spacing:

Mid: 451.000MHz

Agiler 00 Mar	t Spectru ker 1	um Analy RF 470.3	zer - Swe 50 g 80000	Pt SA AC 1000 MI	Hz PNO: Fa FGain:Lo	я (р	Trig: F Atten:	sense in ree Rur 30 dB	VT SOURCE	OFF ▲ Avg Type Avg Hold:	ALIGN OFF C Log-Pwr 40/100	08:39:19 A TRA TY D	M Jun 30, 2022 CE 1 2 3 4 5 C PE M CT P N N N N N	Peak Search	Agiler 01 Rov	nt Spectrum v 1	RF 501	ept SA	PNO: Fast G	Trig: Fre Atten: 3	NSE:INT SOUR	Avg Type Avg Hold	ALIGN OFF Cog-Pwr 60/100	08:39:31 Al TRAC TVI D	4.Jun 30, 2022 E 1 2 3 4 5 1 E M M M M M M	Recall State
10 dl	3/div	Ref O Ref 3	ffset 10 10.00 d	dB Bm							М	kr1 470. 23.7	38 MHz 95 dBm	Next Peak	10 dl	B/div	Ref Offset 1 Ref 30.00	0 dB dBm					٨	/kr1 1.4 -36.0	08 GHz 31 dBm	From File
20.0							1							Next Pk Right												Edit Register Names
10.0 0.00														Next Pk Left												Register 1 (empty)
-10.0													-13.00 dBn	Marker Delta											-13.00 dBn	Register 2 (empty)
-30.0														Mkr→CF			•1			ath ab a ta	. atticked	dit			11 descut	Register 3 (empty)
-50.0	us f	a st aan	Lab aver	nteres and	, ing , light open	4hap		ellery)	migand	h-part-g-igge	wyzenapółkate	alderproversjed	etaletation	Mkr⊸RefLvl		esteritory	u, liyyerkanadi	ملحسماليعيش					romo _{nte} je	and the second		Register 4 (empty)
-60.0														More												More
Star #Re ^{MSG}	8 BW 1	MHz 100 kł	lz		#	VBW :	300 kl	lz			Sweep 9	Stop 1. 92.73 ms	0000 GHz (1001 pts)	1012	Star #Re	t 1.000 s BW 1 VFile <u< th=""><th>GHZ 0 MHZ HF MASK4</th><th>20 25K_00</th><th>#WEW 001.state> rec</th><th>3.0 MHz</th><th>:</th><th></th><th>Sweep 6</th><th>Stop 5 .667 ms (</th><th>000 GHz 1001 pts)</th><th>TOIS</th></u<>	GHZ 0 MHZ HF MASK4	20 25K_00	#WEW 001.state> rec	3.0 MHz	:		Sweep 6	Stop 5 .667 ms (000 GHz 1001 pts)	TOIS

3.4. Radiated Spurious Emission

3.4.1.Test Specification

Test Requirement:	FCC Part 90.210, RSS-119(5.8)											
Test Method:	ANSI C63.26											
Measurement Distance:	3 m											
Antenna Polarization:	Horizontal & Vertical											
Operation mode:	Refer to item 4.1											
Receiver Setup:	FrequencyRBWVBW9kHz- 150kHz200Hz1kHz150kHz- 30MHz9kHz30kHz30MHz-1GHz100KHz300KHzAbove 1GHz1MHz3MHz											
Limit:	For equipment using 25 kHz channel spacing, on any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10log (P) dB. For equipment using 12.5 kHz channel spacing, on any frequency removed from the center of The authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log(P) dB or 70 dB,											
Test setup:	Receiver Test Antenna Antenna RECEIVER UNDER TEST TURNTABLE STANDARD TEST SITE											
Test Procedure:	The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on turntable. The measurement antenna was placed at a distance of 3 meter from the EUT. During the tests, the antenna height and polariza as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT .The test was perform by placing the EUT on 3-orthogonal axis. The frequency range up to teeth harmonic of the fundamental frequency was investigated. Remove the EUT and replace it with substitution antenna. A sig generator was connected to the substitution antenna by a											

	non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution. Spurious emissions in dB =10, 1g (TXpwr in Watts/0.001)-the absolute level Spurious attenuation limit in dB =50+10 Log ₁₀ (power out in Watts) for EUT with a 12.5 kHz and 25KHz channel bandwidth.
Test results:	PASS

3.4.2.Test Data

GMSK:

Test Mode: Low: 410.050MHz, Channel Spacing 12.5KHz

_	Reading				Emission		
Frequency	level	Antenna	Cable loss	Ant.Gain	level	Limit	Margin
(MHz)	(dBm)	Polarization	(dB)	(dBi)	(dBm)	(dBm)	(dB)
152.648	-92.11	V	0.24	31.35	-61.00	-20	-41.00
360.904	-96.67	V	0.26	31.34	-65.59	-20	-45.59
673.313	-94.80	V	0.42	31.24	-63.98	-20	-43.98
863.444	-100.11	V	0.58	30.71	-69.98	-20	-49.98
1263.509	-82.47	V	1.23	26.38	-57.32	-20	-37.32
3864.166	-80.59	V	1.68	25.47	-56.8	-20	-36.8
285.253	-97.23	Н	0.43	31.24	-66.42	-20	-46.42
399.050	-95.76	Н	0.45	30.68	-65.53	-20	-45.53
479.190	-92.05	Н	0.64	30.85	-61.84	-20	-41.84
675.773	-101.53	Н	0.79	31.12	-71.2	-20	-51.2
1368.694	-83.14	Н	1.29	26.12	-58.31	-20	-38.31
3258.712	-76.82	Н	1.62	25.41	-53.03	-20	-33.03

Test Mode: Mid: 451.000MHz, Channel Spacing 12.5KHz

Frequency	Reading level	Antenna	Cable loss	Ant.Gain	Emission level	Limit	Margin
(MHz)	(dBm)	Polarization	(dB)	(dBi)	(dBm)	(dBm)	(dB)
155.210	-89.82	V	0.24	31.35	-58.71	-20	-38.71
364.462	-91.47	V	0.26	31.34	-60.39	-20	-40.39
669.814	-97.30	V	0.42	31.24	-66.48	-20	-46.48
862.247	-94.03	V	0.58	30.71	-63.90	-20	-43.90
1261.405	-90.30	V	1.23	26.38	-65.15	-20	-45.15
3858.853	-79.33	V	1.68	25.47	-55.54	-20	-35.54
290.754	-100.48	Н	0.43	31.24	-69.67	-20	-49.67
397.852	-91.98	Н	0.45	30.68	-61.75	-20	-41.75
479.276	-102.01	Н	0.64	30.85	-71.80	-20	-51.8
683.561	-100.66	Н	0.79	31.12	-70.33	-20	-50.33
1368.272	-79.58	Н	1.29	26.12	-54.75	-20	-34.75
3262.627	-81.15	Н	1.62	25.41	-57.36	-20	-37.36

Frequency	Reading level	Antenna	Cable loss	Ant.Gain	Emission level	Limit	Margin
(MHz)	(dBm)	Polarization	(dB)	(dBi)	(dBm)	(dBm)	(dB)
149.976	-91.69	V	0.24	31.35	-60.58	-20	-40.58
363.698	-93.99	V	0.26	31.34	-62.91	-20	-42.91
672.157	-101.44	V	0.42	31.24	-70.62	-20	-50.62
867.135	-99.31	V	0.58	30.71	-69.18	-20	-49.18
1259.426	-86.44	V	1.23	26.38	-61.29	-20	-41.29
3858.867	-85.14	V	1.68	25.47	-61.35	-20	-41.35
290.920	-99.75	Н	0.43	31.24	-68.94	-20	-48.94
405.147	-91.49	Н	0.45	30.68	-61.26	-20	-41.26
473.758	-97.39	Н	0.64	30.85	-67.18	-20	-47.18
677.316	-101.15	Н	0.79	31.12	-70.82	-20	-50.82
1372.894	-83.19	Н	1.29	26.12	-58.36	-20	-38.36
3264.131	-80.05	Н	1.62	25.41	-56.26	-20	-36.26

Test Mode: High: 469.950MHz, Channel Spacing 12.5KHz

Test Mode: Low: 410.050MHz, Channel Spacing 25KHz

Frequency	Reading level	Antenna	Cable loss	Ant.Gain	Emission level	Limit	Margin
(MHz)	(dBm)	Polarization	(dB)	(dBi)	(dBm)	(dBm)	(dB)
149.365	-95.61	V	0.24	31.35	-64.50	-13	-51.50
360.122	-91.23	V	0.26	31.34	-60.15	-13	-47.15
672.254	-94.81	V	0.42	31.24	-63.99	-13	-50.99
867.320	-98.91	V	0.58	30.71	-68.78	-13	-55.78
1259.385	-84.91	V	1.23	26.38	-59.76	-13	-46.76
3856.570	-82.80	V	1.68	25.47	-59.01	-13	-46.01
287.978	-96.61	Н	0.43	31.24	-65.80	-13	-52.80
402.660	-92.99	Н	0.45	30.68	-62.76	-13	-49.76
475.190	-90.79	Н	0.64	30.85	-60.58	-13	-47.58
678.902	-93.17	Н	0.79	31.12	-62.84	-13	-49.84
1370.493	-81.64	Н	1.29	26.12	-56.81	-13	-43.81
3258.430	-80.11	Н	1.62	25.41	-56.32	-13	-43.32

Frequency	Reading level	Antenna	Cable loss	Ant.Gain	Emission level	Limit	Margin
(MHz)	(dBm)	Polarization	(dB)	(dBi)	(dBm)	(dBm)	(dB)
157.727	-97.90	V	0.24	31.35	-66.79	-13	-53.79
361.299	-92.36	V	0.26	31.34	-61.28	-13	-48.28
670.384	-90.08	V	0.42	31.24	-59.26	-13	-46.26
859.190	-94.09	V	0.58	30.71	-63.96	-13	-50.96
1262.116	-82.57	V	1.23	26.38	-57.42	-13	-44.42
3860.246	-75.65	V	1.68	25.47	-51.86	-13	-38.86
285.515	-96.14	Н	0.43	31.24	-65.33	-13	-52.33
404.347	-99.32	Н	0.45	30.68	-69.09	-13	-56.09
472.970	-93.59	Н	0.64	30.85	-63.38	-13	-50.38
682.270	-91.48	Н	0.79	31.12	-61.15	-13	-48.15
1370.178	-80.51	Н	1.29	26.12	-55.68	-13	-42.68
3261.045	-77.16	Н	1.62	25.41	-53.37	-13	-40.37

Test Mode; Mid: 451.000MHz, Channel Spacing 25KHz

Test Mode: High: 469.950MHz, Channel Spacing 25KHz

Frequency	Reading	Antenna	Cable loss	Ant Gain	Emission	Limit	Margin
(MHz)	(dBm)	Polarization	(dB)	(dBi)	(dBm)	(dBm)	(dB)
154.820	-95.69	V	0.24	31.35	-64.58	-13	-51.58
363.368	-91.14	V	0.26	31.34	-60.06	-13	-47.06
670.811	-94.58	V	0.42	31.24	-63.76	-13	-50.76
865.805	-90.69	V	0.58	30.71	-60.56	-13	-47.56
1258.551	-79.61	V	1.23	26.38	-54.46	-13	-41.46
3858.923	-79.25	V	1.68	25.47	-55.46	-13	-42.46
291.012	-90.29	Н	0.43	31.24	-59.48	-13	-46.48
400.454	-93.94	Н	0.45	30.68	-63.71	-13	-50.71
475.645	-94.15	Н	0.64	30.85	-63.94	-13	-50.94
680.453	-98.10	Н	0.79	31.12	-67.77	-13	-54.77
1373.809	-85.31	Н	1.29	26.12	-60.48	-13	-47.48
3264.509	-75.24	Н	1.62	25.41	-51.45	-13	-38.45

3.5. Transient Frequency Behavior

3.5.1.Test Specification

Test Requirement:	FCC Part 90.214, RSS-119(5.9)					
Test Setup:	Oscilloscope EUT				EUT	
	Channel Bandwidth		Maximum Frequency	Transient Duration Limit (ms)		
	(kHz)	(Notes 1, 2)	(kHz)	138-174 MHz	406.1-512 MHz	
	25	t ₁	±25	5	10	
		t2	±12.5	20	25	
Test Limit		t3	±25	5	10	-
	12.5	t ₁	±12.5	5	10	-
		t ₂	±6.25	20	25	-
		t3	±12.5	5	10	
	6.25	t ₁	±6.25	5	10	-
	0.25	t ₂	±3.125	20	25	
	The FUT		± 0.25	 climate	chamb	ar and connected to an
	The EUT was set in the chinate champer and connected to an					
	external L	JC power	supply a		Jowers	upply. The RF output was
Test Procedure:	directly of	connecte	d to Os	cillosco	pe. Th	e coupling loss of the
	additional cables was recorded and taken in account for all the					
	measure	ments. Th	ne result v	was rec	orded.	
Test Result:	PASS					

3.5.2.Test data

Test Plots for channel spacing 25KHz, EUT power setting: Maximum.

Remark: Only list the worst data for channel spacing 25KHz, modulation GMSK.

3.6. Behavior Frequency Stability

3.6.1.Test Specification

Test Requirement:	FCC Part 90.213, RSS-119(5.3)				
Test Method:	ANSI C63.26, RSS-Gen				
Test Setup:	Laptop RF Communication Test Set Test Set Equipment Attenuator(s) Mini-Circuit Under Test Attenuator(s) Mini-Circuit Attenuator(s) Mini-Circuit RF Detector Modulation Hewlett Packard AC/DC Adapter Modulation				
Test Procedure:	Method of Measurement: After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply or AC power supply and the voltage was adjusted in the required ranges.				
Test Result:	PASS				

3.6.2. Test data

Conclusion: PASS						
Mode	Voltage	Frequency error	frequency error			
	(V)	(Hz)	(ppm)			
	9.0	3	0.007			
	8.8	2	0.005			
	8.6	2	0.005			
	8.4	1	0.002			
Opacing	8.2	3	0.007			
	8.0	2	0.005			
Limit	2.5ppm					
	9.0	6	0.014			
	8.8	5	0.011			
Middle Channel	8.6	5	0.011			
Spacing	8.4	3	0.007			
Opacing	8.2	4	0.009			
	8.0	5	0.011			
Limit	Limit 5ppm					

Mode	Temperature	Frequency error	frequency error		
	(°C)	(HZ)	(ppm)		
	-20	6	0.014		
	-10	4	0.009		
Middle Channel	0	6	0.014		
12.5KHz	10	6	0.014		
Channel Spacing	20	6	0.014		
	30	8	0.018		
	40	4	0.009		
	50	5	0.011		
Limit		2.5ppm			
	-20	10	0.023		
	-10	12	0.017		
Middle Channel	0	10	0.023		
25KHz	10	9	0.020		
Channel Spacing	20	8	0.018		
	30	10	0.023		
	40	12	0.027		
	50	12	0.027		
Limit	5ppm				

3.7. Modulation Characteristic

Test Requirement:	FCC Part 90.207
Test Result:	According to FCC § 2.1047(d), Part 22, 74, 90 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

3.8. Adjacent channel power

Test Requirement:	FCC Part 90.221				
Test Setup:	Spectrum Analyzer EUT				
	Maximum adjacent power levels for MHz band, no need compliance with	or frequend below -360	cies in the dBm:	450–470	
Test Limit:	Frequency offset	Maximum ACP (dBc) for devices 1 watt and less	Maximum ACP (dBc) for devices above 1 watt		
	25 kHz 50 kHz 75 kHz	– 55 dBc – 70 dBc – 70 dBc	– 60 dBc – 70 dBc – 70 dBc		
Test method:	The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the Frequency band 0Kz from the wanted frequency				
Test result:	Pass.				

GMSK 25KHz spacing 450MHz-470MHz

Carrier frequency	Test Frequency	Test Value	Limit	Result
(MHz)	(MHz)	(dBm)	(dBm)	
	449.925	-63.052	30-70=-40	PASS
	449.95	-58.426	30-70=-40	PASS
450,000	449.975	-58.449	30-55=-25	PASS
450.000	450.025	-60.632	30-55=-25	PASS
	450.05	-65.130	30-70=-40	PASS
	450.075	-64.142	30-70=-40	PASS
	469.875	-61.621	30-70=-40	PASS
	469.900	-60.494	30-70=-40	PASS
460.050	469.925	-59.142	30-55=-25	PASS
409.950	469.975	-61.156	30-55=-25	PASS
	470.000	-62.305	30-70=-40	PASS
	470.025	-62.840	30-70=-40	PASS

GMSK 25KHz spacing 450MHz-470MHz

----- END OF REPORT------