

| Suppleme                               | ental "Transmit Simultaneously" Test Report                                                  |
|----------------------------------------|----------------------------------------------------------------------------------------------|
| Report No.:                            | RFBARR-WTW-P20110181K-4                                                                      |
| FCC ID:                                | RAS-MT7921K                                                                                  |
| Test Model:                            | MT7921K                                                                                      |
| Received Date:                         | 2021/10/21                                                                                   |
| Test Date:                             | 2021/12/23 ~ 2022/1/11                                                                       |
| Issued Date:                           | 2022/1/18                                                                                    |
| Applicant:                             | MediaTek Inc.                                                                                |
| Address:                               | No. 1, Dusing 1st Rd., Hsinchu Science Park Hsinchu City 30078 Taiwan                        |
| Issued By:                             | Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch<br>Hsin Chu Laboratory |
| Lab Address:                           | E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,<br>Taiwa.               |
| Test Location:                         | E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,<br>Taiwan.              |
| FCC Registration / Designation Number: | 723255 / TW2022                                                                              |
|                                        |                                                                                              |
|                                        |                                                                                              |
|                                        |                                                                                              |
|                                        |                                                                                              |
|                                        |                                                                                              |



This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.



#### **Table of Contents**

| Releas                                                                                                                                                                                                                  | e Control Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                       | Certificate of Conformity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                  |
| 2                                                                                                                                                                                                                       | Summary of Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                  |
| 2.1<br>2.2                                                                                                                                                                                                              | Measurement Uncertainty<br>Modification Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>5                                                                                                                                                                                             |
| 3                                                                                                                                                                                                                       | General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                  |
| 3.1<br>3.1.1<br>3.2<br>3.2.1                                                                                                                                                                                            | General Description of EUT<br>Test Mode Applicability and Tested Channel Detail<br>Description of Support Units<br>Configuration of System under Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6<br>9<br>11<br>. 12                                                                                                                                                                               |
| 4                                                                                                                                                                                                                       | Test Types and Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 13                                                                                                                                                                                               |
| $\begin{array}{c} 4.1\\ 4.1.1\\ 4.1.2\\ 4.1.3\\ 4.1.4\\ 4.1.5\\ 4.1.6\\ 4.1.7\\ 4.1.8\\ 4.2.1\\ 4.2.2\\ 4.2.3\\ 4.2.4\\ 4.2.5\\ 4.2.6\\ 4.2.7\\ 4.3\\ 4.3.1\\ 4.3.2\\ 4.3.3\\ 4.3.4\\ 4.3.5\\ 4.3.6\\ 4.3.7\end{array}$ | Radiated Emission and Bandedge Measurement         Limits of Radiated Emission and Bandedge Measurement         Test Instruments         Test Procedures         Deviation from Test Standard         Test Setup         EUT Operating Conditions         Test Results (Mode 1)         Test Results (Mode 2)         Conducted Emission Measurement         Limits of Conducted Emission Measurement         Test Instruments         Test Procedures         Deviation from Test Standard         Test Results (Mode 2)         Conducted Emission Measurement         Limits of Conducted Emission Measurement         Test Instruments         Test Procedures         Deviation from Test Standard         Test Setup         EUT Operating Conditions         Test Results         Conducted Out of Band Emission Measurement         Limits of Conducted Out of Band Emission Measurement         Limits of Conducted Out of Band Emission Measurement         Test Setup         Test Instruments         Test Setup         Test Instruments         Test Procedures         Deviation from Test Standard         EUT Operating Conditions         Test Results <td>13<br/>13<br/>15<br/>17<br/>17<br/>18<br/>19<br/>20<br/>23<br/>26<br/>26<br/>26<br/>26<br/>27<br/>27<br/>27<br/>27<br/>27<br/>27<br/>27<br/>27<br/>27<br/>27<br/>27<br/>27<br/>30<br/>30<br/>30<br/>30<br/>30<br/>30<br/>30<br/>30</td> | 13<br>13<br>15<br>17<br>17<br>18<br>19<br>20<br>23<br>26<br>26<br>26<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 |
| 5                                                                                                                                                                                                                       | Pictures of Test Arrangements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 32                                                                                                                                                                                               |
| Appen                                                                                                                                                                                                                   | dix – Information of the Testing Laboratories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 33                                                                                                                                                                                               |



# **Release Control Record** Issue No. Description Date Issued RFBARR-WTW-P20110181K-4 Original release. 2022/1/18



#### 1 Certificate of Conformity

| Product:       | 2TX 11ax (WiFi6E) + BT/BLE Combo Card          |
|----------------|------------------------------------------------|
| Brand:         | MediaTek                                       |
| Test Model:    | MT7921K                                        |
| Sample Status: | Engineering sample                             |
| Applicant:     | MediaTek Inc.                                  |
| Test Date:     | 2021/12/23 ~ 2022/1/11                         |
| Standards:     | 47 CFR FCC Part 15, Subpart C (Section 15.247) |
|                | 47 CFR FCC Part 15, Subpart E (Section 15.407) |
|                | ANSI C63.10: 2013                              |

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

| Prepared by : | Vivian Huang                           | , Date:  | 2022/1/18 |  |
|---------------|----------------------------------------|----------|-----------|--|
|               | Vivian Huang / Specialist <sup>J</sup> |          |           |  |
| Approved by : | Clark Lin / Technical Manager          | _, Date: | 2022/1/18 |  |



#### 2 Summary of Test Results

| FCC Part 15, Subpart C, E (SECTION 15.247, 15.407)               |                                                 |      |                                                                                        |  |  |  |
|------------------------------------------------------------------|-------------------------------------------------|------|----------------------------------------------------------------------------------------|--|--|--|
| FCC<br>Clause                                                    | Test Item Result Remarks                        |      |                                                                                        |  |  |  |
| 15.207<br>15.407(b)(6)                                           | AC Power Conducted<br>Emission                  | PASS | Meet the requirement of limit.<br>Minimum passing margin is -4.29dB at<br>21.16740MHz. |  |  |  |
| 15.205 / 15.209 /<br>15.247(d)<br>15.407(b)<br>(1/2/3/4(i/ii)/6) | Radiated Emissions and Band<br>Edge Measurement | PASS | Meet the requirement of limit.<br>Minimum passing margin is -3.7dB at<br>35.75MHz.     |  |  |  |

#### Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

#### 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                        | Frequency      | Expanded Uncertainty<br>(k=2) (±) |
|------------------------------------|----------------|-----------------------------------|
| Conducted Emissions at mains ports | 150kHz ~ 30MHz | 1.9 dB                            |
| Padiated Emissions up to 1 CHz     | 9kHz ~ 30MHz   | 3.1 dB                            |
| Radiated Emissions up to 1 GHZ     | 30MHz ~ 1GHz   | 5.5 dB                            |
| Padiated Emissions above 1 CHz     | 1GHz ~ 18GHz   | 5.1 dB                            |
|                                    | 18GHz ~ 40GHz  | 5.3 dB                            |

#### 2.2 Modification Record

There were no modifications required for compliance.



#### 3 General Information

#### 3.1 General Description of EUT

| Product               | 2TX 11ax (WiFi6E) + BT/BLE Combo Card                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brand                 | MediaTek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Model            | MT7921K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Status of EUT         | Engineering sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Power Supply Rating   | DC 3.3V from host equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Modulation Type       | WLAN:<br>CCK, DQPSK, DBPSK for DSSS<br>64QAM, 16QAM, QPSK, BPSK for OFDM<br>256QAM for OFDM in 11ac mode and VHT20/40 in 2.4GHz<br>1024QAM for OFDMA in 11ax HE mode<br>BT-EDR: GFSK, π/4-DQPSK, 8DPSK<br>BT-LE: GFSK                                                                                                                                                                                                                                                                                                                                                                                        |
| Modulation Technology | WLAN: DSSS,OFDM, OFDMA<br>BT-EDR: FHSS<br>BT-LE: DTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Operating Frequency   | WLAN:<br>2.4GHz: 2.412 ~ 2.472GHz<br>5GHz: 5.18 ~ 5.32GHz, 5.50GHz ~ 5.72GHz, 5.745 ~ 5.825GHz<br>5.9GHz: 5.845 ~ 5.885 GHz<br>6GHz: 5.955 ~ 6.415GHz, 6.435 ~ 6.525GHz, 6.525 ~ 6.875GHz, 6.875 ~<br>7.115GHz<br>BT-EDR: 2.402 ~ 2.480 GHz<br>BT-LE: 2.402 ~ 2.480 GHz                                                                                                                                                                                                                                                                                                                                      |
| Number of Channel     | 2.4GHz:<br>802.11b, 802.11g, 802.11n (HT20), VHT20, 802.11ax (HE20): 13<br>802.11n (HT40), VHT40, 802.11ax (HE40): 9<br>5GHz:<br>802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 25<br>802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 12<br>802.11ac (VHT80), 802.11ax (HE80): 6<br>5.9GHz:<br>802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 3<br>802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 2<br>802.11ac (VHT80), 802.11ax (HE80): 1<br>6GHz:<br>802.11ax (HE20): 59<br>802.11ax (HE20): 59<br>802.11ax (HE40): 29<br>802.11ax (HE80): 14<br>BT-EDR: 79<br>BT-LE: 40 |
| Antenna Type          | Refer to Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antenna Connector     | Refer to Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Accessory Device      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Data Cable Supplied   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



Note:

- 1. This is a supplementary report of Report No.: RFBARR-WTW-P20110181F-4. The differences between them are as below information:
  - Enable U-NII-4 and U-NII-3 & -4 span channels through software change.
- 2. According to above conditions, for Radiated Emissions and Band Edge test item need to be performed and all data was tested to meet the requirements.

3. Simultaneously transmission condition.

| Condition | Technology                  |           |  |  |  |
|-----------|-----------------------------|-----------|--|--|--|
| 1         | WLAN (2.4GHz)               | Bluetooth |  |  |  |
| 2         | WLAN (5GHz / 5.9GHz / 6GHz) | Bluetooth |  |  |  |

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

#### 4. The antennas provided to the EUT, please refer to the following table:

| Ant.<br>Set | RF<br>Chain<br>No. | Brand  | Model                  | Ant.<br>Net<br>Gain<br>(dBi)                 | Freq. Range (GHz)                                                                   | Ant.<br>Type | Connector<br>Type | Cable<br>Length<br>(mm) | Cable Loss<br>(dB)                              | Excluding<br>Cable<br>Loss Ant.<br>Gain<br>(dBi) |
|-------------|--------------------|--------|------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|--------------|-------------------|-------------------------|-------------------------------------------------|--------------------------------------------------|
| 1           | Chain0             | Cortec | AN2450-4902BRS         | 2.42<br>3.87                                 | 2.4~2.4835<br>5.15~5.85                                                             | Dipole       | R-SMA             | 150                     | 2.4~2.4835GHz :<br>0.5<br>5.15~5.85GHz :<br>0.8 | 2.92<br>4.67                                     |
|             | Chain1             | Cortec | AN2450-4902BRS         | 2.42<br>3.87                                 | 2.4~2.4835<br>5.15~5.85                                                             | Dipole       | R-SMA             | 150                     | 2.4~2.4835GHz :<br>0.5<br>5.15~5.85GHz :<br>0.8 | 2.92<br>4.67                                     |
| 2           | Chain0             | PSA    | RFMTA340718EMLB302     | 3.18<br>4.92                                 | 2.4~2.4835<br>5.15~5.85                                                             | PIFA         | i-pex(MHF)        | 200                     | included cable<br>loss                          | -                                                |
| 2           | Chain1             | PSA    | RFMTA340718EMLB302     | 3.18<br>4.92                                 | 2.4~2.4835<br>5.15~5.85                                                             | PIFA         | i-pex(MHF)        | 200                     | included cable<br>loss                          | -                                                |
| 3           | Chain0             | PSA    | RFMTA311020EMMB301     | 1.71<br>4.82<br>3.31                         | 2.4~2.48355.15~5.85<br>5.92~7.125                                                   | PIFA         | i-pex(MHF)        | 200                     | -                                               | -                                                |
| 5           | Chain1             | PSA    | RFMTA311020EMMB301     | 1.71<br>4.82<br>3.31                         | 2.4~2.48355.15~5.85<br>5.92~7.125                                                   | PIFA         | i-pex(MHF)        | 200                     | -                                               | -                                                |
|             | Chain0             | PSA    | RFMTA311020EMMB301_V02 | 1.71<br>4.82<br>4.76<br>4.29<br>4.61<br>4.09 | 2.4~2.4835<br>5.15~5.85<br>5.925~6.425<br>6.425~6.525<br>6.525~6.875<br>6.875~7.125 | PIFA         | i-pex(MHF)        | 200                     | -                                               | -                                                |
| 4           | Chain1             | PSA    | RFMTA311020EMMB301_V02 | 1.71<br>4.82<br>4.76<br>4.29<br>4.61<br>4.09 | 2.4~2.4835<br>5.15~5.85<br>5.925~6.425<br>6.425~6.525<br>6.525~6.875<br>6.875~7.125 | PIFA         | i-pex(MHF)        | 200                     | -                                               | -                                                |
| F           | Chain0             | VSO    | JR2Q00340-1            | 1.62<br>3.2<br>3.93<br>3.61<br>3.61<br>3.14  | 2.4~2.4835<br>5.15~5.85<br>5.925~6.425<br>6.425~6.525<br>6.525~6.875<br>6.875~7.125 | Dipole       | RP SMA<br>PLUG    | 40                      | -                                               | -                                                |
| 5           | Chain1             | VSO    | JR2Q00340-1            | 1.62<br>3.2<br>3.93<br>3.61<br>3.61<br>3.14  | 2.4~2.4835<br>5.15~5.85<br>5.925~6.425<br>6.425~6.525<br>6.525~6.875<br>6.875~7.125 | Dipole       | RP SMA<br>PLUG    | 40                      | -                                               | -                                                |



| Ant.<br>Set | RF Chain<br>No. | Brand        | Model                       | Ant.<br>Net<br>Gain<br>(dBi) | Freq.<br>Range<br>(GHz)                | Ant.<br>Type | Connector<br>Type | Cable<br>Length<br>(mm) | Cable Loss (dB) | Excluding<br>Cable<br>Loss Ant.<br>Gain<br>(dBi) |
|-------------|-----------------|--------------|-----------------------------|------------------------------|----------------------------------------|--------------|-------------------|-------------------------|-----------------|--------------------------------------------------|
|             | Chain0          | Luxshare-ICT | LA9RF059-CS-H<br>(Main)     | 0.3<br>1.3<br>1.2            | 2.4~2.4835<br>5.15~5.85<br>5.925~7.125 | Dipole       | RP SMA<br>PLUG    | 925                     | -               | -                                                |
| 6           | Chain1          | Luxshare-ICT | LA9RF059-CS-H<br>(Aux)      | -1.10<br>-1.10<br>1.4        | 2.4~2.4835<br>5.15~5.85<br>5.925~7.125 | Dipole       | RP SMA<br>PLUG    | 876                     | -               | -                                                |
| 7           | Chain0          | ASUS         | 14008-02650500<br>Main ant. | 1.03<br>2.07<br>2.80         | 2.4~2.4835<br>5.15~5.85<br>5.925~7.125 | Dipole       | RP SMA<br>PLUG    | 800                     | -               | -                                                |
| 1           | Chain1          | ASUS         | 14008-02650500<br>Aux ant.  | 2.27<br>2.01<br>3.08         | 2.4~2.4835<br>5.15~5.85<br>5.925~7.125 | Dipole       | RP SMA<br>PLUG    | 800                     | -               | -                                                |

Note: Max. gain was selected for the final test.

5. The EUT incorporates a MIMO function.

| 2.4GHz Band                |                           |          |  |  |  |  |
|----------------------------|---------------------------|----------|--|--|--|--|
| MODULATION MODE            | TX & RX CONFIGURATION     |          |  |  |  |  |
| 802.11b                    | 2TX                       | 2RX      |  |  |  |  |
| 802.11g                    | 2TX                       | 2RX      |  |  |  |  |
| 802.11n (HT20)             | 2TX                       | 2RX      |  |  |  |  |
| 802.11n (HT40)             | 2TX                       | 2RX      |  |  |  |  |
| VHT20                      | 2TX                       | 2RX      |  |  |  |  |
| VHT40                      | 2TX                       | 2RX      |  |  |  |  |
| 802.11ax (HE20)            | 2TX                       | 2RX      |  |  |  |  |
| 802.11ax (HE40)            | 2TX                       | 2RX      |  |  |  |  |
|                            | 5GHz Band                 |          |  |  |  |  |
| MODULATION MODE            | TX & RX CONFI             | GURATION |  |  |  |  |
| 802.11a                    | 2TX                       | 2RX      |  |  |  |  |
| 802.11n (HT20)             | 2TX                       | 2RX      |  |  |  |  |
| 802.11n (HT40)             | 2TX                       | 2RX      |  |  |  |  |
| 802.11ac (VHT20)           | 2TX                       | 2RX      |  |  |  |  |
| 802.11ac (VHT40)           | 2TX                       | 2RX      |  |  |  |  |
| 802.11ac (VHT80)           | 2TX                       | 2RX      |  |  |  |  |
| 802.11ax (HE20)            | 2TX                       | 2RX      |  |  |  |  |
| 802.11ax (HE40)            | 2TX                       | 2RX      |  |  |  |  |
| 802.11ax (HE80)            | 2TX                       | 2RX      |  |  |  |  |
|                            | 6GHz Band                 |          |  |  |  |  |
| MODULATION MODE            | TX & RX CONFI             | GURATION |  |  |  |  |
| 802.11ax (HE20)            | 2TX                       | 2RX      |  |  |  |  |
| 802.11ax (HE40)            | 2TX                       | 2RX      |  |  |  |  |
| 802.11ax (HE80)            | 2TX                       | 2RX      |  |  |  |  |
| Note: The FLIT doesn't sur | port beamforming function |          |  |  |  |  |

Note: The EUT doesn't support beamforming function.

6. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

7. The above Antenna information is declared by manufacturer, the laboratory shall not be held responsible.



#### 3.1.1 Test Mode Applicability and Tested Channel Detail

| EUT Configure | e               | Applic         | able To      |                                                    | Description         |  |  |
|---------------|-----------------|----------------|--------------|----------------------------------------------------|---------------------|--|--|
| Mode          | RE≥1G           | RE<1G          | PLC          | ОВ                                                 | Description         |  |  |
| 1             | $\checkmark$    | $\checkmark$   | $\checkmark$ | $\checkmark$                                       | With PIFA antenna   |  |  |
| 2             | $\checkmark$    | $\checkmark$   | -            | -                                                  | With Dipole antenna |  |  |
| Where I       | RE≥1G: Radiate  | d Emission abo | ve 1GHz      | RE<1G: Radiated Emission below 1GHz                |                     |  |  |
| F             | PLC: Power Line | Conducted Er   | nission      | <b>OB:</b> Conducted Out-Band Emission Measurement |                     |  |  |

Note: In the original report, the EUT's antenna (PIFA) had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane** 

#### Radiated Emission Test (Above 1GHz):

- The tested configurations represent the worst-case mode from all possible combinations by the maximum power.
- Following channel(s) was (were) selected for the final test as listed below.

| MODE            | AVAILABLE<br>CHANNEL | TESTED CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION TYPE |
|-----------------|----------------------|----------------|--------------------------|-----------------|
| 802.11ax (HE80) | 171                  | 171            | OFDMA                    | BPSK            |
| +<br>BT-LE      | 1 to 38              | 19             | DTS                      | GFSK            |

#### Radiated Emission Test (Below 1GHz):

- The tested configurations represent the worst-case mode from all possible combinations by the maximum power.
- Following channel(s) was (were) selected for the final test as listed below.

| MODE                          | AVAILABLE<br>CHANNEL | ABLE TESTED CHANNEL |       | MODULATION TYPE |
|-------------------------------|----------------------|---------------------|-------|-----------------|
| 802.11ax (HE80)<br>+<br>BT-LE | 171                  | 171                 | OFDMA | BPSK            |
|                               | 1 to 38              | 19                  | DTS   | GFSK            |

#### Power Line Conducted Emission Test:

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

Following channel(s) was (were) selected for the final test as listed below.

| MODE                          | AVAILABLE<br>CHANNEL | TESTED CHANNEL MODULATION<br>TECHNOLOG |       | MODULATION TYPE |
|-------------------------------|----------------------|----------------------------------------|-------|-----------------|
| 802.11ax (HE80)<br>+<br>BT-LE | 171                  | 171                                    | OFDMA | BPSK            |
|                               | 1 to 38              | 19                                     | DTS   | GFSK            |



#### **Conducted Out-Band Emission Measurement:**

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

Following channel(s) was (were) selected for the final test as listed below.

| MODE                          | AVAILABLE TESTED CHANNEL |     | MODULATION<br>TECHNOLOGY | MODULATION TYPE |
|-------------------------------|--------------------------|-----|--------------------------|-----------------|
| 802.11ax (HE80)<br>+<br>BT-LE | 171                      | 171 | OFDMA                    | BPSK            |
|                               | 1 to 38                  | 19  | DTS                      | GFSK            |

#### Test Condition:

| Applicable To | Environmental Conditions | Input Power<br>(system) | Tested By  |
|---------------|--------------------------|-------------------------|------------|
| RE≥1G         | 22deg. C, 70%RH          | 120Vac, 60Hz            | Carter Lin |
| RE<1G         | 23deg. C, 66%RH          | 120Vac, 60Hz            | Tom Yang   |
| PLC           | 25deg. C, 75%RH          | 120Vac, 60Hz            | Carter Lin |
| OB            | 24deg. C, 60%RH          | 120Vac, 60Hz            | Eric Peng  |



#### 3.2 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| ID | Product   | Brand | Model No.  | Serial No. | FCC ID  | Remarks            |
|----|-----------|-------|------------|------------|---------|--------------------|
| Α. | Laptop    | DELL  | E6440      | F9LYQ32    | FCC DoC | Provided by Lab    |
| В. | Test Tool | MTK   | NA         | NA         | NA      | Supplied by client |
| C. | Adapter   | Dell  | FA65NE0-00 | NA         | NA      | Provided by Lab    |

| ID | Descriptions | Qty. | Length (m) | Shielding<br>(Yes/No) | Cores (Qty.) | Remarks         |
|----|--------------|------|------------|-----------------------|--------------|-----------------|
| 1. | DC Cable     | 1    | 1.6        | No                    | 1            | Provided by Lab |
| 2. | AC Cable     | 1    | 1          | No                    | 0            | Provided by Lab |

Note: The core is originally attached to the cable.



## Configuration of System under Test 3.2.1 For Conducted Emissions test: (A) Laptop (B)Test Tool EUT (1) (C) Adapter (2) For Radiated Emissions test: (A) Laptop (B)Test Tool EUT (1) Under Table (C) Adapter (2)



#### 4 Test Types and Results

#### 4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009 ~ 0.490        | 2400/F(kHz)                          | 300                              |
| 0.490 ~ 1.705        | 24000/F(kHz)                         | 30                               |
| 1.705 ~ 30.0         | 30                                   | 30                               |
| 30 ~ 88              | 100                                  | 3                                |
| 88 ~ 216             | 150                                  | 3                                |
| 216 ~ 960            | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

#### Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

| Applicable To                                                                              |                                                                        | Limit                                                                                                                                              |                                                                                                                                         |  |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| 789033 D02 Genera                                                                          | I UNII Test Procedure                                                  | Field Strength at 3m                                                                                                                               |                                                                                                                                         |  |
| New Rules v02r01                                                                           |                                                                        | PK:74 (dBµV/m)                                                                                                                                     | AV:54 (dBµV/m)                                                                                                                          |  |
| Frequency Band                                                                             | Applicable To                                                          | EIRP Limit                                                                                                                                         | Equivalent Field Strength at<br>3m                                                                                                      |  |
| 5150~5250 MHz                                                                              | 15.407(b)(1)                                                           |                                                                                                                                                    |                                                                                                                                         |  |
| 5250~5350 MHz                                                                              | 15.407(b)(2)                                                           | PK:-27 (dBm/MHz)                                                                                                                                   | PK:68.2(dBµV/m)                                                                                                                         |  |
| 5470~5725 MHz                                                                              | 15.407(b)(3)                                                           |                                                                                                                                                    |                                                                                                                                         |  |
| 5725~5850 MHz                                                                              | 15.407(b)(4)(i)                                                        | PK:-27 (dBm/MHz) <sup>*1</sup><br>PK:10 (dBm/MHz) <sup>*2</sup><br>PK:15.6 (dBm/MHz) <sup>*3</sup><br>PK:27 (dBm/MHz) <sup>*4</sup>                | PK: 68.2(dBµV/m) <sup>*1</sup><br>PK:105.2 (dBµV/m) <sup>*2</sup><br>PK: 110.8(dBµV/m) <sup>*3</sup><br>PK:122.2 (dBµV/m) <sup>*4</sup> |  |
|                                                                                            | 15.407(b)(4)(ii)                                                       | Emission limits in section 15.247(d)                                                                                                               |                                                                                                                                         |  |
| <ul> <li>*1 beyond 75 MHz or</li> <li>*3 below the band edged of 15.6 dBm/MHz a</li> </ul> | more above of the band<br>ge increasing linearly to<br>tt 5 MHz above. | edge. <sup>*2</sup> below the band edg<br>dBm/MHz at 25 MH<br>a level <sup>*4</sup> from 5 MHz above of<br>increasing linearly t<br>the band edge. | e increasing linearly to 10<br>Iz above.<br>or below the band edge<br>o a level of 27 dBm/MHz at                                        |  |



| Frequencies<br>(MHz)  | EIRP Limit        | Equivalent Field<br>Strength at 3m |
|-----------------------|-------------------|------------------------------------|
| 5925MHz > F > 7125MHz | Peak:-7 (dBm/MHz) | 88.2(dBµV/m)                       |

#### Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$$



#### 4.1.2 Test Instruments

#### For Radiated Emission (below 1 GHz) test:

| Description & Manufacturer                          | Model No.                | Serial No.  | Calibrated Date | Calibrated Until |
|-----------------------------------------------------|--------------------------|-------------|-----------------|------------------|
| Test Receiver<br>Agilent                            | N9038A                   | MY51210202  | 2021/11/19      | 2022/11/18       |
| Software                                            | ADT_Radiated_V8.<br>7.08 | NA          | NA              | NA               |
| Boresight Antenna Tower &<br>Turn Table<br>Max-Full | MF-7802BS                | MF780208530 | NA              | NA               |
| Pre_Amplifier<br>EMCI                               | EMC001340                | 980142      | 2021/5/24       | 2022/5/23        |
| LOOP ANTENNA<br>Electro-Metrics                     | EM-6879                  | 264         | 2021/3/5        | 2022/3/4         |
| RF Coaxial Cable<br>JYEBO                           | 5D-FB                    | LOOPCAB-001 | 2021/1/7        | 2022/1/6         |
| RF Coaxial Cable<br>JYEBO                           | 5D-FB                    | LOOPCAB-002 | 2021/1/7        | 2022/1/6         |
| Pre_Amplifier<br>EMCI                               | EMC330N                  | 980701      | 2021/3/10       | 2022/3/9         |
| Trilog Broadband Antenna<br>Schwarzbeck             | VULB 9168                | 9168-406    | 2021/10/27      | 2022/10/26       |
| RF Coaxial Cable<br>COMMATE/PEWC                    | 8D                       | 966-4-1     | 2021/3/17       | 2022/3/16        |
| RF Coaxial Cable<br>COMMATE/PEWC                    | 8D                       | 966-4-2     | 2021/3/17       | 2022/3/16        |
| RF Coaxial Cable<br>COMMATE/PEWC                    | 8D                       | 966-4-3     | 2021/3/17       | 2022/3/16        |
| Fixed attenuator<br>Mini-Circuits                   | UNAT-5+                  | PAD-ATT5-03 | 2021/1/11       | 2022/1/10        |

Note: 1. The test was performed in 966 Chamber No. 4.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2021/12/23



#### For Radiated Emission (above 1 GHz) test:

| Description & Manufacturer                          | Model No.                | Serial No.  | Calibrated Date | Calibrated Until |
|-----------------------------------------------------|--------------------------|-------------|-----------------|------------------|
| Test Receiver<br>Agilent                            | N9038A                   | MY51210202  | 2021/11/19      | 2022/11/18       |
| Software                                            | ADT_Radiated_V8.<br>7.08 | NA          | NA              | NA               |
| Boresight Antenna Tower &<br>Turn Table<br>Max-Full | MF-7802BS                | MF780208530 | NA              | NA               |
| Horn Antenna<br>Schwarzbeck                         | BBHA 9120D               | 9120D-783   | 2021/11/14      | 2022/11/13       |
| Pre_Amplifier<br>EMCI                               | EMC 12630 SE             | 980638      | 2021/4/7        | 2022/4/6         |
| RF Cable-Frequency<br>Range : 1-26.5GHz<br>EMCI     | EMC104-SM-SM-1<br>200    | 160922      | 2021/12/24      | 2022/12/23       |
| RF Coaxial Cable<br>EMCI                            | EMC104-SM-SM-2<br>000    | 180502      | 2021/4/26       | 2022/4/25        |
| RF Coaxial Cable<br>EMCI                            | EMC104-SM-SM-6<br>000    | 210704      | 2021/11/9       | 2022/11/8        |
| Pre_Amplifier<br>EMCI                               | EMC184045SE              | 980387      | 2022/1/10       | 2023/1/9         |
| Horn Antenna<br>Schwarzbeck                         | BBHA 9170                | BBHA9170519 | 2021/11/14      | 2022/11/13       |
| RF Cable-Frequency range:<br>1-40GHz<br>EMCI        | EMC102-KM-KM-1<br>200    | 160924      | 2022/1/10       | 2023/1/9         |
| RF cable (40GHz)<br>EMCI                            | EMC-KM-KM-4000           | 200214      | 2021/3/10       | 2022/3/9         |

Note: 1. The test was performed in 966 Chamber No. 4.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: 2022/1/11



#### 4.1.3 Test Procedures

#### For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

#### For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

#### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

#### 4.1.4 Deviation from Test Standard

No deviation.



#### 4.1.5 Test Setup

#### For Radiated emission below 30MHz







- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Controlling software (WLAN: MT7961 QA0.0.2.33, Bluetooth: WCN combo tool (W2004)) has been activated to set the EUT under transmission condition continuously at specific channel frequency.



#### 4.1.7 Test Results (Mode 1)

#### Above 1GHz Data:

| FREQUENCY RANGE | 1GHz ~ 40GHz | DETECTOR<br>FUNCTION | Peak (PK)<br>Average (AV) |
|-----------------|--------------|----------------------|---------------------------|
|                 |              |                      | Average (AV)              |

|                    | Antenna Polarity & Test Distance : Horizontal at 3 m                                                                                                 |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m)                                                                                                                        | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                | Margin<br>(dB)                                                                                                                                                                                                        | Antenna<br>Height<br>(m)                                                                                                                                                                                                                                                    | Table<br>Angle<br>(Degree)                                                                                                                                                                                                                                                                                                                           | Raw<br>Value<br>(dBuV)                                                                                                                                                                                                                                                                                                                                                                             | Correction<br>Factor<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 4880.00            | 47.1 PK                                                                                                                                              | 74.0                                                                                                                                                                                                                                                                                                             | -26.9                                                                                                                                                                                                                 | 1.30 H                                                                                                                                                                                                                                                                      | 134                                                                                                                                                                                                                                                                                                                                                  | 47.3                                                                                                                                                                                                                                                                                                                                                                                               | -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 4880.00            | 36.1 AV                                                                                                                                              | 54.0                                                                                                                                                                                                                                                                                                             | -17.9                                                                                                                                                                                                                 | 1.30 H                                                                                                                                                                                                                                                                      | 134                                                                                                                                                                                                                                                                                                                                                  | 36.3                                                                                                                                                                                                                                                                                                                                                                                               | -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7320.00            | 44.0 PK                                                                                                                                              | 74.0                                                                                                                                                                                                                                                                                                             | -30.0                                                                                                                                                                                                                 | 2.46 H                                                                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                                                                                                                                   | 37.7                                                                                                                                                                                                                                                                                                                                                                                               | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 7320.00            | 34.4 AV                                                                                                                                              | 54.0                                                                                                                                                                                                                                                                                                             | -19.6                                                                                                                                                                                                                 | 2.46 H                                                                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                                                                                                                                   | 28.1                                                                                                                                                                                                                                                                                                                                                                                               | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 11710.00           | 49.8 PK                                                                                                                                              | 74.0                                                                                                                                                                                                                                                                                                             | -24.2                                                                                                                                                                                                                 | 1.20 H                                                                                                                                                                                                                                                                      | 235                                                                                                                                                                                                                                                                                                                                                  | 38.6                                                                                                                                                                                                                                                                                                                                                                                               | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 11710.00           | 40.0 AV                                                                                                                                              | 54.0                                                                                                                                                                                                                                                                                                             | -14.0                                                                                                                                                                                                                 | 1.20 H                                                                                                                                                                                                                                                                      | 235                                                                                                                                                                                                                                                                                                                                                  | 28.8                                                                                                                                                                                                                                                                                                                                                                                               | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| #17565.00          | 55.3 PK                                                                                                                                              | 88.2                                                                                                                                                                                                                                                                                                             | -32.9                                                                                                                                                                                                                 | 3.80 H                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                   | 37.2                                                                                                                                                                                                                                                                                                                                                                                               | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| #17565.00          | 43.9 AV                                                                                                                                              | 68.2                                                                                                                                                                                                                                                                                                             | -24.3                                                                                                                                                                                                                 | 3.80 H                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                   | 25.8                                                                                                                                                                                                                                                                                                                                                                                               | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| F                  | requency<br>(MHz)           4880.00           4880.00           7320.00           7320.00           11710.00           117565.00           #17565.00 | Emission<br>Level<br>(MHz)           4880.00         47.1 PK           4880.00         36.1 AV           7320.00         44.0 PK           7320.00         34.4 AV           11710.00         49.8 PK           11710.00         40.0 AV           #17565.00         55.3 PK           #17565.00         43.9 AV | requency<br>(MHz)Emission<br>Level<br>(dBuV/m)Limit<br>(dBuV/m)4880.0047.1 PK74.04880.0036.1 AV54.07320.0044.0 PK74.07320.0034.4 AV54.011710.0049.8 PK74.011710.0040.0 AV54.0#17565.0055.3 PK88.2#17565.0043.9 AV68.2 | requency<br>(MHz)Emission<br>Level<br>(dBuV/m)Limit<br>(dBuV/m)Margin<br>(dB)4880.0047.1 PK74.0-26.94880.0036.1 AV54.0-17.97320.0044.0 PK74.0-30.07320.0034.4 AV54.0-19.611710.0049.8 PK74.0-24.211710.0040.0 AV54.0-14.0#17565.0055.3 PK88.2-32.9#17565.0043.9 AV68.2-24.3 | requency<br>(MHz)Emission<br>Level<br>(dBuV/m)Limit<br>(dBuV/m)Margin<br>(dB)Antenna<br>Height<br>(dB)4880.0047.1 PK74.0-26.91.30 H4880.0036.1 AV54.0-17.91.30 H7320.0044.0 PK74.0-30.02.46 H7320.0034.4 AV54.0-19.62.46 H11710.0049.8 PK74.0-24.21.20 H11710.0040.0 AV54.0-14.01.20 H117565.0055.3 PK88.2-32.93.80 H#17565.0043.9 AV68.2-24.33.80 H | requency<br>(MHz)Emission<br>Level<br>(dBuV/m)Limit<br>(dBuV/m)Margin<br>(dB)Antenna<br>Height<br>(dB)Table<br>Angle<br>(Degree)4880.0047.1 PK74.0-26.91.30 H1344880.0036.1 AV54.0-17.91.30 H1347320.0044.0 PK74.0-30.02.46 H257320.0034.4 AV54.0-19.62.46 H2511710.0049.8 PK74.0-24.21.20 H23511710.0040.0 AV54.0-14.01.20 H235117565.0055.3 PK88.2-32.93.80 H90#17565.0043.9 AV68.2-24.33.80 H90 | requency<br>(MHz)Emission<br>Level<br>(dBuV/m)Limit<br>(dBuV/m)Margin<br>(dB)Antenna<br>Height<br>(dB)Table<br>Angle<br>(p)Raw<br>Value<br>(dBuV)4880.0047.1 PK74.0-26.91.30 H13447.34880.0036.1 AV54.0-17.91.30 H13436.37320.0044.0 PK74.0-30.02.46 H2537.77320.0034.4 AV54.0-19.62.46 H2528.111710.0049.8 PK74.0-24.21.20 H23538.611710.0040.0 AV54.0-14.01.20 H23528.8#17565.0055.3 PK88.2-32.93.80 H9037.2#17565.0043.9 AV68.2-24.33.80 H9025.8 |  |  |

|    | Antenna Polarity & Test Distance : Vertical at 3 m |                               |                   |                |                          |                            |                        |                                |  |
|----|----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No | Frequency<br>(MHz)                                 | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | 4880.00                                            | 47.5 PK                       | 74.0              | -26.5          | 3.08 V                   | 119                        | 47.7                   | -0.2                           |  |
| 2  | 4880.00                                            | 40.1 AV                       | 54.0              | -13.9          | 3.08 V                   | 119                        | 40.3                   | -0.2                           |  |
| 3  | 7320.00                                            | 42.7 PK                       | 74.0              | -31.3          | 2.60 V                   | 55                         | 36.4                   | 6.3                            |  |
| 4  | 7320.00                                            | 33.3 AV                       | 54.0              | -20.7          | 2.60 V                   | 55                         | 27.0                   | 6.3                            |  |
| 5  | 11710.00                                           | 56.2 PK                       | 74.0              | -17.8          | 3.75 V                   | 329                        | 45.0                   | 11.2                           |  |
| 6  | 11710.00                                           | 44.9 AV                       | 54.0              | -9.1           | 3.75 V                   | 329                        | 33.7                   | 11.2                           |  |
| 7  | #17565.00                                          | 63.4 PK                       | 88.2              | -24.8          | 3.71 V                   | 353                        | 45.3                   | 18.1                           |  |
| 8  | #17565.00                                          | 50.8 AV                       | 68.2              | -17.4          | 3.71 V                   | 353                        | 32.7                   | 18.1                           |  |

#### **Remarks:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " # ": The radiated frequency is out of the restricted band.



Below 1GHz Data:

| FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR<br>FUNCTION | Quasi-Peak (QP) |
|-----------------|-------------|----------------------|-----------------|
|-----------------|-------------|----------------------|-----------------|

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |                               |                   |                |                          |                            |                        |                                |  |
|----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | 30.59                                                | 33.0 QP                       | 40.0              | -7.0           | 1.00 H                   | 142                        | 46.7                   | -13.7                          |  |
| 2  | 48.04                                                | 28.2 QP                       | 40.0              | -11.8          | 1.00 H                   | 308                        | 40.8                   | -12.6                          |  |
| 3  | 95.07                                                | 28.4 QP                       | 43.5              | -15.1          | 1.00 H                   | 252                        | 46.0                   | -17.6                          |  |
| 4  | 158.98                                               | 32.8 QP                       | 43.5              | -10.7          | 1.00 H                   | 264                        | 44.8                   | -12.0                          |  |
| 5  | 199.28                                               | 38.3 QP                       | 43.5              | -5.2           | 1.00 H                   | 318                        | 53.3                   | -15.0                          |  |
| 6  | 232.77                                               | 37.8 QP                       | 46.0              | -8.2           | 1.50 H                   | 214                        | 51.8                   | -14.0                          |  |

#### **Remarks:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



| FRE | EQUENCY R                                          | ANGE 94                       | Hz ~ 1GHz         | Ĩ              | DETECTOR<br>FUNCTION     |                            | Quasi-Peak (QP)        |                                |
|-----|----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
|     | Antenna Polarity & Test Distance : Vertical at 3 m |                               |                   |                |                          |                            |                        |                                |
| No  | Frequency<br>(MHz)                                 | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |
| 1   | 35.75                                              | 36.3 QP                       | 40.0              | -3.7           | 1.00 V                   | 137                        | 49.9                   | -13.6                          |
| 2   | 45.00                                              | 31.2 QP                       | 40.0              | -8.8           | 1.00 V                   | 58                         | 43.8                   | -12.6                          |
| 3   | 100.01                                             | 30.9 QP                       | 43.5              | -12.6          | 1.00 V                   | 141                        | 47.6                   | -16.7                          |
| 4   | 130.18                                             | 29.5 QP                       | 43.5              | -14.0          | 1.00 V                   | 180                        | 42.8                   | -13.3                          |
| 5   | 198.50                                             | 32.5 QP                       | 43.5              | -11.0          | 1.50 V                   | 248                        | 47.5                   | -15.0                          |
| 6   | 233.93                                             | 27.6 QP                       | 46.0              | -18.4          | 1.50 V                   | 110                        | 41.3                   | -13.7                          |

#### Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





#### 4.1.8 Test Results (Mode 2)

#### Above 1GHz Data:

| FREQUENCY RANGE | 1GHz ~ 40GHz | DETECTOR<br>FUNCTION | Peak (PK)<br>Average (AV) |
|-----------------|--------------|----------------------|---------------------------|
|                 |              |                      | 5 ( )                     |

| Antenna Polarity & Test Distance : Horizontal at 3 m |                                                                                                     |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m)                                                                       | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                          | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Antenna<br>Height<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table<br>Angle<br>(Degree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Raw<br>Value<br>(dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Correction<br>Factor<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 4880.00                                              | 47.7 PK                                                                                             | 74.0                                                                                                                                                                                                                                                                                                                       | -26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.30 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 4880.00                                              | 36.5 AV                                                                                             | 54.0                                                                                                                                                                                                                                                                                                                       | -17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.30 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 7320.00                                              | 43.5 PK                                                                                             | 74.0                                                                                                                                                                                                                                                                                                                       | -30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.43 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 7320.00                                              | 34.1 AV                                                                                             | 54.0                                                                                                                                                                                                                                                                                                                       | -19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.43 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 11710.00                                             | 50.8 PK                                                                                             | 74.0                                                                                                                                                                                                                                                                                                                       | -23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.33 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 11710.00                                             | 40.6 AV                                                                                             | 54.0                                                                                                                                                                                                                                                                                                                       | -13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.33 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| #17565.00                                            | 53.8 PK                                                                                             | 88.2                                                                                                                                                                                                                                                                                                                       | -34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.82 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| #17565.00                                            | 42.5 AV                                                                                             | 68.2                                                                                                                                                                                                                                                                                                                       | -25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.82 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                      | Frequency<br>(MHz)<br>4880.00<br>4880.00<br>7320.00<br>7320.00<br>11710.00<br>11710.00<br>#17565.00 | Anter           Frequency<br>(MHz)         Emission<br>Level<br>(dBuV/m)           4880.00         47.7 PK           4880.00         36.5 AV           7320.00         43.5 PK           7320.00         34.1 AV           11710.00         50.8 PK           11770.00         53.8 PK           #17565.00         42.5 AV | Antenna Polarity           Frequency<br>(MHz)         Emission<br>Level<br>(dBuV/m)         Limit<br>(dBuV/m)           4880.00         47.7 PK         74.0           4880.00         36.5 AV         54.0           7320.00         43.5 PK         74.0           7320.00         34.1 AV         54.0           11710.00         50.8 PK         74.0           11770.00         40.6 AV         54.0           #17565.00         53.8 PK         88.2           #17565.00         42.5 AV         68.2 | Antenna Polarity & Test Dist           Frequency<br>(MHz)         Emission<br>Level<br>(dBuV/m)         Limit<br>(dBuV/m)         Margin<br>(dB)           4880.00         47.7 PK         74.0         -26.3           4880.00         36.5 AV         54.0         -17.5           7320.00         43.5 PK         74.0         -30.5           7320.00         34.1 AV         54.0         -19.9           11710.00         50.8 PK         74.0         -23.2           11710.00         40.6 AV         54.0         -13.4           #17565.00         53.8 PK         88.2         -34.4           #17565.00         42.5 AV         68.2         -25.7 | Antenna Polarity & Test Distance : Horiz           Frequency<br>(MHz)         Emission<br>Level<br>(dBuV/m)         Limit<br>(dBuV/m)         Margin<br>(dB)         Antenna<br>Height<br>(dB)           4880.00         47.7 PK         74.0         -26.3         1.30 H           4880.00         36.5 AV         54.0         -17.5         1.30 H           7320.00         43.5 PK         74.0         -30.5         2.43 H           7320.00         34.1 AV         54.0         -19.9         2.43 H           11710.00         50.8 PK         74.0         -23.2         3.33 H           11710.00         40.6 AV         54.0         -13.4         3.33 H           #17565.00         53.8 PK         88.2         -34.4         2.82 H           #17565.00         42.5 AV         68.2         -25.7         2.82 H | Antenna Polarity & Test Distance : Horizontal at 3 n           Frequency<br>(MHz)         Emission<br>Level<br>(dBuV/m)         Limit<br>(dBuV/m)         Margin<br>(dB)         Antenna<br>Height<br>(dB)         Table<br>Angle<br>(Degree)           4880.00         47.7 PK         74.0         -26.3         1.30 H         127           4880.00         36.5 AV         54.0         -17.5         1.30 H         127           7320.00         43.5 PK         74.0         -30.5         2.43 H         37           7320.00         34.1 AV         54.0         -19.9         2.43 H         37           11710.00         50.8 PK         74.0         -23.2         3.33 H         189           11710.00         40.6 AV         54.0         -13.4         3.33 H         189           11710.00         40.6 AV         54.0         -13.4         2.82 H         116           #17565.00         53.8 PK         88.2         -34.4         2.82 H         116 | Anterna Polarity & Test Distance : Horizontal at 3 m           Frequency<br>(MHz)         Emission<br>Level<br>(dBuV/m)         Limit<br>(dBuV/m)         Margin<br>(dB)         Antenna<br>Height<br>(dB)         Table<br>Angle<br>(Degree)         Raw<br>Value<br>(dBuV)           4880.00         47.7 PK         74.0         -26.3         1.30 H         127         47.9           4880.00         36.5 AV         54.0         -17.5         1.30 H         127         36.7           7320.00         43.5 PK         74.0         -30.5         2.43 H         37         37.2           7320.00         34.1 AV         54.0         -19.9         2.43 H         37         27.8           11710.00         50.8 PK         74.0         -23.2         3.33 H         189         39.6           11710.00         40.6 AV         54.0         -13.4         3.33 H         189         29.4           #17565.00         53.8 PK         88.2         -34.4         2.82 H         116         35.7           #17565.00         42.5 AV         68.2         -25.7         2.82 H         116         24.4 |  |

#### Antenna Polarity & Test Distance : Vertical at 3 m Emission Table Raw Correction Antenna Frequency Limit Margin No Level Height Angle Value Factor (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV) (dB/m) (m) (Degree) 1 4880.00 47.6 PK 74.0 -26.4 3.06 V 111 47.8 -0.2 4880.00 40.0 AV 54.0 -14.0 3.06 V 111 40.2 -0.2 2 43.3 PK 74.0 -30.7 2.58 V 37.0 3 7320.00 54 6.3 4 7320.00 33.8 AV 54.0 -20.2 2.58 V 54 27.5 6.3 53.6 PK 74.0 -20.4 360 5 11710.00 3.48 V 42.4 11.2 6 11710.00 43.4 AV 54.0 -10.6 3.48 V 360 32.2 11.2 7 #17565.00 54.0 PK 88.2 -34.2 2.29 V 299 35.9 18.1 #17565.00 44.2 AV 68.2 -24.0 299 8 2.29 V 26.1 18.1

#### **Remarks:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " # ": The radiated frequency is out of the restricted band.



Below 1GHz Data:

| FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR<br>FUNCTION | Quasi-Peak (QP) |
|-----------------|-------------|----------------------|-----------------|
|-----------------|-------------|----------------------|-----------------|

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |                               |                   |                |                          |                            |                        |                                |  |
|----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | 30.56                                                | 32.8 QP                       | 40.0              | -7.2           | 1.50 H                   | 139                        | 46.5                   | -13.7                          |  |
| 2  | 48.12                                                | 27.8 QP                       | 40.0              | -12.2          | 1.50 H                   | 294                        | 40.4                   | -12.6                          |  |
| 3  | 95.71                                                | 27.9 QP                       | 43.5              | -15.6          | 1.50 H                   | 252                        | 45.5                   | -17.6                          |  |
| 4  | 159.91                                               | 32.3 QP                       | 43.5              | -11.2          | 1.00 H                   | 264                        | 44.3                   | -12.0                          |  |
| 5  | 199.01                                               | 38.2 QP                       | 43.5              | -5.3           | 1.00 H                   | 327                        | 53.2                   | -15.0                          |  |
| 6  | 233.48                                               | 37.3 QP                       | 46.0              | -8.7           | 1.00 H                   | 208                        | 51.1                   | -13.8                          |  |

#### **Remarks:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



| FRE | EQUENCY R                                          | ANGE 9k                       | Hz ~ 1GHz         |                | DETECTOR<br>FUNCTION     |                            | Quasi-Peak (QP)        |                                |
|-----|----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
|     | Antenna Polarity & Test Distance : Vertical at 3 m |                               |                   |                |                          |                            |                        |                                |
| No  | Frequency<br>(MHz)                                 | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |
| 1   | 36.48                                              | 35.9 QP                       | 40.0              | -4.1           | 1.50 V                   | 134                        | 49.4                   | -13.5                          |
| 2   | 45.29                                              | 31.2 QP                       | 40.0              | -8.8           | 1.00 V                   | 51                         | 43.8                   | -12.6                          |
| 3   | 99.88                                              | 30.6 QP                       | 43.5              | -12.9          | 1.00 V                   | 143                        | 47.3                   | -16.7                          |
| 4   | 130.78                                             | 29.5 QP                       | 43.5              | -14.0          | 1.00 V                   | 183                        | 42.7                   | -13.2                          |
| 5   | 198.50                                             | 32.2 QP                       | 43.5              | -11.3          | 1.00 V                   | 238                        | 47.2                   | -15.0                          |
| 6   | 234.45                                             | 27.8 QP                       | 46.0              | -18.2          | 1.50 V                   | 103                        | 41.5                   | -13.7                          |

#### Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





#### 4.2 Conducted Emission Measurement

#### 4.2.1 Limits of Conducted Emission Measurement

| Frequency (MHz) | Conducted Limit (dBuV) |         |  |  |  |
|-----------------|------------------------|---------|--|--|--|
| Frequency (MHZ) | Quasi-peak             | Average |  |  |  |
| 0.15 - 0.5      | 66 - 56                | 56 - 46 |  |  |  |
| 0.50 - 5.0      | 56                     | 46      |  |  |  |
| 5.0 - 30.0      | 60                     | 50      |  |  |  |

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 4.2.2 Test Instruments

| Description &<br>Manufacturer | Model No.               | Serial No. | Calibrated Date | Calibrated Until |
|-------------------------------|-------------------------|------------|-----------------|------------------|
| Test Receiver<br>R&S          | ESCS 30                 | 847124/029 | 2021/10/13      | 2022/10/12       |
| LISN<br>R&S                   | ESH3-Z5                 | 848773/004 | 2021/10/29      | 2022/10/28       |
| LISN<br>R & S                 | ESH3-Z5                 | 835239/001 | 2021/3/26       | 2022/3/25        |
| 50 ohms Terminator            | 50                      | 3          | 2021/10/27      | 2022/10/26       |
| RF Coaxial Cable<br>JYEBO     | 5D-FB                   | COCCAB-001 | 2021/9/25       | 2022/9/24        |
| Fixed attenuator<br>STI       | STI02-2200-10           | 005        | 2021/8/27       | 2022/8/26        |
| Software<br>BVADT             | BVADT_Cond_V7.<br>3.7.4 | NA         | NA              | NA               |

Note: 1. The test was performed in Conduction 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/1/11



#### 4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

**Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

#### 4.2.4 Deviation from Test Standard

No deviation.

#### 4.2.5 Test Setup



Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

#### 4.2.6 EUT Operating Conditions

Same as 4.1.6.



#### 4.2.7 Test Results

| Phase | Line (L) | Detector Function | Quasi-Peak (QP) /<br>Average (AV) |
|-------|----------|-------------------|-----------------------------------|
|       |          |                   |                                   |

| Phase Of Power : Line (L) |           |                      |                                               |       |                 |       |                |       |        |        |
|---------------------------|-----------|----------------------|-----------------------------------------------|-------|-----------------|-------|----------------|-------|--------|--------|
| No                        | Frequency | Correction<br>Factor | Reading Value Emission Level<br>(dBuV) (dBuV) |       | Limit<br>(dBuV) |       | Margin<br>(dB) |       |        |        |
|                           | (MHz)     | (dB)                 | Q.P.                                          | AV.   | Q.P.            | AV.   | Q.P.           | AV.   | Q.P.   | AV.    |
| 1                         | 0.16958   | 10.07                | 34.35                                         | 7.11  | 44.42           | 17.18 | 64.98          | 54.98 | -20.56 | -37.80 |
| 2                         | 0.25540   | 10.09                | 22.44                                         | -1.57 | 32.53           | 8.52  | 61.58          | 51.58 | -29.05 | -43.06 |
| 3                         | 0.43584   | 10.11                | 22.76                                         | 4.21  | 32.87           | 14.32 | 57.14          | 47.14 | -24.27 | -32.82 |
| 4                         | 16.46463  | 11.29                | 28.46                                         | 26.79 | 39.75           | 38.08 | 60.00          | 50.00 | -20.25 | -11.92 |
| 5                         | 21.16740  | 11.60                | 34.49                                         | 34.11 | 46.09           | 45.71 | 60.00          | 50.00 | -13.91 | -4.29  |
| 6                         | 25.87178  | 11.72                | 31.92                                         | 31.08 | 43.64           | 42.80 | 60.00          | 50.00 | -16.36 | -7.20  |

#### Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



| Phase Neutral (N)            |           |                      | Det           | Detector Function Quasi-Peak (QP) /<br>Average (AV) |               |                               |       | 1                      |        |                        |
|------------------------------|-----------|----------------------|---------------|-----------------------------------------------------|---------------|-------------------------------|-------|------------------------|--------|------------------------|
| Phase Of Power : Neutral (N) |           |                      |               |                                                     |               |                               |       |                        |        |                        |
| No                           | Frequency | Correction<br>Factor | Readin<br>(dB | g Value<br>SuV)                                     | Emissi<br>(dE | Emission Level L<br>(dBuV) (d |       | nit Margin<br>uV) (dB) |        | <sup>.</sup> gin<br>B) |
|                              | (MHz)     | (dB)                 | Q.P.          | AV.                                                 | Q.P.          | AV.                           | Q.P.  | AV.                    | Q.P.   | AV.                    |
| 1                            | 0.17250   | 10.06                | 36.61         | 12.38                                               | 46.67         | 22.44                         | 64.84 | 54.84                  | -18.17 | -32.40                 |
| 2                            | 0.26159   | 10.09                | 23.54         | 0.79                                                | 33.63         | 10.88                         | 61.38 | 51.38                  | -27.75 | -40.50                 |
| 3                            | 0.51439   | 10.10                | 20.28         | 4.29                                                | 30.38         | 14.39                         | 56.00 | 46.00                  | -25.62 | -31.61                 |
| 4                            | 1.22861   | 10.16                | 22.31         | 7.50                                                | 32.47         | 17.66                         | 56.00 | 46.00                  | -23.53 | -28.34                 |
| 5                            | 21.16771  | 11.29                | 25.75         | 24.37                                               | 37.04         | 35.66                         | 60.00 | 50.00                  | -22.96 | -14.34                 |
| 6                            | 25.87141  | 11.35                | 25.49         | 25.29                                               | 36.84         | 36.64                         | 60.00 | 50.00                  | -23.16 | -13.36                 |

#### Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value





#### 4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

#### 4.3.2 Test Setup



#### 4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

#### 4.3.4 Test Procedures

#### MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW  $\ge$  300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

#### MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.3.5 Deviation from Test Standard

No deviation.

#### 4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

#### 4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



#### 5.9GHz\_802.11ax (HE80) CH171 + BT-LE 2M\_CH19

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KBW 100 KHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [11] MP VIEW   | Marker 1 [T1] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|
| Ref 21 5 dBm Att 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SWT 400 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | -56.78 dBm    |
| 21.5- Offeret 11 5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Marker 2 IT11 |
| 02186111.5 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 12.41 dBm     |
| 10- D112.41 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 2.43819 GHz   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Marker 3 [T1] |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | -52.56 dBm    |
| 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 4.73040 GHZ   |
| D2 -7 59 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 2.78 dBm      |
| -10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 5.84563 GHz   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Marker 5 [T1] |
| 20_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | -29.48 dBm    |
| -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 5.81556 612   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |
| -30-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |
| -40 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | مقادر .        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | California and |               |
| -50 - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | المعالم المنافقة المتحد ومراجع ومسادي ومسارك والمعاجم والمعاد و | 1 m            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a short the second s                                                                                                                                                                                                                                                                                             |                |               |
| and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |
| -60 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | ALL VER       |
| -70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 8 - Ye 8      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |
| -78.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 1823          |
| Start 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.997 GHz/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stop 40 GHz    | VERITAS       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |



### 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



#### Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---