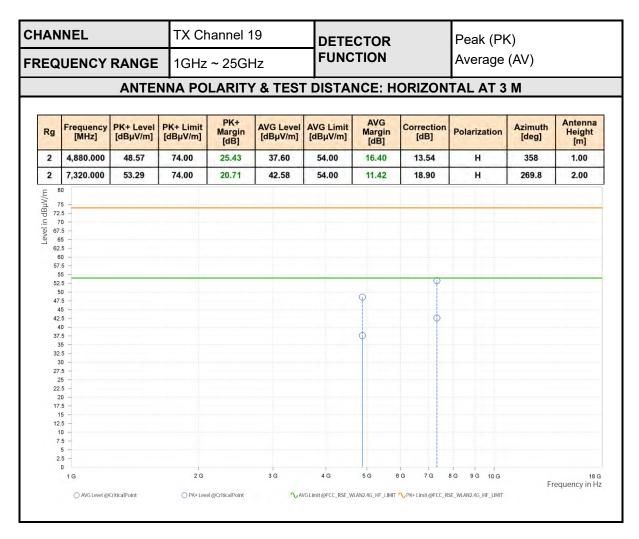


HAN	NEL		тх (Channel 1		DETECTO	R	Peak (PK)		
REQI	JENCY RAI	NGE	1G⊦	lz ~ 25GHz		FUNCTIO	Average (AV)			
	A	NTENI	NA P	OLARITY 8	TEST DI	STANCE: H	ORIZON	TAL AT 3 I	М	
Rg	Frequency [MHz]	PK+ L [dBµ\	.evel //m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarizat	ion Azim [de		Antenna Height [m]
5	2,352.000	45.	57	74.00	28.43	5.59	H	1		1.00
5	2,390.000	44.9	99	74.00	29.01	5.77	Н	224	.5	2.00
5	2,404.500	100.	35			5.87	Н	355	.1	2.00
87.5 86.5 80.77.5 72.5 70.6 67.5 65.5 62.5 60.5 75.5 52.5 50.4 57.5 52.5 50.4 57.5 52.5 45.5 40.3 7.5 40.3 7.5								·····		
35 32.5 30 27.5 25 22.5 20										

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,384.000	30.71	54.00	23.29	5.73	Н	359	2.00
5	2,390.000	30.57	54.00	23.43	5.77	Н	0.9	2.00
5	2,404.000	87.93			5.87	Н	34.3	2.00
$\begin{array}{c} 125\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 100.$								2400 G 241


Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,341.500	47.58	74.00	26.42	5.57	V	127.6	2.00
5	2,390.000	44.67	74.00	29.33	5.77	v	231.2	1.00
5	2,405.000	86.73			5.87	v	269.8	2.00
$\begin{array}{c} 125\\ -120\\ -117.5\\ -117$						06 23756 23806 238		2400 G 24

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,382.500	30.60	54.00	23.40	5.72	v	81	2.00
5	2,390.000	30.44	54.00	23.56	5.77	v	3.8	2.00
5	2,404.000	75.59			5.87	v	271	2.00
$\begin{array}{c} 125\\ -120\\ -117.5\\ 1105\\ -117.5\\ 1005\\ -117.5\\ 1005\\ -117.5\\ -1005\\ -117.5\\ -1005\\ -117.5\\ -1005\\ -117.5\\ -1005\\ -117.5\\ -1005\\ -1005\\ -117.5\\ -1005\\$	at (c 23)5 G 2320			2 2500 23550	2300.6. 2355.6. 237			2400 G 241

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value–Emission level.
- 3. 2404MHz: Fundamental frequency.

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,880.000	48.92	74.00	25.08	37.59	54.00	16.41	13.54	V	358.1	1.00
2	7,320.000	53.73	74.00	20.27	42.66	54.00	11.34	18.90	v	2	2.00
ہ ج	0										
8 7 72 7 76 6	5 -										
19 72						ŝ			1 1 1		
⊑ 7											
e7.											
0 6 62.											
62.											
57.											
5	5 -										
52.								Ψ			
5							\bigcirc				
47.							Ť				
4								6			
42.								Υ			
37.							6				
3	5										
32.											
3											
27.							1.000				
2											
22.							1				
17.							1				
1											
12.	5 -						2 1000 C 12	in the second			
1											
7.											
	5 -						····				
2.	0					4					
	1 G		2 G		3 G	4 G	5 G	6G 7G	8G 9G 10G		18
			20							Er	equency in H

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor. 1.
- Margin value = Limit value–Emission level. 2.
- 3. 2440MHz: Fundamental frequency.

HAN	NEL		ТХ (Channel 38		DETECTO		Peak (PK)	
REQL	JENCY RA			lz ~ 25GHz		FUNCTION		Average (AV	/)
	A	NTEN	NA P	OLARITY 8	TEST DI	STANCE: H	ORIZONT	AL AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	on Azimuth [deg]	Antenna Height [m]
6	2,478.500	97.9	94			5.88	н	5	1.00
6	2,483.500	44.9	93	74.00	29.07	5.91	н	355	2.00
6	2,492.750	45.8	35	74.00	28.15	5.97	Н	287.4	1.00
87.5 85.5 80.5 77.5 72.5 67.5 67.5 66.5 60.5 75.5 50 46.5 40.4 42.5 40.3 7.5 35.3 2.5 5 32.5 5									
30 27.5 25 22.5									
		1							

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,478.000	87.26	1 gr - 1		5.88	H	4.9	1.00
6	2,483.500	30.76	54.00	23.24	5.91	Н	359	1.00
6	2,492.750	30.92	54.00	23.08	5.97	Н	70.2	2.00
$\begin{array}{c} 102.5 \\ 100\\ 97.5 \\ 95.5 \\ 99.$								

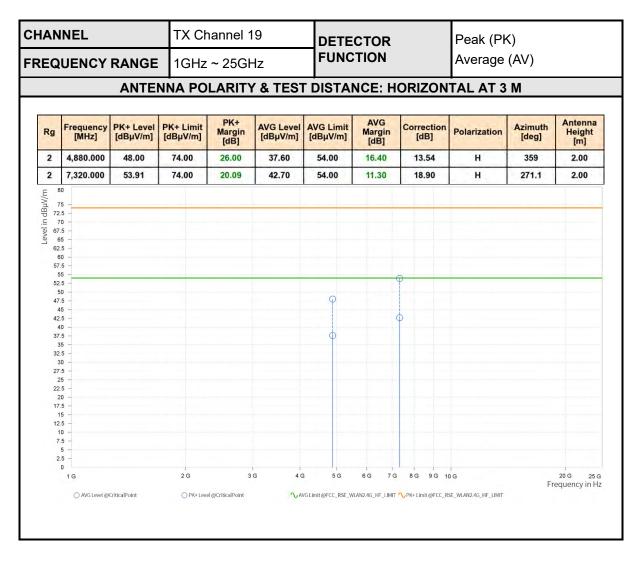
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,477.500	87.81			5.88	v	214.5	1.00
6	2,483.500	45.40	74.00	28.60	5.91	V	355.1	2.00
6	2,489.250	45.83	74.00	28.17	5.95	v	359.1	1.00
$\begin{array}{c} 125\\ 125\\ 175\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$	v75G 24	76 6 2400	24826 248	1G 2486 G	2486 2490	G 2492 G 24	94 G 2496 G	2.498 G 2.5

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,478.000	77.31			5.88	v	219.2	1.00
6	2,483.500	30.39	54.00	23.61	5.91	v	219.2	1.00
6	2,488.250	31.60	54.00	22.40	5.95	v	213.7	2.00
$\begin{array}{c} 125\\ -120\\ -117,5\\ -117,5\\ -117,5\\ -117,5\\ -110,5\\ -110,5\\ -100$	475 G 24	76 2400	24826 248	1G 2486 G	2486 2490	G 2492 G 24	94 G 2496 G	2486 2.5

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value–Emission level.
- 3. 2478MHz: Fundamental frequency.

IEL		тх (Channel 0		DETECTO	R	Peak (PK)		
ENCY RAI	NGE	1GHz ~ 25GHz			FUNCTIO	N	Average (AV)		
A	NTEN	NA P	OLARITY 8	TEST DI	STANCE: H	ORIZON	FAL AT 3 M		
Frequency [MHz]	PK+ L [dBµ\	.evel //m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarizat	ion Azimuth [deg]	Antenna Height [m]	
2,385.000	46.0	05	74.00	27.95	5.74	Н	355.7	2.00	
2,390.000	44.1	17	74.00	29.83	5.77	Н	1.8	2.00	
2,402.000	98.0	01			5.85	н	65.4	2.00	
	ENCY RAI Al Frequency [MHz] 2,385.000 2,390.000	ENCY RANGE ANTENI Frequency PK+ L [MHz] 2,385.000 46.0 2,390.000 44.	ENCY RANGE 1GF ANTENNA P Frequency PK+ Level [MHz] PK+ Level [dBµV/m] 2,385.000 46.05 2,390.000 44.17	ENCY RANGE 1GHz ~ 25GHz ANTENNA POLARITY 8 Frequency [MHz] PK+ Level [dBµV/m] PK+ Limit [dBµV/m] 2,385.000 46.05 74.00 2,390.000 44.17 74.00	ENCY RANGE 1GHz ~ 25GHz I GHz ~ 25GHz ANTENNA POLARITY & TEST DI Frequency [MHz] PK+ Level [dBµV/m] PK+ Limit [dBµV/m] PK+ Margin [dB] 2,385.000 46.05 74.00 27.95 2,390.000 44.17 74.00 29.83	ENCY RANGE 1GHz ~ 25GHz Defection ANTENNA POLARITY & TEST DISTANCE: H Frequency [MHz] PK+ Level [dBµV/m] PK+ Limit [dBµV/m] PK+ Margin [dB] Correction [dB] 2,385.000 46.05 74.00 27.95 5.74 2,390.000 44.17 74.00 29.83 5.77	DETECTOR FUNCTION DETECTOR FUNCTION DETECTOR FUNCTION ANTENNA POLARITY & TEST DISTANCE: HORIZON Frequency [MHz] PK+ Level [dBµV/m] PK+ Limit [dBµV/m] PK+ Margin [dB] Correction [dB] Polarizat 2,385.000 46.05 74.00 27.95 5.74 H 2,390.000 44.17 74.00 29.83 5.77 H	DETECTOR FUNCTIONPeak (FR) Average (AV)ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 MFrequency [MHz]PK+ Level [dB μ V/m]PK+ Limit [dB]PK+ Margin [dB]Polarization Azimuth [dB]2,385.00046.0574.0027.955.74H355.72,390.00044.1774.0029.835.77H1.8	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,382.500	31.19	54.00	22.81	5.72	H	355.1	2.00
5	2,390.000	31.13	54.00	22.87	5.77	Н	355.1	2.00
5	2,402.000	93.45			5.85	Н	19.6	2.00
$\begin{array}{c} 115\\ 112.5\\ 110\\ 107.5\\ 105\\ 102.5\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 99.2\\ 59.9\\ 77.5\\ 59.2\\$	at G 2315G 23200					06 23756 2380 238		2400 G 24


Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,384.000	45.78	74.00	28.22	5.73	v	359	1.00
5	2,390.000	44.07	74.00	29.93	5.77	v	315.2	2.00
5	2,402.000	89.86	1		5.85	v	192.9	1.00
$\begin{array}{c} 125\\ 120\\ 117.5\\ 110.5\\ 1112.5\\ 100.5$	at (c) 2315 (c) 2320(0.6 2.375.6 2.380.6 2.38		2400 G 24

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,381.000	30.60	54.00	23.40	5.71	v	45.8	1.00
5	2,390.000	30.46	54.00	23.54	5.77	v	2	2.00
5	2,402.000	85.23			5.85	v	194.1	1.00
$\begin{array}{c} 125\\ 112,0\\ 117,5\\ 110,5\\ 110,5\\ 100,$	316 23156 2320					06 23756 2380 238		2400 G 24

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value–Emission level.
- 3. 2402MHz: Fundamental frequency.

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,880.000	48.92	74.00	25.08	37.65	54.00	16.35	13.54	V	359	2.00
2	7,320.000	54.00	74.00	20.00	42.79	54.00	11.21	18.90	v	2	2.00
= 8	0						1				
8 7 72 7 76 6	5 -										
AD 72					1	1			1 1		
5 7											
10 67.											
0 6 62.											
62.											
57.											
5	5 -							0			
52.								Y			
5							Q				
47.							T				
4								6			
42.								Y			
37.							0				
3	5										
32.	5 -										
3	0										
27.							1				
2											
22.							Ē				
17.							÷				
1											
12.							I Lowers	6			
1	0 -										
7.											
	5 -										
2.											
	0 1 G		2 G		3 G	4 G	5 G	6G 7G	8G 9G 10G		18
	16		20		36	43	56	00 /0	00 00 10G	E.	equency in H

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor 1.
- 2. Margin value = Limit value–Emission level.
- 2440MHz: Fundamental frequency. 3.

HANN	NEL		ТХ (Channel 39		DETECTO		Peak (Pl		
REQL	JENCY RA			lz ~ 25GHz		FUNCTION		Average		
	A	NTENN	IA P	OLARITY 8	L TEST DI	STANCE: H	ORIZONT	AL AT 3	M	
Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	on Azim		Antenna Height [m]
6	2,479.750	97.9	0			5.89	н	344	1.5	1.00
6	2,483.500	46.1	6	74.00	27.84	5.91	н	35	9	1.00
6	2,493.750	46.6	6	74.00	27.34	5.98	H	5.	4	2.00
92.5 900 87.5 87.5 82.5 82.5 77.5 77.5 77.5 86.5 86.5 52.5 52.5 52.5 52.5 52.5 52.5 30 47.5 42.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 3										
25 22.5	-									
20 2.4	175 G 2.4	78 G 2	480 G	2.482 G 2.48	4 G 2.486 G	2.488 G 2.490	G 2.492 G	2.494 G	2.496 G	2.498 G 2.5 G Frequency in Hz

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	93.98			5.89	H	4.9	1.00
6	2,483.500	31.47	54.00	22.53	5.91	Н	0.9	2.00
6	2,491.750	31.16	54.00	22.84	5.97	н	0.9	2.00
$\begin{array}{c} 125\\ 125\\ 117,5\\ 117,5\\ 1117,5\\ 1112,5\\ 1107,5\\ 1007,5\\$				1 1				

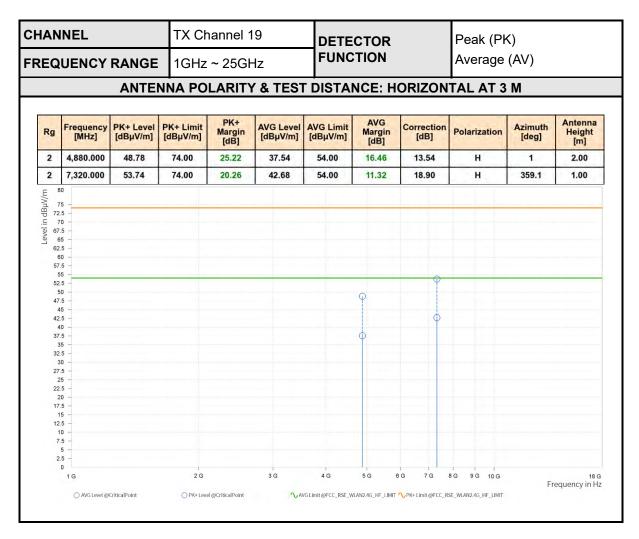
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.250	86.28		• • • • • •	5.89	V	220.4	1.00
6	2,483.500	44.80	74.00	29.20	5.91	v	290.2	2.00
6	2,495.000	47.44	74.00	26.56	5.99	v	216.2	2.00
$\begin{array}{c} 125\\ 120\\ 117,5\\ 112,5\\ 112,5\\ 100,5\\$	756 24	786 2400	24826 248	1G 2466 G	2488 G 2490	G 2492G 24	4 G 2496 G	2486 2.0

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	82.05		• • • • • • • •	5.89	v	355.8	2.00
6	2,483.500	30.45	54.00	23.55	5.91	V	359	2.00
6	2,493.000	30.84	54.00	23.16	5.98	v	233.5	1.00
$\begin{array}{c} 125\\ 1175\\ $	475 G 24	76 2480 G	24826 2484	4.6 2486.6	2485 2490	G 2492G 24	249G 2499G	2.498 G 2.5

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value–Emission level.
- 3. 2480MHz: Fundamental frequency.

HAN	NEL		ТХ (Channel 0		DETECTO	R	Peak (PK)	
REQL	JENCY RAI	NGE	1G⊦	lz ~ 25GHz		FUNCTIO	N	Average (AV)	
	Α	NTENI	NA P	OLARITY 8	TEST DI	STANCE: H	ORIZON	FAL AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBµ\	.evel //m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarizat	ion Azimuth [deg]	Antenna Height [m]
5	2,379.000	45.4	46	74.00	28.54	5.69	H	97.4	1.00
5	2,390.000	44.3	38	74.00	29.62	5.77	Н	212.6	2.00
5	2,402.500	97.8	88			5.86	Н	301.8	1.00
90 87.5 85 82.5 80 77.5 72.5 70 67.5 55 52.5 60 57.5 55 55 52.5 50 47.5 55 52.5 42.5 42.5 42.5 42.5 335									
32.5 30 27.5 25 22.5									

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,384.500	31.17	54.00	22.83	5.73	H H	1	2.00
5	2,390.000	31.08	54.00	22.92	5.77	Н	1	2.00
5	2,402.500	95.24			5.86	н	304.2	1.00
$\begin{array}{c} 125\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 100.$						06 2375 6 2380 6 238		2400 G 241


Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,379.500	45.33	74.00	28.67	5.70	V	140.7	2.00
5	2,390.000	44.66	74.00	29.34	5.77	v	140.7	2.00
5	2,402.500	87.72			5.86	v	182.2	1.00
$\begin{array}{c} 125\\ 120\\ 117, 55\\ 100\\ 117, 55\\ 1112, 5\\ 100, $								

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,383.000	30.63	54.00	23.37	5.72	V	1	2.00
5	2,390.000	30.47	54.00	23.53	5.77	V	261.5	2.00
5	2,402.000	86.85			5.85	v	261.5	2.00
$\begin{array}{c} 125\\ -120\\ 0\\ -117,5\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	1 (G 2.315 G 2.320)	2.2356.2.3306.2		C. 2350G. 2355G	2300.6. 2355.6. 237			2400 G 24

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor.
- 2. Margin value = Limit value–Emission level.
- 3. 2402MHz: Fundamental frequency.

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,880.000	47.76	74.00	26.24	37.55	54.00	16.45	13.54	v	1	2.00
2	7,320.000	53.96	74.00	20.04	42.80	54.00	11.20	18.90	v	1.9	2.00
= 8	0							1			
8 7 72. 7 8 6 6 6 20	5 -										
AD 72.					-	Ĩ		1	1 1 1		
⊑ 7											
07.											
ف 6 62.											
6											
57.											
5	5 -							0			
52.					1	-		Y			
5											
47.							φ				
4								0			
42.								Ψ			
37.							0				
3							Υ				
32.											
3	0 —										
27.							i i gunomen	· · · · · · · · · · · · · · · · · · ·			
2								······			
22.							1				
2							····				
17. 1											
12.											
12.											
7.											
	5 -										
2.	5 -						1				
	0		i		- i .	ĩ	i	i i I	i i i		
	1 G		2 G		3 G	4 G	5 G	6G 7G	8G 9G 10G		18 equency in H

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor 1.
- Margin value = Limit value–Emission level. 2.
- 3. 2440MHz: Fundamental frequency.

СНА	ANN	EL		тх с	Channel 39		DETECTO		Peak (PK)	
RE	QU	ENCY RAN	IGE	1GH	z ~ 25GHz		FUNCTION	N	Average (AV	/)
		AN	ITENN	NA PO	OLARITY 8	TEST DI	STANCE: H	ORIZONT	AL AT 3 M	
	Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	on Azimuth [deg]	Antenna Height [m]
Ī	6	2,479.750	97.	71			5.89	н	308.9	1.00
ţ	6	2,483.500	46.	06	74.00	27.94	5.91	н	359	2.00
1	6	2,492.500	46.	56	74.00	27.44	5.97	Н	10.7	2.00
	97.5 95 - 92.5 90 - 87.5 82.5 82.5 82.5 77.5 77.5 62.5 60 77.5 62.5 60 57.5 52.5 50 - 57.5 52.5 52.5 47.5 52.5 47.5 32.5 300 27.5 22.5									
	20 2.4	175 G 2.4		2.480 G	2.482 G 2.48		2.488 G 2.490		2.494 G 2.496 G	2.498 G 2.5 G Frequency in Hz

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	95.55			5.89	Н	4.9	1.00
6	2,483.500	31.40	54.00	22.60	5.91	Н	359	1.00
6	2,485.000	31.12	54.00	22.88	5.92	Н	301.7	1.00
$\begin{array}{c} 1255\\ 117,5,5\\ 117,5,5\\ 117,5,5\\ 112,5,5\\ 112,5,5\\ 100,5\\ 112,5,5\\ 100,5\\ 112,5,5\\ 100,5\\ 112,5\\ 100,5\\ 112,5\\ 100$								

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.250	84.90		P	5.89	V	227.6	1.00
6	2,483.500	45.21	74.00	28.79	5.91	v	289	2.00
6	2,491.250	49.04	74.00	24.96	5.96	v	359	1.00
$\begin{array}{c} 112.5 \\ 110 \\ 107.5 \\ 102.5 \\ 100.5 \\ 97.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 99.5 \\ 90.5 \\$	475 G 24	78 6 2480 G	24826 248	1G 2466 G	2.485 G 2.490	G 2492 G 24	94 G 2496 G	248 G 2.5

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	82.10			5.89	v	226.4	1.00
6	2,483.500	30.44	54.00	23.56	5.91	v	134.7	2.00
6	2,494.000	30.79	54.00	23.21	5.98	v	149.8	1.00
$\begin{array}{c} 125\\ 117.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 100.$	475 G 24	78 G 2480 G	24826 248	1G 2486 G	2485 2490	G 2492G 24	249G 2499G	2486 2.5

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value–Emission level.
- 3. 2480MHz: Fundamental frequency.

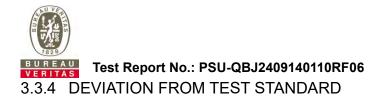
Test Report No.: PSU-QBJ2409140110RF06 3.3 6 dB BANDWIDTH MEASUREMENT

3.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

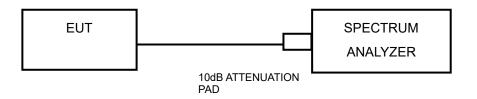
The minimum 6dB Bandwidth Measurement is 0.5 MHz.

Equipment Manufacturer Model No. Serial No. Last Cal. Next C							
	wanuacturer	Model No.	Serial NO.	Last Gal.	Next Cal.		
EMI Test Receiver	R&S	ESW 44	101973	Mar.28,24	Mar.27,26		
Open Switch and Control Unit	R&S	OSP-B157W8	100836	N/A	N/A		
Vector Signal Generator	R&S	SMBV100B	102176	Mar.29,24	Mar.28,26		
Signal Generator	R&S	SMB100A03	182185	Mar.29,24	Mar.28,26		
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26		
Hygrothermograph	DELI	20210528	SZ015	Sep.05,24	Sep.04,26		
PC	LENOVO	E14	HRSW0024	N/A	N/A		
CABLE	R&S	J12J103539- 00-1	SEP-03-20-069	Apr.27,24	Apr.26,25		
CABLE	R&S	J12J103539- 00-1	SEP-03-20-070	Apr.27,24	Apr.26,25		
Test Software	EMC32	EMC32	N/A	N/A	N/A		
Temperature Chamber	votsch	VT4002	58566078100050	May.30,24	May.29,26		
Power Meter	R&S	NRX	102380	Mar.28,24	Mar.27,26		
Power Meter probe	R&S	NRP6A	102942	Mar.28,24	Mar.27,26		

3.3.2 TEST INSTRUMENTS


NOTE:

- The calibration interval of the above test instruments is 12/24 months and the calibrations are 1. traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- The test was performed in RF Oven room. 2.


3.3.3 TEST PROCEDURE

- Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

No deviation.

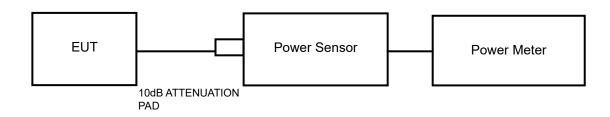
3.3.5 TEST SETUP

3.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest CHannel frequencies individually.

3.3.7 TEST RESULTS

Please Refer to Appendix B Of this test report..



BUREAU VERITAS Test Report No.: PSU-QBJ2409140110RF06 3.4 CONDUCTED OUTPUT POWER

3.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

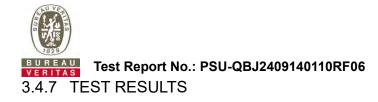
For systems using digital modulation in the 2400–2483.5 MHz band: 1 Watt (30dBm)

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.4.4 TEST PROCEDURES


A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

3.4.5 DEVIATION FROM TEST STANDARD

No deviation.

3.4.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest CHannel frequencies individually.

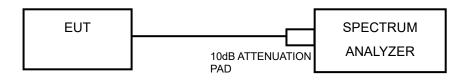
3.4.7.1 MAXIMUM PEAK OUTPUT POWER

Please Refer to Appendix B Of this test report..

3.4.7.2 AVERAGE OUTPUT POWER (FOR REFERENCE)

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

Please Refer to Appendix B Of this test report..



BUREAU VERITAS Test Report No.: PSU-QBJ2409140110RF06 3.5 POWER SPECTRAL DENSITY MEASUREMENT

3.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.

3.5.2 TEST SETUP

3.5.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.5.4 TEST PROCEDURE

- 1. Set the span to 1.5 times the DTS bandwidth
- 2. Set the RBW = 3 kHz, VBW \ge 3 x RBW, Detector = peak.
- 3. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

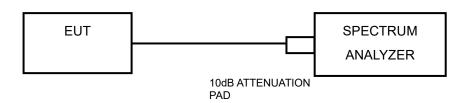
3.5.5 DEVIATION FROM TEST STANDARD

No deviation.

3.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest CHannel frequencies individually.

Please Refer to Appendix B Of this test report..



Test Report No.: PSU-QBJ2409140110RF06 **OUT OF BAND EMISSION MEASUREMENT**

3.6.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

3.6.2 TEST SETUP

3.6.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.6.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

- Set the RBW = 100 kHz. 1.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- Sweep time = auto couple. 4.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW \ge 300 kHz.
- 3. Set span to encompass the spectrum to be examined
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

3.6.5 DEVIATION FROM TEST STANDARD

No deviation.

3.6.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest CHannel frequencies individually.

3.6.7 TEST RESULTS

The spectrum plots are attaCHed on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

Please Refer to Appendix B Of this test report..

BUREAU VERITAS Test Report No.: PSU-QBJ2409140110RF06 3.7 ANTENNA REQUIREMENTS

3.7.1 STANDARD APPLICABLE

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.7.2 ANTENNA CONNECTED CONSTRUCTION

An embedded-in antenna design is used.

3.7.3 ANTENNA GAIN

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit and PSD limit

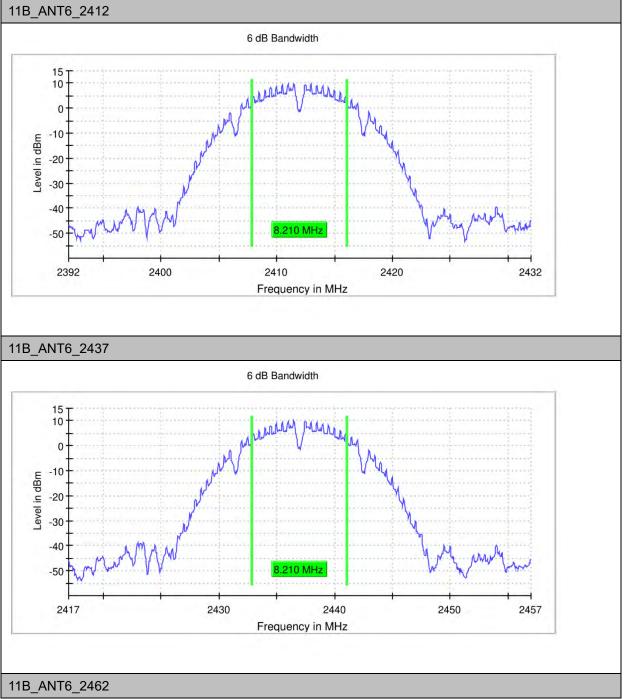
4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attaCHed file (Test Setup Photo).

BUREAU VERITAS Test Report No.: PSU-QBJ2409140110RF06 5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

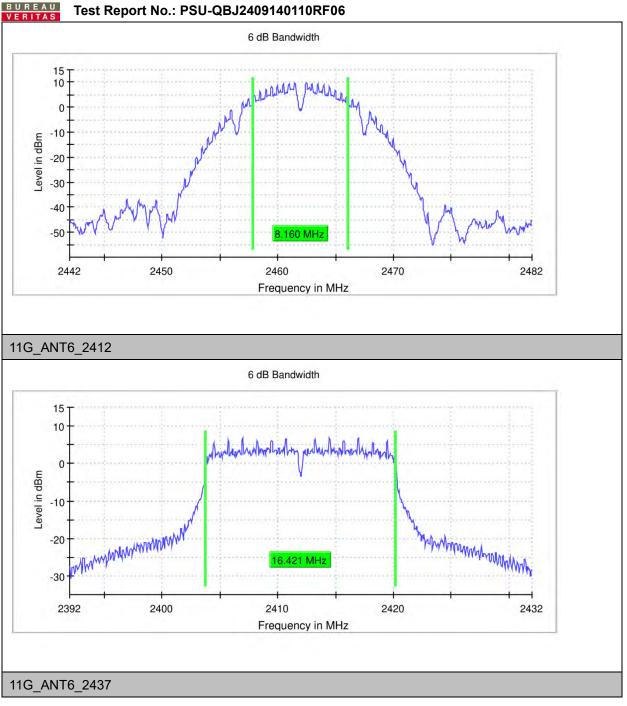
No any modifications are made to the EUT by the lab during the test.

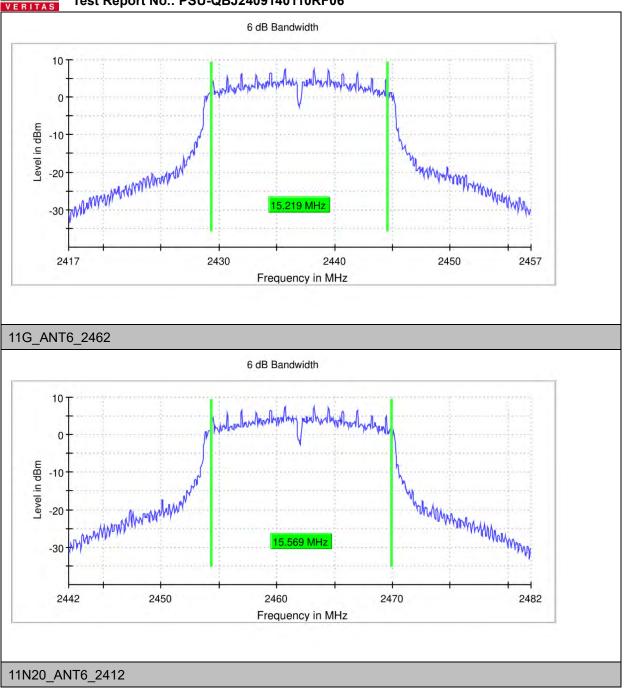
6 APPENDIX A:2.4GWIFI


DTS BANDWIDTH

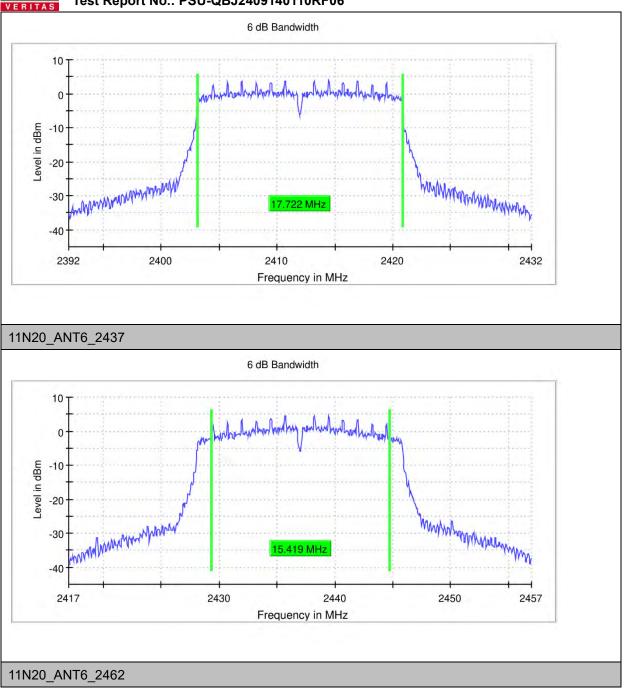
TEST RESULT

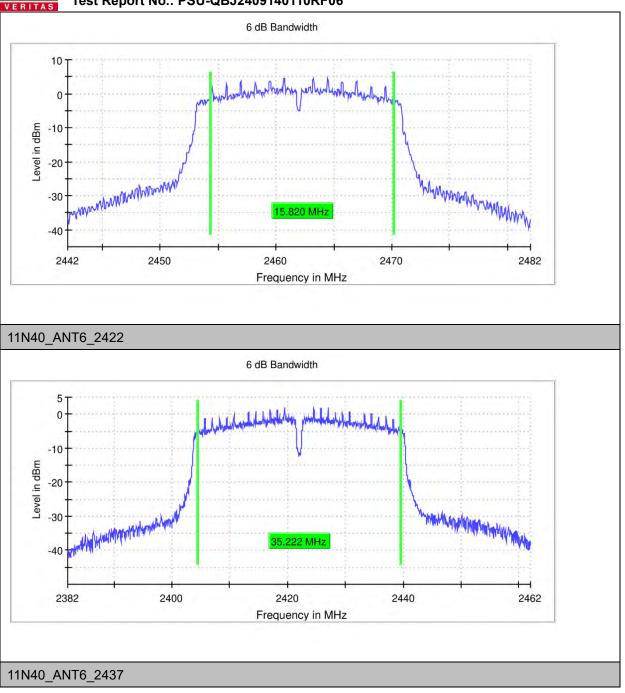
			DTS				
TestMode	Antenna	Frequency[MHz]	BW	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
			[MHz]				
	ANT6	2412	8.210	2407.870	2416.080	0.5	PASS
11B	ANT6	2437	8.210	2432.870	2441.080	0.5	PASS
	ANT6	2462	8.160	2457.870	2466.030	0.5	PASS
	ANT6	2412	16.421	2403.765	2420.185	0.5	PASS
11G	ANT6	2437	15.219	2429.365	2444.584	0.5	PASS
	ANT6	2462	15.569	2454.365	2469.935	0.5	PASS
	ANT6	2412	17.722	2403.114	2420.836	0.5	PASS
11N20	ANT6	2437	15.419	2429.365	2444.785	0.5	PASS
	ANT6	2462	15.820	2454.365	2470.185	0.5	PASS
	ANT6	2422	35.222	2404.414	2439.636	0.5	PASS
11N40	ANT6	2437	35.222	2419.414	2454.636	0.5	PASS
	ANT6	2452	35.222	2434.414	2469.636	0.5	PASS


TEST GRAPHS

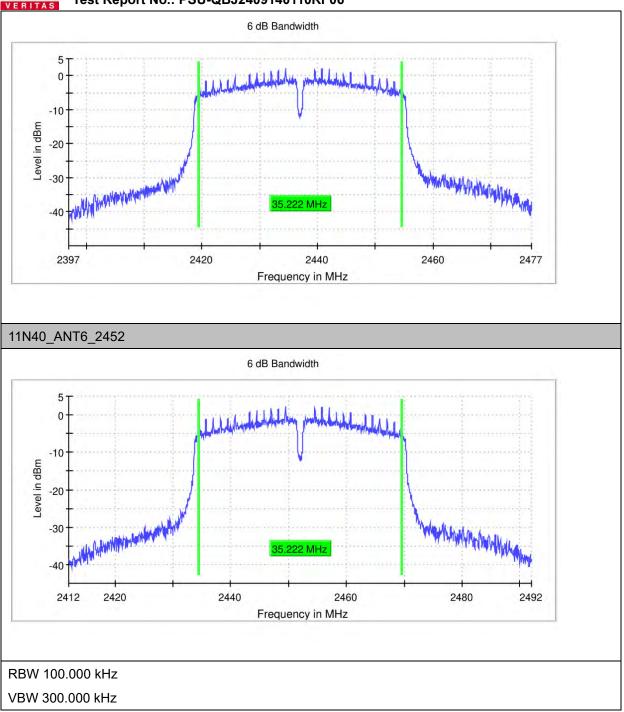

Tel: +86 (0557) 368 1008

Test Report No.: PSU-QBJ2409140110RF06

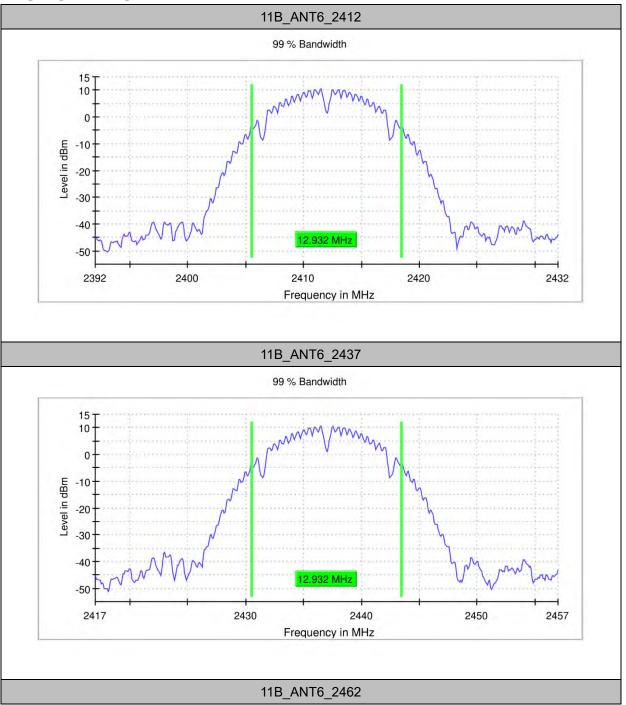




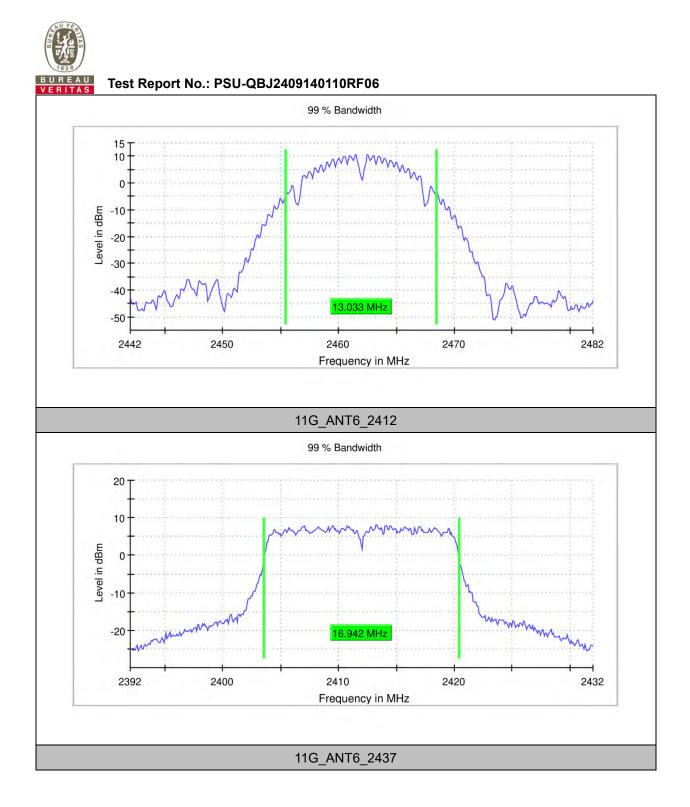
Test Report No.: PSU-QBJ2409140110RF06

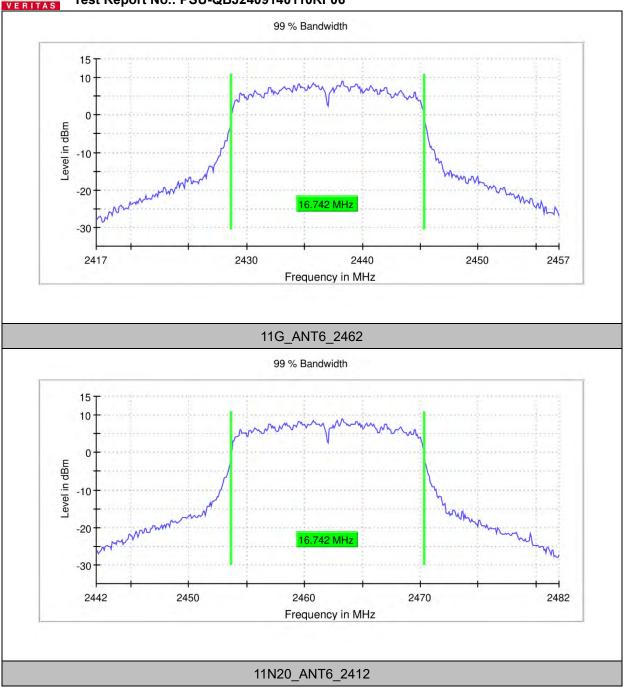


Test Report No.: PSU-QBJ2409140110RF06


OBW BANDWIDTH

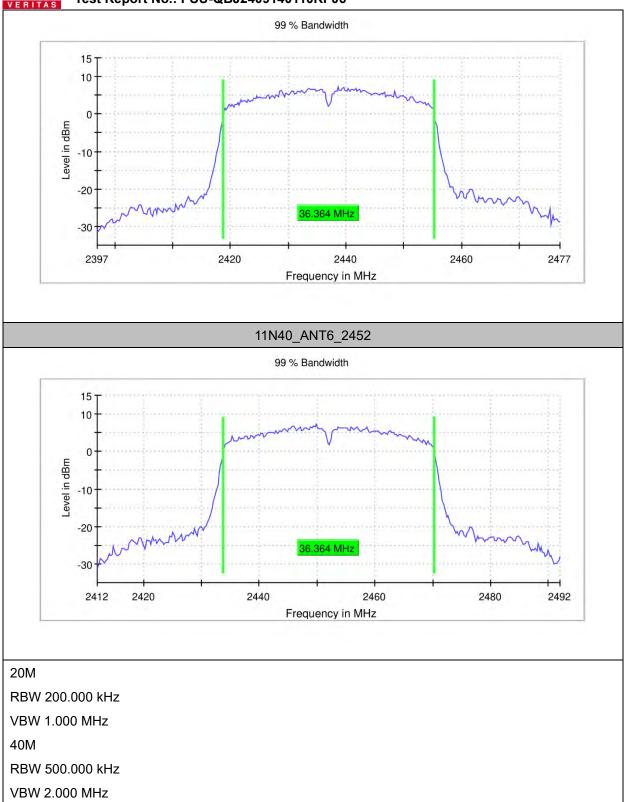
TeetMede	Antonno		OBW			L insid[NAL [m]) (andiat
TestMode	Antenna	Frequency[MHz]	BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	ANT6	2412	12.932	2405.534	2418.466		PASS
11B	ANT6	2437	12.932	2430.534	2443.466		PASS
	ANT6	2462	13.033	2455.434	2468.466		PASS
	ANT6	2412	16.942	2403.529	2420.471		PASS
11G	ANT6	2437	16.742	2428.629	2445.371		PASS
	ANT6	2462	16.742	2453.629	2470.371		PASS
	ANT6	2412	17.945	2403.028	2420.972		PASS
11N20	ANT6	2437	17.744	2428.128	2445.872		PASS
	ANT6	2462	17.744	2453.128	2470.872		PASS
	ANT6	2422	36.614	2403.818	2440.433		PASS
11N40	ANT6	2437	36.364	2418.818	2455.182		PASS
	ANT6	2452	36.364	2433.818	2470.182		PASS


TEST RESULT


TEST GRAPHS



Tel: +86 (0557) 368 1008



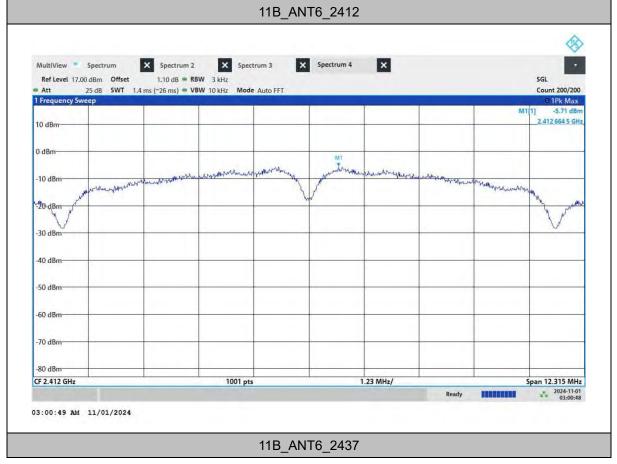
Tel: +86 (0557) 368 1008

BUREAU
VERITASTest Report No.: PSU-QBJ2409140110RF06MAXIMUM CONDUCTED OUTPUT POWER

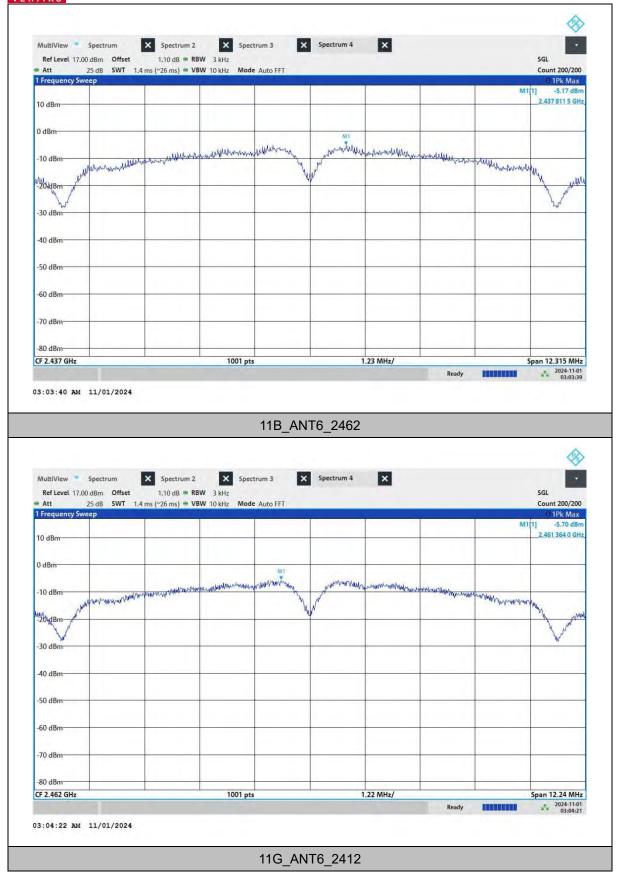
TEST RESULT

TestMode	TX Mod.	Frequency [MHz]	Peak power [dBm] ANT6	MAX Peak power [mw]	Limit [dBm]	Verdict	Power Setting
		2412	15.75	37.58	≤30.00	PASS	12
11B	SISO	2437	15.77	37.76	≤30.00	PASS	12
		2462	15.73	37.41	≤30.00	PASS	12
		2412	24.74	297.85	≤30.00	PASS	12
11g	SISO	2437	24.08	255.86	≤30.00	PASS	12
		2462	24.35	272.27	≤30.00	PASS	12
		2412	24.32	270.40	≤30.00	PASS	12
11N20	SISO	2437	24.25	266.07	≤30.00	PASS	12
		2462	24.09	256.45	≤30.00	PASS	12
		2422	24.01	251.77	≤30.00	PASS	12
11N40	SISO	2437	24.63	290.40	≤30.00	PASS	12
		2452	24.03	252.93	≤30.00	PASS	12

TestMode	TX Mod.	Freq. [MHz]	Avg.power [dBm] ANT6	Power Setting
		2412	13.05	12
11B	SISO	2437	13.01	12
		2462	13.08	12
		2412	12.82	12
11g	SISO	2437	12.83	12
		2462	12.87	12
		2412	12.83	12
11N20	SISO	2437	12.78	12
		2462	12.78	12
		2422	12.81	12
11N40	SISO	2437	12.80	12
		2452	12.82	12


BUREAU VERITAS Test Report No.: PSU-QBJ2409140110RF06 MAXIMUM POWER SPECTRAL DENSITY

TEST RESULT


TestMode	Antenna	Frequency	Result	Limit	Verdict
restivioue	Antenna	[MHz]	[dBm/3kHz]	[dBm/3kHz]	Verdici
	ANT6	2412	-5.71	≤8.00	PASS
11B	ANT6	2437	-5.17	≤8.00	PASS
	ANT6	2462	-5.70	≤8.00	PASS
	ANT6	2412	-7.52	≤8.00	PASS
11G	ANT6	2437	-7.54	≤8.00	PASS
	ANT6	2462	-6.62	≤8.00	PASS
	ANT6	2412	-11.79	≤8.00	PASS
11N20	ANT6	2437	-10.82	≤8.00	PASS
	ANT6	2462	-10.59	≤8.00	PASS
	ANT6	2422	-13.36	≤8.00	PASS
11N40	ANT6	2437	-13.13	≤8.00	PASS
	ANT6	2452	-13.73	≤8.00	PASS

TEST GRAPHS

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Test Report No.: PSU-QBJ2409140110RF06

1 Frequency Sweep		1		1		84	• 1Pk Max 1[1] -7.52 dBm
10 dBm						M	2.410 450 3 GH
0 dBm							
-10 dBm		Annhere	MT				
-10 dbm	MAMM	awaaaau	MMM	www.www	mmmm	M	
-20 dBm	N		W			N.	
-30 dBm	N*				-	Mary	Winny
Mad about Marine					_		MANN
							, in the second se
-50 dBm					1 1 1 1 1 1		
-60 dBm							
-70 dBm							
-80 dBm							
							and the second sec
	m X Spectrum		11G_ANT6	2.46 MHz/	Ready	si s	pan 24.631 5 MHz 2024-11-01 ** 2024-11-01 03:14:11
Ref Level 17.00 dBm	m X Spectrum	2 X Spectr RBW 3 kHz	rum 3 🗙 5	<u>2</u> 437	Ready	and the second second	** 2024-11-01 *** 03:14:11
03:14:11 M 11/01, MultiView Spectru Ref Level 17,00 dBm Att 25 dB	m Spectrum Offset 1.10 dB =	2 X Spectr RBW 3 kHz	rum 3 🗙 5	<u>2</u> 437	Ready		2024-11-01 2024-11-01 03:14:11 03:14:11 SGL Count 200/200 0 1Pk Max 11 -7.54 dBm
MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	m Spectrum Offset 1.10 dB =	2 X Spectr RBW 3 kHz	rum 3 🗙 5	<u>2</u> 437	Ready		2024-11-01 2024-11-01 03:14:11 03:14:11 SGL Count 200/200 0 1Pk Max 11 -7.54 dBm
03:14:11 M 11/01, MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	pectrum 4			2024-11-01 2024-11-01 03:14:11 03:14:11 SGL Count 200/200 0 1Pk Max 11 -7.54 dBm
03:14:11 M 11/01, MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	pectrum 4			2024-11-01 2024-11-01 03:14:11 03:14:11 SGL Count 200/200 0 1Pk Max 11 -7.54 dBm
03:14:11 M 11/01, MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	<u>2</u> 437			2024-11-01 2024-11-01 03:14:11 2024 SGL Count 200/200 0 1Pk Max 2.433 875 8 GHz
MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	pectrum 4			2024-11-01 2024-11-01 03:14:11 2024 SGL Count 200/200 0 1Pk Max 2.433 875 8 GHz
03:14:11 xm 11/01, MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	pectrum 4			2024-11-01 2024-11-01 03:14:11 2024 SGL Count 200/200 0 1Pk Max 2.433 875 8 GHz
03:14:11 xm 11/01, MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm - -10 dBm - -30 dBm - /40/dBm -	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	pectrum 4			2024-11-01 2024-11-01 03:14:11 03:14:11 SGL Count 200/200 0 1Pk Max 11 -7.54 dBm
03:14:11 xm 11/01, MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	pectrum 4			2024-11-01 2024-11-01 03:14:11 2024 SGL Count 200/200 0 1Pk Max 2.433 875 8 GHz
03:14:11 xm 11/01, MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm - -10 dBm - -30 dBm - /40/dBm -	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	pectrum 4			2024-11-01 2024-11-01 03:14:11 2024 SGL Count 200/200 0 1Pk Max 2.433 875 8 GHz
03:14:11 M 11/01, MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	pectrum 4			2024-11-01 2024-11-01 03:14:11 2024 SGL Count 200/200 0 1Pk Max 2.433 875 8 GHz
03:14:11 xm 11/01, MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm -	m X Spectrum Offset 1.10 dB S SWT 1.4 ms (~45 ms) =	2 Spectr RBW 3 kHz VBW 10 kHz Mode	Auto FFT	pectrum 4			2024-11-01 2024-11-01 03:14:11 2024 SGL Count 200/200 0 1Pk Max 2.433 875 8 GHz

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Test Report No.: PSU-QBJ2409140110RF06

					O 1Pk Max M1[1] -6.62 dBn
10 dBm	-				2.463 236 3 GH
0 dBm			MI		
-10 dBm		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	and my man	TALANA MAL	
-20 dBm	Warman	AAAAAAAAAAA.		A A A A A A A A A A A A A A A A A A A	η
of					Mr.
-30 dBm					Mulanny
40 dBm					- H Y V V
-50 dBm					
-60 dBm					
-70 dBm					
-80 dBm					
CF 2.462 GHz					Span 23.353 5 MHz
03:08:55 AM 11/01 MultiView Spectru Ref Level 17.00 dBm	m X Spectrum	_	2.34 MHz/ 0_ANT6_2412	Ready	2024-110-1 3:2024-110-1 3:08:55 2024-110-1 03:08:55 € 5GL
03:08:55 M 11/01 MultiView Spectru Ref Level 17.00 dBm	m Spectrum Offset 1.10 dB *	2 × Spectrum 3	0_ANT6_2412 X Spectrum 4 X	Ready	** ²⁰²⁴⁻¹¹⁻⁰¹ 03:08:55
03:08:55 M 11/01 MultiView Spectru Ref Level 17.00 dBm Att 25 dB	m Spectrum Offset 1.10 dB *	2 Spectrum 3 RBW 3 kHz	0_ANT6_2412 X Spectrum 4 X	Ready	SGL Count 200/200 01Pk Max M1[1] -11.79 dBn
MultiView Spectru Ref Level 17.00 dBm Att 25 dB Frequency Sweep 10 dBm	m Spectrum Offset 1.10 dB *	2 Spectrum 3 RBW 3 kHz	0_ANT6_2412 X Spectrum 4 X	Ready	SGL Count 200/200 01Pk Max M1[1] -11.79 dBn
MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	m Spectrum Offset 1.10 dB *	2 Spectrum 3 RBW 3 kHz	0_ANT6_2412 X Spectrum 4 X	Ready	2024-11-01 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55 03:08:55
MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm	m Spectrum Offset 1.10 dB = SWT 1.4 ms (~45 ms) =	2 X Spectrum 3 RBW 3 KHz VBW 10 kHz Mode Auto FF1	0_ANT6_2412 X Spectrum 4 X		SGL Count 200/200 01Pk Max M1[1] -11.79 dBr
MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	m Spectrum Offset 1.10 dB = SWT 1.4 ms (~45 ms) =	2 X Spectrum 3 RBW 3 KHz VBW 10 kHz Mode Auto FF1	0_ANT6_2412 X Spectrum 4 T		SGL Count 200/200 01Pk Max M1[1] -11.79 dBr
MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm	m Spectrum Offset 1.10 dB = SWT 1.4 ms (~45 ms) =	2 X Spectrum 3 RBW 3 KHz VBW 10 kHz Mode Auto FF1	0_ANT6_2412 X Spectrum 4 T		SGL Count 200/200 01Pk Max M1[1] -11.79 dBr
D3: 08: 55 M 11/01 MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1Prequency Sweep 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm -	m Spectrum Offset 1.10 dB = SWT 1.4 ms (~45 ms) =	2 X Spectrum 3 RBW 3 KHz VBW 10 kHz Mode Auto FF1	0_ANT6_2412 X Spectrum 4 T		SGL Count 200/200 01Pk Max M1[1] -11.79 dBn 2.409 503 5 GH;
03:08:55 M 11/01 MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm	m Spectrum Offset 1.10 dB = SWT 1.4 ms (~45 ms) =	2 X Spectrum 3 RBW 3 KHz VBW 10 kHz Mode Auto FF1	0_ANT6_2412 X Spectrum 4 T		SGL Count 200/200 01Pk Max M1[1] -11.79 dBr
D3: 08: 55 M 11/01 MultiView Spectru Ref Level 17.00 dBm Att 25 dB 1Prequency Sweep 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm -	m Spectrum Offset 1.10 dB = SWT 1.4 ms (~45 ms) =	2 X Spectrum 3 RBW 3 KHz VBW 10 kHz Mode Auto FF1	0_ANT6_2412 X Spectrum 4 T		SGL Count 200/200 01Pk Max M1[1] -11.79 dBn 2.409 503 5 GH;
D3: 08: 55 M 11/01 MultiView Spectru Ref Level 17.00 d8m Att 25 d8 1 Frequency Sweep 10 d8m 10 d8m - -10 d8m - -20 d8m - -30 d8m - -40 d8m - -50'd8m -	m Spectrum Offset 1.10 dB = SWT 1.4 ms (~45 ms) =	2 X Spectrum 3 RBW 3 KHz VBW 10 kHz Mode Auto FF1	0_ANT6_2412 X Spectrum 4 T		SGL Count 200/200 01Pk Max M1[1] -11.79 dBn 2.409 503 5 GH;
D3: 08: 55 M 11/01 MultiView Spectru Ref Level 17.00 d8m Att 25 d8 1 Frequency Sweep 10 d8m 0 d8m - -10 d8m - -20 d8m - -30 d8m - -40 d8m - -50'd8m - -60 d8m -	m Spectrum Offset 1.10 dB = SWT 1.4 ms (~45 ms) =	2 X Spectrum 3 RBW 3 KHz VBW 10 kHz Mode Auto FF1	0_ANT6_2412 X Spectrum 4 T		SGL Count 200/200 01Pk Max M1[1] -11.79 dBn 2.409 503 5 GH;

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Test Report No.: PSU-QBJ2409140110RF06

Att 2	dBm Offset 5 dB SWT 1.4	ms (~45 ms) . VBN	W 3 kHz W 10 kHz Mode	Auto FFT					SGL Count 200/200
1 Frequency Swee							1	1	O 1Pk Max
10 dBm				_		-			11[1] -10.82 dBm 2.435 983 8 GH
0 dBm									
-10 dBm				M1	No. a Marco	1			
	ANAAN	www	MANNA	mm	mm	mm	Man	mm	
-20 dBm	1			l	V				
-30 dBm	N	-	-				-		AL
why why									1 hren
-40 dBm									MAA
-50 dBm								-	
-60 dBm	· · · · · · · · · · · · · · · · · · ·						1000		
							· · · · · ·		
-70 dBm									-
-80 dBm									
-80 dBm CF 2.437 GHz			1001 pts	-		2.31 MHz/			pan 23.128 5 MHz
03:19:42 AM :	Spectrum	Spectrum 2 1.10 dB = RB\	× Spect		NT6_2462 Spectrum 4	2	Ready		* 2024-11-01 03:19:42
MultiView 5 Ref Level 17.00	Spectrum dBm Offset 5 dB SWT 1.4		Spect N 3 kHz	rum 3 🗙			Ready		SGL Count 200/200 0 1Pk Max
MultiView 5 Ref Level 17.00 Att 2 1 Frequency Swee	Spectrum dBm Offset 5 dB SWT 1.4	1.10 dB 🖷 RBV	Spect N 3 kHz	rum 3 🗙			Ready		03:1342
MultiView 2 1 Ref Level 17.00 Att 2	Spectrum dBm Offset 5 dB SWT 1.4	1.10 dB 🖷 RBV	Spect N 3 kHz	rum 3 🗙			Ready		5GL Count 200/200 0 1Pk Max 11[1] -10.59 dBm
MultiView 5 Ref Level 17.00 Att 2 1 Frequency Swee	Spectrum dBm Offset 5 dB SWT 1.4	1.10 dB 🖷 RBV	Spect N 3 kHz	rum 3 🗙			Ready		5GL Count 200/200 0 1Pk Max 11[1] -10.59 dBm
MultiView 2 9 Ref Level 17.00 Att 2 1 Frequency Swee 10 dBm	ipectrum d8m Offset 5 d8 SWT 1.4 sp	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		N	5GL Count 200/200 0 1Pk Max 11[1] -10.59 dBm
MultiView 2 9 Ref Level 17.00 Att 2 1 Frequency Sweet 10 dBm- 0 dBm- -10 dBm-	ipectrum d8m Offset 5 d8 SWT 1.4 sp	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		N	5GL Count 200/200 0 1Pk Max 11[1] -10.59 dBm
MultiView 2 3 Ref Level 17.00 Att 2 1 Frequency Sweet 10 dBm	ipectrum d8m Offset 5 d8 SWT 1.4 sp	1.10 dB 🖷 RBV	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		N	5GL Count 200/200 0 1Pk Max 11[1] -10.59 dBm
MultiView \$ Ref Level 17.00 Att 2 Frequency Sweet 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm	ipectrum dBm Offset 5 dB SWT 1.4 sp.	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		WWW	SGL Count 200/200 0 1Pk Max 11[1] -105 9 dBr 2.462 877 0 GH;
MultiView 2 3 Ref Level 17.00 • Att 2 1 Frequency Sweet 10 dBm -10 dBm -20 dBm -30 dBm	ipectrum d8m Offset 5 d8 SWT 1.4 sp	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		WWW	SGL Count 200/200 0 1Pk Max 11[1] -10.59 dBm 2.462 877 0 GH;
MultiView 2 Ref Level 17.00 Att 2 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	ipectrum dBm Offset 5 dB SWT 1.4 sp.	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		WWW	SGL Count 200/200 0 1Pk Max 11[1] -10.59 dBm 2.462 877 0 GH;
MultiView 2 3 Ref Level 17.00 • Att 2 1 Frequency Sweet 10 dBm -10 dBm -20 dBm -30 dBm	ipectrum dBm Offset 5 dB SWT 1.4 sp.	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		WWW	SGL Count 200/200 0 1Pk Max 11[1] -105 9 dBr 2.462 877 0 GH;
MultiView 12 Ref Level 17.00 Att 2 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	ipectrum dBm Offset 5 dB SWT 1.4 sp.	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		WWW	SGL Count 200/200 0 1Pk Max 11[1] -10.59 dBm 2.462 877 0 GH;
MultiView 12 Ref Level 17.00 Att 2 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	ipectrum dBm Offset 5 dB SWT 1.4 sp.	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		WWW	SGL Count 200/200 0 1Pk Max 11[1] -10.59 dBm 2.462 877 0 GH;
MultiView 12 Ref Level 17.00 Att 2 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	ipectrum dBm Offset 5 dB SWT 1.4 sp.	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		WWW	SGL Count 200/200 0 1Pk Max 11[1] -10.59 dBm 2.462 877 0 GH;
MultiView 4 2 Ref Level 17.00 • Att 2 1 Frequency Sweet 10 dBm - 0 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm - 60 dBm - 70 dBm	ipectrum dBm Offset 5 dB SWT 1.4 sp.	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		WWW	SGL Count 200/200 0 1Pk Max 11[1] -10.59 dBm 2.462 877 0 GH;
MultiView 12 Ref Level 17.00 Att 2 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	ipectrum dBm Offset 5 dB SWT 1.4 sp.	1.10 dB = RBU ms (~45 ms) = VBU	X Spect N 3 kHz W 10 kHz Mode	rum 3 X	Spectrum 4	×		WWW	SGL Count 200/200 0 1Pk Max 11[1] -10.59 dBm 2.462 877 0 GH;

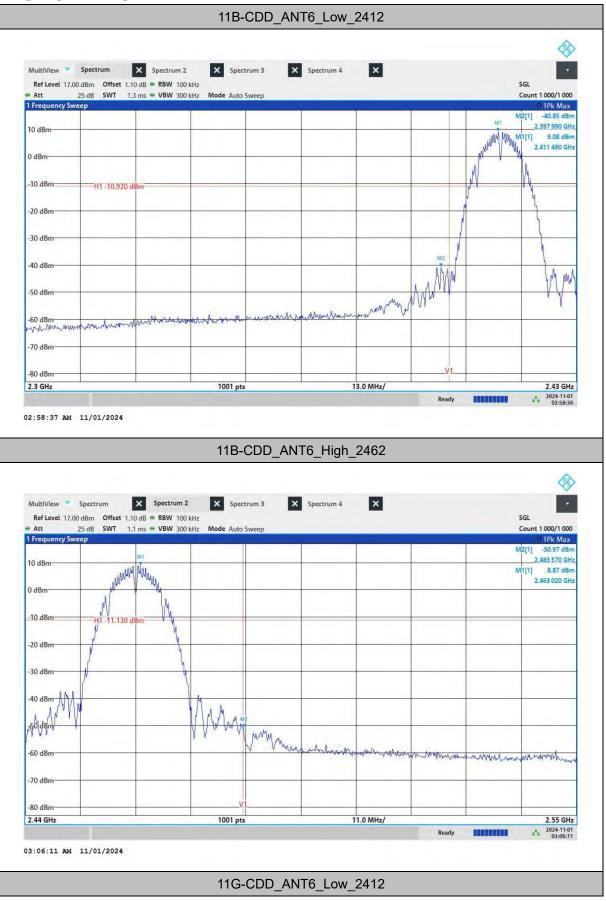
Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Test Report No.: PSU-QBJ2409140110RF06

A PART AND A PART AND A PART AND A	Offset SWT 2.79	1.10 dB 🖷 R ms (~78 ms) 🖷 V	BW 10 kHz Mo	ode Auto FFT					SGL Count 200/200
1 Frequency Sweep				1	1			1	 1Pk Max M1[1] -13.36 dBm
10 dBm									2.419 466 5 GHz
0 dBm									
							1.6.7.1		
-10 dBm			1.10	MI T. M	and a second	1000			
-20 dBm	MANANA	and water water	www.wahaham	MMMMMMM	MMMMMM	MMMMMMMMMM	ManyMany	www.	
	ALL IL I				4				
-30 dBm	1				W			1	
-40 dBm	J.							how	
an montal work	~							N	mannanna
vebrakurwww.									
-60 dBm				-					
70.10									
-70 dBm									
-80 dBm									
CF 2.422 GHz			1001 pt	ts		5.28 MHz/	and States		Span 52.833 MHz 2024-11-01 02:37:56
03:27:57 AM 11/ MultiView Spec		Spectrum 2	X Spe	11N40_A	NT6_243 Spectrum 4	8	Ready		•• 03:27:56
Ref Level 17.00 dBm	trum A	1.10 dB 🖷 R	BW 3 kHz	ectrum 3					SGL
MultiView Spec Ref Level 17.00 dBm	trum A	1.10 dB 🖷 R		ectrum 3					SGL Count 200/200 0 1Pk Max
MultiView Spec Ref Level 17.00 dBn Att 25 dE	trum A	1.10 dB 🖷 R	BW 3 kHz	ectrum 3					5GL Count 200/200
MultiView Spec Ref Level 17.00 dBn Att 25 dE 1 Frequency Sweep	trum A	1.10 dB 🖷 R	BW 3 kHz	ectrum 3					SGL Count 200/200 01Pk Max 41[1] -13.13 dBm
MultiView Spec Ref Level 17.00 dBn Att 25 dE 1 Frequency Sweep	trum A	1.10 dB 🖷 R	BW 3 kHz	ectrum 3					SGL Count 200/200 01Pk Max 41[1] -13.13 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dE 1 Frequency Sweep 10 dBm	trum X Offset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×			SGL Count 200/200 01Pk Max 41[1] -13.13 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dE 1 Frequency Sweep 10 dBm -10 dBm	trum X Offset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×			SGL Count 200/200 01Pk Max 41[1] -13.13 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dE 1 Frequency Sweep 10 dBm 0 dBm	trum X Offset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ectrum 3	Spectrum 4				SGL Count 200/200 01Pk Max 41[1] -13.13 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dE 1 Frequency Sweep 10 dBm -10 dBm	trum X Offset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×			SGL Count 200/200 01Pk Max 41[1] -13.13 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dE 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm	trum Diffset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×		100000 L	SGL Count 200/200 0 1Pk Max 11 1 - 13.13 dBm 2.439 480 5 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 df 1 Frequency Sweep 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	trum Diffset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×		100000 L	SGL Count 200/200 0 1Pk Max 11 1 - 13.13 dBm 2.439 480 5 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 df 1 Frequency Sweep 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	trum Diffset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×		100000 L	SGL Count 200/200 0 1Pk Max 11 1 - 13.13 dBm 2.439 480 5 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	trum Diffset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×		100000 L	SGL Count 200/200 01Pk Max 41[1] -13.13 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 df 1 Frequency Sweep 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	trum Diffset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×		100000 L	SGL Count 200/200 0 1Pk Max 11 1 - 13.13 dBm 2.439 480 5 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	trum Diffset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×		100000 L	SGL Count 200/200 0 1Pk Max 11 1 - 13.13 dBm 2.439 480 5 GH;
MultiView Spec Ref Level 17.00 dBm 1 Frequency Sweep 10 dBm 10 dBm 0 -10 dBm	trum Diffset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	ode Auto FFT	Spectrum 4	×		100000 L	SGL Count 200/200 0 1Pk Max 11 1 - 13.13 dBm 2.439 480 5 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	trum Diffset SWT 2.79	1.10 dB = R ms (~78 ms) = V	BW 3 kHz BW 10 kHz Mo	actrum 3	Spectrum 4	×		100000 L	SGL Count 200/200 0 1Pk Max 11 1 - 13.13 dBm 2.439 480 5 GH;

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

		Spectrum 3 1.10 dB • R 9 ms (~78 ms) • V				×			SGL Count 200/200
1 Frequency Swee	2p							M	O 1Pk Max [1] -13.73 dBm 2.454 216 5 GHz
0 dBm									
-10 dBm					MI				
-20 dBm	mann	MANAMAMAN	www.WMMMM	www.www	MMMMMM	hummhum	WWWWWWW	WWW	
-30 dBm	-		-	h	¢		_	4	
-40 dBm	mand							hyn	1.0.0
red her when	ales.								hourseman
-60 dBm									
-60 dBm									
						5.28 MHz/	_		


BAND EDGE MEASUREMENTS

TEST RESULT

TestMode	Antenna	ChName	Frequency [MHz]	Result [dBm]	Limit [dBm]	Verdict
	ANT6	Low	2412	See test	See test	PASS
11B				graph	graph	
	ANT6	High	2462	See test	See test	PASS
		. ngri	2102	graph	graph	17100
	ANT6	Low	2412	See test	See test	PASS
11G		2011	2112	graph	graph	17100
ПG	ANT6	High	2462	See test	See test	PASS
		i ngi	2402	graph	graph	17100
	ANT6	Low	2412	See test	See test	PASS
11100		Low		graph	graph	17,00
11N20	ANT6	High	2462	See test	See test	PASS
		i ngi	2402	graph	graph	17,00
	ANT6	Low	2422	See test	See test	PASS
11N40				graph	graph	1,400
1111140	ANT6	High	2452	See test	See test	PASS
		' ''y''		graph	graph	17,00

TEST GRAPHS

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-teCH District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

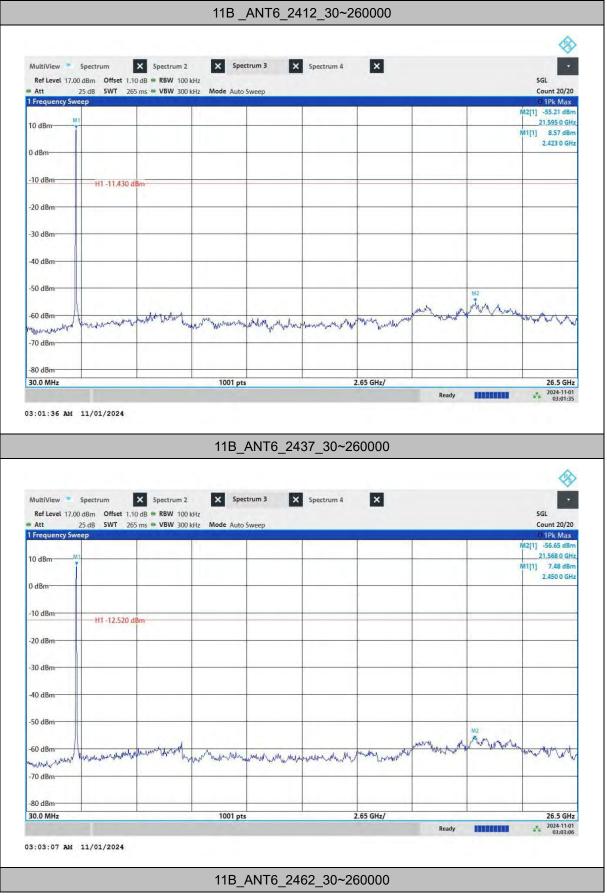
	Offset 1.10 dB RBW 1 WT 1.3 ms WBW 3		Sweep				_	SGL Count 1 000/1 000
1 Frequency Sweep					1	T	1	Q 1Pk Max M2[1] -21.08 dBm
10 dBm-							-	2.399 550 GH
							allester	
0 dBm							1	
-10 dBm		-				-	1	
	14.320 dBm					M2	1	
-20 dBm						an work what		man
-30 dBm						Bert of the		
-40 dBm					howdow	N.		
	i i ince	-		lu.	WANNAW			
-50 dBm		-		White Martin Martin			-	
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm	a manufacture	on the second second	without a surfus					
With the hora A and a superior								
-70 dBm								
-80 dBm						V1		
2.3 GHz		1001 pts			13.0 MHz/	Ready		2.43 GHz
MultiView Spectrun		m 2 X Spect	CDD_AN	T6_High_	_2462			(
Ref Level 17.00 dBm C	n X Spectrur	m 2 X Spect	rum 3 🗙					SGL Count 1 000/1 000
Ref Level 17.00 dBm C	n Spectrum	m 2 X Spect	rum 3 🗙					Count 1 000/1 000 O 1Pk Max M2[1] -34.09 dBm
Ref Level 17.00 dBm C Att 25 dB S 1 Frequency Sweep	o Spectrum Dffset 1.10 dB ⊕ RBW 1 WT 1.1 ms ⊕ VBW 3 M1	m 2 X Spect	rum 3 🗙					Count 1 000/1 000 O 1Pk Max
Ref Level 17.00 dBm C Att 25 dB S 1 Frequency Sweep	n Spectrum	m 2 X Spect	rum 3 🗙					Count 1 000/1 000 O 1Pk Max M2[1] -34.09 dBm 2.483 570 GH:
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 0 dBm	o Spectrum Dffset 1.10 dB ⊕ RBW 1 WT 1.1 ms ⊕ VBW 3 M1	m 2 X Spect	rum 3 🗙					Count 1 000/1 000 O 1Pk Max M2[1] -34.09 dBm 2.483 570 GH M1[1] 6.33 dBm
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 10 dBm 0 dBm	o Spectrum Dffset 1.10 dB ⊕ RBW 1 WT 1.1 ms ⊕ VBW 3 M1	m 2 X Spect	rum 3 🗙					Count 1 000/1 000 O 1Pk Max M2[1] -34.09 dBm 2.483 570 GH M1[1] 6.33 dBm
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 0 0 dBm 0 4	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	sweep					Count 1 000/1 000 O 1Pk Max M2[1] -34.09 dBm 2.483 570 GH M1[1] 6.33 dBm
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 0 0 dBm 0 4	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	sweep					Count 1 000/1 000 O 1Pk Max M2[1] -34.09 dBm 2.483 570 GH M1[1] 6.33 dBm
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 0 0 dBm 0 4	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	sweep	Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M2[1] -34.09 dBr 2.493 570 GH; M1[1] 6.33 dBr 2.460 710 GH;
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 0 dBm 0 dBm 11 dBm 11 dBm	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	sweep	Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M2[1] -34.09 dBr 2.493 570 GH; M1[1] 6.33 dBr 2.460 710 GH;
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 10 dBm 0 dBm	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	sweep	Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M2[1] -34.09 dBr 2.493 570 GH; M1[1] 6.33 dBr 2.460 710 GH;
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 10 dBm 0 dBm 40 dBm 41 dBm -10 dBm 41 dBm 41 dBm -20 dBm 41 dBm 41 dBm -30 dBm 41 dBm 41 dBm	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	sweep	Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M2[1] -34.09 dBr 2.493 570 GH; 0.10 GH;
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 10 dBm 0 dBm	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	sweep	Spectrum 4	×	y Markhanana		Count 1 000/1 000 0 1Pk Max M2[1] -34.09 dBr 2.493 570 GH; 0.10 GH;
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 10 dBm 0 dBm 0 dBm 0 dBm -10 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm -30 dBm 0 dBm 0 dBm -30 dBm 0 dBm 0 dBm -50 dBm -50 dBm 0 dBm	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	sweep	Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M2[1] -34.09 dBr 2.493 570 GH; 0.10 GH;
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 10 dBm 0 dBm 0 dBm 0 dBm -10 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm -50 dBm -50 dBm -50 dBm	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	sweep	Spectrum 4	×	YMAAAMAAAA		Count 1 000/1 000 0 1Pk Max M2[1] -34.09 dBr 2.493 570 GH; 0.10 GH;
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 0 10 dBm 0 40 dBm 0 -10 dBm 0 0 0 0 -10 dBm 0 0 0 0 0 -10 dBm 0	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	Sweep	Spectrum 4	Magana	y Markhanana		Count 1 000/1 000 0 1Pk Max M2[1] -3-4.09 dBr 2.433 570 GH 2.483 570 GH 2.460 710 GH 2.460 710 GH
Ref Level 17.00 dBm C Att 25 dB 5 1 Frequency Sweep 10 dBm 10 dBm 0 dBm	MT 1.1 ms = VBW 3	m 2 × Spect 100 kHz 200 kHz Mode Auto	Sweep	Spectrum 4	×	Ready		Count 1 000/1 000 0 1Pk Max M2[1] -3-4.09 dBr 2.433 570 GH; 2.460 710 GH; 2.460 710 GH; 2.460 710 GH; 2.450 710 GH; 2.55 GH2

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

	Offset 1.10 dB . RBV	V 100 kHz						SGL
		V 300 kHz Mode Auto	Sweep				_	Count 1 000/1 000
r requency sweep							1	0 1Pk Max M2[1] -29.29 dBm
10 dBm			-				-	2.399 420 GH
							Marthan (1	2.414 480 GHz
0 dBm			-				Malmy	WWW
-10 dBm								
	2.03.0							
-20 dBm	1 -17.400 dBm		-		-		4	
						M2		
-30 dBm			1			Phile would will have		handerthe
						NAM		and a
-40 dBm					w	ply .		
-50 dBm					M			
50 dbm			1.10.20	in white	wind			
-60 dBm	un manufactor Man	and and amaller	n manufation	manin			-	
www.www.www.www.								
-70 dBm								
						114		
-80 dBm 2.3 GHz		1001 pt			13.0 MHz/	Y1		
2.5 0112		1001 pt	.3		13.0 14112/	Ready		2.43 GHz
		_		ANT6_High	_			-
MultiView Spectr Ref Level 17.00 dBm		trum 2 X Spec		ANT6_High	n_2462			SGL
MultiView Spectr Ref Level 17.00 dBm Att 25 dB	um Spect Offset 1.10 dB = RBV	trum 2 X Spec	ctrum 3	_	_	_		Count 1 000/1 000
MultiView Spectr Ref Level 17.00 dBm Att 25 dB	um Spect Offset 1.10 dB = RBV	trum 2 X Spec	ctrum 3	_	_			Count 1 000/1 000 O 1Pk Max M2[1] -42.63 dBm
MultiView Spectr Ref Level 17.00 dBm Att 25 dB	um X Spect Offset 1,10 dB = RBV SWT 1,1 ms = VBV	trum 2 X Spec	ctrum 3	_	_			Count 1 000/1 000 © 1Pk Max M2[1] -42.63 dBm 2.484 560 GHz
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	um X Spect Offset 1.10 dB • RBV SWT 1.1 ms • VBV	trum 2 X Spec	ctrum 3	_	_			Count 1 000/1 000 O 1Pk Max M2[1] -42.63 dBm
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	um X Spect Offset 1,10 dB = RBV SWT 1,1 ms = VBV	trum 2 X Spec	ctrum 3	_	_			Count 1 000/1 000 0 1Pk Max M2[1] -42.63 dBm 2.484 560 GH2 M1[1] 3.26 dBm
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm	um X Spect Offset 1.10 dB • RBV SWT 1.1 ms • VBV	trum 2 X Spec	ctrum 3	_	_			Count 1 000/1 000 0 1Pk Max M2[1] -42.63 dBm 2.484 560 GH2 M1[1] 3.26 dBm
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	trum 2 X Spec	ctrum 3	_	_			Count 1 000/1 000 0 1Pk Max M2[1] -42.63 dBm 2.484 560 GH2 M1[1] 3.26 dBm
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm	um X Spect Offset 1.10 dB • RBV SWT 1.1 ms • VBV	trum 2 X Spec	ctrum 3	_	_			Count 1 000/1 000 0 1Pk Max M2[1] -42.63 dBm 2.484 560 GH2 M1[1] 3.26 dBm
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 X Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	_	_			Count 1 000/1 000 0 1Pk Max M2[1] -42.63 dBm 2.484 560 GH2 M1[1] 3.26 dBm
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 X Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	_	_			Count 1 000/1 000 0 1Pk Max M2[1] -42.63 dBm 2.484 560 GH2 M1[1] 3.26 dBm
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	X Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M/2[1] -42.63 dBm 2.484 560 GH; M/1[1] 3.26 dBm 2.460 710 GH;
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	X Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M/2[1] -42.63 dBm 2.484 560 GH; M/1[1] 3.26 dBm 2.460 710 GH;
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	X Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M/2[1] -42.63 dBm 2.484 560 GH; M/1[1] 3.26 dBm 2.460 710 GH;
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	X Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M/2[1] -42.63 dBm 2.484 560 GH; M/1[1] 3.26 dBm 2.460 710 GH;
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	X Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M/2[1] -42.63 dBm 2.484 560 GH; M/1[1] 3.26 dBm 2.460 710 GH;
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	X Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M/2[1] -42.63 dBm 2.484 560 GH; M/1[1] 3.26 dBm 2.460 710 GH;
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	X Spectrum 4	×			Count 1 000/1 000 0 1Pk Max M/2[1] -42.63 dBm 2.484 560 GH; M/1[1] 3.26 dBm 2.460 710 GH;
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	_	×			Count 1 000/1 000 0 1Pk Max M/2[1] -42.63 dBm 2.484 560 GH; M/1[1] 3.26 dBm 2.460 710 GH;
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	X Spectrum 4	×	Marcasofia, and a region		Count 1 000/1 000 0 1Pk Max M/2[1] -42.63 dBm 2.484 560 GH; M/1[1] 3.26 dBm 2.460 710 GH;
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	× Spectrum 4	×			2.55 GHz
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	um Spect Offset 1.10 dB = RBV SWT 1.1 ms = VBV	rum 2 × Spec V 100 kHz V 300 kHz Mode Auto	ctrum 3	× Spectrum 4		Nrowla m. and		Count 1 000/1 000 0 1Pk Max NI2(1) -42.63 dBr 2.484 560 GH; M1(1) 3.26 dBr 2.460 710 GH; Although Although Althoug

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

MultiView *	ipectrum	Spectrum 2	× Spect	trum 3 🗙	Spectrum 4	×			
	IBm Offset 1.10	dB = RBW 100 k							SGL
Att 25 1 Frequency Swee	dB SWT 1.5	ms 🖷 VBW 300 k	Hz Mode Auto	Sweep					Count 1 000/1 000 O 1Pk Max
and a start of started									M2[1] -31.26 dBm
10 dBm									2.398 080 GH: M1[1] 0.90 dBm
								MD	2.419 510 GHz
0 dBm						1	manhalle	the milling	ANNI 1
-10 dBm							ANDWAR		- opanoul
- TO UDIT								V	
-20 dBm	H1 -19.100 dB	m							
									1
-30 dBm						MZ N			Ynshin
					Abalant	Mananan			
-40 dBm					man				
-50 dBm				Million ,	M.d.				
		in	المميدل در	MAN MANY THINK					
-60 dBm	an and whether the	WWW. Mallenary	161WWWWWWWW						
-30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70 dBm									
-70 dBm									
00.10						Va			
-80 dBm			1001 pts			15.0 MHz/			2.45 GHz
2.3 0112			1001 pts			13.0 14112/	Ready		2024-11-01 03:24:49
J.24:49 ANI 1	1/01/2024		11N40)SISO_AI	NT6_High	ב2452_1			<u></u>
MuttiView * S	pectrum 3	Spectrum 3	× Spect)SISO_AN	•	n_2452 ×			*
MultiView S Ref Level 17.00 c	pectrum	dB 🖷 RBW 100 k	Hz Spect	trum 4 🗙	•	_			SGL Count 1 000/1 000
MultiView S Ref Level 17.00 c	pectrum 3 18m Offset 1.10 5 dB SWT 1.3	dB 🖷 RBW 100 k	Hz Spect	trum 4 🗙	•	_			Count 1 000/1 000 O 1Pk Max
MuttiView 5 Ref Level 17.00 (Att 22 1 Frequency Swee	pectrum 3 18m Offset 1.10 5 dB SWT 1.3	dB 🖷 RBW 100 k	Hz Spect	trum 4 🗙	•	_			Count 1 000/1 000
MultiView S Ref Level 17.00 a Att 2:	pectrum 3 18m Offset 1.10 5 dB SWT 1.3	dB 🖷 RBW 100 k	Hz Spect	trum 4 🗙	•	_			Count 1 000/1 000 0 1Pk Max M2[1] -33.30 dBm 2.486 170 GH2 M1[1] 1.24 dBm
MuttiView S Ref Level 17.00 c Att 2: 1 Frequency Sweet 10 dBm	pectrum 8 IBm Offset 1.10 idB SWT 1.3 P	dB = RBW 100 k ms = VBW 300 k	Hz Spect	trum 4 🗙	•	_			Count 1 000/1 000 © 1Pk Max M2[1] -33.30 dBm 2.486 170 GH
MuttiView S Ref Level 17.00 c Att 2: 1 Frequency Sweet 10 dBm	pectrum 3 18m Offset 1.10 5 dB SWT 1.3	dB = RBW 100 k ms = VBW 300 k	Hz Spect	trum 4 🗙	•	_			Count 1 000/1 000 0 1Pk Max M2[1] -33.30 dBm 2.486 170 GH2 M1[1] 1.24 dBm
MuttiView S Ref Level 17.00 c Att 2: 1 Frequency Sweet 10 dBm	pectrum 8 IBm Offset 1.10 idB SWT 1.3 P	dB = RBW 100 k ms = VBW 300 k	Hz Spect	trum 4 🗙	•	_			Count 1 000/1 000 0 1Pk Max M2[1] -33.30 dBm 2.486 170 GH2 M1[1] 1.24 dBm
MuttiView 5 Ref Level 17.00 c Att 2? 1 Frequency Sweet 10 dBm -10 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Spect	trum 4 🗙	•	_			Count 1 000/1 000 0 1Pk Max M2[1] -33.30 dBm 2.486 170 GH2 M1[1] 1.24 dBm
MuttiView 5 Ref Level 17.00 c Att 2: 1 Frequency Sweet 10 dBm- 0 dBm-	pectrum 8 IBm Offset 1.10 idB SWT 1.3 P	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MultiView S Ref Level 17.00 (Att 22 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MultiView S Ref Level 17.00 (Att 22 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MuttiView 5 Ref Level 17.00 c Att 2? 1 Frequency Sweet 10 dBm 0 dBm -10 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MultiView S Ref Level 17.00 c Att 22 1 Frequency Sweet 10 dBm -10 dBm -20 dBm -30 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MultiView S Ref Level 17.00 c Att 22 1 Frequency Sweet 10 dBm -10 dBm -20 dBm -30 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MultiView \$ Ref Level 17.00 c Att 23 1 Frequency Sweet 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MultiView \$ Ref Level 17.00 c Att 22 1 Frequency Sweet 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MultiView \$ Ref Level 17.00 c Att 23 1 Frequency Sweet 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MultiView \$ \$ Ref Level 17.00 c Att 2? 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×			Count 1 000/1 000 0 1Pk Max M2[1] -33.30 dBm 2.486 170 GH2 M1[1] 1.24 dBm
MultiView \$ \$ Ref Level 17.00 c Att 2? 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4 ×	Spectrum 5	×		Marginali	Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;
MultiView \$ \$ Ref Level 17.00 c Att 2? 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm	pectrum IBm Offset 1,10 idB SWT 1,3 P MMMMM	dB = RBW 100 k ms = VBW 300 k	Hz Mode Auto	trum 4	Spectrum 5	×			Count 1 000/1 000 01 Pk Max M2[1] -33.30 dBm 2.496 170 GH; M1[1] 1.24 dBm 2.449 550 GH;


CONDUCTED SPURIOUS EMISSION

TEST RESULT

TestMode	Antenn	Frequency[MHz	FreqRange	Result	Limit	Verdict
restiviode	а]	[Mhz]	[dBm]	[dBm]	verdict
	ANT6	2412	30~260000	See test	See test	PASS
	ANTO	2412	30~200000	graph	graph	FA33
11B	ANT6	2437	30~260000	See test	See test	PASS
	ANTO	2437	30/200000	graph	graph	FA00
	ANT6	2462	30~260000	See test	See test	PASS
	ANTO	2402	30/200000	graph	graph	FA00
	ANT6	2412	30~260000	See test	See test	PASS
	ANTO	2412	30/200000	graph	graph	FA00
11G	ANT6	2437	30~260000	See test	See test	PASS
110		2437	30-200000	graph	graph	FAGG
	ANT6	2462	30~260000	See test	See test	PASS
		2402	30-200000	graph	graph	FAGG
	ANT6	2412	30~260000	See test	See test	PASS
			30 200000	graph	graph	1,400
11N20	ANT6	2437	30~260000	See test	See test	PASS
111120		2437	30 200000	graph	graph	1,400
	ANT6	2462	30~260000	See test	See test	PASS
		2402	30 200000	graph	graph	1,400
	ANT6	2422	30~260000	See test	See test	PASS
			30-200000	graph	graph	FAGG
11N40	ANT6	2437	30~260000	See test	See test	PASS
111140	ANTO	2437	30-200000	graph	graph	FAGG
	ANT6	2452	30~260000	See test	See test	PASS
	ANTO	2402	30~200000	graph	graph	FAOO

TEST GRAPHS

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-teCH District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

	Offset 1.10 dB = RBV SWT 265 ms = VBV		Current					SGL Count 20/20
Att 25 dB 1 Frequency Sweep	3001 205 ms = VB	W 500 KHZ MODE AUTO	o sweep	T			÷	© 1Pk Max
M7								M2[1] -55.17 dBm 21.489 0 GH;
10 dBm								M1[1] 7.98 dBm
0 dBm							-	2.450 0 GHz
o dum						1		
-10 dBm	11 12 020 10						-	
	H1 -12.020 dBm							
-20 dBm			-			-		-
-30 dBm								
40 -18								
-40 dBm								1
-50 dBm			_					
							MZ	
-60 dBm	we down youth w	and the is to	- Hort - Hort		makeny market	to when your All	Muntur	montertet
twenterholder was	the summer have been and the	Multin Marthany	normal when a	man and the second s	woodfrom wh			an an A
-70 dBm								
-80 dBm								
30.0 MHz		1001 pt	5		2.65 GHz/	Ready		26.5 GHz
3:05:04 AM 11/	01/2024	11G_	_ANT6_24	12_30~20	60000			
03:05:04 AM 11/	trum X Spect	rum 2 🗙 Spe	ANT6_24		60000 ×			*
MultiView Spec Ref Level 17.00 dBm	trum Spect Offset 1.10 dB = RBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					SGL Count 20/20
MultiView Spec Ref Level 17.00 dBrr	trum X Spect	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep	trum Spect Offset 1.10 dB = RBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	trum Spect Offset 1.10 dB = RBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH; M1[1] 1.92 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep	trum Spect Offset 1.10 dB = RBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH2
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	trum Spect Offset 1.10 dB = RBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH; M1[1] 1.92 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	trum Spect Offset 1.10 dB = RBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH; M1[1] 1.92 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm	trum Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH; M1[1] 1.92 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm	trum Spect Offset 1.10 dB = RBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH; M1[1] 1.92 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm	trum Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH; M1[1] 1.92 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm	trum Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH; M1[1] 1.92 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm	trum Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH; M1[1] 1.92 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm	trum Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙					Count 20/20 © 1Pk Max M2[1] -53.97 dBm 21.515 0 GH; M1[1] 1.92 dBm
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm	trum Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz	ectrum 3 🗙				M2	Count 20/20 0 1Pk Max M2(1) -53.97 dBr 21.515 0 GH; 2.423 0 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB I Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	trum X Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz N 300 kHz Mode Auto	ectrum 3 🗙					Count 20/20 0 1Pk Max M2(1) -53.97 dBr 21.515 0 GH; 2.423 0 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	trum X Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz N 300 kHz Mode Auto	sectrum 3 ×	Spectrum 4	×			Count 20/20 0 1Pk Max M2(1) -53.97 dBr 21.515 0 GH; 2.423 0 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm	trum Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz N 300 kHz Mode Auto	sectrum 3 ×			Annoned		Count 20/20 0 1Pk Max M2(1) -53.97 dBr 21.515 0 GH; 2.423 0 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB I Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	trum X Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz N 300 kHz Mode Auto	sectrum 3 ×	Spectrum 4	×			Count 20/20 0 1Pk Max M2(1) -53.97 dBr 21.515 0 GH; 2.423 0 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm -70 dBm	trum X Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz N 300 kHz Mode Auto	sectrum 3 ×	Spectrum 4	×			Count 20/20 0 1Pk Max M2(1) -53.97 dBr 21.515 0 GH; 2.423 0 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm	trum X Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 × Spe N 100 kHz N 300 kHz Mode Auto	setrum 3	Spectrum 4				Count 20/20 0 19k Max M2(1) -53.97 dBm 21.515 0 GH; 2.423 0 GH; 2.423 0 GH;
MultiView Spec Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm -70 dBm	trum X Spect Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 2 X Spe N 100 kHz N 300 kHz Mode Auto	setrum 3	Spectrum 4	×	Maringala		Count 20/20 0 1Pk Max M2(1) -53.97 dBr 21.515 0 GH; 2.423 0 GH;

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Att 25 dB SV	fset 1.10 dB = RBW 1		Sweep					SGL Count 20/20
1 Frequency Sweep				1	1		1	O 1Pk Max
10 dBm								M2[1] -55.27 dBm 21.489 0 GHz
MI								M1[1] 3.47 dBm 2.423 0 GHz
0 dBm			-				-	
-10 dBm								
-20 dBm	6.530 dBm							
-30 dBm								1
-40 dBm								
-50 dBm						1	100	-
							M2	
-60 dBm	wayson allow way while	The manual	Marke want de	when a make has the	ann when when	more though	Munning	Munimur M.
and Market		Allow American	an an ama Marinan	and and Mr. A.	MA AMP.			
-70 dBm								
-80 dBm			-					
30.0 MHz		1001 pts	5		2.65 GHz/		1	26.5 GHz 2024-11-01 03:11:07
03:11:07 AM 11/01/2	024	11G_	ANT6_24	62_30~2	60000			A
03:11:07 AM 11/01/2	_	_			_			-
MultiView Spectrum	× Spectrur	n 2 X Spec	ANT6_24		60000 ×		-	sgl est
MultiView Spectrum Ref Level 17.00 dBm O Att 25 dB SV	× Spectrur	m 2 X Spec	ctrum 3 🗙		_			Count 20/20
MultiView Spectrum Ref Level 17.00 dBm Of	Spectrum	m 2 X Spec	ctrum 3 🗙		_			
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm	Spectrum	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 O 1Pk Max M2[1] -55.55 dBm 21.568 0 GHz
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm	Spectrum	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 © 1Pk Max M2[1] -55.55 dBm
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm	Spectrum	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.55 dBm 21.568 0 GHz M1[1] 3.01 dBm
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm	Spectrum	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.55 dBm 21.568 0 GHz M1[1] 3.01 dBm
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm	Spectrum fset 1.10 dB ■ RBW 3 Z65 ms ■ VBW 3	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.55 dBm 21.568 0 GHz M1[1] 3.01 dBm
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm	Spectrum	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.55 dBm 21.568 0 GHz M1[1] 3.01 dBm
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm	Spectrum fset 1.10 dB ■ RBW 3 Z65 ms ■ VBW 3	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.55 dBm 21.568 0 GHz M1[1] 3.01 dBm
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm H1 -1	Spectrum fset 1.10 dB ■ RBW 3 Z65 ms ■ VBW 3	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.55 dBm 21.568 0 GHz M1[1] 3.01 dBm
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm	Spectrum fset 1.10 dB ■ RBW 3 Z65 ms ■ VBW 3	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.55 dBm 21.568 0 GHz M1[1] 3.01 dBm
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Spectrum fset 1.10 dB ■ RBW 3 Z65 ms ■ VBW 3	m 2 X Spec	ctrum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.55 dBm 21.568 0 GHz M1[1] 3.01 dBm
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	fset 1.10 dB = RBW 3	m 2 X Spec	ctrum 3 🗙		_		M2	Count 20/20 0 1Pk Max M2(1) -55.55 dBm 21.568 0 GHz M1(1) 3.01 dBm 2.476 0 GHz
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum fset 1.10 dB RBW T 265 ms VBW 6.990 dBm	m 2 X Spec	ctrum 3 🗙	Spectrum 4			M2 W ^{M2} WMA	Count 20/20 0 1Pk Max M2(1) -55.55 dBm 21.568 0 GHz M1(1) 3.01 dBm 2.476 0 GHz
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	fset 1.10 dB = RBW 3	m 2 X Spec	strum 3 X	Spectrum 4			M2 M2 M2	Count 20/20 0 1Pk Max M2(1) -55.55 dBm 21.568 0 GHz M1(1) 3.01 dBm 2.476 0 GHz
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum fset 1.10 dB RBW T 265 ms VBW 6.990 dBm	m 2 X Spec	strum 3 X	Spectrum 4				Count 20/20 0 1Pk Max M2(1) -55.55 dBm 21.568 0 GHz M1(1) 3.01 dBm 2.476 0 GHz
MultiView Spectrum Ref Level 17.00 dBm Ol Att 25 dB SV 1 Frequency Sweep 10 dBm 10 dBm 10 dBm M1 0 dBm 11 -1 -10 dBm H1 -1 -1 -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Spectrum fset 1.10 dB RBW T 265 ms VBW 6.990 dBm	m 2 X Spec	strum 3 X	Spectrum 4				Count 20/20 0 1Pk Max M2(1) -55.55 dBm 21.568 0 GHz M1(1) 3.01 dBm 2.476 0 GHz
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 frequency Sweep 10 dBm	Spectrum fset 1.10 dB RBW T 265 ms VBW 6.990 dBm	m 2 X Spec 100 kHz Mode Auto 300 kHz Mode Auto	sweep	Spectrum 4			M2 M2	Count 20/20 0 1Pk Max M2(1) -55.55 dBm 21.568 0 GHz 2.476 0 GHz
MultiView Spectrum Ref Level 17.00 dBm Of Att 25 dB SV 1 frequency Sweep 10 dBm 10 -10 dBm 11 -20 dBm	Spectrum fset 1.10 dB RBW T 265 ms VBW 6.990 dBm	m 2 X Spec	sweep	Spectrum 4			M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M	Count 20/20 0 1Pk Max M2(1) -55.55 dBm 21.568 0 GHz M1(1) 3.01 dBm 2.476 0 GHz

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Att 25 dB SWT	1.10 dB = RBW 100 kH 265 ms = VBW 300 kH		Sweep					SGL Count 20/20
1 Frequency Sweep				1	T	T	1	• 1Pk Max M2[1] -55.17 dBn
10 dBm								22.018 0 GH
MT								M1[1] 1.87 dBn 2.397 0 GH
0 dBm	-							
-10 dBm	_							
-20 dBm H1 -18.13	0 dBm							
30.00								
-30 dBm								
-40 dBm	-							
-50 dBm							M2	
-60 dBm	4 white where	A. I				monthe	mayn	man to the
-60 dBm	mura han pull	an manufation	name and the second sec	an manufacture	handpanan	AL LA		ALON M. Dad
-70 dBm								
-80 dBm								
30.0 MHz	_	1001 pts			2.65 GHz/			26.5 GHz
						Ready		03:16:28
03:16:28 AM 11/01/2024		11N20_	_ANT6_2	437_30~	260000			\$
MultiView Spectrum	X Spectrum 2		_ANT6_2	437_30~	260000			
MultiView Spectrum Ref Level 17.00 dBm Offset	1.10 dB = RBW 100 kH	× Spect	trum 3 🗙		_			SGL 200
MultiView Spectrum Ref Level 17.00 dBm Offset		× Spect	trum 3 🗙		_			SGL Count 20/20 0 1Pk Max
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep	1.10 dB = RBW 100 kH	× Spect	trum 3 🗙		_			Count 20/20 © 1Pk Max M2[1] -55.47 dBn
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT	1.10 dB = RBW 100 kH	× Spect	trum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.47 dBn 21.991 0 GH M1[1] 3.17 dBn
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep 10 dBm	1.10 dB = RBW 100 kH	× Spect	trum 3 🗙		_			Count 20/20 © 1Pk Max M2[1] -55.47 dBn 21.991 0 GH
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep 10 dBm	1.10 dB = RBW 100 kH	× Spect	trum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.47 dBn 21.991 0 GH M1[1] 3.17 dBn
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep 10 dBm	1.10 dB = RBW 100 kH	× Spect	trum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.47 dBn 21.991 0 GH M1[1] 3.17 dBn
MultiView Spectrum Ref Level 17.00 dBm Offset 25 dB SWT I Frequency Sweep 10 dBm -10 dBm H1 -16.83	1.10 dB ● RBW 100 kH 265 ms ● VBW 300 kH	× Spect	trum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.47 dBn 21.991 0 GH M1[1] 3.17 dBn
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep 10 dBm -10 dBm	1.10 dB ● RBW 100 kH 265 ms ● VBW 300 kH	× Spect	trum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.47 dBn 21.991 0 GH M1[1] 3.17 dBn
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT I Frequency Sweep 10 dBm 0 dBm -10 dBm +11 -16.83	1.10 dB ● RBW 100 kH 265 ms ● VBW 300 kH	× Spect	trum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.47 dBn 21.991 0 GH M1[1] 3.17 dBn
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT I Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1.10 dB ● RBW 100 kH 265 ms ● VBW 300 kH	× Spect	trum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.47 dBn 21.991 0 GH M1[1] 3.17 dBn
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm	1.10 dB ● RBW 100 kH 265 ms ● VBW 300 kH	× Spect	trum 3 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.47 dBn 21.991 0 GH M1[1] 3.17 dBn
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1.10 dB ● RBW 100 kH 265 ms ● VBW 300 kH	× Spect	trum 3 🗙		_			Count 20/20 O 1Pk Max M2(1) -55.47 dBn 21.9910 GH M1(1) 3.17 dBn 2.4500 GH
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	1.10 dB = RBW 100 kH 265 ms = VBW 300 kH 0 dBm	X Spect	trum 3 🗙	Spectrum 4				Count 20/20 O 1Pk Max M2(1) -55.47 dBn 21.9910 GH 11(1) 3.17 dBn 2.4500 GH
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT I frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1.10 dB = RBW 100 kH 265 ms = VBW 300 kH 0 dBm	× Spect	trum 3 🗙	Spectrum 4	_	your harrier	m M2 mm	Count 20/20 O 1Pk Max M2(1) -55.47 dBn 21.9910 GH M1(1) 3.17 dBn 2.4500 GH
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	1.10 dB = RBW 100 kH 265 ms = VBW 300 kH 0 dBm	X Spect	trum 3 X	Spectrum 4			M2.	Count 20/20 O 1Pk Max M2(1) -55.47 dBn 21.9910 GH 11(1) 3.17 dBn 2.4500 GH
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm -60 dBm	1.10 dB = RBW 100 kH 265 ms = VBW 300 kH 0 dBm	X Spect	trum 3 X	Spectrum 4		Juliu nazonal		Count 20/20 O 1Pk Max M2(1) -55.47 dBn 21.9910 GH 11(1) 3.17 dBn 2.4500 GH
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT I Frequency Sweep 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm	1.10 dB = RBW 100 kH 265 ms = VBW 300 kH 0 dBm	Z Mode Auto S	trum 3 X	Spectrum 4				Count 20/20 O 1Pk Max M2(1) -55.47 dBn 21.9910 GH 11 3.17 dBn 2.4500 GH
MultiView Spectrum Ref Level 17.00 dBm Offset Att 25 dB SWT I Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm	1.10 dB = RBW 100 kH 265 ms = VBW 300 kH 0 dBm	X Spect	trum 3 X	Spectrum 4		John Maryor		Count 20/20 O 1Pk Max M2(1) -55.47 dBn 21.9910 GH 11(1) 3.17 dBn 2.4500 GH

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Att 25 dB SWT 265 ms = VB	W 100 kHz W 300 kHz Mode Auto Sweep			SGL Count 20/20
1 Frequency Sweep				 1Pk Max M2[1] -55.33 dBm
10 dBm				21.489 0 GH
M1				M1[1] 2.22 dBm 2.450 0 GH
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
50 0011				
-40 dBm				
50.10				
-50 dBm			MZ	
-60 dBm	M. M. and and	manufacture the transport	as hat mander man	an fundament that
when when the second	the how the manufacture was a second of the	manufacture and and		1
-70 dBm				
-80 dBm				
30.0 MHz	1001 pts	2.65 GHz/	_	26.5 GHz
3:21:20 AM 11/01/2024	11N40_ANT6	_2422_30~260000)	<u></u>
MultiView Spectrum Spect	trum 2 X Spectrum 3	_2422_30~260000)	SGL
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB	trum 2 X Spectrum 3)	SGL Count 20/20
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 © 1Pk Max M2[1] -55.45 dBm
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB = RB	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 O 1Pk Max
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 Frequency Sweep 10 dBm	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 © 1Pk Max M2[1] -55.45 dBm 21.542 0 GH; M1[1] 0.79 dBm
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 Frequency Sweep 10 dBm	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 9 1Pk Max M2[1] -55.45 dBn 21.542 0 GH M1[1] 0.79 dBn
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 Frequency Sweep 10 dBm	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 © 1Pk Max M2[1] -55.45 dBm 21.542 0 GH; M1[1] 0.79 dBm
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 Frequency Sweep 10 dBm -10 dBm	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 © 1Pk Max M2[1] -55.45 dBm 21.542 0 GH; M1[1] 0.79 dBm
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 frequency Sweep 10 dBm -10 dBm	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 O 1Pk Max M2[1] -55.45 dBm 21.542 0 GH:
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 Frequency Sweep 10 dBm -10 dBm	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 © 1Pk Max M2[1] -55.45 dBm 21.542 0 GH; M1[1] 0.79 dBm
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm H1-19.210 dBm -30 dBm	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 © 1Pk Max M2[1] -55.45 dBm 21.542 0 GH; M1[1] 0.79 dBm
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm H1-19.210 dBm	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 © 1Pk Max M2[1] -55.45 dBm 21.542 0 GH; M1[1] 0.79 dBm
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm H1-19.210 dBm -30 dBm	trum 2 X Spectrum 3 W 100 kHz			Count 20/20 © 1Pk Max M2[1] -55.45 dBm 21.542 0 GH; M1[1] 0.79 dBm
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	trum 2 Spectrum 3 W 100 kHz W 300 kHz Mode Auto Sweep	Spectrum 4		Count 20/20 0 1Pk Max M2(1) -55.45 dBr 21.542 0 GH; M1(1) 0.79 dBr 2.423 0 GH;
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 Frequency Sweep 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	trum 2 X Spectrum 3 W 100 kHz	Spectrum 4		Count 20/20 © 1Pk Max M2[1] -55.45 dBr 21.542 0 GH M1[1] 0.79 dBr 2.423 0 GH
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB 1 frequency Sweep 10 dBm -10 dBm -20 dBm -40 dBm -50 dBm	trum 2 Spectrum 3 W 100 kHz W 300 kHz Mode Auto Sweep	Spectrum 4		Count 20/20 0 1Pk Max M2(1) -55.45 dBr 21.542 0 GH; M1(1) 0.79 dBr 2.423 0 GH;
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB I frequency Sweep 10 dBm 1	trum 2 Spectrum 3 W 100 kHz W 300 kHz Mode Auto Sweep	Spectrum 4		Count 20/20 0 1Pk Max M2(1) -55.45 dBr 21.542 0 GH; M1(1) 0.79 dBr 2.423 0 GH;
MultiView Spectrum X Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB I frequency Sweep 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm	trum 2 Spectrum 3 W 100 kHz W 300 kHz Mode Auto Sweep	Spectrum 4 Spectrum 4 Additional and a second and a se		Count 20/20 0 1Pk Max M2(1) -55.45 dBr 21.542 0 GH 0.79 dBr 2.423 0 GH
MultiView Spectrum Spect Ref Level 17.00 dBm Offset 1.10 dB RB Att 25 dB SWT 265 ms VB I frequency Sweep 10 dBm 1	trum 2 Spectrum 3 W 100 kHz W 300 kHz Mode Auto Sweep	Spectrum 4		Count 20/20 0 1Pk Max M2(1) -55.45 dBr 21.542 0 GH; M1(1) 0.79 dBr 2.423 0 GH;

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Ref Level 17.00 dBm	Spectrum 2 Offset 1.10 dB = RBV	X Spectrum 3 X	Spectrum 4	Spectrum 5	×			SGL
		V 300 kHz Mode Auto	Sweep					Count 20/20 Q 1Pk Max
								M2[1] -54.61 dBn 22.071 0 GH
10 dBm								M1[1] 0.22 dBn
0 dBm								2.423 0 GH
-10 dBm								
-20 dBm	11 -19.780 dBm							
20.10								
-30 dBm								
-40 dBm								
EQ JB-								
-50 dBm							Mulling	
-60 dBm	many who have the	to the sent how have not	the set of	munter other all a	mun Januar Ma	partition and the second	mound	in any home when
- AND	Marida . M	when when any	and many many	a Amarchantrach	Manner			
-70 dBm						1		
-80 dBm								
30.0 MHz		1001 pts	5		2.65 GHz/	Ready		26.5 GH: 2024-11-01
6:02:14 AM 11/0		_	_ANT6_2	452_30~2	_			\$
MuttiView * Spectr	um 🗙 Spectr	rum 3 X Spec	_ANT6_2	452_30~2 Spectrum 5	260000 ×			SGL
MultiView Spectr Ref Level 17.00 dBm Att 25 dB	um Spects Offset 1.10 dB = RBV	rum 3 X Spec	ctrum 4 🗙		_			SGL Count 20/20
MultiView Spectr Ref Level 17.00 dBm	um Spects Offset 1.10 dB = RBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 © 1Pk Max M2[1] -55.62 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB	um Spects Offset 1.10 dB = RBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.62 dBn 22.097 0 GH
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	um Spects Offset 1.10 dB = RBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 © 1Pk Max M2[1] -55.62 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB I Frequency Sweep 10 dBm	um Spects Offset 1.10 dB = RBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.62 dBn 22.097 0 GH M1[1] 0.50 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm	um Spects Offset 1.10 dB = RBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.62 dBn 22.097 0 GH M1[1] 0.50 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm	um Spects Offset 1.10 dB = RBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.62 dBn 22.097 0 GH M1[1] 0.50 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB I Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.62 dBn 22.097 0 GH M1[1] 0.50 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.62 dBn 22.097 0 GH M1[1] 0.50 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB I Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.62 dBn 22.097 0 GH M1[1] 0.50 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.62 dBn 22.097 0 GH M1[1] 0.50 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm -10 dBm -10 dBm -20 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0 1Pk Max M2[1] -55.62 dBn 22.097 0 GH M1[1] 0.50 dBn
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 Spec V 100 kHz V 300 kHz Mode Auto	ctrum 4 🗙	Spectrum 5	×			Count 20/20 0.1Pk. Max M2[1] -55.62 dBm 22.097 0 GH M1[1] 0.50 dBm 2.450 0 GH
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 X Spec	ctrum 4 🗙		_			Count 20/20 0.1Pk. Max M2[1] -55.62 dBm 22.097 0 GH M1[1] 0.50 dBm 2.450 0 GH
MultiView Spectr Ref Level 17.00 dBm Att 25 dB 1 Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 Spec V 100 kHz V 300 kHz Mode Auto	ctrum 4 🗙	Spectrum 5	×			Count 20/20 0.1Pk. Max M2[1] -55.62 dBm 22.097 0 GH M1[1] 0.50 dBm 2.450 0 GH
MultiView Spectr Ref Level 17.00 dBm Att 25 dB I Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 Spec V 100 kHz V 300 kHz Mode Auto	ctrum 4 🗙	Spectrum 5	×			Count 20/20 0.1Pk. Max M2[1] -55.62 dBm 22.097 0 GH M1[1] 0.50 dBm 2.450 0 GH
MultiView Spectr Ref Level 17.00 dBm Att 25 dB I Frequency Sweep 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm	um X Spectr Offset 1,10 dB = RBV SWT 265 ms = VBV	rum 3 Spec V 100 kHz V 300 kHz Mode Auto	strum 4	Spectrum 5	×	Ready		Count 20/20 0.1Pk. Max M2[1] -55.62 dBm 22.097 0 GH M1[1] 0.50 dBm 2.450 0 GH

DUTY CYCLE

TEST RESULT

TestMode	Antenna	Frequency[MHz]	Transmission Duration [ms]	Transmissio n Period [ms]	Duty Cycle [%]	dutycycl e factor
11B	ANT6	2412	100	100	100	0
11G	ANT6	2412	1.384	1.426	97.05	0.13
11N20	ANT6	2412	1.294	1.336	96.86	0.14
11N40	ANT6	2422	0.646	0.685	94.31	0.25

TEST GRAPHS

Ref Level 30.00 dl Att 30 I Zero Span 20 dB M 20 dB M 7 10 dBm 0 dBm	Bm Offset 1.	10 dB ● RBW 10 10 00 ms ● VBW 10 1							
	Bm Offset 1.								
Ref Level 30.00 dl Att 30 I Zero Span 20 dB M 20 dB M 7 10 dBm 0 dBm	Bm Offset 1.			I					
1 Zero Span 20 dB 7 10 dBm 0 dBm) uB = 2MI	v ms = v w 101	νιΗΖ γ						SGL
y 10 dBm 0 dBm	γ	,	y		1				© 1Rm Clrw
y 10 dBm 0 dBm	<u>-</u>	y	y						M1[1] 16.72 dBm 4.400 0 ms
0 dBm	1	,	1						
0 dBm						,	¥	,	,
-10 dBm		-					1 1 1 1		
					_				
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm			-					-	
60 dBeer							=		
-60 dBm									
CF 2.412 GHz	_			100	1 pts				10.0 ms/ 2024-10-23 08:29:13
				11G_AN	IT6_2412				
		_		11G_AN	IT6_2412				
Ref Level 30.00 dl	Bm Offset 1.	10 dB ● RBW 10 6 ms ● VBW 10		11G_AN	IT6_2412				SGL
Ref Level 30.00 dl	Bm Offset 1.			11G_AN	IT6_2412				• • • • • • • • • • • • • • • • • • •
Ref Level 30.00 di Att 30 Zero Span	Bm Offset 1.			11G_AN					O 1Rm Clrw D3[1] -0.95 dB 1.426 00 ms
Ref Level 30.00 dl Att 30 I Zero Span 20 dBm	Bm Offset 1.		MHz	11G_AN	IT6_2412				© 1Rm Cirw D3[1] -0.95 dB
Ref Level 30.00 dl Att 30 Zero Span 20 dBm 10 dBm	Bm Offset 1.		MHz	11G_AN	003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 I Zero Span 20 dBm 10 dBm 0 dBm	Bm Offset 1.		MHz	11G_AN	003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 I Zero Span 20 dBm 10 dBm 0 dBm	Bm Offset 1.		MHz	11G_AN	003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 Zero Span 20 dBm 10 dBm 0 dBm -10 dBm	Bm Offset 1.		MHz	11G_AN	003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 I Zero Span 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Bm Offset 1.		MHz	11G_AN	003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 Zero Span 20 dBm 10 dBm 0 0 dBm -10 dBm -20 dBm -30 dBm	Bm Offset 1.		MHz	11G_AN	003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 Izero Span 20 20 dBm 10 10 dBm 0 -10 dBm -0 -20 dBm -0 -20 dBm -0 -40 dBm -0	Bm Offset 1.		MHz	11G_AN	003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 I Zero Span 20 20 dBm 10 10 dBm 10 0 dBm 10 -10 dBm 10 -20 dBm 10 -30 dBm -40 dBm -50 dBm -50 dBm	Bm Offset 1.		MHz	11G_AN	003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 I Zero Span 20 20 dBm 10 10 dBm 10 0 dBm 10 -10 dBm 10 -20 dBm 10 -30 dBm -40 dBm -50 dBm -50 dBm	Bm Offset 1.		MHz	11G_AN	003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 Izero Span 20 20 dBm 10 10 dBm 10 -10 dBm 10 -20 dBm 10 -30 dBm 10 -60 dBm 10 -60 dBm 10 -60 dBm 10	Bm Offset 1.		MHz		003				O 1Rm Cirw D3[1] -0.95 dB 1.426 00 ms M1[1] 15.22 dBm
Ref Level 30.00 dl Att 30 Izero Span 30 Izero Span 30 20 dBm 30 10 dBm 40 -20 dBm 30 -20 dBm 30 -30 dBm 30 -40 dBm 30 -50 dBm 30 -60 dBm 30 -60 dBm 30 -50 dBm 40 -50 dBm 40 -50 dBm 40 -60 dBm 40 -60 dBm 40 -60 dBm 40 -50 dBm 40 -50 dBm 40 -60 dBm 40 -60 dBm 40 -70 dBm 70 -70 dBm 70 <td>Bm Offset 1, dB = SWT</td> <td>6 ms 🖷 VBW 101</td> <td>MHz</td> <td>100 Y-Value</td> <td></td> <td>Function</td> <td></td> <td>Function</td> <td>C3 [1] -0.95 68 1.426 00 ms 1.426 00 ms 2.132 00 ms 2.132 00 ms</td>	Bm Offset 1, dB = SWT	6 ms 🖷 VBW 101	MHz	100 Y-Value		Function		Function	C3 [1] -0.95 68 1.426 00 ms 1.426 00 ms 2.132 00 ms 2.132 00 ms
Ref Level 30.00 dl Att 30 Zero Span 20 20 dBm 10 10 dBm 10 -10 dBm 10 -20 dBm 10 -30 dBm 10 -40 dBm 10 -50 dBm 10 -60 dBm 10 -50 dBm 10 -50 dBm 10 -50 dBm 10 -60 dBm 10 -50 dBm 10	Bm Offset 1, dB = SWT	6 ms = VBW 101	MHz	100 YValue 15.22 dBm -0.45 dB				Function I	C3 [1] -0.95 68 1.426 00 ms 1.426 00 ms 2.132 00 ms 2.132 00 ms
Att 30 I Zero Span 20 20 dBm 30 10 dBm 40 -20 dBm -30 -30 dBm -40 -40 dBm -50 -50 dBm -60 -60 dBm -60 dBm	Bm Offset 1, dB = SWT	6 ms 🖷 VBW 101	MHz	15.22 dBm			Ready	Function I	C3 [1] -0.95 68 1.426 00 ms 1.426 00 ms 2.132 00 ms 2.132 00 ms

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-teCH District, Suzhou City, Anhui Province Tel: +86 (0557) 368 1008