| 21 | Liquid permittivity (meas.) | A | 1.6 | N | 1 | 0.6 | 0.49 | 1.0 | 0.8 | 521 | |--|-------------------------------|---|--------------------------------------|---|---|-----|------|------|------|-----| | (| Combined standard uncertainty | | $\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$ | | | | | 10.7 | 10.6 | 257 | | Expanded uncertainty (confidence interval of 95 %) | | ı | $u_e = 2u_c$ | | | | | 21.4 | 21.1 | | 16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz) | No. | Error Description | Туре | Uncertainty | Probably | Div. | (Ci) | (Ci) | Std. | Std. | Degree | |--------------------|---|------|-------------|----------------|------------|------|------|------|-------|----------| | | 1 | 31 | value | Distribution | | 1g | 10g | Unc. | Unc. | of | | | | | | | | | | (1g) | (10g) | freedom | | Meas | Measurement system | | | | | | | | | | | 1 | Probe calibration | В | 6.0 | N | 1 | 1 | 1 | 6.0 | 6.0 | ∞ | | 2 | Isotropy | В | 4.7 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.9 | 1.9 | ∞ | | 3 | Boundary effect | В | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | ∞ | | 4 | Linearity | В | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.7 | 2.7 | ∞ | | 5 | Detection limit | В | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | ∞ | | 6 | Readout electronics | В | 0.3 | R | $\sqrt{3}$ | 1 | 1 | 0.3 | 0.3 | 8 | | 7 | Response time | В | 0.8 | R | $\sqrt{3}$ | 1 | 1 | 0.5 | 0.5 | ∞ | | 8 | Integration time | В | 2.6 | R | $\sqrt{3}$ | 1 | 1 | 1.5 | 1.5 | ∞ | | 9 | RF ambient conditions-noise | В | 0 | R | $\sqrt{3}$ | 1 | 1 | 0 | 0 | ∞ | | 10 | RFambient conditions-reflection | В | 0 | R | $\sqrt{3}$ | 1 | 1 | 0 | 0 | ∞ | | 11 | Probe positioned mech. Restrictions | В | 0.4 | R | $\sqrt{3}$ | 1 | 1 | 0.2 | 0.2 | ∞ | | 12 | Probe positioning with respect to phantom shell | В | 2.9 | R | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | ∞ | | 13 | Post-processing | В | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | ∞ | | 14 | Fast SAR z-
Approximation | В | 7.0 | R | $\sqrt{3}$ | 1 | 1 | 4.0 | 4.0 | & | | | | | Test | sample related | l | | | | | | | 15 | Test sample positioning | A | 3.3 | N | 1 | 1 | 1 | 3.3 | 3.3 | 71 | | 16 | Device holder uncertainty | A | 3.4 | N | 1 | 1 | 1 | 3.4 | 3.4 | 5 | | 17 | Drift of output power | В | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and set-up | | | | | | | | | | | | 18 | Phantom uncertainty | В | 4.0 | R | $\sqrt{3}$ | 1 | 1 | 2.3 | 2.3 | ∞ | | 19 | Liquid conductivity (target) | В | 5.0 | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | 20 | Liquid conductivity (meas.) | A | 2.06 | N | 1 | 0.64 | 0.43 | 1.32 | 0.89 | 43 | |--|-------------------------------|---|--------------------------------------|---|------------|------|------|------|------|-----| | 21 | Liquid permittivity (target) | В | 5.0 | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.7 | 1.4 | 8 | | 22 | Liquid permittivity (meas.) | A | 1.6 | N | 1 | 0.6 | 0.49 | 1.0 | 0.8 | 521 | | (| Combined standard uncertainty | | $\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ | | | | | 10.4 | 10.3 | 257 | | Expanded uncertainty (confidence interval of 95 %) | | ı | $u_e = 2u_c$ | | | | | 20.8 | 20.6 | | 16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz) | No. | Error Description | Type | Uncertainty | Probably | Div. | (Ci) | (Ci) | Std. | Std. | Degree | |---------------------|---|------|-------------|--------------|------------|------|------|------|-------|---------| | | | | value | Distribution | | 1g | 10g | Unc. | Unc. | of | | | | | | | | | | (1g) | (10g) | freedom | | Mea | surement system | | | | | | | | | | | 1 | Probe calibration | В | 6.55 | N | 1 | 1 | 1 | 6.55 | 6.55 | ∞ | | 2 | Isotropy | В | 4.7 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.9 | 1.9 | ∞ | | 3 | Boundary effect | В | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.2 | 1.2 | ∞ | | 4 | Linearity | В | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.7 | 2.7 | ∞ | | 5 | Detection limit | В | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | ∞ | | 6 | Readout electronics | В | 0.3 | R | $\sqrt{3}$ | 1 | 1 | 0.3 | 0.3 | 8 | | 7 | Response time | В | 0.8 | R | $\sqrt{3}$ | 1 | 1 | 0.5 | 0.5 | ∞ | | 8 | Integration time | В | 2.6 | R | $\sqrt{3}$ | 1 | 1 | 1.5 | 1.5 | ∞ | | 9 | RF ambient conditions-noise | В | 0 | R | $\sqrt{3}$ | 1 | 1 | 0 | 0 | 8 | | 10 | RFambient conditions-reflection | В | 0 | R | $\sqrt{3}$ | 1 | 1 | 0 | 0 | 8 | | 11 | Probe positioned mech. Restrictions | В | 0.8 | R | $\sqrt{3}$ | 1 | 1 | 0.5 | 0.5 | 8 | | 12 | Probe positioning with respect to phantom shell | В | 6.7 | R | $\sqrt{3}$ | 1 | 1 | 3.9 | 3.9 | & | | 13 | Post-processing | В | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | ∞ | | 14 | Fast SAR z-
Approximation | В | 14.0 | R | $\sqrt{3}$ | 1 | 1 | 8.1 | 8.1 | ~ | | Test sample related | | | | | | | | | | | | 15 | Test sample positioning | A | 3.3 | N | 1 | 1 | 1 | 3.3 | 3.3 | 71 | | 16 | Device holder uncertainty | A | 3.4 | N | 1 | 1 | 1 | 3.4 | 3.4 | 5 | | 17 | Drift of output power | В | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.9 | 2.9 | ∞ | | |--|-------------------------------|---|--------------------------------------|---|------------|------|------|------|------|-----|--| | | Phantom and set-up | | | | | | | | | | | | 18 | Phantom uncertainty | В | 4.0 | R | $\sqrt{3}$ | 1 | 1 | 2.3 | 2.3 | 8 | | | 19 | Liquid conductivity (target) | В | 5.0 | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.8 | 1.2 | 8 | | | 20 | Liquid conductivity (meas.) | A | 2.06 | N | 1 | 0.64 | 0.43 | 1.32 | 0.89 | 43 | | | 21 | Liquid permittivity (target) | В | 5.0 | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.7 | 1.4 | 8 | | | 22 | Liquid permittivity (meas.) | A | 1.6 | N | 1 | 0.6 | 0.49 | 1.0 | 0.8 | 521 | | | (| Combined standard uncertainty | | $\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ | | | | | 13.5 | 13.4 | 257 | | | Expanded uncertainty (confidence interval of 95 %) | | ı | $u_e = 2u_c$ | | | | | 27.0 | 26.8 | | | # **17 MAIN TEST INSTRUMENTS** **Table 17.1: List of Main Instruments** | No. | Name | Туре | Serial | Calibration Date | Valid Period | |-----|-----------------------|---------------|------------|--------------------|--------------| | | | | Number | | | | 01 | Network analyzer | E5071C | MY46110673 | January 10, 2023 | One year | | 02 | Power sensor | NRP110T | 101139 | January 13, 2023 | One year | | 03 | Power sensor | NRP110T | 101159 | January 13, 2023 | One year | | 04 | Signal Generator | E4438C | MY49071430 | January 19, 2023 | One year | | 05 | Amplifier | 60S1G4 | 0331848 | No Calibration | Requested | | 06 | BTS | CMW500 | 159890 | January 12, 2023 | One year | | 07 | E-field Probe | SPEAG EX3DV4 | 7548 | August 1, 2022 | One year | | 08 | DAE | SPEAG DAE4 | 1331 | September 15, 2022 | One year | | 09 | Dipole Validation Kit | SPEAG D750V3 | 1017 | July 20,,2022 | One year | | 10 | Dipole Validation Kit | SPEAG D835V2 | 4d069 | July 20,,2022 | One year | | 11 | Dipole Validation Kit | SPEAG D1750V2 | 1003 | July 18,,2022 | One year | | 12 | Dipole Validation Kit | SPEAG D1900V2 | 5d101 | July 26,2022 | One year | | 13 | Dipole Validation Kit | SPEAG D2450V2 | 853 | July 20,2022 | One year | | 14 | Dipole Validation Kit | SPEAG D2600V2 | 1012 | July 20,2022 | One year | | 15 | Dipole Validation Kit | SPEAG D5GHzV2 | 1060 | July 5,2022 | One year | ^{***}END OF REPORT BODY*** # **ANNEX A Graph Results** GSM850 Body Date: 4/27/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 837.5 MHz; $\sigma = 0.854 \text{ S/m}$; $\epsilon r = 45.316$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: GSM850 2TX 836.6 MHz Duty Cycle: 1:4 Probe: EX3DV4 - SN7548 ConvF(10.3, 10.3, 10.3) **Area Scan (41x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.699 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.90 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.803 W/kg SAR(1 g) = 0.542 W/kg; SAR(10 g) = 0.376 W/kg Maximum value of SAR (measured) = 0.709 W/kg # GSM1900 Body Date: 5/12/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 1910 MHz; $\sigma = 1.402 \text{ S/m}$; $\epsilon r = 39.304$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: GSM1900 1TX 1909.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN7548 ConvF(7.8, 7.8, 7.8) **Area Scan (131x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.62 W/kg **Zoom Scan (7x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.320 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 2.53 W/kg SAR(1 g) = 0.858 W/kg; SAR(10 g) = 0.359 W/kg Maximum value of SAR (measured) = 1.88 W/kg ## WCDMA850 Body Date: 4/27/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 826.4 MHz; $\sigma = 0.849 \text{ S/m}$; $\epsilon r = 45.357$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: WCDMA850(B5) 826.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(10.3, 10.3, 10.3) **Area Scan (41x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.760 W/kg **Zoom Scan (5x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.19 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 2.79 W/kg SAR(1 g) = 0.486 W/kg; SAR(10 g) = 0.164 W/kg Maximum value of SAR (measured) = 1.72 W/kg # WCDMA1700 Body Date: 5/7/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 1752.6 MHz; $\sigma = 1.443 \text{ S/m}$; $\epsilon r = 41.384$; $\rho = 1000 \text{ kg/m}3$ Ambient Temperature: 22.5oC Liquid Temperature: 22.3oC Communication System: WCDMA1700(B4) 1752.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548
ConvF(8.13, 8.13, 8.13) **Area Scan (131x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.33 W/kg **Zoom Scan (7x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.61 W/kg SAR(1 g) = 0.971 W/kg; SAR(10 g) = 0.425 W/kg Maximum value of SAR (measured) = 2.04 W/kg # WCDMA1900 Body Date: 5/12/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 1852.4 MHz; $\sigma = 1.482$ S/m; $\epsilon r = 41.067$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5oC Liquid Temperature: 22.3oC Communication System: WCDMA1900(B2) 1852.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(7.8, 7.8, 7.8) **Area Scan (131x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.43 W/kg **Zoom Scan (6x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.39 W/kg SAR(1 g) = 0.938 W/kg; SAR(10 g) = 0.406 W/kg Maximum value of SAR (measured) = 1.68 W/kg # LTE Band2 Body Date: 5/12/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 1860 MHz; $\sigma = 1.485$ S/m; $\epsilon r = 41.055$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5oC Liquid Temperature: 22.3oC Communication System: LTE Band2 (0) Frequency: 1860 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(7.8, 7.8, 7.8) **Area Scan (131x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.38 W/kg **Zoom Scan (6x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.62 W/kg SAR(1 g) = 0.901 W/kg; SAR(10 g) = 0.366 W/kg Maximum value of SAR (measured) = 1.84 W/kg # LTE Band5 Body Date: 4/27/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 829 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.876$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: LTE Band5 829 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(10.3, 10.3,10.3) **Area Scan (41x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.418 W/kg **Zoom Scan (6x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.30 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.478 W/kg SAR(1 g) = 0.321 W/kg; SAR(10 g) = 0.223 W/kg Maximum value of SAR (measured) = 0.421 W/kg # LTE Band7 Body Date: 5/16/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 2560 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 41.681$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: LTE Band7 2560 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(7.12, 7.12, 7.12) **Area Scan (161x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.08 W/kg **Zoom Scan (9x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.380 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.85 W/kg SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.305 W/kg Maximum value of SAR (measured) = 2.73 W/kg ## LTE Band17 Body Date: 5/13/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 709 MHz; $\sigma = 0.865$ S/m; $\varepsilon_r = 41.633$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: LTE Band17 709 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(10.3, 10.3, 10.3) **Area Scan (41x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.05 W/kg **Zoom Scan (5x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.90 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 5.48 W/kg SAR(1 g) = 0.880 W/kg; SAR(10 g) = 0.281 W/kg Maximum value of SAR (measured) = 3.22 W/kg ## LTE Band41 Body Date: 5/16/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 2506 MHz; $\sigma = 1.956$ S/m; $\varepsilon_r = 39.584$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: LTE Band41 2506 MHz Duty Cycle: 1:1.5787 Probe: EX3DV4 – SN7548 ConvF(7.32, 7.32, 7.32) **Area Scan (161x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 2.48 W/kg **Zoom Scan (8x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01dB Peak SAR (extrapolated) = 3.02 W/kg SAR(1 g) = 0.909 W/kg; SAR(10 g) = 0.337 W/kg Maximum value of SAR (measured) = 1.82 W/kg ## LTE Band66 Body Date: 5/7/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 1720 MHz; $\sigma = 1.379 \text{ S/m}$; $\epsilon r = 39.699$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: LTE Band66 1720 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(8.13, 8.13, 8.13) **Area Scan (181x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.56 W/kg **Zoom Scan (6x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.90 W/kg SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.466 W/kg Maximum value of SAR (measured) = 2.16 W/kg # WLAN 2.4G Body Date: 5/18/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 2462 MHz; $\sigma = 1.794$ S/m; $\epsilon r = 39.627$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: wifi 2450 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(7.32, 7.32, 7.32) **Area Scan (161x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.57 W/kg **Zoom Scan (8x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01dB Peak SAR (extrapolated) = 3.05 W/kg SAR(1 g) = 0.96 W/kg; SAR(10 g) = 0.340 W/kg Maximum value of SAR (measured) = 1.97 W/kg # WLAN 5G Body Date: 5/20/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 5260 MHz; $\sigma = 5.354 \text{ S/m}$; $\varepsilon_r = 35.101$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: WIFI 5G 5260 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(4.98, 4.98, 4.98); **Area Scan (201x121x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.56 W/kg **Zoom Scan (10x9x8)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.288 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 5.18 W/kg SAR(1 g) = 0.775 W/kg; SAR(10 g) = 0.156 W/kg Maximum value of SAR (measured) = 2.26 W/kg ## **BT Body** Date: 5/18/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 2402 MHz; $\sigma = 1.882 \text{ S/m}$; $\epsilon r = 41.088$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: BT 2402 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(7.32, 7.32, 7.32) **Area Scan (161x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.804 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.09dB Peak SAR (extrapolated) = 0.987 W/kg SAR(1 g) = 0.329 W/kg; SAR(10 g) = 0.122 W/kg Maximum value of SAR (measured) = 0.680 W/kg # **ANNEX B System Verification Results** **750 MHz** Date: 5/13/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 750 MHz; $\sigma = 0.875$ mho/m; $\varepsilon_r = 42.722$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(10.3,10.3,10.3) **System Validation /Area Scan (81x191x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 60.66 V/m; Power Drift = 0.08 Fast SAR: SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (interpolated) = 2.83 W/kg **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =60.66 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.79 W/kg 0 dB = 2.79 W/kg = 4.46 dB W/kg Fig.B.1 validation 750 MHz 250mW Date: 4/27/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 835 MHz; $\sigma = 0.903$ mho/m; $\varepsilon_r = 42.132$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(10.3,10.3,10.3) System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 63.46 V/m; Power Drift = -0.07 Fast SAR: SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (interpolated) = 3.06 W/kg **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =63.46 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 3.6 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 3.27 W/kg 0 dB = 3.27 W/kg = 5.15 dB W/kg Fig.B.2 validation 835 MHz 250mW Date: 5/7/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 1750 MHz; $\sigma = 1.363 \text{ mho/m}$; $\varepsilon_r = 39.458$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(8.13,8.13,8.13) System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 107.66 V/m; Power Drift = -0.02 Fast SAR: SAR(1 g) = 9.16 W/kg; SAR(10 g) = 4.79 W/kg Maximum value of SAR (interpolated) = 13.95 W/kg **System Validation /Zoom Scan (7x7x7)/Cube
0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =107.66 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.39 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.78 W/kg Maximum value of SAR (measured) = 13.72 W/kg 0 dB = 13.72 W/kg = 11.37 dB W/kg Fig.B.3 validation 1750 MHz 250mW Date: 5/12/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 1900 MHz; $\sigma = 1.425 \text{ mho/m}$; $\varepsilon_r = 39.24$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(7.8,7.8,7.8) System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 107.41 V/m; Power Drift = 0.05 Fast SAR: SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.15 W/kg Maximum value of SAR (interpolated) = 15.46 W/kg **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =107.41 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.52 W/kg SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.21 W/kg Maximum value of SAR (measured) = 14.61 W/kg 0 dB = 14.61 W/kg = 11.65 dB W/kg Fig.B.4 validation 1900 MHz 250mW Date: 5/18/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ mho/m; $\epsilon_r = 40.178$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(7.32,7.32,7.32) System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 117.51 V/m; Power Drift = 0.02 Fast SAR: SAR(1 g) = 13.47 W/kg; SAR(10 g) = 6.3 W/kg Maximum value of SAR (interpolated) = 22.07 W/kg **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =117.51 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.09 W/kg SAR(1 g) = 13.44 W/kg; SAR(10 g) = 6.34 W/kg Maximum value of SAR (measured) = 21.19 W/kg 0 dB = 21.19 W/kg = 13.26 dB W/kg Fig.B.5 validation 2450 MHz 250mW Date: 5/16/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 2600 MHz; $\sigma = 1.936 \text{ mho/m}$; $\varepsilon_r = 38.978$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 2600 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(7.12,7.12,7.12) System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 119.38 V/m; Power Drift = 0.07 Fast SAR: SAR(1 g) = 14.12 W/kg; SAR(10 g) = 6.32 W/kg Maximum value of SAR (interpolated) = 24.51 W/kg **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =119.38 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 28.68 W/kg SAR(1 g) = 14.07 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 24.33 W/kg 0 dB = 24.33 W/kg = 13.86 dB W/kg Fig.B.6 validation 2600 MHz 250mW Date: 5/20/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 5250 MHz; $\sigma = 4.62$ mho/m; $\varepsilon_r = 35.813$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 5250 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(4.98,4.98,4.98) System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value =75.54 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.32 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.26 W/kgMaximum value of SAR (measured) = 17.62 W/kg 0 dB = 17.62 W/kg = 12.46 dB W/kg Fig.B.7 validation 5250 MHz 100mW Date: 5/21/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 5600 MHz; $\sigma = 4.985 \text{ mho/m}$; $\varepsilon_r = 35.254$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(4.57,4.57,4.57) System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value =75.61 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 30.72 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.33 W/kgMaximum value of SAR (measured) = 19.37 W/kg 0 dB = 19.37 W/kg = 12.87 dB W/kg Fig.B.8 validation 5600 MHz 100mW Date: 5/22/2023 Electronics: DAE4 Sn1331 Medium: H650-7000M Medium parameters used: f = 5750 MHz; $\sigma = 5.122$ mho/m; $\varepsilon_r = 35.79$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(4.64,4.64,4.64) System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value =71.28 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.07 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.24 W/kgMaximum value of SAR (measured) = 18.55 W/kg 0 dB = 18.55 W/kg = 12.68 dB W/kg Fig.B.9 validation 5750 MHz 100m The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. Table B.1 Comparison between area scan and zoom scan for system verification | Date | Band | Position | Area scan
(1g) | Zoom scan
(1g) | Drift (%) | |-----------|----------|----------|-------------------|-------------------|-----------| | 2022-5-13 | 750 MHz | Head | 2.13 | 2.17 | -1.84 | | 2023-4-27 | 835 MHz | Head | 2.35 | 2.38 | -1.26 | | 2023-5-7 | 1750 MHz | Head | 9.16 | 9.11 | 0.55 | | 2023-5-12 | 1900 MHz | Head | 9.95 | 9.97 | -0.20 | | 2023-5-18 | 2450 MHz | Head | 13.47 | 13.44 | 0.22 | | 2023-5-16 | 2600 MHz | Head | 14.12 | 14.07 | 0.36 | # **ANNEX C SAR Measurement Setup** ### **C.1 Measurement Set-up** The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items: Picture C.1SAR Lab Test Measurement Set-up - A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP and the DASY4 or DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as - warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. # C.2 Dasy4 or DASY5 E-field Probe System The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum. ### **Probe Specifications:** Model: ES3DV3, EX3DV4 Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3) Calibration: In head and body simulating tissue at Frequencies from 835 up to 5800MHz Linearity: $\pm 0.2 \text{ dB}(30 \text{ MHz to 6 GHz})$ for EX3DV4 ± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 DynamicRange: 10 mW/kg — 100W/kg Probe Length: 330 mm **Probe Tip** Length: 20 mm Body Diameter: 12 mm Tip Diameter: 2.5 mm (3.9 mm for ES3DV3) Tip-Center: 1 mm (2.0mm for ES3DV3) Application:SAR Dosimetry Testing Compliance tests ofmobile phones Dosimetry in strong gradient fields Picture C.3E-field Probe # C.3 E-field Probe Calibration Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter. The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be
performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or Picture C.2Near-field Probe other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm². E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³). ## **C.4 Other Test Equipment** ## C.4.1 Data Acquisition Electronics(DAE) The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. PictureC.4: DAE #### C.4.2 Robot The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchron motors; no stepper motors) - ➤ Low ELF interference (motor control fields shielded via the closed metallic construction shields) Picture C.5DASY 4 Picture C.6DASY 5 #### C.4.3 Measurement Server The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. Picture C.7 Server for DASY 4 Picture C.8 Server for DASY 5 #### C.4.4 Device Holder for Phantom The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\mathcal{E}=3$ and loss tangent $\mathcal{E}=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. #### <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms. Picture C.9-1: Device Holder Picture C.9-2: Laptop Extension Kit #### C.4.5 Phantom The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm). Shell Thickness: 2±0.2 mm Filling Volume: Approx. 25 liters Dimensions: 810 x 1000 x 500 mm (H x L x W) Available: Special **Picture C.10: SAM Twin Phantom** # ANNEX D Position of the wireless device in relation to the phantom #### **D.1 General considerations** This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position. W_t Width of the handset at the level of the acoustic W_b Width of the bottom of the handset A Midpoint of the width W_t of the handset at the level of the acoustic output B Midpoint of the width W_b of the bottom of the handset Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset Picture D.2 Cheek position of the wireless device on the left side of SAM Picture D.3 Tilt position of the wireless device on the left side of SAM ## D.2 Body-worn device A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer. Picture D.4Test positions for body-worn devices ### D.3 Desktop device A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used. The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom. Picture D.5 Test positions for desktop devices # **D.4 DUT Setup Photos** Picture D.6 ## **ANNEX E Equivalent Media Recipes** The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. **TableE.1: Composition of the Tissue Equivalent Matter** | Frequency | | • | 1900 | 1900 | 2450 | 2450 | 5800 | 5800 | |-------------------|-----------|---------|----------------|----------------|--------|--------|--------|--------| | | 835Head | 835Body | | | | | | | | (MHz) | | , | Head | Body | Head | Body | Head | Body | | Ingredients (% by | / weight) | | | | | | | | | Water | 41.45 | 52.5 | 55.242 | 69.91 | 58.79 | 72.60 | 65.53 | 65.53 | | Sugar | 56.0 | 45.0 | \ | \ | \ | \ | \ | \ | | Salt | 1.45 | 1.4 | 0.306 | 0.13 | 0.06 | 0.18 | \ | \ | | Preventol | 0.1 | 0.1 | \ | \ | \ | \ | \ | \ | | Cellulose | 1.0 | 1.0 | \ | \ | \ | \ | \ | \ | | Glycol | , | , | 44.450 | 00.00 | 44.45 | 07.00 | , | , | | Monobutyl | \ | \ | 44.452 | 29.96 | 41.15 | 27.22 | ١ | ١ | | Diethylenglycol | , | , | , | , | , | , | 47.04 | 47.04 | | monohexylether | \ | \ | \ | \ | ١ | \ | 17.24 | 17.24 | | Triton X-100 | \ | \ | \ | \ | \ | \ | 17.24 | 17.24 | | Dielectric | 44.5 | 55.0 | 40.0 | 50.0 | 00.0 | 50.7 | 05.0 | 40.0 | | Parameters | ε=41.5 | ε=55.2 | ε=40.0 | ε=53.3 | ε=39.2 | ε=52.7 | ε=35.3 | ε=48.2 | | | σ=0.90 | σ=0.97 | σ =1.40 | σ =1.52 | σ=1.80 | σ=1.95 | σ=5.27 | σ=6.00 | | Target Value | | | | | | | | | Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1. ## **ANNEX F System Validation** The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded
or recalibrated, these must be validated with the SAR system(s) that operates with such components. **Table F.1: System Validation for 7548** | Probe SN. | Liquid name | Validation date | Frequency point | Status (OK or Not) | |-----------|--------------|-----------------|-----------------|--------------------| | 7548 | Head 750MHz | July.15,2020 | 750 MHz | OK | | 7548 | Head 850MHz | July.15,2020 | 835 MHz | OK | | 7548 | Head 900MHz | July.15,2020 | 900 MHz | OK | | 7548 | Head 1750MHz | July.15,2020 | 1750 MHz | OK | | 7548 | Head 1810MHz | July.15,2020 | 1810 MHz | OK | | 7548 | Head 1900MHz | July.16,2020 | 1900 MHz | OK | | 7548 | Head 2000MHz | July.16,2020 | 2000 MHz | OK | | 7548 | Head 2100MHz | July.16,2020 | 2100 MHz | OK | | 7548 | Head 2300MHz | July.16,2020 | 2300 MHz | OK | | 7548 | Head 2450MHz | July.16,2020 | 2450 MHz | OK | | 7548 | Head 2600MHz | July.17,2020 | 2600 MHz | OK | | 7548 | Head 3500MHz | July.17,2020 | 3500 MHz | OK | | 7548 | Head 3700MHz | July.17,2020 | 3700 MHz | OK | | 7548 | Head 5200MHz | July.17,2020 | 5250 MHz | OK | | 7548 | Head 5500MHz | July.17,2020 | 5600 MHz | OK | | 7548 | Head 5800MHz | July.17,2020 | 5800 MHz | OK | #### **ANNEX G Probe Calibration Certificate** #### **Probe 7548 Calibration Certificate** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client CTTL Certificate No: Z22-60260 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 7548 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: August 01, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |---------------------|--------------------|--|-----------------------| | Power Meter NRP2 | 101919 | 14-Jun-22(CTTL, No.J22X04181) | Jun-23 | | Power sensor NRP-2 | Z91 101547 | 14-Jun-22(CTTL, No.J22X04181) | Jun-23 | | Power sensor NRP-2 | Z91 101548 | 14-Jun-22(CTTL, No.J22X04181) | Jun-23 | | Reference 10dBAtte | nuator 18N50W-10dE | 3 20-Jan-21(CTTL, No.J21X00486) | Jan-23 | | Reference 20dBAtte | nuator 18N50W-20dE | 3 20-Jan-21(CTTL, No.J21X00485) | Jan-23 | | Reference Probe EX | 3DV4 SN 3846 | 20-May-22(SPEAG, No.EX3-3846_May | y22) May-23 | | DAE4 | SN 771 | 20-Jan-22(SPEAG, No.DAE4-771_Jan | 22) Jan-23 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG | 3700A 6201052605 | 14-Jun-22(CTTL, No.J22X04182) | Jun-23 | | Network Analyzer E5 | 6071C MY46110673 | 14-Jan-22(CTTL, No.J22X00406) | Jan-23 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | 100 | | Reviewed by: | Lin Hao | SAR Test Engineer | | | Approved by: | Qi Dianyuan | SAR Project Leader | 1 | | | | Issued: Augus | st 08, 2022 | Certificate No: Z22-60260 Page 1 of 9 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z22-60260 Page 2 of 9 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²)A | 0.62 | 0.70 | 0.63 | ±10.0% | | DCP(mV) ^B | 101.7 | 102.0 | 102.0 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(<i>k</i> =2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------| | 0 | cw | х | 0.0 | 0.0 | 1.0 | 0.00 | 193.2 | ±2.2% | | | | Υ | 0.0 | 0.0 | 1.0 | | 208.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 192.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z22-60260 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(<i>k</i> =2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|-------------------------| | 750 | 41.9 | 0.89 | 10.30 | 10.30 | 10.30 | 0.16 | 1.29 | ±12.1% | | 900 | 41.5 | 0.97 | 9.81 | 9.81 | 9.81 | 0.16 | 1.32 | ±12.1% | | 1450 | 40.5 | 1.20 | 8.56 | 8.56 | 8.56 | 0.20 | 0.91 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.13 | 8.13 | 8.13 | 0.22 | 1.00 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.80 | 7.80 | 7.80 | 0.25 | 1.00 | ±12.19 | | 2100 | 39.8 | 1.49 | 7.95 | 7.95 | 7.95 | 0.19 | 1.24 | ±12.19 | | 2300 | 39.5 | 1.67 | 7.61 | 7.61 | 7.61 | 0.46 | 0.72 | ±12.19 | | 2450 | 39.2 | 1.80 | 7.32 | 7.32 | 7.32 | 0.50 | 0.72 | ±12.19 | | 2600 | 39.0 | 1.96 | 7.12 | 7.12 | 7.12 | 0.56 | 0.68 | ±12.19 | | 3300 | 38.2 | 2.71 | 6.75 | 6.75 | 6.75 | 0.40 | 0.90 | ±13.3% | | 3500 | 37.9 | 2.91 | 6.61 | 6.61 | 6.61 | 0.38 | 1.02 | ±13.39 | | 3700 | 37.7 | 3.12 | 6.41 | 6.41 | 6.41 | 0.35 | 1.07 | ±13.39 | | 3900 | 37.5 | 3.32 | 6.30 | 6.30 | 6.30 | 0.30 | 1.50 | ±13.39 | | 4100 | 37.2 | 3.53 | 6.22 | 6.22 | 6.22 | 0.30 | 1.38 | ±13.39 | | 4200 | 37.1 | 3.63 | 6.10 | 6.10 | 6.10 | 0.35 | 1.35 | ±13.39 | | 4400 | 36.9 | 3.84 | 6.00 | 6.00
| 6.00 | 0.35 | 1.35 | ±13.39 | | 4600 | 36.7 | 4.04 | 5.92 | 5.92 | 5.92 | 0.40 | 1.30 | ±13.39 | | 4800 | 36.4 | 4.25 | 5.88 | 5.88 | 5.88 | 0.40 | 1.38 | ±13.39 | | 4950 | 36.3 | 4.40 | 5.68 | 5.68 | 5.68 | 0.40 | 1.40 | ±13.39 | | 5250 | 35.9 | 4.71 | 4.98 | 4.98 | 4.98 | 0.45 | 1.35 | ±13.39 | | 5600 | 35.5 | 5.07 | 4.57 | 4.57 | 4.57 | 0.45 | 1.40 | ±13.39 | | 5750 | 35.4 | 5.22 | 4.64 | 4.64 | 4.64 | 0.40 | 1.60 | ±13.39 | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z22-60260 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z22-60260 Page 5 of 9 # Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z22-60260 Page 6 of 9 Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z22-60260 Page 7 of 9 ## **Conversion Factor Assessment** f=750 MHz,WGLS R9(H_convF) f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z22-60260 Page 8 of 9 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548 **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 146.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z22-60260 Page 9 of 9 ## **ANNEX H Dipole Calibration Certificate** #### 750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland CTTL (Auden) Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D750V3-1017_Jul22 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates tilateral Agreement for the recognition of calibration certificates | Dbject | D750V3 - SN:101 | 17 | | |--|--|--|--| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 20, 2022 | | | | | | onal standards, which realize the physical unit | | | he measurements and the uncertain | ainties with confidence pr | robability are given on the following pages and | d are part of the certificate. | | All calibrations have been conducts | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70% | | all calibrations have been conducte | d in the closed laborator | y ladity. Giviloning it temperature (22 1 3) C | and numbers 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | | | | | | ower sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | | SN: 103244
SN: 103245 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) | Apr-23
Apr-23 | | Power sensor NRP-Z91 | | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | ower sensor NRP-Z91
deference 20 dB Attenuator
ype-N mismatch combination | SN: 103245
SN: BH9394 (20k) | 04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21) | Apr-23
Apr-23
Apr-23
Dec-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21)
02-May-22 (No. DAE4-601_May22) | Apr-23
Apr-23
Apr-23
Dec-22
May-23
Scheduled Check | | tower sensor NRP-Z91 teference 20 dB Attenuator type-N mismatch combination teference Probe EX3DV4 DAE4 secondary Standards over meter E4419B | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21)
02-May-22 (No. DAE4-601_May22)
Check Date (in house) | Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN:
MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec-21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-16 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477
Name | 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | Certificate No: D750V3-1017_Jul22 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1017_Jul22 Page 2 of 6