

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing: 04/01/19 - 05/01/19 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 1M1903280046-01-R1.ZNF

FCC ID:

ZNFQ720CS

APPLICANT:

LG ELECTRONICS U.S.A., INC.

DUT Type: Application Type: FCC Rule Part(s): Model: Additional Model(s): **Portable Handset** Certification CFR §2.1093 LM-Q720CS LMQ720CS, Q720CS

Equipment	Band & Mode	Tx Frequency	SAR			
Class	Dand & Mode	TXTTequency	1g Head (W/kg) 1g Body-Worn (W/kg)		1g Hotspot (W/kg)	10g Phablet (W/kg)
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.15	0.44	0.44	N/A
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	< 0.1	0.37	0.97	N/A
PCE	UMTS 850	826.40 - 846.60 MHz	< 0.1	0.57	0.57	N/A
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.14	0.73	1.12	N/A
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.13	0.55	1.15	N/A
PCE	LTE Band 12	699.7 - 715.3 MHz	0.18	0.46	0.46	N/A
PCE	LTE Band 14	790.5 - 795.5 MHz	0.22	0.56	0.56	N/A
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.16	0.61	0.61	N/A
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.14	0.75	1.19	N/A
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.13	0.56	1.15	N/A
PCE	LTE Band 30	2307.5 - 2312.5 MHz	< 0.1	0.42	0.98	2.47
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.76	0.54	0.54	N/A
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	0.78	N/A
NI	U-NII-2A	5260 - 5320 MHz	0.54	0.71	N/A	2.19
NII	U-NII-2C	5500 - 5700 MHz	0.79	0.71	N/A	1.79
NII	U-NII-3	5745 - 5825 MHz	0.90	0.66	0.66	N/A
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.14	< 0.1	< 0.1	N/A
Simultaneous	SAR per KDB 690783 D01v	1.25	1.50	1.56	3.94	

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

Note: This revised Test Report (S/N: 1M1903280046-01-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

duluhuh TESTING CERT#2041.01 The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

	FCC ID: ZNFQ720CS	720CS SAR EVALUATI		🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 1 of 79	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Fage 1 01 79	
© 201	2019 PCTEST Engineering Laboratory, Inc.					

02/15/2019

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	. 3	
2	LTE INFO	DRMATION	10	
3	INTRODU	JCTION	11	
4	DOSIME	TRIC ASSESSMENT	12	
5	DEFINITI	ON OF REFERENCE POINTS	13	
6	TEST CC	NFIGURATION POSITIONS	14	
7	RF EXPC	SURE LIMITS	18	
8	FCC MEA	ASUREMENT PROCEDURES	19	
9	RF CON	DUCTED POWERS	24	
10	SYSTEM	VERIFICATION	44	
11	SAR DAT	A SUMMARY	48	
12	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS			
13	SAR MEA	ASUREMENT VARIABILITY	73	
14	EQUIPM	ENT LIST	75	
15	MEASUR	EMENT UNCERTAINTIES	76	
16	CONCLU	SION	77	
17	REFERE	NCES	78	
APPEN APPEN APPEN APPEN	DIX B: DIX C:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS		
APPEN	DIX E:	SAR SYSTEM VALIDATION		
APPEN	DIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS		
APPEN	DIX G:	POWER REDUCTION VERIFICATION		

APPENDIX H: DOWNLINK LTE CA RF CONDUCTED POWERS

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dawa 0 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 2 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.		-		REV 21.3 M	

02/15/2019

DEVICE UNDER TEST

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 14	Voice/Data	790.5 - 795.5 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5700 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description.

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 3 of 79	
© 201	2019 PCTEST Engineering Laboratory, Inc.					

02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, el including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an lectronic or n oratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Mode / Band		Voice	Burst Average GMSK		Burst Average 8-PSK	
		(dBm)	(dBm)		(dBm)	
		1 TX Slot	1 TX Slots	2 TX Slots	1 TX Slots	2 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.2	33.2	32.2	27.7	27.7
	Nominal	32.7	32.7	31.7	27.2	27.2
GSM/GPRS/EDGE 1900	Maximum	30.7	30.7	29.2	26.2	26.2
GSW/GPRS/EDGE 1900	Nominal	30.2	30.2	28.7	25.7	25.7

1.3.1 Maximum Output Po

	Modulated Average (dBm)			
Mode / Band		3GPP	3GPP	3GPP
	WCDMA	HSDPA	HSUPA	
	Maximum	25.5	25.5	25.5
UMTS Band 5 (850 MHz)	Nominal	25.0	25.0	25.0
	Maximum	24.0	24.0	24.0
UMTS Band 4 (1750 MHz)	Nominal	23.5	23.5	23.5
UMTS Band 2 (1900 MHz)	Maximum	24.0	24.0	24.0
	Nominal	23.5	23.5	23.5

Mode / Band		Modulated Average (dBm)
LTE Band 12	Maximum	25.5
LIE Ballu 12	Nominal	25.0
LTE Band 14	Maximum	25.5
LIE Ballu 14	Nominal	25.0
LTE Band 5 (Cell)	Maximum	25.5
	Nominal	25.0
	Maximum	24.0
LTE Band 66 (AWS)	Nominal	23.5
LTE Dand 4 (A)A(S)	Maximum	24.0
LTE Band 4 (AWS)	Nominal	23.5
LTE Dand 2 (DCS)	Maximum	24.0
LTE Band 2 (PCS)	Nominal	23.5
LTE Band 30	Maximum	24.0
LIE Dalla 30	Nominal	23.5

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D ((70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 4 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

Mode / Band		Modulated Average - Single Tx Chain (dBm)				
Channel		1	2	3-9	10	11
IEEE 802.11b (2.4 GHz)	Maximum	23.0				
TEEE 802.110 (2.4 GHZ)	Nominal	22.0				
IEEE 802.11g (2.4 GHz)	Maximum	19.0	20.0	22.0	20.0	18.5
TEEE 802.11g (2.4 GHZ)	Nominal	18.0	19.0	21.0	19.0	17.5
IEEE 802.11n (2.4 GHz)	Maximum	18.0	19.0	21.0	19.0	17.5
1666 802.1111 (2.4 GHZ)	Nominal	17.0	18.0	20.0	18.0	16.5

Mode / Band	d										Modulat	ed Aver	age - Sir dBm)	ngle Tx C	hain								
					20 M	Hz Band	width			40 MHz Bandwidth					80 MHz Bandwidth								
	Channel	36	40-60	64	100	104-136	140	149	153-161	165	38	46-54	62	102	110-126	134	151	159	42	58	106	122	155
1555 000 44 - (5 CU-)	Maximum	16.0	19.5	16.0	16.0	19.5	18.0	18.0	20.0	18.0													
IEEE 802.11a (5 GHz)	Nominal	15.0	18.5	15.0	15.0	18.5	17.0	17.0	19.0	17.0													
IEEE 802.11n (5 GHz)	Maximum	15.0	18.5	15.0	15.0	18.5	17.0	17.0	19.0	17.0	13.0	15.0	13.0	13.0	15.0	15.0	15.0	15.0					
TEEE 802.110 (5 GHZ)	Nominal	14.0	17.5	14.0	14.0	17.5	16.0	16.0	18.0	16.0	12.0	14.0	12.0	12.0	14.0	14.0	14.0	14.0					
IEEE 802 11ac (5 GHz)	Maximum	12.0	15.5	12.0	12.0	15.5	14.0	14.0	16.0	14.0	12.0	13.0	12.0	12.0	13.0	13.0	13.0	13.0	11.0	12.0	11.0	13.0	13.0
	Nominal	11.0	14.5	11.0	11.0	14.5	13.0	13.0	15.0	13.0	11.0	12.0	11.0	11.0	12.0	12.0	12.0	12.0	10.0	11.0	10.0	12.0	12.0

Mode/Band	1	Modulated Average (dBm)
Bluetooth	Maximum	11.0
Bluetooth	Nominal	10.0
Bluetooth LE	Maximum	2.0
Biuetooth LE	Nominal	1.0

1	.3	2		

Reduced Output Power

Mode / Band		Modulated Average (dBm)
LTE Dand 20	Maximum	22.0
LTE Band 30	Nominal	21.5

Mode / Band	ł		Modu	llated Av (dBm)	verage		
	Channel	1	2	3-9	10	11	
IEEE 802.11b (2.4 GHz)	Maximum			19.0			
TEEE 802.110 (2.4 GHZ)	Nominal	18.0					
IEEE 802.11g (2.4 GHz)	Maximum	16.0	17.0	19.0	17.0	15.5	
TEEE 802.11g (2.4 GHZ)	Nominal	15.0	16.0	18.0	16.0	14.5	
LEEE 902 11p (2 4 CHz)	Maximum	16.0	17.0	19.0	17.0	15.5	
IEEE 802.11n (2.4 GHz)	Nominal	15.0	16.0	18.0	16.0	14.5	

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 5 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 5 of 79
a 201	0 DOTEST Engineering Leberatory Inc				DEV/ 21.2 M

Mode / Ban	d										Modulat	ed Aver	age - Sir dBm)	ngle Tx C	hain								
		20 MHz Bandwidth					40 MHz Bandwidth						80 MHz Bandwidth										
	Channel	36	40-60	64	100	104-136	140	149	153-161	165	38	46-54	62	102	110-126	134	151	159	42	58	106	122	155
IEEE 802.11a (5 GHz)	Maximum	14.0	17.5	14.0	14.0	17.5	16.0	16.0	18.0	16.0													
TEEE 802.118 (5 GHZ)	Nominal	13.0	16.5	13.0	13.0	16.5	15.0	15.0	17.0	15.0													
IEEE 802.11n (5 GHz)	Maximum	14.0	17.5	14.0	14.0	17.5	16.0	16.0	18.0	16.0	13.0	15.0	13.0	13.0	15.0	15.0	15.0	15.0					
TEEE 802.1111 (5 GHZ)	Nominal	13.0	16.5	13.0	13.0	16.5	15.0	15.0	17.0	15.0	12.0	14.0	12.0	12.0	14.0	14.0	14.0	14.0					
IEEE 802.11ac (5 GHz)	Maximum	12.0	15.5	12.0	12.0	15.5	14.0	14.0	16.0	14.0	12.0	13.0	12.0	12.0	13.0	13.0	13.0	13.0	11.0	12.0	11.0	13.0	13.0
1000 002.114C (5 GHZ)	Nominal	11.0	14.5	11.0	11.0	14.5	13.0	13.0	15.0	13.0	11.0	12.0	11.0	11.0	12.0	12.0	12.0	12.0	10.0	11.0	10.0	12.0	12.0

1.4 **DUT Antenna Locations**

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix F. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Table 1-1

	Device Edg	es/Sides f	-	sting		
Mode	Back	Front	Тор	Bottom	Right	Left
GPRS 850	Yes	Yes	No	Yes	No	Yes
GPRS 1900	Yes	Yes	No	Yes	Yes	No
UMTS 850	Yes	Yes	No	Yes	No	Yes
UMTS 1750	Yes	Yes	No	Yes	Yes	No
UMTS 1900	Yes	Yes	No	Yes	Yes	No
LTE Band 12	Yes	Yes	No	Yes	No	Yes
LTE Band 14	Yes	Yes	No	Yes	No	Yes
LTE Band 5 (Cell)	Yes	Yes	No	Yes	No	Yes
LTE Band 66 (AWS)	Yes	Yes	No	Yes	Yes	No
LTE Band 2 (PCS)	Yes	Yes	No	Yes	Yes	No
LTE Band 30	Yes	Yes	No	Yes	Yes	No
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN	Yes	Yes	Yes	No	No	Yes
Bluetooth	Yes	Yes	Yes	No	No	Yes

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-2A, U-NII-2C operations are disabled.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dame 6 of 70		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 6 of 79		
© 201	© 2019 PCTEST Engineering Laboratory, Inc.						

02/15/2019

	Omutaneou			000110		
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes	
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
3	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
4	GSM voice + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
5	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
6	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
7	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
8	UMTS + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
9	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
10	LTE + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
11	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
12	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
13	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
14	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
15	GPRS/EDGE + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered
15		165	165	162.	ies	^Bluetooth Tethering is considered
16	GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered
10		165	165	162	165	^Bluetooth Tethering is considered

Table 1-2 Simultaneous Transmission Scenarios

1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.

- All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is only supported for U-NII-1 and U-NII-3 by S/W, therefore U-NII2A and U-NII2C were not evaluated for wireless router conditions.
- 6. This device supports VOLTE.
- 7. This device supports VoWIFI.
- This device supports Bluetooth Tethering. 8.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WIFI. only 2.4 GHz, U-NII-1, and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) TDWR channels are supported

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 7 of 79
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Fage / 01 / 9
© 201	9 PCTEST Engineering Laboratory, Inc.	•			REV 21.3 M

REV 21.3 M 02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, ele including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an ectronic or me poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-2A & U-NII-2C WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for 2.4 GHz WLAN, U-NII-1 WLAN, and U-NII-3 WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix H.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Darra 0 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 8 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

1.7 **Guidance Applied**

- IEEE 1528-2013 •
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices) •
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz) •
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures) •
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor) •
- October 2013 TCB Workshop Notes (GPRS Testing Considerations) •
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation) •

1.8 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 9 of 79
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 9 01 79
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

02/15/2019

2 LTE INFORMATION

	LTE Information				
Form Factor		Portable Handset			
Frequency Range of each LTE transmission band	LTE Band 12 (699.7 - 715.3 MHz)				
	LTE Band 14 (790.5 - 795.5 MHz)				
	LT	E Band 5 (Cell) (824.7 - 848.3 M	lHz)		
	LTE	Band 66 (AWS) (1710.7 - 1779.3	3 MHz)		
	LTE	Band 4 (AWS) (1710.7 - 1754.3	MHz)		
	LTE	Band 2 (PCS) (1850.7 - 1909.3	MHz)		
	LTE Band 30 (2307.5 - 2312.5 MHz)				
Channel Bandwidths	LTE Ba	and 12: 1.4 MHz, 3 MHz, 5 MHz,			
		LTE Band 14: 5 MHz, 10 MHz			
		d 5 (Cell): 1.4 MHz, 3 MHz, 5 MH	,		
): 1.4 MHz, 3 MHz, 5 MHz, 10 M : 1.4 MHz, 3 MHz, 5 MHz, 10 M			
		: 1.4 MHz, 3 MHz, 5 MHz, 10 M			
		LTE Band 30: 5 MHz, 10 MHz			
Channel Numbers and Frequencies (MHz)	Low	Mid	High		
LTE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3 (23173)		
LTE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)		
LTE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)		
LTE Band 12: 10 MHz	704 (23060)	707.5 (23095)	711 (23130)		
LTE Band 14: 5 MHz	790.5 (23305)	793 (23330)	795.5 (23355)		
LTE Band 14: 10 MHz	N/A	793 (23330)	N/A		
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)		
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)		
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)		
TE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)		
TE Band 66 (AWS): 1.4 MHz	1710.7 (131979)	1745 (132322)	1779.3 (132665)		
LTE Band 66 (AWS): 3 MHz	1711.5 (131987)	1745 (132322)	1778.5 (132657)		
LTE Band 66 (AWS): 5 MHz	1712.5 (131997)	1745 (132322)	1777.5 (132647)		
LTE Band 66 (AWS): 10 MHz	1715 (132022)	1745 (132322)	1775 (132622)		
LTE Band 66 (AWS): 15 MHz	1717.5 (132047)	1745 (132322)	1772.5 (132597)		
LTE Band 66 (AWS): 20 MHz	1720 (132072)	1745 (132322)	1770 (132572)		
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)		
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)		
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)		
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)		
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)		
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)		
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)		
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)		
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)		
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)		
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)		
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)		
LTE Band 30: 5 MHz	2307.5 (27685)	2310 (27710)	2312.5 (27735)		
LTE Band 30: 10 MHz	N/A	2310 (27710)	N/A		
JE Category		6			
Modulations Supported in UL		QPSK, 16QAM			
LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be		YES			
section 6.2.3~6.2.5? (manufacturer attestation to be provided)		i Eð			
A-MPR (Additional MPR) disabled for SAR Testing?		YES			
TE Carrier Aggregation Possible Combinations	The technical description		aggregation combinations		
LTE Additional Information The technical description includes all the possible carrier aggregation combinations LTE Additional Information This device does not support full CA features on 3GPP Release 10. It supports carriaggregation feature as shown in Appendix H. All uplink communications are identical t Release 8 Specifications. Uplink communications are done on the PCC. The following Release 10 Features are not supported: Relay, HetNet, Enhanced MIMO, eICIC, WI Offloading, eMBMS, Cross-Carrier Scheduling, Enhanced SC-FDMA. Scheduling, Enhanced SC-FDMA.			nunications are identical to the on the PCC. The following LTE shanced MIMO, eICIC, WIFI		

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Daga 10 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset	Page 10 of 79
204	0 DOTECT Engineering Leberatery Inc.			

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

SAR =	<i>d</i> ($\left(\frac{dU}{dU} \right)$	d	$\left(\frac{dU}{\rho dv}\right)$
SAK -	\overline{dt}	dm	$\frac{1}{dt}$	$\left(\frac{\rho dv}{\rho dv}\right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

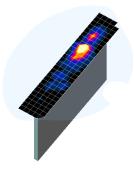
where:

 σ = conductivity of the tissue-simulating material (S/m)

- ρ = mass density of the tissue-simulating material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 44 670	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 11 of 79	
© 201	© 2019 PCTEST Engineering Laboratory, Inc.					


02/15/2019

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed was measured and used as a reference value.

02/15/2019

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

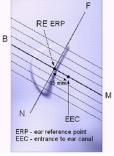
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

		Maximum Zoom Scan Resolution (mm)	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	(Δx _{zoom} , Δy _{zoom})	Uniform Grid	Gi	raded Grid	Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤ 4	≤3	≤ 2.5	≤ 1.5*Δz _{zoom} (n-1)	≥ 25
5-6 GHz	≤10	≤ 4	≤2	≤2	≤ 1.5*Δz _{zoom} (n-1)	≥22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6


	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 12 of 79	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset			
004	0 DOTECT Engineering Leberatery Inc.					

© 2019 PCTEST Engineering Laboratory, Inc.

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 **Close-Up Side view** of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

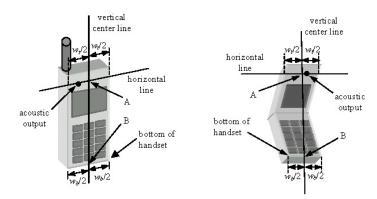


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 10 (70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 13 of 79	
© 201	© 2019 PCTEST Engineering Laboratory, Inc.					

02/15/2019

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

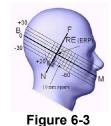
The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).


6.3 Positioning for Ear / 15° Tilt

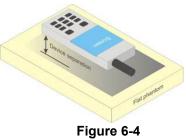
With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 44 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 14 of 79	
© 201	© 2019 PCTEST Engineering Laboratory. Inc.					

Side view w/ relevant markings

Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position


6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 **Body-Worn Accessory Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	Dates: DUT Type:		Daga 15 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 15 of 79	
© 201	© 2019 PCTEST Engineering Laboratory, Inc.					

02/15/2019

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

Extremity Exposure Configurations 6.6

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body. SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

6.8 **Proximity Sensor Considerations**

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dawa 40 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 16 of 79	
© 201	© 2019 PCTEST Engineering Laboratory, Inc.					

REV 21.3 M 02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, el including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have ar ectronic or n oratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a nonreduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

6.9 **Phablet Configurations**

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 17 of 79		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		U		
© 201	© 2019 PCTEST Engineering Laboratory, Inc.						

02/15/2019

7 **RF EXPOSURE LIMITS**

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUMAN EXPOSURE LIMITS							
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED EN√IRONMENT Occupational (W/kg) or (mW/g)					
Peak Spatial Average SAR Head	1.6	8.0					
Whole Body SAR	0.08	0.4					
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20					

Table 7-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over 1. the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body. 2

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and 3. over the appropriate averaging time.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates: DUT Type:			Dage 19 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 18 of 79	
© 201	© 2019 PCTEST Engineering Laboratory, Inc.					

02/15/2019

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates: DUT Type:			Dage 10 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 19 of 79	
© 201	◎ 2019 PCTEST Engineering Laboratory, Inc.					

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		5 00 670	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 20 of 79	
© 201	© 2019 PCTEST Engineering Laboratory, Inc.					

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations ii. and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - When the reported SAR for a required test channel is > 1.45 W/kg. SAR is required for all iii. RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.5.5 **Downlink Only Carrier Aggregation**

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕐 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 21 of 79	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Fage 21 01 79	
© 201	© 2019 PCTEST Engineering Laboratory, Inc.					

REV 21.3 M 02/15/2019

programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

U-NII-1 and U-NII-2A 8.6.2

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.6.4 **Initial Test Position Procedure**

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

2.4 GHz SAR Test Requirements 8.6.5

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest 2) measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates: DUT Type:			Page 22 of 79		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Fage 22 01 79		
© 201	© 2019 PCTEST Engineering Laboratory, Inc.						

02/15/2019

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.6 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

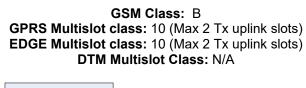
	FCC ID: ZNFQ720CS	<u> PCTEST</u>	SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 23 of 79	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset			
© 20′	© 2019 PCTEST Engineering Laboratory, Inc.					

9 **RF CONDUCTED POWERS**

GSM Conducted Powers 9.1

Table 9-1 Maximum Conducted Power									
	Maximum	Burst-Ave	raged Out	put Powe	r				
		Voice		DGE Data ⁄ISK)	EDGE (8-P				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	33.07	32.85	31.71	27.69	27.54			
GSM 850	190	32.92	33.04	31.83	27.70	27.60			
	251	32.96	33.01	31.86	27.65	27.33			
	512	30.48	30.51	28.96	26.20	25.89			
GSM 1900	661	30.42	30.44	28.86	26.19	25.84			
	810	30.52	30.53	29.05	26.16	26.00			

VoiceGPRS/EDGE Data (GMSK)EDGE Data (B-PSK)BandChannelGSM [dBm] CS (1 Slot)GPRS [dBm] 1 Tx SlotEDGE [dBm] 1 Tx SlotEDGE [dBm] 2 Tx SlotGSM 190012821.4521.4822.9417.1719.87GSM 190066121.3921.4122.8417.1619.82B1021.4921.5023.0317.1319.98	Calculated Maximum Frame-Averaged Output Power								
Band Channel [dBm] CS (1 Slot) [dBm] 1 Tx Slot [dBm] 2 Tx Slot [dBm] 1 Tx Slot [dBm] 1 Tx Slot [dBm] 1 Tx Slot [dBm] 2 TxS [dBm] 2 TxS			Voice						
GSM 850 190 23.89 24.01 25.81 18.67 21.58 251 23.93 23.98 25.84 18.62 21.31 512 21.45 21.48 22.94 17.17 19.87 GSM 1900 661 21.39 21.41 22.84 17.16 19.82	Band	Channel	[dBm] CS	[dBm] 1 Tx	[dBm] 2 Tx	[dBm] 1 Tx	[dBm] 2 Tx		
251 23.93 23.98 25.84 18.62 21.31 512 21.45 21.48 22.94 17.17 19.87 GSM 1900 661 21.39 21.41 22.84 17.16 19.82		128	24.04	23.82	25.69	18.66	21.52		
Similar Similar <t< th=""><th>GSM 850</th><td>190</td><td>23.89</td><td>24.01</td><td>25.81</td><td>18.67</td><td>21.58</td></t<>	GSM 850	190	23.89	24.01	25.81	18.67	21.58		
GSM 1900 661 21.39 21.41 22.84 17.16 19.82		251	23.93	23.98	25.84	18.62	21.31		
		512	21.45	21.48	22.94	17.17	19.87		
810 21 49 21 50 23 03 17 13 19 98	GSM 1900	661	21.39	21.41	22.84	17.16	19.82		
		810	21.49	21.50	23.03	17.13	19.98		


GSM 850	Frame	23.67	23.67	25.68	18.17	21.18
GSM 1900	Avg.Targets:	21.17	21.17	22.68	16.67	19.68

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 24 of 79	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Fage 24 01 79	
201	2019 PCTEST Engineering Laboratory, Inc.					

© 2019 PCTEST Engineering Laboratory, Inc.

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

Power Measurement Setup

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dago 25 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 25 of 79	
© 201	© 2019 PCTEST Engineering Laboratory, Inc.					

02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, e including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have a ectronic or n poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.2 UMTS Conducted Powers

	Maximum Conducted Power											
3GPP Release	Mode	3GPP 34.121 Subtest	Cellular Band [dBm]		AWS Band [dBm]		PCS Band [dBm]		3GPP MPR [dB]			
Version	/ersion	Sublesi	4132	4183	4233	1312	1412	1513	9262	9400	9538	
99	WCDMA	12.2 kbps RMC	25.37	25.30	25.28	23.76	23.84	23.46	23.80	23.70	23.73	-
99	W CDIVIA	12.2 kbps AMR	25.32	25.24	25.08	23.72	23.88	24.00	23.75	23.72	23.96	-
6		Subtest 1	25.33	25.19	24.96	23.65	23.82	23.86	23.57	23.95	24.00	0
6	HSDPA	Subtest 2	25.48	25.33	25.33	23.88	23.94	23.94	23.96	23.94	23.92	0
6	HODEA	Subtest 3	24.92	24.83	24.59	23.50	23.49	23.42	23.40	23.29	23.44	0.5
6		Subtest 4	24.92	24.78	24.67	23.39	23.45	23.42	23.44	23.38	23.42	0.5
6		Subtest 1	24.81	24.71	24.67	23.11	23.08	23.01	23.03	23.01	23.00	0
6		Subtest 2	22.99	22.90	22.89	21.49	21.30	21.55	21.51	21.34	21.52	2
6	HSUPA	Subtest 3	24.47	24.30	24.13	22.93	22.99	22.95	22.91	22.89	22.95	1
6		Subtest 4	23.50	23.31	23.30	21.94	21.96	21.92	21.95	21.91	21.95	2
6		Subtest 5	25.47	25.34	25.09	23.78	24.00	23.93	23.90	23.93	23.96	0

Table 9-2 Maximum Conducted Power

This device does not support DC-HSDPA.

©

Figure 9-2 Power Measurement Setup

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 26 of 79	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset			
) 20 ا	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

REV 21.3 M 02/15/2019

9.3 LTE Conducted Powers

9.3.1 LTE Band 12

	Table 9-3 LTE Band 12 Conducted Powers - 10 MHz Bandwidth								
	LTE Band 12								
	10 MHz Bandwidth								
			Mid Channel						
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]						
	1	0	25.44		0				
	1	25	25.42	0	0				
	1	49	25.31		0				
QPSK	25	0	24.04		1				
	25	12	23.91	0-1	1				
	25	25	23.98	0-1	1				
	50	0	23.90		1				
	1	0	24.50		1				
	1	25	24.41	0-1	1				
	1	49	24.37		1				
16QAM	25	0	23.06		2				
	25	12	22.94	0-2	2				
	25	25	22.95	0-2	2				
	50	0	22.91		2				

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

> Table 9-4 LTE Band 12 Conducted Powers - 5 MHz Bandwidth

	LTE Band 12 5 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	23035 23095 (701.5 MHz) (707.5 MHz)		23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	25.25	25.34	25.34		0			
	1	12	25.26	25.36	25.19	0	0			
	1	24	25.31	25.31	25.28	1 1	0			
QPSK	12	0	24.07	24.25	24.27	0-1	1			
	12	6	24.19	24.34	24.31		1			
	12	13	24.37	24.29	24.24		1			
	25	0	24.22	24.31	24.05	1 1	1			
	1	0	24.28	24.45	24.30		1			
	1	12	24.41	24.25	24.34	0-1	1			
	1	24	24.38	24.16	23.93	1	1			
16QAM	12	0	23.35	23.16	23.21		2			
	12	6	23.32	23.14	23.26		2			
	12	13	23.44	23.42	23.17	0-2	2			
	25	0	23.09	23.15	23.19	1 1	2			

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 27 of 79	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset			
© 201	0 2019 PCTEST Engineering Laboratory, Inc.					

02/15/2019

				auctea Powers	- 5 WIT IZ Dalluw	naun					
	LTE Band 12 3 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel	_					
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm	ו]						
	1	0	25.32	25.34	25.33		0				
	1	7	25.49	25.41	25.31	0	0				
	1	14	25.25	25.31	25.16		0				
QPSK	8	0	24.02	24.09	24.18		1				
	8	4	24.05	24.20	24.12	0-1	1				
	8	7	24.15	24.16	24.26		1				
	15	0	24.04	24.25	24.07		1				
	1	0	24.28	24.36	24.49		1				
	1	7	24.46	24.38	24.35	0-1	1				
	1	14	24.44	24.34	24.28		1				
16QAM	8	0	23.13	23.14	23.28		2				
	8	4	23.10	23.28	23.22		2				
	8	7	23.22	23.35	23.32	0-2	2				
	15	0	23.12	23.17	23.14	1	2				

Table 9-5 I TE Band 12 Conducted Powers - 3 MHz Bandwidth

Table 9-6 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

				LTE Band 12						
	1.4 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm	1]					
	1	0	25.16	25.31	25.29		0			
	1	2	25.31	25.25	25.41	0	0			
	1	5	25.25	25.26	25.36		0			
QPSK	3	0	25.31	25.34	25.47		0			
	3	2	25.19	25.26	25.19		0			
	3	3	25.42	25.29	25.41	1	0			
	6	0	24.16	24.23	24.21	0-1	1			
	1	0	24.38	24.14	24.19		1			
	1	2	24.44	24.21	24.31	1	1			
	1	5	24.38	24.13	24.48	0-1	1			
16QAM	3	0	24.39	24.14	24.23		1			
	3	2	24.16	24.47	24.43	1 [1			
	3	3	24.34	24.12	24.07	1 [1			
	6	0	23.42	23.29	23.21	0-2	2			

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		5 00 (70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 28 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

9.3.2 LTE Band 14

LTE Band 14 Conducted Powers - 10 MHz Bandwidth									
			LTE Band 14						
	1	1	10 MHz Bandwidth						
			Mid Channel						
Modulation	RB Size	RB Offset	23330 (793.0 MHz)	MPR Allowed per	MPR [dB]				
modulation			Conducted Power [dBm]	3GPP [dB]					
	1	0	25.50		0				
	1	25	25.15	0	0				
	1	49	25.36		0				
QPSK	25	0	23.96		1				
	25	12	23.88	0-1	1				
	25	25	23.92	0-1	1				
	50	0	23.92		1				
	1	0	24.50		1				
	1	25	24.40	0-1	1				
	1	49	24.49		1				
16QAM	25	0	23.00		2				
	25	12	22.89	0-2	2				
	25	25	22.92	0-2	2				
	50	0	22.90		2				

Table 9-7 1 4 4 0

Table 9-8
LTE Band 14 Conducted Powers - 5 MHz Bandwidth

	LTE Band 14 5 MHz Bandwidth								
			Mid Channel						
Modulation	RB Size	RB Offset	23330 (793.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]						
	1	0	25.36		0				
	1	12	25.33	0	0				
	1	24	25.16		0				
QPSK	12	0	24.25		1				
	12	6	24.26	0-1	1				
	12	13	24.25	0-1	1				
	25	0	24.14		1				
	1	0	24.06		1				
	1	12	24.38	0-1	1				
	1	24	24.10		1				
16QAM	12	0	23.31		2				
	12	6	23.29	0-2	2				
	12	13	23.29	0-2	2				
	25	0	23.18		2				

Note: LTE Band 14 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: 2	ZNFQ720CS	<u> PCTEST</u>	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
Documer	nt S/N:	Test Dates:	DUT Type:		Page 29 of 79		
1M190328	30046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset				
© 2019 PCTEST E	© 2019 PCTEST Engineering Laboratory, Inc.						

02/15/2019

LTE Band 5 (Cell) 9.3.3

LT	LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth										
	LTE Band 5 (Cell) 10 MHz Bandwidth										
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]						
			Conducted Power [dBm]								
	1 0 25.46			0							
	1	25	25.30	0	0						
	1	49	25.50		0						
QPSK	25	0	23.94		1						
	25	12	24.06	0-1	1						
	25	25	24.07	0-1	1						
	50	0	24.06		1						
	1	0	24.45		1						
	1	25	24.32	0-1	1						
	1	49	24.31		1						
16QAM	25	0	22.94		2						
	25	12	23.00	0-2	2						
	25	25	23.05	0-2	2						
ľ	50	0	23.05		2						

Table 9-9

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	Table 9-10					
LTE Band 5 (Cell)) Conducted Powers - 5 MHz Bandwidth					

	LTE Band 5 (Cell) 5 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm	1]					
	1	0	25.32	25.42	25.31		0			
	1	12	25.31	25.33	25.43	0	0			
	1	24	25.49	25.41	25.36		0			
QPSK	12	0	24.15	24.26	24.20	0-1	1			
	12	6	24.13	24.28	24.16		1			
	12	13	24.16	24.27	24.28		1			
	25	0	24.23	24.21	24.16]	1			
	1	0	24.44	24.32	24.33		1			
	1	12	24.36	24.31	24.23	0-1	1			
	1	24	24.37	24.39	24.25		1			
16QAM	12	0	23.30	23.32	23.26		2			
	12	6	23.28	23.28	23.27	0-2	2			
	12	13	23.39	23.15	23.29	0-2	2			
	25	0	23.25	23.13	23.22	1	2			

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕑 LG	Approved by:
				-	Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 30 of 79
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Fage 50 0179
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

02/15/2019

	LTE Band 5 (Cell) CONDUCTED POWERS - 3 MHZ Bandwidth LTE Band 5 (Cell) 3 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm	1]						
	1	0	25.31	25.32	25.41		0				
	1	7	25.33	25.39	25.49	0	0				
	1	14	25.36	25.36	25.37		0				
QPSK	8	0	24.39	24.29	24.39		1				
	8	4	24.28	24.18	24.31	0-1	1				
	8	7	24.25	24.38	24.27		1				
	15	0	24.38	24.29	24.17		1				
	1	0	24.47	24.22	24.21		1				
	1	7	24.49	24.38	24.28	0-1	1				
	1	14	24.35	24.19	24.19		1				
16QAM	8	0	23.26	23.41	23.19		2				
	8	4	23.22	23.30	23.34	0.0	2				
	8	7	23.23	23.20	23.29	0-2	2				
	15	0	23.38	23.11	23.19	1	2				

Table 9-11 I TE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

Table 9-12 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

	LTE Band 5 (Cell) 1.4 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm	1]					
	1	0	25.31	25.48	25.37		0			
	1	2	25.41	25.48	25.41		0			
	1	5	25.32	25.46	25.41	0	0			
QPSK	3	0	25.39	25.39	25.46		0			
	3	2	25.34	25.36	25.36		0			
	3	3	25.36	25.31	25.34		0			
	6	0	24.35	24.16	24.17	0-1	1			
	1	0	24.48	24.39	24.38		1			
	1	2	24.48	24.32	24.21		1			
	1	5	24.46	24.36	24.34	0.1	1			
16QAM	3	0	24.44	24.21	24.16	- 0-1	1			
	3	2	24.28	24.47	24.21	1 [1			
	3	3	24.22	24.31	24.10	1	1			
	6	0	23.44	23.34	23.34	0-2	2			

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 21 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 31 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

02/15/2019

9.3.4

LTE Band 66 (AWS)

				LTE Band 66 (AWS)						
				20 MHz Bandwidth						
	Low Channel Mid Channel High Channel									
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm	i]					
	1	0	23.64	23.82	23.89		0			
	1	50	23.65	23.72	23.80	0	0			
	1	99	23.87	24.00	23.99		0			
QPSK	50	0	22.91	22.73	22.69		1			
	50	25	22.92	22.98	22.87	0-1	1			
	50	50	22.95	22.86	22.86		1			
	100	0	22.95	22.79	22.96		1			
	1	0	22.99	23.00	23.00		1			
	1	50	22.92	22.90	22.95	0-1	1			
	1	99	23.00	22.55	22.94		1			
16QAM	50	0	21.84	21.70	21.99		2			
	50	25	21.83	21.75	21.83	0.2	2			
	50	50	21.88	21.82	21.90	0-2	2			
	100	0	21.93	21.81	21.94		2			

Table 9-13 LTE Band 66 (AWS) Conducted Powers - 20 MHz Bandwidth

Table 9-14
LTE Band 66 (AWS) Conducted Powers - 15 MHz Bandwidth

	LTE Band 66 (AWS) 15 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
				Conducted Power [dBm]						
	1	0	23.69	23.79	23.79		0				
	1	36	23.54	23.49	23.64	0	0				
	1	74	23.64	23.67	23.61		0				
QPSK	36	0	22.69	22.69	22.63		1				
	36	18	22.64	22.66	22.49	0-1	1				
	36	37	22.58	22.60	22.39		1				
	75	0	22.62	22.66	22.59		1				
	1	0	22.64	22.73	22.63		1				
	1	36	22.63	22.73	22.38	0-1	1				
	1	74	22.48	22.66	22.64		1				
16QAM	36	0	21.73	21.70	21.71		2				
	36	18	21.68	21.72	21.47	0-2	2				
	36	37	21.69	21.65	21.51	0-2	2				
	75	0	21.68	21.72	21.72		2				

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 32 of 79	
© 20′	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

	LTE Band 66 (AWS) Conducted Powers - 10 Minz Bandwidth										
	LTE Band 66 (AWS) 10 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			C	Conducted Power [dBm	1]						
	1	0	23.82	23.95	23.66		0				
	1	25	23.78	23.74	23.95	0	0				
	1	49	23.95	23.72	23.66		0				
QPSK	25	0	22.82	22.68	22.67		1				
	25	12	22.90	22.79	22.90	0-1	1				
	25	25	22.86	22.82	22.94		1				
	50	0	22.95	22.74	22.87		1				
	1	0	22.83	22.66	22.71		1				
	1	25	22.66	22.86	22.78	0-1	1				
	1	49	22.71	22.83	22.86		1				
16QAM	25	0	21.87	21.87	21.73		2				
	25	12	21.82	21.92	21.97	0-2	2				
	25	25	21.72	21.65	21.73	0-2	2				
	50	0	21.82	21.90	21.93	1	2				

Table 9-15 LTE Band 66 (AWS) Conducted Powers - 10 MHz Bandwidth

Table 9-16 LTE Band 66 (AWS) Conducted Powers - 5 MHz Bandwidth

LTE Band 66 (AWS) 5 MHz Bandwidth									
			Low Channel 131997	Mid Channel 132322	High Channel 132647	MPR Allowed per			
Modulation	RB Size	RB Offset	(1712.5 MHz)	(1745.0 MHz)	(1777.5 MHz)	3GPP [dB]	MPR [dB]		
				Conducted Power [dBm					
	1	0	23.67	23.84	23.80		0		
	1	12	23.59	23.81	23.60	0	0		
	1	24	23.74	23.70	23.57		0		
QPSK	12	0	22.79	22.74	22.81		1		
	12	6	22.82	22.72	22.88	0-1	1		
	12	13	22.84	22.72	22.82		1		
	25	0	22.79	22.71	22.67		1		
	1	0	22.61	22.74	22.67		1		
	1	12	22.86	22.59	22.76	0-1	1		
	1	24	22.56	22.86	22.78		1		
16QAM	12	0	21.76	21.79	21.71		2		
	12	6	21.77	21.77	21.81	0-2	2		
	12	13	21.74	21.78	21.77	0-2	2		
	25	0	21.84	21.75	21.75		2		

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 00 (70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 33 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

			anu 00 (AVV3) C	onducted Powe					
				LTE Band 66 (AWS)					
3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm	1]				
	1	0	23.72	23.86	23.62		0		
	1	7	23.65	23.66	23.76	0	0		
	1	14	23.81	23.92	23.90		0		
QPSK	8	0	22.84	22.73	22.88		1		
	8	4	22.82	22.67	22.85	- 0-1 -	1		
	8	7	22.89	22.71	22.80		1		
	15	0	22.85	22.72	22.93		1		
	1	0	22.95	22.83	22.81		1		
	1	7	22.84	22.70	22.76	0-1	1		
	1	14	22.76	22.88	22.93		1		
16QAM	8	0	21.86	21.90	21.94		2		
-	8	4	21.91	21.85	21.76		2		
	8	7	21.90	21.79	21.89	0-2	2		
	15	0	21.89	21.78	21.96	1 – – – – – – – – – – – – – – – – – – –	2		

Table 9-17 LTE Band 66 (AWS) Conducted Powers - 3 MHz Bandwidth

Table 9-18 LTE Band 66 (AWS) Conducted Powers -1.4 MHz Bandwidth

LTE Band 66 (AWS) 1.4 MHz Bandwidth									
Modulation	RB Size	RB Offset	Low Channel 131979 (1710.7 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			. ,	Conducted Power [dBm					
	1	0	23.83	23.60	23.70		0		
	1	2	23.61	23.71	23.82		0		
	1	5	23.71	23.61	23.89	0	0		
QPSK	3	0	23.76	23.68	23.63		0		
	3	2	23.77	23.77	23.73		0		
	3	3	23.82	23.72	23.60		0		
	6	0	22.72	22.64	22.74	0-1	1		
	1	0	22.77	22.61	22.59		1		
	1	2	22.76	22.79	22.81		1		
	1	5	22.74	22.71	22.79	0-1	1		
16QAM	3	0	22.61	22.70	22.65	0-1	1		
	3	2	22.61	22.88	22.79	-	1		
	3	3	22.88	22.65	22.50		1		
	6	0	21.71	21.91	21.81	0-2	2		

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 04 (70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 34 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

9.3.5

LTE Band 2 (PCS)

LTE Band 2 (PCS) Conducted Powers - 20 MHZ Bandwidth										
	LTE Band 2 (PCS)									
20 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm	1]					
	1	0	23.68	23.84	23.86		0			
	1	50	23.98	23.49	24.00	0	0			
	1	99	23.94	23.69	23.85		0			
QPSK	50	0	22.66	22.63	22.67		1			
	50	25	22.56	22.52	22.90	0-1	1			
	50	50	22.72	22.55	22.71		1			
	100	0	22.75	22.65	22.73		1			
	1	0	22.95	22.85	22.84		1			
	1	50	22.78	22.55	22.89	0-1	1			
	1	99	22.70	22.81	22.82		1			
16QAM	50	0	21.74	21.60	21.80		2			
	50	25	21.55	21.58	21.72	0-2	2			
	50	50	21.71	21.51	21.71	0-2	2			
	100	0	21.77	21.65	21.82		2			

Table 9-19 I TF Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

	Table 9-20
LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

LTE Band 2 (PCS) 15 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted Power [dBm]				
	1	0	23.70	23.67	23.63		0		
	1	36	23.63	23.52	23.52	0	0		
	1	74	23.50	23.52	23.70	1	0		
QPSK	36	0	22.52	22.65	22.68		1		
	36	18	22.51	22.71	22.65	0-1	1		
	36	37	22.71	22.71	22.70		1		
	75	0	22.48	22.72	22.44		1		
	1	0	22.62	22.72	22.48		1		
	1	36	22.69	22.56	22.60	0-1	1		
	1	74	22.51	22.62	22.58		1		
16QAM	36	0	21.62	21.41	21.44		2		
	36	18	21.56	21.32	21.41	0-2	2		
	36	37	21.56	21.43	21.49	0-2	2		
	75	0	21.55	21.48	21.39		2		

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	💽 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 05 (70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 35 of 79	
© 20′	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

02/15/2019

			anu 2 (FCS) CO	nauctea Power		uwiutii			
				LTE Band 2 (PCS)					
10 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm	1]				
	1	0	23.54	23.60	23.60		0		
	1	25	23.39	23.37	23.60	0	0		
	1	49	23.60	23.62	23.61		0		
QPSK	25	0	22.41	22.60	22.38		1		
	25	12	22.36	22.36	22.59	0-1	1		
	25	25	22.50	22.37	22.50		1		
	50	0	22.42	22.33	22.38		1		
	1	0	22.51	22.60	22.59		1		
	1	25	22.52	22.56	22.43	0-1	1		
	1	49	22.60	22.61	22.49		1		
16QAM	25	0	21.49	21.41	21.39		2		
	25	12	21.39	21.53	21.41	0.2	2		
	25	25	21.55	21.50	21.49	0-2	2		
	50	0	21.47	21.40	21.43	1	2		

Table 9-21 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

Table 9-22 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

	LTE Band 2 (PCS) 5 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm]					
	1	0	23.52	23.23	23.32		0			
	1	12	23.47	23.50	23.28	0	0			
	1	24	23.45	23.03	23.25		0			
QPSK	12	0	22.31	22.51	22.53		1			
	12	6	22.24	22.28	22.30	0-1	1			
	12	13	22.25	22.50	22.44		1			
	25	0	22.31	22.48	22.33		1			
	1	0	22.48	22.30	22.54		1			
	1	12	22.40	22.10	22.27	0-1	1			
	1	24	22.51	22.09	22.45		1			
16QAM	12	0	21.43	21.30	21.33		2			
	12	6	21.46	21.36	21.37		2			
	12	13	21.50	21.21	21.31	0-2	2			
	25	0	21.36	21.29	21.27	1 1	2			

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 00 (70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 36 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

02/15/2019

LTE Band 2 (PCS) 3 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel			
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			(Conducted Power [dBm	i]			
	1	0	23.40	23.40	23.59	0	0	
	1	7	23.32	23.60	23.35		0	
	1	14	23.17	23.38	23.37		0	
QPSK	8	0	22.34	22.56	22.32	- 0-1	1	
	8	4	22.56	22.19	22.33		1	
	8	7	22.52	22.54	22.35		1	
	15	0	22.56	22.57	22.59		1	
	1	0	22.48	22.38	22.36		1	
	1	7	22.42	22.48	22.35	0-1	1	
	1	14	22.36	22.19	22.51		1	
16QAM	8	0	21.39	21.42	21.47		2	
	8	4	21.41	21.43	21.44	0-2	2	
	8	7	21.30	21.31	21.37	0-2	2	
	15	0	21.36	21.25	21.35		2	

Table 9-23 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

Table 9-24 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

LTE Band 2 (PCS) 1.4 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel		MPR [dB]	
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]		
			(Conducted Power [dBm]			
	1	0	23.16	23.41	23.41		0	
	1	2	23.20	23.41	23.13		0	
	1	5	23.13	23.20	23.20	0 -	0	
QPSK	3	0	23.14	23.39	23.18		0	
	3	2	23.15	23.41	22.98		0	
	3	3	23.18	23.18	23.13	1	0	
	6	0	22.28	22.02	22.33	0-1	1	
	1	0	22.31	22.21	22.31		1	
	1	2	22.38	22.16	22.20		1	
	1	5	22.17	22.01	22.35		1	
16QAM	3	0	22.21	22.22	22.15	0-1	1	
	3	2	22.34	22.14	22.17	-	1	
	3	3	22.41	22.15	22.14		1	
	6	0	21.31	21.23	21.25	0-2	2	

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 27 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 37 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

02/15/2019

9.3.6 LTE Band 30

LTE Band 30 Conducted Powers - 10 MHZ Bandwidth								
	LTE Band 30							
	10 MHz Bandwidth							
			Mid Channel					
			27710	MPR Allowed per				
Modulation	RB Size	RB Offset	(2310.0 MHz)	3GPP [dB]	MPR [dB]			
			Conducted Power					
			[dBm]					
	1	0	23.71		0			
	1	25	23.61	0	0			
	1	49	23.74		0			
QPSK	25	0	22.65		1			
	25	12	22.64	0-1	1			
	25	25	22.63	0-1	1			
	50	0	22.62		1			
	1	0	23.00		1			
	1	25	22.99	0-1	1			
	1	49	22.98		1			
16QAM	25	0	21.71		2			
	25	12	21.70	0-2	2			
	25	25	21.75	0-2	2			
	50	0	21.58		2			

Table 9-25 I TE Band 30 Conducted Powers - 10 MHz Bandwidth

Table 9-26
LTE Band 30 Conducted Powers - 5 MHz Bandwidth

	-				
			LTE Band 30 5 MHz Bandwidth		
	r	r	Mid Channel	([
			27710		
Modulation	RB Size	RB Offset	(2310.0 MHz)	MPR Allowed per	MPR (dB)
			Conducted Power	3GPP [dB]	
			[dBm]		
	1	0	23.86		0
	1	12	23.83	0	0
	1	24	23.66		0
QPSK	12	0	22.75		1
	12	6	22.76	0-1	1
	12	13	22.75	0-1	1
	25	0	22.64		1
	1	0	22.56		1
	1	12	22.88	0-1	0 0 1 1 1 1 1
	1	24	22.60		1
16QAM	12	0	21.81		2
	12	6	21.79	0-2	2
	12	13	21.79	0-2	2
	25	0	21.68		2

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 00 of 70
1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 38 of 79
© 2019 PCTEST Engineering Laborate	REV 21.3 M			

02/15/2019

LTE Baild SU Reduced Collucted Powers - 10 MHZ Baildwidth								
			LTE Band 30					
	10 MHz Bandwidth							
			Mid Channel					
			27710	MPR Allowed per				
Modulation	RB Size	RB Offset	(2310.0 MHz)	3GPP [dB]	MPR [dB]			
			Conducted Power					
			[dBm]					
	1	0	21.53		0			
	1	25	21.30	0	0			
	1	49	21.42		0			
QPSK	25	0	21.40		0			
	25	12	21.35	0-1	0			
	25	25	21.35	0-1	0			
	50	0	21.35		0			
	1	0	21.89		0			
	1	25	21.72	0-1	0			
	1	49	21.35		0			
16QAM	25	0	21.37		0			
	25	12	21.31	0-2	0			
	25	25	21.35] 0-2	0			
	50	0	21.32		0			

Table 9-27 LTE Band 30 Reduced Conducted Powers - 10 MHz Bandwidth

Table 9-28
LTE Band 30 Reduced Conducted Powers - 5 MHz Bandwidth
LTE Band 30
5 MHz Bandwidth

г

	LIE Band 30 5 MHz Bandwidth							
Modulation	RB Size	RB Offset	Mid Channel 27710 (2310.0 MHz)	MPR Allowed per	MPR [dB]			
			Conducted Power [dBm]	3GPP [dB]				
	1	0	21.49		0			
	1	12	21.37	0	0			
	1	24	21.33		0			
QPSK	12	0	21.48		0			
	12	6	21.45	0-1	0			
	12	13	21.39	0-1	0			
	25	0	21.48		0			
	1	0	21.78		0			
	1	12	21.65	0-1	0			
	1	24	21.60		0			
16QAM	12	0	21.47		0			
	12	6	21.48	0-2	0			
	12	13	21.47	U*2	0			
	25	0	21.42		0			

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 00 af 70
1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 39 of 79
© 2019 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

9.4 **WLAN Conducted Powers**

2.4GHz Conducted Power [dBm]							
		IEEE 1	IEEE Transmission Mode				
Freq [MHz]	Channel	802.11b	802.11g	802.11n			
		Average	Average	Average			
2412	1	22.69	18.67	17.82			
2417	2	N/A	19.59	18.64			
2422	3	N/A	21.32	20.96			
2437	6	22.05	21.23	20.94			
2452	9	N/A	21.40	20.74			
2457	10	N/A	19.41	18.59			
2462	11	22.19	18.01	17.06			

Table 9-29 2.4 GHz WLAN Maximum Average RF Power

Table 9-30						
5 GHz WLAN Maximum Average RF Power						

5GHz (20MHz) Conducted Power [dBm]									
		IEEE 1	Fransmission	Mode					
Freq [MHz]	Channel	802.11a	802.11n	802.11ac					
		Average	Average	Average					
5180	36	15.71	14.88	11.71					
5200	40	19.32	18.49	15.48					
5220	44	19.22	18.47	15.01					
5240	48	19.19	18.39	14.82					
5260	52	19.12	18.20	15.40					
5280	56	19.19	18.30	15.42					
5300	60	19.16	18.25	15.40					
5320	64	15.55	14.94	11.51					
5500	100	15.52	14.65	11.67					
5520	104	19.20	18.41	15.47					
5600	120	19.07	18.26	15.27					
5680	136	19.14	18.28	15.29					
5700	140	17.41	16.58	13.59					
5745	149	17.58	16.71	13.76					
5765	153	19.29	18.39	15.54					
5785	157	19.37	18.45	15.71					
5805	161	19.24	18.38	15.70					
5825	165	17.38	16.47	13.44					

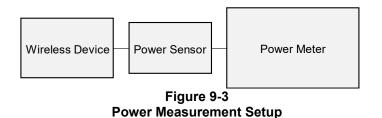
	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dame 40 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 40 of 79	
201	9 PCTEST Engineering Laboratory, Inc.		·		REV 21.3 M	

© 2019 PCTEST Engineering Laboratory, Inc.

2.4GHz Conducted Power [dBm]									
		IEEE Transmission Mode							
Freq [MHz]	Channel	802.11b	802.11g	802.11n					
		Average	Average	Average					
2412	1	18.38	15.09	15.05					
2417	2	N/A	16.04	16.02					
2422	3	N/A	18.50	18.26					
2437	6	18.38	18.22	18.19					
2452	9	N/A	18.03	18.10					
2457	10	N/A	16.21	16.19					
2462	11	18.32	14.65	14.64					

Table 9-31 2.4 GHz WLAN Reduced Average RF Power

Table 9-32 5 GHz WLAN Reduced Average RF Power


5GHz (20MHz) Conducted Power [dBm]										
		IEEE 1	Fransmission	Mode						
Freq [MHz]	Channel	802.11a	802.11n	802.11ac						
		Average	Average	Average						
5180	36	13.51	13.67	11.78						
5200	40	16.77	16.96	15.11						
5220	44	16.82	16.85	14.98						
5240	48	16.81	16.89	15.02						
5260	52	16.70	16.81	14.74						
5280	56	16.79	16.82	14.99						
5300	60	16.80	16.79	14.73						
5320	64	13.23	13.45	11.50						
5500	100	13.35	13.53	11.52						
5520	104	16.79	16.74	14.78						
5600	120	16.60	16.69	14.83						
5680	136	16.94	16.92	14.89						
5700	140	15.31	15.41	13.62						
5745	149	15.41	15.48	13.46						
5765	153	17.38	17.33	15.37						
5785	157	17.29	17.41	15.50						
5805	161	17.31	17.26	15.52						
5825	165	15.49	15.53	13.37						

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 44 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 41 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

REV 21.3 M

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for • the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation • and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; ٠ and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR. •

9.5 Bluetooth Conducted Powers

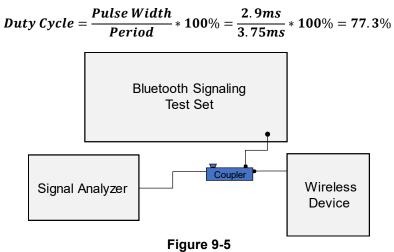
	Data	Average F	Avg Conducted Power			
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]		
2402	1.0	0	9.35	8.605		
2441	1.0	39	10.83	12.117		
2480	1.0	78	9.30	8.511		
2402	2.0	0	8.64	7.304		
2441	2.0	39	10.37	10.897		
2480	2.0	78	8.64	7.318		
2402	3.0	0	8.73	7.473		
2441	3.0	39	10.43	11.039		
2480	3.0	78	8.71	7.435		

Table 9-33

Note: The bolded data rates and channel above were tested for SAR.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 42 of 79
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset	Page 42 01 79	
3 201	9 PCTEST Engineering Laboratory Inc				REV 21.3 M

© 2019 PCTEST Engineering Laboratory, Inc.


© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

02/15/2019

🔤 Keysight Sp	pectrum A	analyzer -	- Swept S	SA															
l <mark>XI</mark> RL	RF	5	0Ω[DC	CORRE	EC			SENSE:	INT	#^\/	g Тур	ALIGN			AM Apr 02, 2 CE 1 2 3 4			Frequency
): Fas iin:Lo	st ↔ w	. Trig: Atter	/ideo : 26 dB	1	#AV1	g iyp	e. Rivi	5	T		₩₩		
10 dB/div	Ref	15.0	0 dB	m											Mkr1 3 11.	.730 r 01 dE	ns Im		Auto Tun
5.00 -5.00 -15.0							×1							¥ <mark>3∆1</mark>		TRIG	LVL	2.4	Center Fre 41000000 GH
-25.0 -35.0 -45.0						nu Arradi) Irular					20 4,wn	1 มามาให					2.4	Start Fre 41000000 GH
-55.0 -65.0 -75.0																		2.4	Stop Fre 41000000 GH
Res BW	Center 2.441000000 GHz Res BW 8 MHz #VBW 50 MHz MKRI MODEL TRCI SCLI X Y					FUN	CTION			ер 10 width	0.00 ms	Span 0 (1001 p	Hz (ts)	<u>Auto</u>	CF Ste 8.000000 MH Ma				
1 Ν 2 Δ1 3 Δ1 4 5	1 t 1 t 1 t	(Δ) (Δ)			3.730 2.900 3.750	0 ms	(Δ)	-52	1 dBm 76 dB .00 dB										Freq Offse 0 H
7 8 9 10 11																		Log	Scale Typ <u>Li</u>
•																	•		
MSG														STATUS					

Figure 9-4 Bluetooth Transmission Plot

Equation 9-1 Bluetooth Duty Cycle Calculation

Power Measurement Setup

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:		Dawa 40 of 70			
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19		Page 43 of 79				
© 201	© 2019 PCTEST Engineering Laboratory, Inc.							

REV 21.3 M 02/15/2019

10 SYSTEM VERIFICATION

10.1 Tissue Verification

Table 10-1 Measured Tissue Properties											
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	% dev ε		
			700	0.873	41.820	0.889	42.201	-1.80%	-0.90%		
			710	0.877	41.787	0.890	42.149	-1.46%	-0.86%		
4/8/2010	75011	21.0	740	0.887	41.683	0.893	41.994	-0.67%	-0.74%		
4/8/2019	750H	21.9	755	0.892	41.632	0.894	41.916	-0.22%	-0.68%		
			785	0.903	41.544	0.896	41.760	0.78%	-0.52%		
			800	0.909	41.509	0.897	41.682	1.34%	-0.42%		
			820	0.901	42.635	0.899	41.578	0.22%	2.54%		
4/1/2019	835H	21.3	835	0.916	42.450	0.900	41.500	1.78%	2.29%		
			850	0.931	42.268	0.916	41.500	1.64%	1.85%		
			820	0.875	40.041	0.899	41.578	-2.67%	-3.70%		
4/4/2019	835H	23.4	835	0.890	39.846	0.900	41.500	-1.11%	-3.99%		
			850	0.904	39.653	0.916	41.500	-1.31%	-4.45%		
			1710	1.325	38.729	1.348	40.142	-1.71%	-3.52%		
4/10/2019	1750H	22.7	1750	1.350	38.660	1.371	40.079	-1.53%	-3.54%		
			1790	1.373	38.604	1.394	40.016	-1.51%	-3.53%		
			1850	1.401	40.131	1.400	40.000	0.07%	0.33%		
4/8/2019	1900H	21.5	1880	1.432	40.000	1.400	40.000	2.29%	0.00%		
		100011	_	1910	1.463	39.889	1.400	40.000	4.50%	-0.28%	
			1850	1.391	41.205	1.400	40.000	-0.64%	3.01%		
4/10/2019	1900H	22.1	1880	1.423	41.106	1.400	40.000	1.64%	2.77%		
			1910	1.457	41.010	1.400	40.000	4.07%	2.52%		
			2300	1.692	38.060	1.670	39.500	1.32%	-3.65%		
4/3/2019	2450H	21.6	2310	1.699	38.042	1.679	39.480	1.19%	-3.64%		
			2400	1.778	37.609	1.756	39.289	1.25%	-4.28%		
4/9/2019	2450H		2450	1.814	37.503	1.800	39.200	0.78%	-4.33%		
11012010		21.0	2500	1.853	37.445	1.855	39.136	-0.11%	-4.32%		
			5240	4.588	35.628	4.696	35.940	-2.30%	-0.87%		
			5260	4.609	35.567	4.717	35.917	-2.29%	-0.97%		
			5280	4.631	35.545	4.737	35.894	-2.23%	-0.97%		
			5300	4.653	35.521	4.758	35.871	-2.21%	-0.98%		
			5320	4.677	35.488	4.778	35.849	-2.11%	-1.01%		
			5500	4.878	35.167	4.963	35.643	-1.71%	-1.34%		
			5520	4.900	35.137	4.983	35.620	-1.67%	-1.36%		
			5540	4.900	35.093	5.004	35.597	-1.54%	-1.42%		
			5560	4.927	35.056	5.024	35.574	-1.45%	-1.46%		
			5580	4.974	35.028	5.045	35.551	-1.41%	-1.47%		
			5600	4.974	34.982	5.065	35.529	-1.40%	-1.54%		
04/08/2019	5200H-5800H	20.5	5620	5.020	34.950	5.086	35.506	-1.30%			
									-1.57%		
			5640	5.046	34.916	5.106	35.483	-1.18%	-1.60%		
			5660	5.070	34.881	5.127	35.460	-1.11%	-1.63%		
			5680	5.089	34.850	5.147	35.437	-1.13%	-1.66%		
			5700	5.111	34.819	5.168	35.414	-1.10%	-1.68%		
			5745	5.166	34.723	5.214	35.363	-0.92%	-1.81%		
			5765	5.188	34.694	5.234	35.340	-0.88%	-1.83%		
			5785	5.212	34.665	5.255	35.317	-0.82%	-1.85%		
			5800	5.225	34.635	5.270	35.300	-0.85%	-1.88%		
			5805	5.229	34.626	5.275	35.294	-0.87%	-1.89%		
			5825	5.251	34.578	5.296	35.271	-0.85%	-1.96%		

Table 10-1

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:		Page 44 of 79			
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	1/19 Portable Handset					
201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M			

© 2019 PCTEST Engineering Laboratory, Inc.

Calibrated for ests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev
			700	0.939	53.976	0.959	55.726	-2.09%	-3.14%
			710	0.943	53.959	0.960	55.687	-1.77%	-3.10%
4/3/2019	750B	22.3	740	0.955	53.876	0.963	55.570	-0.83%	-3.05%
4/3/2019	7506	22.3	755	0.960	53.828	0.964	55.512	-0.41%	-3.03%
			785	0.971	53.767	0.966	55.395	0.52%	-2.94%
			800	0.977	53.748	0.967	55.336	1.03%	-2.87%
			820	0.963	54.370	0.969	55.258	-0.62%	-1.61%
4/5/2019	835B	21.8	835	0.980	54.237	0.970	55.200	1.03%	-1.74%
			850	0.997	54.069	0.988	55.154	0.91%	-1.97%
			820	0.982	54.505	0.969	55.258	1.34%	-1.36%
4/16/2019	835B	22.6	835	0.988	54.474	0.970	55.200	1.86%	-1.32%
			850	0.994	54.443	0.988	55.154	0.61%	-1.299
			1710	1.492	51,205	1,463	53.537	1.98%	-4.369
4/5/2019	1750B	21.0	1750	1.539	51.042	1.488	53,432	3.43%	-4.479
			1790	1.583	50.872	1.514	53.326	4.56%	-4.609
			1710	1.438	51.262	1.463	53.537	-1.71%	-4.259
4/8/2019	1750B	20.5	1750	1.483	51.102	1.488	53.432	-0.34%	-4.369
			1790	1.526	50.939	1.514	53.326	0.79%	-4.489
			1710	1.451	51.678	1.463	53.537	-0.82%	-3.479
4/11/2019	1750B	21.5	1750	1.495	51.531	1.488	53.432	0.47%	-3.569
4/11/2013	17508	21.5	1790	1.536	51.374	1.514	53.326	1.45%	-3.669
			1790	1.530	51.374	1.514	53.320	-0.53%	-3.007
4/3/2019	1900B	23.0	1880	1.512	52.296	1.520	53.300	-0.53%	-1.007
4/3/2018	1900D	23.0							
	L		1910 1850	1.580	52.108 52.630	1.520	53.300 53.300	3.95%	-2.249
4/25/2019	10000	22.0		1.520				0.00%	
4/25/2019	1900B	23.6	1880	1.553	52.550	1.520	53.300	2.17%	-1.419
			1910	1.585	52.474	1.520	53.300	4.28%	-1.55%
			1850	1.526	52.535	1.520	53.300	0.39%	-1.449
5/1/2019	1900B	22.5	1880	1.557	52.423	1.520	53.300	2.43%	-1.659
			1910	1.590	52.330	1.520	53.300	4.61%	-1.829
			2300	1.858	52.457	1.809	52.900	2.71%	-0.849
			2310	1.870	52.431	1.816	52.887	2.97%	-0.869
4/11/2019	2450B	22.1	2400	1.975	52.168	1.902	52.767	3.84%	-1.149
			2450	2.033	52.027	1.950	52.700	4.26%	-1.28%
			2500	2.089	51.881	2.021	52.636	3.36%	-1.43%
			5240	5.430	47.278	5.346	48.960	1.57%	-3.44%
			5260	5.460	47.244	5.369	48.933	1.69%	-3.45%
			5280	5.486	47.209	5.393	48.906	1.72%	-3.479
			5300	5.508	47.154	5.416	48.879	1.70%	-3.539
			5320	5.540	47.129	5.439	48.851	1.86%	-3.539
			5500	5.795	46.779	5.650	48.607	2.57%	-3.769
			5520	5.827	46.728	5.673	48.580	2.71%	-3.819
			5540	5.860	46.680	5.696	48.553	2.88%	-3.869
			5560	5.894	46.635	5.720	48.526	3.04%	-3.909
04/05/2019	5200B-5800B	21.3	5580	5.925	46.620	5.743	48,499	3.17%	-3.879
			5600	5.948	46.593	5.766	48.471	3.16%	-3.879
			5620	5.977	46.523	5.790	48.444	3.23%	-3.979
			5640	6.009	46.483	5.813	48.417	3.37%	-3.999
			5660	6.040	46.434	5.837	48.390	3.48%	-4.049
			5680	6.077	46.415	5.860	48.363	3.70%	-4.039
			5700	6.106	46.396	5.883	48.336	3.79%	-4.01
			5700	6.100	46.390	5.936	48.275	3.89%	-4.017
				6.205	46.252	5.959	48.248	4.13%	-4.149
			5765	6.205	46.252	5.982	48.220	4.13%	-4.147
			5785 5180	5.277	40.210	5.962	48.220	4.23%	-4.157
			5180	5.277	47.494	5.276	49.041	0.02%	-3.15%
			5220	5.337	47.394	5.323	48.987	0.26%	-3.259
			5240	5.369	47.350	5.346	48.960	0.43%	-3.299
			5260	5.390	47.306	5.369	48.933	0.39%	-3.329
			5280	5.418	47.296	5.393	48.906	0.46%	-3.299
			5300	5.448	47.266	5.416	48.879	0.59%	-3.309
			5320	5.475	47.222	5.439	48.851	0.66%	-3.339
	1		5500	5.720	46.889	5.650	48.607	1.24%	-3.539
			5520	5.750	46.841	5.673	48.580	1.36%	-3.589
					46,783	5.696	48.553	1.70%	-3.65%
			5540	5.793					
			5540 5560	5.793 5.822	46.735	5.720	48.526	1.78%	-3.69%
04/14/2019	5200B-5800B	22.0							
04/14/2019	5200B-5800B	22.0	5560	5.822	46.735	5.720	48.526	1.78%	-3.699 -3.659 -3.669
04/14/2019	5200B-5800B	22.0	5560 5580	5.822 5.852	46.735 46.731	5.720 5.743	48.526 48.499	1.78% 1.90%	-3.65%
04/14/2019	5200B-5800B	22.0	5560 5580 5600	5.822 5.852 5.876	46.735 46.731 46.696	5.720 5.743 5.766	48.526 48.499 48.471	1.78% 1.90% 1.91%	-3.659 -3.669
04/14/2019	5200B-5800B	22.0	5560 5580 5600 5620 5640	5.822 5.852 5.876 5.897 5.933	46.735 46.731 46.696 46.645 46.589	5.720 5.743 5.766 5.790 5.813	48.526 48.499 48.471 48.444 48.417	1.78% 1.90% 1.91% 1.85% 2.06%	-3.659 -3.669 -3.719 -3.789
04/14/2019	5200B-5800B	22.0	5560 5580 5600 5620 5640 5660	5.822 5.852 5.876 5.897 5.933 5.974	46.735 46.731 46.696 46.645 46.589 46.538	5.720 5.743 5.766 5.790 5.813 5.837	48.526 48.499 48.471 48.444 48.417 48.390	1.78% 1.90% 1.91% 1.85% 2.06% 2.35%	-3.659 -3.669 -3.719 -3.789 -3.839
04/14/2019	5200B-5800B	22.0	5560 5580 5600 5620 5640 5660 5680	5.822 5.852 5.876 5.897 5.933 5.974 6.003	46.735 46.731 46.696 46.645 46.589 46.538 46.517	5.720 5.743 5.766 5.790 5.813 5.837 5.860	48.526 48.499 48.471 48.444 48.417 48.390 48.363	1.78% 1.90% 1.91% 1.85% 2.06% 2.35% 2.44%	-3.659 -3.669 -3.719 -3.789 -3.839 -3.829
04/14/2019	5200B-5800B	22.0	5560 5580 5600 5620 5640 5660 5680 5680 5700	5.822 5.852 5.876 5.933 5.974 6.003 6.029	46.735 46.731 46.696 46.645 46.589 46.538 46.517 46.514	5.720 5.743 5.766 5.790 5.813 5.837 5.860 5.883	48.526 48.499 48.471 48.444 48.417 48.390 48.363 48.336	1.78% 1.90% 1.91% 2.06% 2.35% 2.44% 2.48%	-3.659 -3.669 -3.719 -3.789 -3.839 -3.829 -3.779
04/14/2019	5200B-5800B	22.0	5560 5580 5600 5620 5640 5660 5680 5680 5700 5745	5.822 5.852 5.876 5.933 5.974 6.003 6.029 6.097	46.735 46.731 46.696 46.645 46.589 46.538 46.517 46.514 46.410	5.720 5.743 5.766 5.790 5.813 5.837 5.880 5.880 5.883 5.936	48.526 48.499 48.471 48.444 48.417 48.390 48.363 48.336 48.275	1.78% 1.90% 1.91% 1.85% 2.06% 2.35% 2.44% 2.48% 2.71%	-3.659 -3.669 -3.719 -3.789 -3.839 -3.829 -3.779 -3.869
04/14/2019	5200B-5800B	22.0	5560 5580 5600 5620 5640 5660 5680 5700 5745 5765	5.822 5.852 5.876 5.933 5.974 6.003 6.029 6.097 6.123	46.735 46.731 46.696 46.645 46.589 46.538 46.517 46.514 46.514 46.410 46.351	5.720 5.743 5.766 5.790 5.813 5.837 5.860 5.883 5.936 5.959	48.526 48.499 48.471 48.444 48.417 48.363 48.363 48.363 48.275 48.248	1.78% 1.90% 1.91% 1.85% 2.06% 2.35% 2.44% 2.44% 2.71% 2.75%	-3.659 -3.669 -3.719 -3.789 -3.839 -3.829 -3.829 -3.779 -3.869 -3.939
04/14/2019	5200B-5800B	22.0	5560 5580 5600 5620 5640 5660 5680 5700 5745 5765 5785	5.822 5.852 5.876 5.897 5.933 5.974 6.003 6.029 6.097 6.123 6.159	46.735 46.731 46.696 46.645 46.589 46.538 46.517 46.514 46.410 46.351 46.306	5.720 5.743 5.766 5.790 5.813 5.837 5.883 5.883 5.936 5.936 5.959 5.982	48.526 48.499 48.471 48.444 48.417 48.390 48.363 48.336 48.275 48.248 48.220	1.78% 1.90% 1.91% 1.85% 2.06% 2.35% 2.44% 2.48% 2.71% 2.75% 2.96%	-3.659 -3.669 -3.719 -3.789 -3.839 -3.829 -3.829 -3.779 -3.869 -3.939 -3.939 -3.979
04/14/2019	5200B-5800B	22.0	5560 5580 5600 5620 5640 5660 5680 5700 5745 5765	5.822 5.852 5.876 5.933 5.974 6.003 6.029 6.097 6.123	46.735 46.731 46.696 46.645 46.589 46.538 46.517 46.514 46.514 46.410 46.351	5.720 5.743 5.766 5.790 5.813 5.837 5.860 5.883 5.936 5.959	48.526 48.499 48.471 48.444 48.417 48.363 48.363 48.363 48.275 48.248	1.78% 1.90% 1.91% 1.85% 2.06% 2.35% 2.44% 2.44% 2.71% 2.75%	-3.659 -3.669 -3.719 -3.789 -3.839 -3.829 -3.829 -3.779 -3.869 -3.939

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 45 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.		÷		REV 21.3 M

REV 21.3 M 02/15/2019

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

				Sy	stem Ve	rificati	on Re	suits -	– 1g			
						System Ve RGET & N		-				
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR1g (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR ₁₉ (W/kg)	Deviation _{1g} (%)
E	750	HEAD	04/08/2019	23.3	21.9	0.200	1003	3589	1.610	8.280	8.050	-2.78%
D	835	HEAD	04/01/2019	22.4	21.3	0.200	4d133	7357	1.920	9.430	9.600	1.80%
D	835	HEAD	04/04/2019	22.7	23.4	0.200	4d133	7357	1.940	9.430	9.700	2.86%
L	1750	HEAD	04/10/2019	23.0	22.7	0.100	1150	7308	3.590	36.500	35.900	-1.64%
D	1900	HEAD	04/08/2019	22.3	21.5	0.100	5d149	7357	4.070	39.300	40.700	3.56%
D	1900	HEAD	04/10/2019	23.7	22.1	0.100	5d080	7357	4.290	39.800	42.900	7.79%
E	2300	HEAD	04/03/2019	24.0	21.6	0.100	1064	3589	4.770	47.600	47.700	0.21%
E	2450	HEAD	04/09/2019	23.5	21.9	0.100	981	3589	5.250	52.300	52.500	0.38%
н	5250	HEAD	04/08/2019	20.9	20.5	0.050	1057	7409	3.730	79.200	74.600	-5.81%
Н	5600	HEAD	04/08/2019	20.9	20.5	0.050	1057	7409	4.050	84.100	81.000	-3.69%
Н	5750	HEAD	04/08/2019	20.9	20.5	0.050	1057	7409	3.760	80.500	75.200	-6.58%
L	750	BODY	04/03/2019	21.7	22.3	0.200	1161	7308	1.590	8.430	7.950	-5.69%
D	835	BODY	04/05/2019	22.0	21.8	0.200	4d133	7357	2.080	9.750	10.400	6.67%
J	835	BODY	04/16/2019	24.2	22.6	0.200	4d132	7488	1.880	9.670	9.400	-2.79%
J	1750	BODY	04/05/2019	22.3	19.7	0.100	1148	7488	3.590	37.000	35.900	-2.97%
J	1750	BODY	04/08/2019	20.4	19.8	0.100	1148	7488	3.510	37.000	35.100	-5.14%
J	1750	BODY	04/11/2019	22.5	21.5	0.100	1008	7488	3.600	37.400	36.000	-3.74%
G	1900	BODY	04/03/2019	22.2	22.5	0.100	5d080	7410	4.210	39.200	42.100	7.40%
G	1900	BODY	04/25/2019	23.4	22.7	0.100	5d149	7410	4.250	39.400	42.500	7.87%
G	1900	BODY	05/01/2019	23.2	21.7	0.100	5d149	7410	4.210	39.400	42.100	6.85%
к	2300	BODY	04/11/2019	23.5	22.1	0.100	1073	7417	5.070	47.700	50.700	6.29%
к	2450	BODY	04/11/2019	23.5	22.1	0.100	719	7417	5.210	50.100	52.100	3.99%
L	5250	BODY	04/05/2019	23.4	21.5	0.050	1191	7308	3.840	77.000	76.800	-0.26%
L	5600	BODY	04/05/2019	23.4	21.5	0.050	1191	7308	4.030	79.200	80.600	1.77%
L	5750	BODY	04/05/2019	23.4	21.5	0.050	1191	7308	3.660	76.100	73.200	-3.81%
L	5250	BODY	04/14/2019	22.0	21.5	0.050	1057	7308	3.560	75.900	71.200	-6.19%
L	5600	BODY	04/14/2019	22.0	21.5	0.050	1057	7308	4.020	79.900	80.400	0.63%
L	5750	BODY	04/14/2019	22.0	21.5	0.050	1057	7308	3.540	76.700	70.800	-7.69%
				L			1		I	L		

Table 10-2
System Verification Results – 1g

FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dame 46 of 70
1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 46 of 79
2019 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

© 2019 PCTEST Engineering Laboratory, Inc.

	System Verification Results – 10g												
	System Verification TARGET & MEASURED												
SAR System #	Tissue Frequency (MHz)	requency Tissue Date Amb. Liquid Power Source Probe Measured 1 W larget 1 W Normalized Deviation _{10g} (%)											
к	2300	BODY	04/11/2019	23.5	22.1	0.100	1073	7417	2.400	23.200	24.000	3.45%	
L 5250 BODY 04/05/2019 23.4 21.5 0.050 1191 7308 1.070									21.600	21.400	-0.93%		
L	5600	BODY	04/05/2019	23.4	21.5	0.050	1191	7308	1.110	22.200	22.200	0.00%	

Table 10-3 Svetom Vo rification Results – 10a

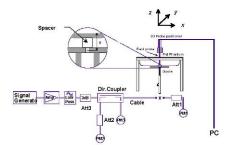


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 47 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

02/15/2019

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 GSM 850 Head SAR

						MEAS	SUREMENT RESULTS								
FREQU	ENCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side Test		Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots		(W/kg)	J	(W/kg)	
836.60	190	GSM 850	GSM	33.2	32.92	0.14	Right	Cheek	03083	1	1:8.3	0.111	1.067	0.118	
836.60	190	GSM 850	GSM	33.2	32.92	-0.04	Right	Tilt	03083	1	1:8.3	0.065	1.067	0.069	
836.60	190	GSM 850	GSM	33.2	32.92	0.13	Left	Cheek	03083	1	1:8.3	0.106	1.067	0.113	
836.60	190	GSM 850	GSM	33.2	32.92	0.14	Left	Tilt	03083	1	1:8.3	0.071	1.067	0.076	
836.60	190	GSM 850	GPRS	32.2	31.83	-0.01	Right	Cheek	03083	2	1:4.15	0.137	1.089	0.149	A1
836.60	190	GSM 850	GPRS	32.2	31.83	0.10	Right	Tilt	03083	2	1:4.15	0.070	1.089	0.076	
836.60	190	GSM 850	GPRS	32.2	31.83	0.07	Left	Cheek	03083	2	1:4.15	0.125	1.089	0.136	
836.60	190	GSM 850	GPRS	32.2	31.83	0.06	Left	Tilt	03083	2	1:4.15	0.085	1.089	0.093	
		ANSI / IEE		Head											
	Spatial Peak Uncontrolled Exposure/General Population										1.6 W/kg averaged ov				

Table 11-2 GSM 1900 Head SAR

						MEAS	UREMENT RESULTS								
FREQUE	INCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots		(W/kg)		(W/kg)	
1880.00	661	GSM 1900	GSM	30.7	30.42	-0.04	Right	Cheek	03083	1	1:8.3	0.071	1.067	0.076	
1880.00	661	GSM 1900	GSM	30.7	30.42	-0.20	Right	Tilt	03083	1	1:8.3	0.061	1.067	0.065	
1880.00	661	GSM 1900	GSM	30.7	30.42	0.02	Left	Cheek	03083	1	1:8.3	0.064	1.067	0.068	
1880.00	661	GSM 1900	GSM	30.7	30.42	0.13	Left	Tilt	03083	1	1:8.3	0.041	1.067	0.044	
1880.00	661	GSM 1900	GPRS	29.2	28.86	-0.01	Right	Cheek	03083	2	1:4.15	0.077	1.081	0.083	
1880.00	661	GSM 1900	GPRS	29.2	28.86	-0.20	Right	Tilt	03083	2	1:4.15	0.082	1.081	0.089	A2
1880.00	661	GSM 1900	GPRS	29.2	28.86	0.18	Left	Cheek	03083	2	1:4.15	0.076	1.081	0.082	
1880.00	661	GSM 1900	GPRS	29.2	28.86	0.18	Left	Tilt	03083	2	1:4.15	0.048	1.081	0.052	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head 1.6 W/kg (mW/g) averaged over 1 gram							

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 40 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 48 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.		·		REV 21.3 M

Table 11-3 UMTS 850 Head SAR

	MEASUREMENT RESULTS													
					IM	EASURE		SULIS						
FREQUE	INCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)	J. J	(W/kg)	
836.60	4183	UMTS 850	RMC	25.5	25.30	0.07	Right	Cheek	03083	1:1	0.065	1.047	0.068	A3
836.60	836.60 4183 UMTS 850 RMC 25.5 25.30 0.11						Right	Tilt	03083	1:1	0.063	1.047	0.066	
836.60	836.60 4183 UMTS 850 RMC 25.5 25.30 0.					0.12	Left	Cheek	03083	1:1	0.059	1.047	0.062	
836.60	6.60 4183 UMTS 850 RMC 25.5 25.30 0.1						Left	Tilt	03083	1:1	0.037	1.047	0.039	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Head			
				1.6 W/kg (mW/g)										
	Uncontrolled Exposure/General Population									averaç	jed over 1 gran	n		

Table 11-4 UMTS 1750 Head SAR

					М	EASURE	EMENT RESULTS							
FREQUE	INCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
1732.40	1412	UMTS 1750	0.02	Right	Cheek	03083	1:1	0.137	1.038	0.142	A4			
1732.40	1732.40 1412 UMTS 1750 RMC 24.0 23.84 0.0						Right	Tilt	03083	1:1	0.117	1.038	0.121	
1732.40	1412	UMTS 1750	RMC	24.0	23.84	0.10	Left	Cheek	03083	1:1	0.136	1.038	0.141	
1732.40	2.40 1412 UMTS 1750 RMC 24.0 23.84 0.0						Left	Tilt	03083	1:1	0.054	1.038	0.056	
		ANSI / IEI						Head						
	Spatial Peak						1.6 W/kg (mW/g)							
		Uncontrolle	d Exposure/Ge					averag	jed over 1 gran	n				

Table 11-5 UMTS 1900 Head SAR

					М	EASURE	MENT RE	ESULTS						
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	wode/Band	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	Duty Cycle	(W/kg)	Scaling Factor	(W/kg)	FIOL #
1880.00	9400	UMTS 1900	RMC	24.0	23.70	-0.19	Right	Cheek	03083	1:1	0.124	1.072	0.133	A5
1880.00	9400	UMTS 1900	RMC	24.0	23.70	0.13	Right	Tilt	03083	1:1	0.101	1.072	0.108	
1880.00	9400	UMTS 1900	RMC	24.0	23.70	0.14	Left	Cheek	03083	1:1	0.123	1.072	0.132	
1880.00	9400	UMTS 1900	RMC	24.0	23.70	0.11	Left	Tilt	03083	1:1	0.061	1.072	0.065	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	т						Head			
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averaç	ged over 1 gran	ı		

F	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
C	Document S/N:	Test Dates:	DUT Type:		D 40 (70
1	M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 49 of 79
© 2019	PCTEST Engineering Laboratory, Inc.				REV 21.3 M

Construction of the first of the first

Table 11-6 LTE Band 12 Head SAR

								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	ı.		[MHZ]	Power [dBm]	Power[dBm]	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.44	-0.05	0	Right	Cheek	QPSK	1	0	03109	1:1	0.158	1.014	0.160	
707.50	23095	Mid	LTE Band 12	10	24.5	24.04	-0.11	1	Right	Cheek	QPSK	25	0	03109	1:1	0.116	1.112	0.129	
707.50	23095	Mid	LTE Band 12	10	25.5	25.44	0.06	0	Right	Tilt	QPSK	1	0	03109	1:1	0.089	1.014	0.090	
707.50	23095	Mid	LTE Band 12	10	24.5	24.04	-0.03	1	Right	Tilt	QPSK	25	0	03109	1:1	0.068	1.112	0.076	
707.50	23095	Mid	LTE Band 12	10	25.5	25.44	0.03	0	Left	Cheek	QPSK	1	0	03109	1:1	0.176	1.014	0.178	A6
707.50	23095	Mid	LTE Band 12	10	24.5	24.04	-0.02	1	Left	Cheek	QPSK	25	0	03109	1:1	0.129	1.112	0.143	
707.50	23095	Mid	LTE Band 12	10	25.5	25.44	0.04	0	Left	Tilt	QPSK	1	0	03109	1:1	0.107	1.014	0.108	
707.50	23095	Mid	LTE Band 12	10	24.5	24.04	0.07	1	Left	Tilt	QPSK	25	0	03109	1:1	0.079	1.112	0.088	
					SAFETY LIMI	т								Head					
			Uncontrolled E	Spatial Pea xposure/Ge		tion								1.6 W/kg (m eraged over	•,				

Table 11-7 LTE Band 14 Head SAR

								MEA	SUREM	ENT RES	ULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RBOffset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
793.00	23330	Mid	LTE Band 14	10	25.5	25.50	-0.05	0	Right	Cheek	QPSK	1	0	03109	1:1	0.218	1.000	0.218	A7
793.00	23330	Mid	LTE Band 14	10	24.5	23.96	-0.05	1	Right	Cheek	QPSK	25	0	03109	1:1	0.164	1.132	0.186	
793.00	23330	Mid	LTE Band 14	10	25.5	25.50	-0.01	0	Right	Tilt	QPSK	1	0	03109	1:1	0.118	1.000	0.118	
793.00	23330	Mid	LTE Band 14	10	24.5	23.96	0.01	1	Right	Tilt	QPSK	25	0	03109	1:1	0.085	1.132	0.096	
793.00	23330	Mid	LTE Band 14	10	25.5	25.50	0.06	0	Left	Cheek	QPSK	1	0	03109	1:1	0.204	1.000	0.204	
793.00	23330	Mid	LTE Band 14	10	24.5	23.96	0.04	1	Left	Cheek	QPSK	25	0	03109	1:1	0.148	1.132	0.168	
793.00	23330	Mid	LTE Band 14	10	25.5	25.50	0.18	0	Left	Tilt	QPSK	1	0	03109	1:1	0.131	1.000	0.131	
793.00	23330	Mid	LTE Band 14	10	24.5	23.96	0.12	1	Left	Tilt	QPSK	25	0	03109	1:1	0.093	1.132	0.105	
					SAFETY LIMI	т								Head					
			Uncontrolled E	Spatial Pea xposure/Ge		tion				-				1.6 W/kg (m eraged over				-	

Table 11-8 LTE Band 5 (Cell) Head SAR

								MEA	SUREM	ENT RES	ULTS								
F	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift (aB)			Position				Number	Cycle	(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.50	0.07	0	Right	Cheek	QPSK	1	49	03109	1:1	0.162	1.000	0.162	A8
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.07	0.03	1	Right	Cheek	QPSK	25	25	03109	1:1	0.146	1.104	0.161	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.50	0.03	0	Right	Tilt	QPSK	1	49	03109	1:1	0.116	1.000	0.116	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.07	0.04	1 Right Tilt QPSK 25 25 03109 1:1 0.100 1.104 0.110											
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.50	0.11	0	Left	Cheek	QPSK	1	49	03109	1:1	0.132	1.000	0.132	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.07	0.08	1	Left	Cheek	QPSK	25	25	03109	1:1	0.120	1.104	0.132	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.50	0.04	0	Left	Tilt	QPSK	1	49	03109	1:1	0.128	1.000	0.128	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.07	0.04	1	Left	Tilt	QPSK	25	25	03109	1:1	0.110	1.104	0.121	
	<u> </u>			Spatial Pea				-						Head 1.6 W/kg (m veraged over	1W/g)				

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 50 (70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 50 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

REV 21.3 M 02/15/2019

Table 11-9 LTE Band 66 (AWS) Head SAR

								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	-	(W/kg)	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.0	24.00	0.21	0	Right	Cheek	QPSK	1	99	03109	1:1	0.144	1.000	0.144	A9
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.0	22.98	0.18	1	Right	Cheek	QPSK	50	25	03109	1:1	0.102	1.005	0.103	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.0	24.00	0.10	0	Right	Tilt	QPSK	1	99	03109	1:1	0.089	1.000	0.089	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.0	22.98	0.07	1	Right	Tilt	QPSK	50	25	03109	1:1	0.066	1.005	0.066	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.0	24.00	-0.13	0	Left	Cheek	QPSK	1	99	03109	1:1	0.123	1.000	0.123	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.0	22.98	0.06	1	Left	Cheek	QPSK	50	25	03109	1:1	0.102	1.005	0.103	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.0	24.00	-0.17	0	Left	Tilt	QPSK	1	99	03109	1:1	0.067	1.000	0.067	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.0	22.98	0.08	1	Left	Tilt	QPSK	50	25	03109	1:1	0.044	1.005	0.044	
					SAFETY LIMI	т								Head					
			Uncontrolled E	Spatial Pea xposure/Ge		tion								1.6 W/kg (m eraged over					

Table 11-10 LTE Band 2 (PCS) Head SAR

								r	IEASUF	REMENT	RESULTS								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	h.		[WH2]	Power [dBm]	Power [dbin]	Drift [UB]			Position				Number	Cycle	(W/kg)		(W/kg)	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	24.00	0.14	0	Right	Cheek	QPSK	1	50	03109	1:1	0.129	1.000	0.129	A10
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.90	0.14	1	Right	Cheek	QPSK	50	25	03109	1:1	0.115	1.023	0.118	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	24.00	0.07	0	Right	Tilt	QPSK	1	50	03109	1:1	0.090	1.000	0.090	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.90	0.00	1	Right	Tilt	QPSK	50	25	03109	1:1	0.083	1.023	0.085	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	24.00	-0.07	0	Left	Cheek	QPSK	1	50	03109	1:1	0.113	1.000	0.113	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.90	0.20	1	Left	Cheek	QPSK	50	25	03109	1:1	0.103	1.023	0.105	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	24.00	0.14	0	Left	Tilt	QPSK	1	50	03109	1:1	0.073	1.000	0.073	
1900.00	1900.00 19100 High LTE Band 2 (PCS) 20 23.0 22.90 -0.12									Tilt	QPSK	50	25	03109	1:1	0.065	1.023	0.066	
			ANSI / IEEE Uncontrolled I	Spatial Peak		on								Head W/kg (mW/g) ged over 1 gram					

Table 11-11 LTE Band 30 Head SAR

								N	NEASUF	REMENT	RESULTS								
FR	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	t Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift (aBj			Position				Number	Cycle	(W/kg)	-	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.03	0	Right	Cheek	QPSK	1	49	03109	1:1	0.077	1.062	0.082	A11
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.18	1	Right	Cheek	QPSK	25	0	03109	1:1	0.065	1.084	0.070	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.17	0	Right	Tilt	QPSK	1	49	03109	1:1	0.049	1.062	0.052	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.13	1	Right	Tilt	QPSK	25	0	03109	1:1	0.041	1.084	0.044	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.04	0	Left	Cheek	QPSK	1	49	03109	1:1	0.070	1.062	0.074	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.20	1	Left	Cheek	QPSK	25	0	03109	1:1	0.068	1.084	0.074	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.21	0	Left	Tilt	QPSK	1	49	03109	1:1	0.059	1.062	0.063	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.19	1	Left	Tilt	QPSK	25	0	03109	1:1	0.046	1.084	0.050	
			ANSI / IEEE	C95.1 1992 - S									4.6	Head					
			Uncontrolled	Spatial Peak Exposure/Gen		on								W/kg (mW/g) ged over 1 gram					

FCC ID	: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Docum	ent S/N:	Test Dates:	DUT Type:		D 54 (70
1M1903	280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 51 of 79
© 2019 PCTES	T Engineering Laboratory, Inc.				REV 21.3 M

REV 21.3 M 02/15/2019

Table 11-12 DTS Head SAR

						1	MEASU	REMENT	RESULT	s							
NCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial			Peak SAR of Area Scan	SAR (1g)			Reported SAR (1g)	Plot #
Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
1	802.11b	DSSS	22	19.0	18.38	0.08	Right	Cheek	03117	1	99.9	0.919	0.539	1.153	1.001	0.622	
6	802.11b	DSSS	22	19.0	18.38	0.12	Right	Cheek	03117	1	99.9	0.947	0.659	1.153	1.001	0.761	A12
11	802.11b	DSSS	22	19.0	18.32	0.18	Right	Cheek	03117	1	99.9	0.928	0.630	1.169	1.001	0.737	
6	802.11b	DSSS	22	19.0	18.38	0.19	Right	Tilt	03117	1	99.9	0.771	0.575	1.153	1.001	0.664	
6	802.11b	DSSS	22	19.0	18.38	-0.16	Left	Cheek	03117	1	99.9	0.281	-	1.153	1.001	-	
6	802.11b	DSSS	22	19.0	18.38	0.01	Left	Tilt	03117	1	99.9	0.335		1.153	1.001	-	
	ANSI	IEEE C95.1							Hea	ıd							
		Spati	al Peak									1.6 W/kg	(mW/g)				
	Uncontro	olled Exposu	re/General	Population								averaged ov	er 1 gram				
	Ch . 1 11 6 6	Mode Ch. 802.11b 1 802.11b 6 802.11b 11 802.11b 6 802.11b 6 802.11b 6 802.11b 6 802.11b 6 802.11b ANSI ANSI	Mode Service Ch.	Mode Service Bendwidth [MHz] 1 802.11b DSSS 22 6 802.11b DSSS 22 11 802.11b DSSS 22 11 802.11b DSSS 22 6 802.11b DSSS 22 ANSI / IEEE C95.1 1992 - SAFE Spatial Peak	Mode Service Bandwich [MHz] Allowed power [dBm] 1 802.11b DSSS 22 19.0 6 802.11b DSSS 22 19.0 11 802.11b DSSS 22 19.0 6 802.11b DSSS 22 19.0 7 BSS 22 19.0 19.0 7 BSS 22 19.0 19.0	Mode Service Bandwidth [MHz] Allowed Power (dBm) Conducted Power (dBm) 1 802.11b DSSS 22 19.0 18.38 6 802.11b DSSS 22 19.0 18.38 11 802.11b DSSS 22 19.0 18.38 6 802.11b DSSS 22 19.0 18.38 Spatial Peak	KY Ch. Mode Service Bandwidth [MHz] Maximum Allowed Power (dBm) Conducted Power (dBm) Power Power Point (dB) 1 802.11b DSSS 22 19.0 18.38 0.08 6 802.11b DSSS 22 19.0 18.38 0.12 11 802.11b DSSS 22 19.0 18.38 0.19 6 802.11b DSSS 22 19.0 18.38 0.19 6 802.11b DSSS 22 19.0 18.38 0.19 6 802.11b DSSS 22 19.0 18.38 0.16 6 802.11b DSSS 22 19.0 18.38 0.016 6 802.11b DSSS 22 19.0 18.38 0.016 6 802.11b DSSS 22 19.0 18.38 0.016	KY Ch. Mode Service Bandwidth [MHz] Maximum Power[dBm] Conducted Power[dBm] Power Print [dB] Power Print [dB] Side 1 802.11b DSSS 22 19.0 18.38 0.08 Right 6 802.11b DSSS 22 19.0 18.38 0.12 Right 11 802.11b DSSS 22 19.0 18.38 0.12 Right 6 802.11b DSSS 22 19.0 18.38 0.19 Right 6 802.11b DSSS 22 19.0 18.38 0.19 Right 6 802.11b DSSS 22 19.0 18.38 0.16 Left 6 802.11b DSSS 22 19.0 18.38 0.01 Left 6 802.11b DSSS 22 19.0 18.38 0.01 Left ANSI / IEEE C95.1 1992 - SAFETY LIMIT	KY Mode Service Bandwidth (MHz) Maximum Allowed Power (dBm) Conducted Power (dBm) Power Drift (dB) Side Test Position 1 802.11b DSSS 22 19.0 18.38 0.08 Right Cheek 6 802.11b DSSS 22 19.0 18.38 0.12 Right Cheek 11 802.11b DSSS 22 19.0 18.38 0.12 Right Cheek 6 802.11b DSSS 22 19.0 18.38 0.19 Right Cheek 6 802.11b DSSS 22 19.0 18.38 0.19 Right Titt 6 802.11b DSSS 22 19.0 18.38 0.16 Left Cheek 6 802.11b DSSS 22 19.0 18.38 0.016 Left Cheek 6 802.11b DSSS 22 19.0 18.38 0.01 Left Titt	KY Mode Service Bandwidth [MHz] Maximum Allowed Power (dbm] Conducted Power (dbm] Power Prif (dbl) Fest Position Device Serial Number 1 802.11b DSSS 22 19.0 18.38 0.08 Right Cheek 03117 6 802.11b DSSS 22 19.0 18.38 0.12 Right Cheek 03117 11 802.11b DSSS 22 19.0 18.38 0.12 Right Cheek 03117 6 802.11b DSSS 22 19.0 18.38 0.19 Right Cheek 03117 6 802.11b DSSS 22 19.0 18.38 0.19 Right Tit 03117 6 802.11b DSSS 22 19.0 18.38 0.16 Left Cheek 03117 6 802.11b DSSS 22 19.0 18.38 0.01 Left Cheek 03117 6 802.11b	Mode Service Bandwidth [MHz] Allowed Power [dBm] Conducted Power [dBm] Power Power [dBm] Power Power [dBm] Side Test Position Service Service Data Rate (Mbps) 1 802.11b DSSS 22 19.0 18.38 0.08 Right Cheek 0.017 1 6 802.11b DSSS 22 19.0 18.38 0.12 Right Cheek 0.017 1 11 802.11b DSSS 22 19.0 18.32 0.18 Right Cheek 0.0117 1 6 802.11b DSSS 22 19.0 18.38 0.19 Right Titt 0.0117 1 6 802.11b DSSS 22 19.0 18.38 0.16 Left Cheek 0.017 1 6 802.11b DSSS 22 19.0 18.38 0.16 Left Nit 0.0117 1 6 802.11b DSSS 22 19.0	KY Mode Service Bandwidth (MHz) Maximum Allowed power (dBm) Conducted Power (dBm) Power Prift (dB) Side Test Position Date Rest Serial Date Rest (Mbps) Duty Cycle (%) 1 802.11b DSSS 22 19.0 18.38 0.08 Right Cneek 03117 1 99.9 6 802.11b DSSS 22 19.0 18.38 0.12 Right Cneek 03117 1 99.9 11 802.11b DSSS 22 19.0 18.38 0.12 Right Cneek 03117 1 99.9 6 802.11b DSSS 22 19.0 18.38 0.19 Right Tit 03117 1 99.9 6 802.11b DSSS 22 19.0 18.38 0.19 Right Tit 03117 1 99.9 6 802.11b DSSS 22 19.0 18.38 0.016 Left Cneek 03117 1 <td>KY Mode Service Bandwidth Maximum (MHz) Conducted Power (dBm) Power Drift (dB) Jest Mithed Test Power Derice Serial Date Rate (Mbps) Dury cyce (%) Peak SA of Area Scan 1 802.11b DSSS 22 19.0 18.38 0.08 Right Cheek 33117 1 99.9 0.919 6 802.11b DSSS 22 19.0 18.38 0.12 Right Cheek 03117 1 99.9 0.927 11 802.11b DSSS 22 19.0 18.38 0.12 Right Cheek 03117 1 99.9 0.927 6 802.11b DSSS 22 19.0 18.38 0.19 Right Cheek 03117 1 99.9 0.928 6 802.11b DSSS 22 19.0 18.38 0.16 Left Cheek 03117 1 99.9 0.281 6 802.11b DSSS 22 19.0 18.38 0.16 Left Cheek 03117 1 99.9 <td< td=""><td>KY Mode Service Bandwith Maximum (MHz) Conducted Power (BB) Power Drift [dB] Power Power (BB) Test Power Data Rate Power (BB) Duty Cropt (MB) Peak SAR of Area Scan SAR (1) 1 802.11b DSSS 2.2 19.0 18.38 0.08 Right Cheek 03117 1 99.9 0.919 0.539 6 802.11b DSSS 2.2 19.0 18.38 0.12 Right Cheek 03117 1 99.9 0.947 0.659 11 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cheek 03117 1 99.9 0.947 0.659 11 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cheek 03117 1 99.9 0.928 0.630 6 802.11b DSSS 2.2 19.0 18.38 -0.16 Left Cheek 03117 1 99.9 0.281 -1 6 802.11b DSSS 2.2 19.0 18.38 -0</td><td>KY Mode Service Bandwith Maximum (MHz) Conducted Power (BB) Power (HB) Power Power (BB) Test Power Davise Serial Number Davise (MB) Davise (MB) Davise (MB) Pack SAR of Power (MB) SAR (19) Saling Factor (Power) 1 802.11b DSSS 2.2 19.0 18.38 0.08 Right Cneek 0317 1 9.9.9 0.919 0.539 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.12 Right Cneek 03117 1 9.9.9 0.947 0.659 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cneek 03117 1 9.9.9 0.947 0.659 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cneek 03117 1 9.9.9 0.917 0.575 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.01 Left Cneek 03117 1 9.9.9 0.281</td><td>KY Mode Bardwith Maximu Power (BB) Conducted Power (BB) Power Power (BB) Power Power (BB) Power Power (BB) Power Power (BB) Device Power (BB) Data Re Power (BB)</td><td>KY Mode Bandwith Maximu Power (BB) Conducted Power (BB) Power Power <</td></td<></td>	KY Mode Service Bandwidth Maximum (MHz) Conducted Power (dBm) Power Drift (dB) Jest Mithed Test Power Derice Serial Date Rate (Mbps) Dury cyce (%) Peak SA of Area Scan 1 802.11b DSSS 22 19.0 18.38 0.08 Right Cheek 33117 1 99.9 0.919 6 802.11b DSSS 22 19.0 18.38 0.12 Right Cheek 03117 1 99.9 0.927 11 802.11b DSSS 22 19.0 18.38 0.12 Right Cheek 03117 1 99.9 0.927 6 802.11b DSSS 22 19.0 18.38 0.19 Right Cheek 03117 1 99.9 0.928 6 802.11b DSSS 22 19.0 18.38 0.16 Left Cheek 03117 1 99.9 0.281 6 802.11b DSSS 22 19.0 18.38 0.16 Left Cheek 03117 1 99.9 <td< td=""><td>KY Mode Service Bandwith Maximum (MHz) Conducted Power (BB) Power Drift [dB] Power Power (BB) Test Power Data Rate Power (BB) Duty Cropt (MB) Peak SAR of Area Scan SAR (1) 1 802.11b DSSS 2.2 19.0 18.38 0.08 Right Cheek 03117 1 99.9 0.919 0.539 6 802.11b DSSS 2.2 19.0 18.38 0.12 Right Cheek 03117 1 99.9 0.947 0.659 11 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cheek 03117 1 99.9 0.947 0.659 11 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cheek 03117 1 99.9 0.928 0.630 6 802.11b DSSS 2.2 19.0 18.38 -0.16 Left Cheek 03117 1 99.9 0.281 -1 6 802.11b DSSS 2.2 19.0 18.38 -0</td><td>KY Mode Service Bandwith Maximum (MHz) Conducted Power (BB) Power (HB) Power Power (BB) Test Power Davise Serial Number Davise (MB) Davise (MB) Davise (MB) Pack SAR of Power (MB) SAR (19) Saling Factor (Power) 1 802.11b DSSS 2.2 19.0 18.38 0.08 Right Cneek 0317 1 9.9.9 0.919 0.539 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.12 Right Cneek 03117 1 9.9.9 0.947 0.659 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cneek 03117 1 9.9.9 0.947 0.659 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cneek 03117 1 9.9.9 0.917 0.575 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.01 Left Cneek 03117 1 9.9.9 0.281</td><td>KY Mode Bardwith Maximu Power (BB) Conducted Power (BB) Power Power (BB) Power Power (BB) Power Power (BB) Power Power (BB) Device Power (BB) Data Re Power (BB)</td><td>KY Mode Bandwith Maximu Power (BB) Conducted Power (BB) Power Power <</td></td<>	KY Mode Service Bandwith Maximum (MHz) Conducted Power (BB) Power Drift [dB] Power Power (BB) Test Power Data Rate Power (BB) Duty Cropt (MB) Peak SAR of Area Scan SAR (1) 1 802.11b DSSS 2.2 19.0 18.38 0.08 Right Cheek 03117 1 99.9 0.919 0.539 6 802.11b DSSS 2.2 19.0 18.38 0.12 Right Cheek 03117 1 99.9 0.947 0.659 11 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cheek 03117 1 99.9 0.947 0.659 11 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cheek 03117 1 99.9 0.928 0.630 6 802.11b DSSS 2.2 19.0 18.38 -0.16 Left Cheek 03117 1 99.9 0.281 -1 6 802.11b DSSS 2.2 19.0 18.38 -0	KY Mode Service Bandwith Maximum (MHz) Conducted Power (BB) Power (HB) Power Power (BB) Test Power Davise Serial Number Davise (MB) Davise (MB) Davise (MB) Pack SAR of Power (MB) SAR (19) Saling Factor (Power) 1 802.11b DSSS 2.2 19.0 18.38 0.08 Right Cneek 0317 1 9.9.9 0.919 0.539 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.12 Right Cneek 03117 1 9.9.9 0.947 0.659 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cneek 03117 1 9.9.9 0.947 0.659 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.19 Right Cneek 03117 1 9.9.9 0.917 0.575 1.153 6 802.11b DSSS 2.2 19.0 18.38 0.01 Left Cneek 03117 1 9.9.9 0.281	KY Mode Bardwith Maximu Power (BB) Conducted Power (BB) Power Power (BB) Power Power (BB) Power Power (BB) Power Power (BB) Device Power (BB) Data Re Power (BB)	KY Mode Bandwith Maximu Power (BB) Conducted Power (BB) Power Power <

Table 11-13 **NII Head SAR**

							I	MEASUI	REMENT	RESULT	s							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	mode	Gervice	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	olde	Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	FIOC#
5300	60	802.11a	OFDM	20	17.5	16.80	0.21	Right	Cheek	03117	6	98.9	0.933	0.453	1.175	1.011	0.538	
5300	60	802.11a	OFDM	20	17.5	16.80	0.12	Right	Tilt	03117	6	98.9	0.555	0.242	1.175	1.011	0.287	
5300	60	802.11a	OFDM	20	17.5	16.80	-0.13	Left	Cheek	03117	6	98.9	0.360		1.175	1.011	-	
5300	60	802.11a	OFDM	20	17.5	16.80	-0.17	Left	Tilt	03117	6	98.9	0.305		1.175	1.011	-	
5680	136	802.11a	OFDM	20	17.5	16.94	0.18	Right	Cheek	03117	6	98.9	1.406	0.686	1.138	1.011	0.789	
5680	136	802.11a	OFDM	20	17.5	16.94	0.16	Right	Tilt	03117	6	98.9	0.832	0.288	1.138	1.011	0.331	
5680	136	802.11a	OFDM	20	17.5	16.94	0.15	Left	Cheek	03117	6	98.9	0.299		1.138	1.011	-	
5680	136	802.11a	OFDM	20	17.5	16.94	0.11	Left	Tilt	03117	6	98.9	0.239		1.138	1.011	-	
5765	153	802.11a	OFDM	20	18.0	17.38	0.12	Right	Cheek	03117	6	98.9	1.600	0.689	1.153	1.011	0.803	
5785	157	802.11a	OFDM	20	18.0	17.29	0.19	Right	Cheek	03117	6	98.9	1.598	0.755	1.178	1.011	0.899	A13
5805	161	802.11a	OFDM	20	18.0	17.31	0.13	Right	Cheek	03117	6	98.9	1.534	0.742	1.172	1.011	0.879	
5765	153	802.11a	OFDM	20	18.0	17.38	0.18	Right	Tilt	03117	6	98.9	0.792	0.252	1.153	1.011	0.294	
5765	153	802.11a	OFDM	20	18.0	17.38	-0.15	Left	Cheek	03117	6	98.9	0.249	-	1.153	1.011	-	
5765	153	802.11a	OFDM	20	18.0	17.38	-0.09	Left	Tilt	03117	6	98.9	0.191		1.153	1.011	-	
		ANSI	/ IEEE C95.1		TY LIMIT								Hea					
		Uncontr	Spati olled Exposu	ial Peak ure/General	Population								1.6 W/kg averaged ov					

Table 11-14 **DSS Head SAR**

						N	IEASURI	EMENT R	ESULTS	6						
FREQUE	INCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	Mode	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	FIOT #
2441.00	39	Bluetooth	FHSS	11.0	10.83	-0.01	Right	Cheek	03117	1	77.3	0.094	1.040	1.294	0.127	
2441.00	39	Bluetooth	FHSS	11.0	10.83	0.14	Right	Tilt	03117	1	77.3	0.100	1.040	1.294	0.135	A14
2441.00	39	Bluetooth	FHSS	11.0	10.83	0.18	Left	Cheek	03117	1	77.3	0.031	1.040	1.294	0.042	
2441.00	39	Bluetooth	FHSS	11.0	10.83	-0.05	Left	Tilt	03117	1	77.3	0.041	1.040	1.294	0.055	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	т							Head				
			Spatial Pea	ak							1.6	6 W/kg (mW/g	3)			
		Uncontrolle	d Exposure/Ge	neral Popula	tion						aver	aged over 1 gr	am			

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 50 af 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 52 of 79
001	0 DCTEST Engineering Leberatory Inc				DEV/ 21.2 M

11.2 Standalone Body-Worn SAR Data

						10 00	<u> </u>								
					M	EASURE	MENTR	RESULTS							
FREQUE	NCY	Mode	Service	Maxim um Allow ed	Conducted	Power	Spacing	Device Serial		Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Slots	Cycle		(W/kg)		(W/kg)	
836.60	190	GSM 850	GSM	33.2	32.92	-0.03	10 mm	03083	1	1:8.3	back	0.336	1.067	0.359	
836.60	190	GSM 850	GPRS	32.2	31.83	-0.03	10 mm	03083	2	1:4.15	back	0.406	1.089	0.442	A15
1880.00	661	GSM 1900	GSM	30.7	30.42	0.02	10 m m	03083	1	1:8.3	back	0.297	1.067	0.317	
1880.00	661	GSM 1900	GPRS	29.2	28.86	-0.19	10 mm	03083	2	1:4.15	back	0.346	1.081	0.374	A16
836.60	4183	UMTS 850	RMC	25.5	25.30	0.00	10 m m	03083	N/A	1:1	back	0.543	1.047	0.569	A18
1712.40	1312	UMTS 1750	RMC	24.0	23.76	0.06	10 m m	03083	N/A	1:1	back	0.569	1.057	0.601	
1732.40	1412	UMTS 1750	RMC	24.0	23.84	-0.03	10 m m	03083	N/A	1:1	back	0.626	1.038	0.650	
1752.60	1513	UMTS 1750	RMC	24.0	23.46	0.01	10 mm	03083	N/A	1:1	back	0.642	1.132	0.727	A19
1880.00	9400	UMTS 1900	RMC	24.0	23.70	0.00	10 mm	03083	N/A	1:1	back	0.510	1.072	0.547	A21
	-	ANSI / IEE	E C95.1 1992 - SA	FETY LIMIT	•							ody			
			Spatial Peak								1.6 W/k	g (mW/g)			
		Uncontrolled	I Exposure/Gener	al Population							averaged	over 1 gram			

Table 11-15 GSM/UMTS Body-Worn SAR Data

Table 11-16 LTE Body-Worn SAR

									, a y										
								MEASU	REMENT	RESULTS	;								
FF	REQUENCY		Mode	Bandwidth	Maxim um Allow ed	Conducted	Power	MPR [dB]	Device Serial Number	Modulation	RB Size	RBOffset	Spacing	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number						Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.44	-0.04	0	03109	QPSK	1	0	10 mm	back	1:1	0.450	1.014	0.456	A23
707.50	23095	Mid	LTE Band 12	10	24.5	24.04	-0.09	1	03109	QPSK	25	0	10 mm	back	1:1	0.320	1.112	0.356	
793.00	23330	Mid	LTE Band 14	10	25.5	25.50	0.10	0	03109	QPSK	1	0	10 mm	back	1:1	0.557	1.000	0.557	A24
793.00	23330	Mid	LTE Band 14	10	24.5	23.96	0.02	1	03109	QPSK	25	0	10 mm	back	1:1	0.416	1.132	0.471	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.50	0.16	0	03083	QPSK	1	49	10 mm	back	1:1	0.605	1.000	0.605	A25
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.07	-0.12	1	03083	QPSK	25	25	10 mm	back	1:1	0.458	1.104	0.506	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.0	23.87	-0.05	0	03091	QPSK	1	99	10 mm	back	1:1	0.725	1.030	0.747	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.0	24.00	-0.13	0	03091	QPSK	1	99	10 m m	back	1:1	0.721	1.000	0.721	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.0	23.99	-0.01	0	03091	QPSK	1	99	10 m m	back	1:1	0.729	1.002	0.730	A26
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.0	22.98	-0.01	1	03091	QPSK	50	25	10 m m	back	1:1	0.521	1.005	0.524	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	24.00	0.03	0	03091	QPSK	1	50	10 m m	back	1:1	0.559	1.000	0.559	A28
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.90	-0.01	1	03091	QPSK	50	25	10 m m	back	1:1	0.480	1.023	0.491	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.01	0	03109	QPSK	1	49	10 m m	back	1:1	0.399	1.062	0.424	A30
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.06	1	03109	QPSK	25	0	10 m m	back	1:1	0.342	1.084	0.371	
			ANSI / IEEE		SAFETY LIMI	г								Во					
				Spatial Pea										1.6 W/kg					
			Uncontrolled E	x posure/Ge	neral Populat	ion							a	veraged o	ver 1 gram	1			

Table 11-17 DTS Body-Worn SAR

								Douj										
							ME	SUREM	ENT RE	SULTS								
FREQU	JENCY	Mode	Service		Maximum Allowed			Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor		Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	23.0	22.69	0.12	10 mm	03117	1	back	99.9	0.794	0.499	1.074	1.001	0.536	A33
		Α	NSI / IEEE		SAFETY LIMIT									Body				
		line	ontrollod	Spatial Pe	ak eneral Population									kg (mW/g) over 1 gram				
		Unc	onuoneu i	_xposure/de	eneral Population								averaged	over i gram		T		7
					CA PI	CTEST						~			0	Appro	ved by:	
	FCCI	D: ZNFQ72	ocs			ILBIRS LABORATORY, INC.		SAR	EVALU	JATIO	N REP	ORI			.G	Quality	Manager	
-																		-
	Docur	nent S/N:			Test Date	s:	DU	Г Туре:								Daga	52 of 70	
1	1M190	3280046-0	1-R1.ZN	١F	04/01/19 -	05/01/19	Por	able Ha	ndset							Page	53 of 79	
© 2019	PCTE	ST Engineerir	ng Labor	atory, Inc.												REV 2	1.3 M	

02/15/2019

Table 11-18 NII Body-Worn SAR

								MEAS	BUREMENT	RESULTS								
FREQU	JENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHZ]	Power [dBm]	[dBm]	[dB]		Number	(Mbps)			W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5280	56	802.11a	OFDM	20	19.5	19.19	0.03	10 mm	03117	6	back	98.9	1.181	0.652	1.074	1.011	0.708	
5520	104	802.11a	OFDM	20	19.5	19.20	-0.06	10 mm	03117	6	back	98.9	1.232	0.653	1.072	1.011	0.708	A33
5600	120	802.11a	OFDM	20	19.5	19.07	0.01	10 mm	03117	6	back	98.9	1.211	0.635	1.104	1.011	0.709	
5680	136	802.11a	OFDM	20	19.5	19.14	-0.03	10 mm	03117	6	back	98.9	1.132	0.570	1.086	1.011	0.626	
5785	157	802.11a	OFDM	20	20.0	19.37	0.16	10 mm	03117	6	back	98.9	1.139	0.562	1.156	1.011	0.657	
			ANSI / IEE	E C95.1 199	2 - SAFETY LIMIT								Body					
		Ur	ncontrolled	Spatial P d Exposure/0	'eak General Populatio	'n							6 W/kg (mW/g aged over 1 gra					

Table 11-19 **DSS Body-Worn SAR**

						ME	ASURE		ESULT	s						
FREQU	ENCY	Mode	Service	Maxim um Allow ed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor		Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	11.0	10.83	0.16	10 mm	03117	1	back	77.3	0.031	1.040	1.294	0.042	A35
		ANSI / IEEE	C95.1 199	2 - SAFETY LI	МІТ							Body				
			Spatial F									1.6 W/kg (mW				
		Uncontrolled I	Exposure/	General Popu	lation						a	veraged over 1	gram			

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕑 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 54 of 79
20	19 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

KEV 21.3 M 02/15/2019 © 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

©

11.3 Standalone Hotspot SAR Data

					M			RESULTS	<u> </u>	<u>-</u>					
FREQUE	NCY	Mode	Service	Maxim um Allow ed	Conducted	Power	Spacing	Device Serial	# of GPRS	Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	mode	Gervice	Power [dBm]	Power [dBm]	Drift [dB]	opacing	Number	Slots	Cycle	olde	(W/kg)	ocaling ractor	(W/kg)	110(#
836.60	190	GSM 850	GPRS	32.2	31.83	-0.03	10 mm	03083	2	1:4.15	back	0.406	1.089	0.442	A15
836.60	190	GSM 850	GPRS	32.2	31.83	0.04	10 mm	03083	2	1:4.15	front	0.220	1.089	0.240	
836.60	190	GSM 850	GPRS	32.2	31.83	0.07	10 mm	03083	2	1:4.15	bottom	0.102	1.089	0.111	
836.60	190	GSM 850	GPRS	32.2	31.83	0.16	10 mm	03083	2	1:4.15	left	0.038	1.089	0.041	
1880.00	661	GSM 1900	GPRS	29.2	28.86	-0.19	10 mm	03083	2	1:4.15	back	0.346	1.081	0.374	
1880.00	661	GSM 1900	GPRS	29.2	28.86	-0.15	10 mm	03083	2	1:4.15	front	0.371	1.081	0.401	
1850.20	512	GSM 1900	GPRS	29.2	28.96	-0.05	10 mm	03083	2	1:4.15	bottom	0.807	1.057	0.853	
1880.00	661	GSM 1900	GPRS	29.2	28.86	0.07	10 mm	03083	2	1:4.15	bottom	0.897	1.081	0.970	A17
1909.80	810	GSM 1900	GPRS	29.2	29.05	0.03	10 mm	03083	2	1:4.15	bottom	0.881	1.035	0.912	
1880.00	661	GSM 1900	GPRS	29.2	28.86	-0.07	10 mm	03083	2	1:4.15	right	0.172	1.081	0.186	
836.60	4183	UMTS 850	RMC	25.5	25.30	0.00	10 mm	03083	N/A	1:1	back	0.543	1.047	0.569	A18
836.60	4183	UMTS 850	RMC	25.5	25.30	0.01	10 mm	03083	N/A	1:1	front	0.436	1.047	0.456	
836.60	4183	UMTS 850	RMC	25.5	25.30	-0.10	10 mm	03083	N/A	1:1	bottom	0.243	1.047	0.254	
836.60	4183	UMTS 850	RMC	25.5	25.30	0.16	10 mm	03083	N/A	1:1	left	0.094	1.047	0.098	
1712.40	1312	UMTS 1750	RMC	24.0	23.76	0.06	10 mm	03083	N/A	1:1	back	0.569	1.057	0.601	
1732.40	1412	UMTS 1750	RMC	24.0	23.84	-0.03	10 mm	03083	N/A	1:1	back	0.626	1.038	0.650	
1752.60	1513	UMTS 1750	RMC	24.0	23.46	0.01	10 mm	03083	N/A	1:1	back	0.642	1.132	0.727	
1732.40	1412	UMTS 1750	RMC	24.0	23.84	-0.03	10 mm	03083	N/A	1:1	front	0.672	1.038	0.698	
1712.40	1312	UMTS 1750	RMC	24.0	23.76	0.00	10 mm	03083	N/A	1:1	bottom	0.968	1.057	1.023	
1732.40	1412	UMTS 1750	RMC	24.0	23.84	-0.05	10 mm	03083	N/A	1:1	bottom	0.962	1.038	0.999	
1752.60	1513	UMTS 1750	RMC	24.0	23.46	-0.02	10 mm	03083	N/A	1:1	bottom	0.988	1.132	1.118	A20
1732.40	1412	UMTS 1750	RMC	24.0	23.84	-0.03	10 mm	03083	N/A	1:1	right	0.283	1.038	0.294	
1880.00	9400	UMTS 1900	RMC	24.0	23.70	0.00	10 mm	03083	N/A	1:1	back	0.510	1.072	0.547	
1880.00	9400	UMTS 1900	RMC	24.0	23.70	0.04	10 mm	03083	N/A	1:1	front	0.519	1.072	0.556	
1852.40	9262	UMTS 1900	RMC	24.0	23.80	-0.03	10 mm	03083	N/A	1:1	bottom	1.020	1.047	1.068	
1880.00	9400	UMTS 1900	RMC	24.0	23.70	-0.01	10 mm	03083	N/A	1:1	bottom	1.070	1.072	1.147	A22
1907.60	9538	UMTS 1900	RMC	24.0	23.73	-0.05	10 mm	03083	N/A	1:1	bottom	1.060	1.064	1.128	
1880.00	9400	UMTS 1900	RMC	24.0	23.70	-0.03	10 mm	03083	N/A	1:1	right	0.183	1.072	0.196	
		ANSI / IEEI	E C95.1 1992 - SA Spatial Peak	FETY LIMIT								ody g (mW/g)			
		Uncontrolled	Exposure/Gene	ral Population	1							over 1 gram			

Table 11-20 **GPRS/UMTS Hotspot SAR Data**

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 55 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

REV 02/15/2019

Table 11-21 LTE Band 12 Hotspot SAR

								MEAS	UREMENT	RESULTS	5								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[]	Power [dBm]	. on or [abin]	Dinit [db]		Maniber							(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.44	-0.04	0	03109	QPSK	1	0	10 m m	back	1:1	0.450	1.014	0.456	A23
707.50	23095	Mid	LTE Band 12	10	24.5	24.04	-0.09	1	03109	QPSK	25	0	10 m m	back	1:1	0.320	1.112	0.356	
707.50	23095	Mid	LTE Band 12	10	25.5	25.44	-0.01	0	03109	QPSK	1	0	10 m m	front	1:1	0.316	1.014	0.320	
707.50	23095	Mid	LTE Band 12	10	24.5	0.03	1	03109	QPSK	25	0	10 m m	front	1:1	0.225	1.112	0.250		
707.50	23095	Mid	LTE Band 12	10	25.5	25.44	0.12	0	03109	QPSK	1	0	10 m m	bottom	1:1	0.114	1.014	0.116	
707.50	23095	Mid	LTE Band 12	10	24.5	24.04	0.02	1	03109	QPSK	25	0	10 m m	bottom	1:1	0.082	1.112	0.091	
707.50	23095	Mid	LTE Band 12	10	25.5	25.44	-0.19	0	03109	QPSK	1	0	10 m m	left	1:1	0.396	1.014	0.402	
707.50	23095	Mid	LTE Band 12	10	24.5	24.04	0.06	1	03109	QPSK	25	0	10 m m	left	1:1	0.289	1.112	0.321	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT									Body					
			Spa	tial Peak									1.6 V	//kg (mW	//g)				
		ι	Jncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

Table 11-22 LTE Band 14 Hotspot SAR

								MEAS	UREMENT	RESULTS	3								
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[10112]	Power [dBm]	rower [dbin]	Dint[ub]		Number							(W/kg)		(W/kg)	
793.00	23330	Mid	LTE Band 14	10	25.5	25.50	0.10	0	03109	QPSK	1	0	10 m m	back	1:1	0.557	1.000	0.557	A24
793.00	23330	Mid	LTE Band 14	10	24.5	23.96	0.02	1	03109	QPSK	25	0	10 m m	back	1:1	0.416	1.132	0.471	
793.00	23330	Mid	LTE Band 14	10	25.5	25.50	-0.04											0.460	
793.00	23330	Mid	LTE Band 14	10	24.5	23.96	0.03	1 03109 QPSK 25 0 10 mm front 1:1 0.334 1.132									0.378		
793.00	23330	Mid	LTE Band 14	10	25.5	25.50	-0.06	0	03109	QPSK	1	0	10 m m	bottom	1:1	0.177	1.000	0.177	
793.00	23330	Mid	LTE Band 14	10	24.5	23.96	0.01	1	03109	QPSK	25	0	10 m m	bottom	1:1	0.136	1.132	0.154	
793.00	23330	Mid	LTE Band 14	10	25.5	25.50	0.04	0	03109	QPSK	1	0	10 m m	left	1:1	0.285	1.000	0.285	
793.00	23330	Mid	LTE Band 14	10	24.5	23.96	-0.07	1	03109	QPSK	25	0	10 mm	left	1:1	0.184	1.132	0.208	
			ANSI / IEEE C95.		ETY LIMIT									Body					
			Spa	tial Peak									1.6 V	V/kg (mW	//g)				
		ι	Jncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

Table 11-23 LTE Band 5 (Cell) Hotspot SAR

								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	ı.		[MHZ]	Power [dBm]	Power [dBm]	Drift (dB)		Number							(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.50	0.16	0	03083	QPSK	1	49	10 m m	back	1:1	0.605	1.000	0.605	A25
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.07	-0.12	1	03083	QPSK	25	25	10 mm	back	1:1	0.458	1.104	0.506	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.50	-0.01	0	03083	QPSK	1	49	10 mm	front	1:1	0.498	1.000	0.498	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	-0.01	1	03083	QPSK	25	25	10 m m	front	1:1	0.364	1.104	0.402		
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.50	-0.08	0	03083	QPSK	1	49	10 m m	bottom	1:1	0.264	1.000	0.264	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.07	0.01	1	03083	QPSK	25	25	10 mm	bottom	1:1	0.176	1.104	0.194	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.50	-0.01	0	03083	QPSK	1	49	10 mm	left	1:1	0.136	1.000	0.136	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.07	0.09	1	03083	QPSK	25	25	10 m m	left	1:1	0.090	1.104	0.099	
			ANSI / IEEE C95.	1 1992 - SAF Itial Peak	ETY LIMIT								161	Body //kg (mW	(/a)				
		ι	Jncontrolled Expo		I Population									ed over 1					

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 56 of 79
© 20′	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

REV 21.3 M 02/15/2019

								iu 00	(AVV3	\rightarrow HOIS	ροι	JAN	<u> </u>						
								MEASU	REMENT	RESULTS									
Ff	REQUENCY		Mode	Bandwidth	Maxim um Allow ed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.0	23.87	-0.05	0	03091	QPSK	1	99	10 m m	back	1:1	0.725	1.030	0.747	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.0	24.00	-0.13	0	03091	QPSK	1	99	10 m m	back	1:1	0.721	1.000	0.721	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.0	23.99	-0.01	0	03091	QPSK	1	99	10 m m	back	1:1	0.729	1.002	0.730	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.0	22.98	-0.01	1	03091	QPSK	50	25	10 m m	back	1:1	0.521	1.005	0.524	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.0	24.00	0.03	0	03091	QPSK	1	99	10 m m	front	1:1	0.670	1.000	0.670	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.0	22.98	0.06	1	03091	QPSK	50	25	10 m m	front	1:1	0.543	1.005	0.546	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.0	23.87	-0.07	0	03091	QPSK	1	99	10 m m	bottom	1:1	1.150	1.030	1.185	A27
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.0	24.00	-0.05	0	03091	QPSK	1	99	10 m m	bottom	1:1	1.070	1.000	1.070	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.0	23.99	-0.07	0	03091	QPSK	1	99	10 m m	bottom	1:1	1.030	1.002	1.032	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.0	22.98	-0.01	1	03091	QPSK	50	25	10 m m	bottom	1:1	0.760	1.005	0.764	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.0	22.96	-0.10	1	03091	QPSK	100	0	10 m m	bottom	1:1	0.742	1.009	0.749	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.0	24.00	-0.04	0	03091	QPSK	1	99	10 m m	right	1:1	0.260	1.000	0.260	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.0	22.98	-0.04	1	03091	QPSK	50	25	10 m m	right	1:1	0.203	1.005	0.204	
1720.00	132072	Low	LTE Band 66 (AWS)		24.0	23.87	-0.05	0	03091	QPSK	1	99	10 mm	bottom	1:1	1.040	1.030	1.071	
			ANSI / IEEE C95.1		TY LIMIT									Body					
				ial Peak										//kg (mW	•				
		U	ncontrolled Expos	ure/General	Population								average	ed over 1	gram				
							4		4						4				-

Table 11-24 LTE Band 66 (AWS) Hotspot SAR

Note: Blue entry represents variability measurement.

Table 11-25 LTE Band 2 (PCS) Hotspot SAR

								MEAS	UREMENT	RESULTS	5								
FRI	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	24.00	0.03	0	03091	QPSK	1	50	10 m m	back	1:1	0.559	1.000	0.559	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.90	-0.01	1	03091	QPSK	50	25	10 m m	back	1:1	0.480	1.023	0.491	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	24.00	-0.03	0	03091	QPSK	1	50	10 m m	front	1:1	0.538	1.000	0.538	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.90	0.00	1	03091	QPSK	50	25	10 m m	front	1:1	0.525	1.023	0.537	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	23.98	-0.08	0	03091	QPSK	1	50	10 m m	bottom	1:1	1.140	1.005	1.146	A29
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.0	23.84	0.02	0	03091	QPSK	1	0	10 m m	bottom	1:1	0.978	1.038	1.015	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	0.06	0	03091	QPSK	1	50	10 m m	bottom	1:1	0.996	1.000	0.996		
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.72	0.01	1	03091	QPSK	50	50	10 m m	bottom	1:1	0.951	1.067	1.015	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	22.63	0.02	1	03091	QPSK	50	0	10 m m	bottom	1:1	0.926	1.089	1.008	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.90	-0.05	1	03091	QPSK	50	25	10 m m	bottom	1:1	0.951	1.023	0.973	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.75	0.00	1	03091	QPSK	100	0	10 m m	bottom	1:1	0.985	1.059	1.043	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	24.00	0.07	0	03091	QPSK	1	50	10 m m	right	1:1	0.184	1.000	0.184	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	0.17	1	03091	QPSK	50	25	10 mm	right	1:1	0.154	1.023	0.158		
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	23.98	-0.08	0	03091	QPSK	1	50	10 mm	bottom	1:1	1.130	1.005	1.136	
			ANSI / IEEE C95.		ETY LIMIT								164	Body //kg. (m)W	(a)		•		
					I Population									•	•				
		ι	Spa Jncontrolled Expo	itial Peak sure/Genera	I Population									//kg (mW ed over 1 و	•				

Note: Blue entry represents variability measurement.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 57 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 57 of 79
© 20′	9 PCTEST Engineering Laboratory, Inc.		-		REV 21.3 M

02/15/2019

Table 11-26 LTE Band 30 Hotspot SAR

								MEAS		RESULTS									
FRE	EQUENCY		Mode	Bandwidth	Maxim um Allow ed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.01	0	03109	QPSK	1	49	10 m m	back	1:1	0.399	1.062	0.424	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.06	1	03109	QPSK	25	0	10 m m	back	1:1	0.342	1.084	0.371	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.14	0	03109	QPSK	1	49	10 m m	front	1:1	0.393	1.062	0.417	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.02	1	03109	QPSK	25	0	10 m m	front	1:1	0.336	1.084	0.364	
2310.00	27710								03109	QPSK	1	49	10 m m	bottom	1:1	0.918	1.062	0.975	A31
2310.00	27710	Mid	LTE Band 30	10	23.0	0.00	1	03109	QPSK	25	0	10 m m	bottom	1:1	0.794	1.084	0.861		
2310.00	27710	Mid	LTE Band 30	10	23.0	22.62	0.00	1	03109	QPSK	50	0	10 m m	bottom	1:1	0.821	1.091	0.896	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	-0.01	0	03109	QPSK	1	49	10 m m	right	1:1	0.101	1.062	0.107	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.08	1	03109	QPSK	25	0	10 m m	right	1:1	0.094	1.084	0.102	
2310.00	27710	Mid	LTE Band 30	10	24.0	-0.07	0	03109	QPSK	1	49	10 mm	bottom	1:1	0.908	1.062	0.964		
			ANSI / IEEE C95.		ETY LIMIT									Body					
			Spa	tial Peak									1.6 V	//kg (mW	//g)				
		ι	Jncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

Note: Blue entry represents variability measurement.

Table 11-27 WLAN Hotspot SAR

							MEAS	UREME	NTRES	ULTS								
FREQU	ENCY	Mode	Service	Bandwidth		Conducted Power		Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor		Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	23.0	22.69	0.12	10 mm	03117	1	back	99.9	0.794	0.499	1.074	1.001	0.536	A32
2412	1	802.11b	DSSS	22	23.0	22.69	0.20	10 mm	03117	1	front	99.9	0.369	-	1.074	1.001	-	
2412	1	802.11b	DSSS	22	23.0	22.69	-0.07	10 mm	03117	1	top	99.9	0.515	-	1.074	1.001	-	
2412	1	802.11b	DSSS	22	23.0	22.69	-0.10	10 mm	03117	1	left	99.9	0.690	0.482	1.074	1.001	0.518	
5200	40	802.11a	OFDM	20	19.5	19.32	0.05	10 mm	03117	6	back	98.9	1.294	0.718	1.042	1.011	0.756	
5220	44	802.11a	OFDM	20	-0.16	10 mm	03117	6	back	98.9	1.352	0.718	1.067	1.011	0.775	A34		
5240	48	802.11a	OFDM	0.15	10 mm	03117	6	back	98.9	1.307	0.710	1.074	1.011	0.771				
5200	40	802.11a	OFDM	20	19.5	19.32	0.13	10 mm	03117	6	front	98.9	0.183		1.042	1.011	-	
5200	40	802.11a	OFDM	20	19.5	19.32	0.20	10 mm	03117	6	top	98.9	0.153		1.042	1.011	-	
5200	40	802.11a	OFDM	20	19.5	19.32	-0.04	10 mm	03117	6	left	98.9	0.832	0.406	1.042	1.011	0.428	
5785	157	802.11a	OFDM	20	20.0	19.37	0.16	10 mm	03117	6	back	98.9	1.139	0.562	1.156	1.011	0.657	
5785	157	802.11a	OFDM	20	20.0	19.37	0.20	10 mm	03117	6	front	98.9	0.263		1.156	1.011	-	
5785	157	802.11a	OFDM	20	20.0	19.37	0.19	10 mm	03117	6	top	98.9	0.144	-	1.156	1.011	-	
5785	157	802.11a	OFDM	20	20.0	19.37	-0.18	10 mm	03117	6	left	98.9	0.901	0.389	1.156	1.011	0.455	
		•	ANSI / IEEE	E C95.1 1992 -	SAFETY LIMIT	•			•				В	ody	•	•	•	
		Un	controlled	Spatial Pea Exposure/Ge	ik neral Population									g (mW/g) over 1 gram				

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 59 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 58 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

02/15/2019

Table 11-28 DSS Hotspot SAR

MHz Ch. Power [dBm] Power [dBm] [dB] Free Number (Mbps) Co. (%) (Cond Power) (Duty Cycle) (Wkg) (Wkg) (Cond Power) (Duty Cycle) (Wkg) (Uty Cycle) (Uty Cycle) (Uty Cycle) (Uty Cycle) (Wkg) (Uty Cycle) (Uty Cycle) (Uty Cycle) (Uty Cycle)											•						
HeckUext* Mode Service Allowed Power [dBm] Conducted Power [dBm] Power Drift [dB] Spacing Service (Mbps) Bite (Mpps) Side Side (%) Sk(19) Scaling Factor (Cond Power) Scaling Factor (Duty Cycle) Scaling Factor (Duty Cycle) Scaling Factor (Duty Cycle) Pice (Wkg) 2441 39 Bluetooth FHSS 11.0 10.83 0.16 10 mm 03117 1 back 77.3 0.031 1.040 1.294 0.042 Accord Accord accord acc							ME	EASURE		RESULT	s						
MHz Ch. Fower (term) 10.4 10.4 10.4 Number 10.4 (%) (%) (%) (%) (Wkg) 10.4 10.44	FREQU	ENCY	Mode	Service				Spacing			Side		SAR (1g)		Scaling Factor		Plot #
2441 39 Bluetooth FHSS 11.0 10.83 0.01 10 mm 03117 1 front 77.3 0.017 1.040 1.294 0.023 2441 39 Bluetooth FHSS 11.0 10.83 0.07 10 mm 03117 1 top 77.3 0.026 1.040 1.294 0.023 0.035 2441 39 Bluetooth FHSS 11.0 10.83 0.07 10 mm 03117 1 top 77.3 0.026 1.040 1.294 0.035 2441 39 Bluetooth FHSS 11.0 10.83 0.07 10 mm 03117 1 top 77.3 0.026 1.040 1.294 0.035 2441 39 Bluetooth FHSS 11.0 10.83 0.17 10 mm 03117 1 left 77.3 0.031 1.040 1.294 0.042 Spatial Peak EVENTICIPALITY Spatial Peak	MHz	Ch.			Power [dBm]	Power [dBm]	[aB]		Number	(wops)		(%)	(W/kg)	(Cona Power)	(Duty Cycle)	(W/kg)	
2441 39 Bluetooth FHSS 11.0 10.83 0.07 10 mm 03117 1 top 77.3 0.026 1.040 1.294 0.035 2441 39 Bluetooth FHSS 11.0 10.83 0.17 10 mm 03117 1 left 77.3 0.026 1.040 1.294 0.035 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	2441	39	Bluetooth	FHSS	11.0	10.83	0.16	10 mm	03117	1	back	77.3	0.031	1.040	1.294	0.042	A35
2441 39 Bluetooth FHSS 11.0 10.83 0.17 10 mm 03117 1 left 77.3 0.031 1.040 1.294 0.042 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	2441	39	Bluetooth	FHSS	11.0	10.83	0.14	10 mm	03117	1	front	77.3	0.017	1.040	1.294	0.023	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Body 1.6 W/kg (mW/g)	2441	39	Bluetooth	FHSS	11.0	10.83	0.07	10 mm	03117	1	top	77.3	0.026	1.040	1.294	0.035	
Spatial Peak 1.6 W/kg (mW/g)	2441	39	Bluetooth	FHSS	11.0	10.83	0.17	10 mm	03117	1	left	77.3	0.031	1.040	1.294	0.042	
			ANSI / IEEE	C95.1 199	2 - SAFETY LI	міт							Body				
Uncentrelled Experies Concrete Deputation				Spatial I	Peak								1.6 W/kg (mV	V/g)			
averaged over 1 grann			Uncontrolled	Exposure/	General Popu	lation						a	veraged over 1	gram			

11.4 Standalone Phablet SAR Data

©

Table 11-29 LTE Phablet SAR

								MEAS	UREMENT	RESULTS	6								
	FREQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	Ch			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.08	0	03109	QPSK	1	49	1 mm	back	1:1	1.640	1.062	1.742	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.14	1	03109	QPSK	25	0	1 mm	back	1:1	1.480	1.084	1.604	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.04	0	03109	QPSK	1	49	1 mm	front	1:1	1.680	1.062	1.784	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.01	1	03109	QPSK	25	0	1 mm	front	1:1	1.480	1.084	1.604	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	-0.05	0	03109	QPSK	1	49	3 mm	bottom	1:1	1.600	1.062	1.699	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	-0.04	1	03109	QPSK	25	0	3 mm	bottom	1:1	1.440	1.084	1.561	
2310.00	27710	Mid	LTE Band 30	10	24.0	23.74	0.12	0	03109	QPSK	1	49	0 mm	right	1:1	0.323	1.062	0.343	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.65	0.04	1	03109	QPSK	25	0	0 mm	right	1:1	0.285	1.084	0.309	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.53	0.02	0	03109	QPSK	1	0	0 mm	back	1:1	1.080	1.114	1.203	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.40	0.07	0	03109	QPSK	25	0	0 mm	back	1:1	1.050	1.148	1.205	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.53	0.03	0	03109	QPSK	1	0	0 mm	front	1:1	1.200	1.114	1.337	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.40	0.10	0	03109	QPSK	25	0	0 mm	front	1:1	1.160	1.148	1.332	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.53	-0.03	0	03109	QPSK	1	0	0 mm	bottom	1:1	2.160	1.114	2.406	A36
2310.00	27710	Mid	LTE Band 30	10	22.0	21.40	-0.04	0	03109	QPSK	25	0	0 mm	bottom	1:1	2.100	1.148	2.411	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.35	-0.02	0	03109	QPSK	50	0	0 mm	bottom	1:1	2.130	1.161	2.473	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.53	-0.04	0	03109	QPSK	1	0	0 mm	bottom	1:1	2.160	1.114	2.406	
			ANSI / IEEE C95.1 1992	2 - SAFETY L	іміт	•	•		•	•		•	Pha	blet					
			Spatial P											g (mW/g)					
		ι	Incontrolled Exposure/O	General Pop	ulation								averaged o	ver 10 grams					

Note: Blue entry represents variability measurement.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 50 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 59 of 79
201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

02/15/2019

Table 11-30 WLAN Phablet SAR

							MEAS	UREME	NT RES	ULTS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate (Mbps)	Side	Duty Cycle	Peak SAR of Area Scan	SAR (10g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (10g)	R Plot #
MHz	Ch.			[mnz]	Power [dBill]	[dBiii]	[UD]		Number	(wipps)	-	(%)	W/kg	(W/kg)	(FOWBI)	(Duty Cycle)	(W/kg)	
5260	52	802.11a	OFDM	20	19.5	19.12	-0.03	0 m m	03117	6	back	98.9	10.907	1.960	1.091	1.011	2.162	
5280	56	802.11a	OFDM	20	19.5	19.19	0.09	0 m m	03117	6	back	98.9	11.925	2.020	1.074	1.011	2.193	A37
5300	60	802.11a	OFDM	20	19.5	19.16	0.13	0 m m	03117	6	back	98.9	12.214	1.750	1.081	1.011	1.913	
5280	56	802.11a	OFDM	20	19.5	19.19	-0.16	0 m m	03117	6	front	98.9	4.519	0.542	1.074	1.011	0.589	
5280	56	802.11a	OFDM	20	-0.20	0 m m	03117	6	top	98.9	5.935	0.292	1.074	1.011	0.317			
5280	56	802.11a	OFDM	20	19.5	19.19	0.02	0 m m	03117	6	left	98.9	12.248	1.330	1.074	1.011	1.444	
5520	104	802.11a	OFDM	20	19.5	19.20	-0.07	0 m m	03117	6	back	98.9	10.821	1.650	1.072	1.011	1.788	
5520	104	802.11a	OFDM	20	19.5	19.20	0.16	0 m m	03117	6	front	98.9	5.188	0.662	1.072	1.011	0.717	
5520	104	802.11a	OFDM	20	19.5	19.20	-0.15	0 m m	03117	6	top	98.9	6.060	-	1.072	1.011	-	
5520	104	802.11a	OFDM	20	19.5	19.20	-0.16	0 m m	03117	6	left	98.9	17.926	1.470	1.072	1.011	1.593	
5280	56	802.11a	OFDM	20	19.5	19.19	0.00	0 m m	03117	6	back	98.9	11.838	1.900	1.074	1.011	2.063	
			ANSI / IEEE	E C95.1 1992 -	SAFETY LIMIT	•							Ph	ablet				
				Spatial Pea	ık								4.0 W/k	g (mW/g)				
		Un	controlled	Exposure/Ge	neral Population								averaged o	ver 10 grams				

Note: Blue entry represents variability measurement.

11.5 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.3. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 11. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.
- 12. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.
- 13. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 00 of 70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 60 of 79
© 201	© 2019 PCTEST Engineering Laboratory, Inc.				

REV 21.3 M 02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or me including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about the second secon poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

UMTS Notes:

- 1. UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

- 1. For held-to-ear, hotspot, and phablet operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 04 af 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 61 of 79	
© 201	© 2019 PCTEST Engineering Laboratory, Inc.					

02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, el including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have ar ectronic or n poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.5 for more information.

- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.6.6 for more information.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

Bluetooth Notes

- Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. See Section 9.5 for the time domain plot and calculation for the duty factor of the device.
- 2. Head and hotspot Bluetooth SAR were evaluated for BT BR tethering applications.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 00 (70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 62 of 79
© 201	© 2019 PCTEST Engineering Laboratory, Inc.				

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS 12

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

Head SAR Simultaneous Transmission Analysis 12.3

Exposure Condition	· Wode		2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.149	0.761	0.910
	GSM/GPRS 1900	0.089	0.761	0.850
	UMTS 850	0.068	0.761	0.829
	UMTS 1750	0.142	0.761	0.903
	UMTS 1900	0.133	0.761	0.894
Head SAR	LTE Band 12	0.178	0.761	0.939
	LTE Band 14	0.218	0.761	0.979
	LTE Band 5 (Cell)	0.162	0.761	0.923
	LTE Band 66 (AWS)	0.144	0.761	0.905
	LTE Band 2 (PCS)	0.129	0.761	0.890
	LTE Band 30	0.082	0.761	0.843

Table 12-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dago 62 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset	Page 63 of 79	
201	2019 PCTEST Engineering Laboratory Inc.				

© 2019 PCTEST Engineering Laboratory, Inc.

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, el including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an ectronic or me poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

02/15/2019

Simulations Transmission Scenario with 5 GHZ WLAN (Held to Ear)					
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
		1	2	1+2	
	GSM/GPRS 850	0.149	0.899	1.048	
	GSM/GPRS 1900	0.089	0.899	0.988	
	UMTS 850	0.068	0.899	0.967	
	UMTS 1750	0.142	0.899	1.041	
	UMTS 1900	0.133	0.899	1.032	
Head SAR	LTE Band 12	0.178	0.899	1.077	
	LTE Band 14	0.218	0.899	1.117	
	LTE Band 5 (Cell)	0.162	0.899	1.061	
	LTE Band 66 (AWS)	0.144	0.899	1.043	
	LTE Band 2 (PCS)	0.129	0.899	1.028	
	LTE Band 30	0.082	0.899	0.981	

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Table 12-3 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Exposure Condition	· IVIODE		Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.149	0.135	0.284
	GSM/GPRS 1900	0.089	0.135	0.224
	UMTS 850	0.068	0.135	0.203
	UMTS 1750	0.142	0.135	0.277
	UMTS 1900	0.133	0.135	0.268
Head SAR	LTE Band 12	0.178	0.135	0.313
	LTE Band 14	0.218	0.135	0.353
	LTE Band 5 (Cell)	0.162	0.135	0.297
	LTE Band 66 (AWS)	0.144	0.135	0.279
	LTE Band 2 (PCS)	0.129	0.135	0.264
	LTE Band 30	0.082	0.135	0.217

FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		5 64 670	
1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 64 of 79	
© 2019 PCTEST Engineering Laboratory, Inc.	·			REV 21.3 M	

REV 21.3 M 02/15/2019

Simulatious maismission scenario with Bluetooth and 5 GHZ WLAN (Heid to Ear)					
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	GSM/GPRS 850	0.149	0.135	0.899	1.183
	GSM/GPRS 1900	0.089	0.135	0.899	1.123
	UMTS 850	0.068	0.135	0.899	1.102
	UMTS 1750	0.142	0.135	0.899	1.176
	UMTS 1900	0.133	0.135	0.899	1.167
Head SAR	LTE Band 12	0.178	0.135	0.899	1.212
	LTE Band 14	0.218	0.135	0.899	1.252
	LTE Band 5 (Cell)	0.162	0.135	0.899	1.196
	LTE Band 66 (AWS)	0.144	0.135	0.899	1.178
	LTE Band 2 (PCS)	0.129	0.135	0.899	1.163
	LTE Band 30	0.082	0.135	0.899	1.116

Table 12-4 Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Held to Ear)

12.4 **Body-Worn Simultaneous Transmission Analysis**

Table 12-5 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm) 2.4 GHz 2G/3G/4G Σ SAR WLAN SAR Exposure SAR (W/kg) (W/kg) Mode (W/kg)Condition 1 2 1+2 GSM/GPRS 850 0.442 0.536 0.978 GSM/GPRS 1900 0.374 0.536 0.910 **UMTS 850** 0.569 0.536 1.105 UMTS 1750 0.727 0.536 1.263 UMTS 1900 0.547 0.536 1.083 LTE Band 12 0.456 0.992 Body-Worn 0.536 LTE Band 14 0.557 1.093 0.536 LTE Band 5 (Cell) 0.605 0.536 1.141 LTE Band 66 (AWS) 0.747 0.536 1.283 LTE Band 2 (PCS) 0.559 0.536 1.095 LTE Band 30 0.424 0.536 0.960

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 65 of 70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 65 of 79	
201	2019 PCTEST Engineering Laboratory, Inc.					

© 2019 PCTEST Engineering Laboratory, Inc.

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.442	0.709	1.151
	GSM/GPRS 1900	0.374	0.709	1.083
	UMTS 850	0.569	0.709	1.278
	UMTS 1750	0.727	0.709	1.436
	UMTS 1900	0.547	0.709	1.256
Body-Worn	LTE Band 12	0.456	0.709	1.165
	LTE Band 14	0.557	0.709	1.266
	LTE Band 5 (Cell)	0.605	0.709	1.314
	LTE Band 66 (AWS)	0.747	0.709	1.456
	LTE Band 2 (PCS)	0.559	0.709	1.268
	LTE Band 30	0.424	0.709	1.133

Table 12-6 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

Table 12-7

Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode		Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.442	0.042	0.484
	GSM/GPRS 1900	0.374	0.042	0.416
	UMTS 850	0.569	0.042	0.611
	UMTS 1750	0.727	0.042	0.769
	UMTS 1900	0.547	0.042	0.589
Body-Worn	LTE Band 12	0.456	0.042	0.498
	LTE Band 14	0.557	0.042	0.599
	LTE Band 5 (Cell)	0.605	0.042	0.647
	LTE Band 66 (AWS)	0.747	0.042	0.789
	LTE Band 2 (PCS)	0.559	0.042	0.601
	LTE Band 30	0.424	0.042	0.466

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates: DUT Type:			D 00 (70		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 66 of 79		
© 20′	2019 PCTEST Engineering Laboratory, Inc.						

REV 21.3 M 02/15/2019

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	
		1	2	3	1+2+3
	GSM/GPRS 850	0.442	0.042	0.709	1.193
	GSM/GPRS 1900	0.374	0.042	0.709	1.125
	UMTS 850	0.569	0.042	0.709	1.320
	UMTS 1750	0.727	0.042	0.709	1.478
	UMTS 1900	0.547	0.042	0.709	1.298
Body-Worn	LTE Band 12	0.456	0.042	0.709	1.207
	LTE Band 14	0.557	0.042	0.709	1.308
	LTE Band 5 (Cell)	0.605	0.042	0.709	1.356
	LTE Band 66 (AWS)	0.747	0.042	0.709	1.498
	LTE Band 2 (PCS)	0.559	0.042	0.709	1.310
	LTE Band 30	0.424	0.042	0.709	1.175

Table 12-8 Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Body-Worn at 1.0 cm)

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 67 of 79
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Tage 07 0173
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

Hotspot SAR Simultaneous Transmission Analysis 12.5

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis.

	•						(notspot a		
		Exposure Condition	Mod	le	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		
					1	2	1+2		
			GPRS	850	0.442	0.536	0.978		
		[GPRS	1900	0.970	0.536	1.506		
			UMTS	850	0.569	0.536	1.105		
		[UMTS	1750	1.118	0.536	See Table Below		
		ſ	UMTS	1900	1.147	0.536	See Table Below	1	
		Hotspot SAR	LTE Ba	nd 12	0.456	0.536	0.992		
		ſ	LTE Ba	nd 14	0.557	0.536	1.093		
		[LTE Band	5 (Cell)	0.605	0.536	1.141		
		[LTE Band 6	6 (AWS)	1.185	0.536	See Table Below		
		[LTE Band	2 (PCS)	1.146	0.536	See Table Below		
			LTE Band 30		0.975	0.536	1.511		
Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuratio	UMTS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.727	0.536	1.263		Back	0.547	0.536	1.083
	Front	0.698	0.536*	1.234	_11	Front	0.556	0.536*	1.092
Hotspot SAR	Top Bottom	- 1.118	0.536*	0.536	Hotspot SA	R Top Bottom	- 1.147	0.536*	0.536
	Right	0.294	-	0.294	-	Right	0.196	-	1.147 0.196
	Left	-	0.518	0.518		Left	-	0.518	0.518
Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuratio	LTE Band 2 (PCS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.747	0.536	1.283		Back	0.559	0.536	1.095
	Front	0.670	0.536*	1.206	<u>_</u>]]	Front	0.538	0.536*	1.074
Hotspot SAR	Тор	-	0.536*	0.536	Hotspot SA	R Top	-	0.536*	0.536
	Bottom	1.185	-	1.185	-11 '	Bottom	1.146	-	1.146
	Right Left	0.260	- 0.518	0.260		Right Left	0.184	- 0.518	0.184 0.518
	Leit	-	0.010	0.516	┛┖────	Leit	-	0.010	0.010

Table 12-9 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates: DUT Type:			D 00 (70		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 68 of 79		
© 201	2019 PCTEST Engineering Laboratory, Inc.						

02/15/2019

	-								
		Exposure Mode		е	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
					1	2	1+2		
			GPRS	850	0.442	0.775	1.217		
			GPRS 1900		0.970	0.775	See Table Belo	N	
			UMTS	850	0.569	0.775	1.344		
			UMTS 1	1750	1.118	0.775	See Table Belo	N	
			UMTS 1	1900	1.147	0.775	See Table Belo	N	
		Hotspot SAR	LTE Bar	nd 12	0.456	0.775	1.231		
			LTE Bar	nd 14	0.557	0.775	1.332		
			LTE Band	5 (Cell)	0.605	0.775	1.380		
			LTE Band 6	6 (AWS)	1.185	0.775	See Table Belo	N	
			LTE Band 2	2 (PCS)	1.146	0.775	See Table Belo	N	
			LTE Bar	nd 30	0.975	0.775	See Table Belo	N	
Simult Tx Configuration		GPRS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration		5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.374	0.775	1.149		Back	0.727	0.775	1.502
-	Front Top	0.401	0.775* 0.775*	1.176 0.775		Front Top	0.698	0.775* 0.775*	1.473 0.775
Hotspot SAR	Bottom	0.970	-	0.970	Hotspot SAF	Bottom	1.118	-	1.118
	Right	0.186	-	0.186		Right	0.294	-	0.294
	Left	-	0.455	0.455		Left	-	0.455	0.455
Simult Tx	Configuratior	UMTS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back Front	0.547	0.775 0.775*	1.322 1.331		Back Front	0.747	0.775 0.775*	1.522 1.445
	Тор	-	0.775*	0.775		Ton	-	0.775*	0.775
Hotspot SAR	Bottom	1.147	-	1.147	Hotspot SAF	Bottom	1.185	-	1.185
	Right	0.196	-	0.196	_	Right	0.260	-	0.260
	Left	-	0.455	0.455	-	Left	-	0.455	0.455
Simult Tx	Configuratior	LTE Band 2 (PCS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	SAD (M//kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.559	0.775	1.334	41	Back	0.424	0.775	1.199
	Front Top	0.538	0.775* 0.775*	1.313 0.775		Front Top	0.417	0.775* 0.775*	1.192 0.775
Hotspot SAR	Bottom	1.146	-	1.146	Hotspot SAF	Bottom	0.975	-	0.975
	Right	0.184	-	0.184	1	Right	0.107	-	0.107
	Left	-	0.455	0.455		Left	-	0.455	0.455

Table 12-10 Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dage 60 of 70		
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 69 of 79		
© 201	∂ 2019 PCTEST Engineering Laboratory, Inc.						

REV 21.3 M

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.442	0.042	0.484
	GPRS 1900	0.970	0.042	1.012
	UMTS 850	0.569	0.042	0.611
	UMTS 1750	1.118	0.042	1.160
	UMTS 1900	1.147	0.042	1.189
Hotspot SAR	LTE Band 12	0.456	0.042	0.498
	LTE Band 14	0.557	0.042	0.599
	LTE Band 5 (Cell)	0.605	0.042	0.647
	LTE Band 66 (AWS)	1.185	0.042	1.227
	LTE Band 2 (PCS)	1.146	0.042	1.188
	LTE Band 30	0.975	0.042	1.017

 Table 12-11

 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

	FCC ID: ZNFQ720CS	CC ID: ZNFQ720CS SAR EVALUATION REPORT		🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	Dates: DUT Type:		D 70 (70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 70 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

		Exposure Condition		Mode		2G/3G SAR (V				5 GHz WLAN SAR (W/kg)		Σ SAR (W/k	g)	·
						1		2			3	1+2+3		
				GPF	RS 850	0.44	2	0.0	42	0	.775	1.259		
				GPR	S 1900	0.97	0	0.0	42	0	.775	See Table Bel	ow	
				UMT	S 850	0.56	69	0.0	42	0	.775	1.386		
				UMT	S 1750	1.11	8	0.0	42	0	.775	See Table Bel	ow	
				UMT	S 1900	1.14	17	0.0	42	0	.775	See Table Bel	ow	
		Hot	tspot SAR	LTE E	Band 12	0.45	56	0.0	42	0	.775	1.273		
				LTE E	3and 14	0.55	57	0.0	42	0	.775	1.374		
				LTE Bai	nd 5 (Cell)	0.60)5	0.0	42	0	.775	1.422		
					d 66 (AWS)	1.18		0.0				See Table Bel		
			_		id 2 (PCS)	1.14	-	0.0			-	See Table Bel		
				LTE E	3and 30	0.97	'5	0.0	42	0	.775	See Table Be	ow	
Simult Tx	Configurat	ion	GPRS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		Simult Tx	Configura	ation	UMTS 175 SAR (W/kg		5 GHz WLA SAR (W/kg	
			1	2	3	1+2+3	1				1	2	3	1+2+3
	Back		0.374	0.042	0.775	1.191			Back		0.727	0.042	0.775	1.544
	Front Top		0.401	0.023 0.035	0.775* 0.775*	1.199 0.810	-11		Fron Top		0.698	0.023	0.775* 0.775*	1.496 0.810
Hotspot SAR	Bottom	1	0.970	-	-	0.970	1 ^H	Hotspot SAR	Botto	m	1.118	-	-	1.118
	Right Left		0.186	- 0.042	- 0.455	0.186			Righ Left		0.294	- 0.042	- 0.455	0.294 0.497
Simult Tx	Configurat	ion	UMTS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		Simult Tx	Configura	ation	LTE Band 6 (AWS) SAI (W/kg)		5 GHz WLA SAR (W/kg	
			1	2	3	1+2+3					1	2	3	1+2+3
	Back Front		0.547 0.556	0.042 0.023	0.775 0.775*	1.364 1.354	-11		Back Fron		0.747	0.042	0.775 0.775*	1.564 1.468
Hotspot SAR	Тор		-	0.035	0.775*	0.810	11.	Hotspot SAR	Тор		-	0.035	0.775*	0.810
HOISPOI SAR	Bottom	1	1.147	-	-	1.147] "	IUISPUI SAR	Botto		1.185	-	-	1.185
	Right Left		0.196	- 0.042	- 0.455	0.196	-11		Righ Left		0.260	- 0.042	- 0.455	0.260 0.497
Simult Tx	Configurat	ion	LTE Band 2 (PCS) SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg) 3	Σ SAR (W/kg)		Simult Tx	Configura		LTE Band 3 SAR (W/kg	0 Bluetooth	5 GHz WLA SAR (W/kg	ν Σ SAR
	Bash		0.559	0.042	0.775	-	$\downarrow \vdash$		D. I					
	Back Front		0.559	0.042	0.775*	1.376 1.336	-11		Back Fron		0.424	0.042	0.775 0.775*	1.241 1.215
Hotspot SAR	Тор		-	0.035	0.775*	0.810	11.	Hotspot SAR	Тор		-	0.035	0.775*	0.810
LIOISPOL GAR	Bottom	1	1.146	-	-	1.146]["	IOISPUL DAR	Botto		0.975	-	-	0.975
	Right Left		0.184	- 0.042	- 0.455	0.184 0.497	+		Righ Left		0.107	- 0.042	- 0.455	0.107 0.497
L	LOIL			0.042	0.400	0.437	┙└─		Leit			0.042	0.400	0.437

Table 12-12 Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Hotspot at 1.0 cm)

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 74 (70	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 71 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.		•		REV 21.3 M	

02/15/2019

12.6 Phablet Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore, no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

Simult Tx	Configuration	LTE Band 30 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
		1	2	1+2	
	Back	1.742	2.193	3.935	
	Front	1.784	0.717	2.501	
Phablet SAR	Тор	-	0.317	0.317	
T Hablet OAR	Bottom	2.473	-	2.473	
	Right	0.343	-	0.343	
	Left	-	1.593	1.593	

 Table 12-13

 Simultaneous Transmission Scenario with 5 GHz WLAN (Phablet)

12.7 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 70 (70
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 72 of 79
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

	BODY VARIABILITY RESULTS												
Band	FREQUE	NCY	Mode	Service	Side	Spacing	Measured SAR (1g) 1st SAR (1g) SAR (1g)		Ratio	2nd Repeated SAR (1g) Ratio		3rd Repeated SAR (1g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1720.00	132072	LTE Band 66 (AWS), 20 MHz Bandwidth	QPSK, 1 RB, 99 RB Offset	bottom	10 mm	1.150	1.040	1.11	N/A	N/A	N/A	N/A
1900	1860.00	18700	LTE Band 2 (PCS), 20 MHz Bandwidth	QPSK, 1 RB, 50 RB Offset	bottom	10 mm	1.140	1.130	1.01	N/A	N/A	N/A	N/A
2300	2310.00	27710	LTE Band 30, 10 MHz Bandwidth	QPSK, 1 RB, 49 RB Offset	bottom	10 mm	0.918	0.908	1.01	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Во	dy			
	Spatial Peak					1.6 W/kg (mW/g)							
		Uncon	trolled Exposure/General Populati	on				a	veraged o	ver 1 gram			

 Table 13-1

 Body SAR Measurement Variability Results

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager				
	Document S/N:	Test Dates:	DUT Type:		Page 73 of 79				
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset						
© 201	◎ 2019 PCTEST Engineering Laboratory, Inc.								

02/15/2019 © 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

			Phablet	SAR Meas	urem	ent v	ariadi	lity Res	suits					
	PHABLET VARIABILITY RESULTS													
Band	FREQUE	NCY	Mode	Service	Data Rate (Mbps)	Side	Spacing	Measured SAR (10g)	1st Repeated SAR (10g)	Ratio	2nd Repeated SAR (10g)	Ratio	3rd Repeated SAR (10g)	Ratio
	MHz	Ch.			、 ,			(W/kg)	(W/kg)		(W/kg)		(W/kg)	
2300	2310.00	27710	LTE Band 30, 10 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	bottom	0 mm	2.160	2.160	1.00	N/A	N/A	N/A	N/A
5250	5280.00	56	802.11a, 20 MHz Bandwidth	OFDM	6	back	0 mm	2.020	1.900	1.06	N/A	N/A	N/A	N/A
			ANSI / IEEE C95.1 1992 - SAFETY I	IMIT			Phablet							
	Spatial Peak					4.0 W/kg (mW/g)								
		U	ncontrolled Exposure/General Pop	oulation					ave	eraged ov	er 10 grams			

Table 13-2 Phablet SAP Me t Variability Results

Measurement Uncertainty 13.2

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 74 of 79	
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M	

02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

EQUIPMENT LIST 14

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Numb
Agilent	85033E	3.5mm Standard Calibration Kit	8/13/2018	Annual	8/13/2019	MY5340235
Agilent	8753E	(30kHz-6GHz) Network Analyzer	9/28/2018	Annual	9/28/2019	JP 3802018
Agilent	8753ES	S-Parameter Network Analyzer	7/30/2018	Annual	7/30/2019	MY4000067
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annual	8/30/2019	MY4000384
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US3917011
Agilent	8753ES	S-Parameter Network Analyzer	3/11/2019	Annual	3/11/2020	US3917012
Agilent	E4438C	ESG Vector Signal Generator	3/8/2019	Biennial	3/8/2021	MY4208238
Agilent	E4440A	PSA Series Spectrum Analyzer	11/14/2018	Annual	11/14/2019	MY461862
Agilent	E5515C	Wireless Communications Test Set	2/28/2018	Biennial	2/28/2020	GB4145027
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB4445027
Agilent	N5182A	MXG Vector Signal Generator	11/28/2018	Annual	11/28/2019	MY4742060
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343971
Anritsu	MA24106A	USB Power Sensor	7/17/2018	Annual	7/17/2019	1827527
Anritsu	MA24106A	USB Power Sensor	6/5/2018	Annual	6/5/2019	1231535
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1126066
Anritsu	MA2411B MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	120000
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
	ML2495A	Power Meter	10/21/2018		10/21/2019	1138001
Anritsu				Annual		
Anritsu	MT8821C	Radio Communication Analyzer	11/6/2018	Annual	11/6/2019	620090119
Anritsu	MT8821C	Radio Communication Analyzer	7/26/2018	Annual	7/26/2019	620114441
Anritsu	MT8821C	Radio Communication Analyzer	3/6/2019	Annual	3/6/2020	620138179
Anritsu	MT8862A	Wireless Connectivity Test Set	7/3/2018	Annual	7/3/2019	626178239
Control Company	4040	Therm./ Clock/ Humidity Monitor	1/8/2019	Annual	1/8/2020	16047390
Control Company	4040	Therm./ Clock/ Humidity Monitor	1/8/2019	Annual	1/8/2020	16057441
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	17032733
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	17033012
eysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY5340118
eysight Technologies	AT/N6705B	DC Power Supply	N/A	N/A	N/A	MY530013
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
				,		
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R89795009
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mitutoyo	CD-6"CSX	Digital Caliper	4/18/2018	Biennial	4/18/2020	13264165
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	NC-100	Torque Wrench	11/1/2017	Biennial	11/1/2019	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
Pasternack	NC-100	Torque Wrench	11/7/2017	Biennial	11/7/2019	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	10/30/2018	Annual	10/30/2019	164948
Rohde& Schwarz	CMW500	Wideband Radio Communication Tester	7/5/2018	Annual	7/5/2019	145663
Rohde& Schwarz	CMW500	Wideband Radio Communication Tester	7/6/2018	Annual	7/6/2019	151849
	NC-100		5/10/2018	Biennial	5/10/2020	21053
Seekonk		Torque Wrench (8" lb)				
Seekonk	NC-100	Torque Wrench (8" lb)	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	D1750V2	1750 MHz SAR Dipole	5/9/2017	Biennial	5/9/2019	1148
SPEAG	D1750V2	1750 MHz SAR Dipole	10/22/2018	Annual	10/22/2019	1150
SPEAG	D1765V2	1765 MHz SAR Dipole	5/23/2018	Annual	5/23/2019	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	10/23/2018	Annual	10/23/2019	5d080
SPEAG	D1900V2	1900 MHz SAR Dipole	10/23/2018	Annual	10/23/2019	5d149
SPEAG	D2300V2	2300 MHz SAR Dipole	11/8/2017	Biennial	11/8/2019	1064
SPEAG	D2300V2	2300 MHz SAR Dipole	8/13/2018	Annual	8/13/2019	1073
SPEAG	D2450V2	2450 MHz SAR Dipole	8/17/2017	Biennial	8/17/2019	719
SPEAG	D2450V2	2450 MHz SAR Dipole	8/16/2018	Annual	8/16/2019	981
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/16/2018	Biennial	1/16/2020	1057
SPEAG	D5GHzV2 D5GHzV2	5 GHz SAR Dipole	9/21/2016	Triennial	9/21/2019	1057
SPEAG	D5GH2V2 D750V3					1003
		750 MHz SAR Dipole	1/15/2018	Biennial	1/15/2020	
SPEAG	D750V3	750 MHz SAR Dipole	10/19/2018	Annual	10/19/2019	1161
SPEAG	D835V2	835 MHz SAR Dipole	1/22/2019	Annual	1/22/2020	4d132
SPEAG	D835V2	835 MHz SAR Dipole	10/19/2018	Annual	10/19/2019	4d133
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/11/2018	Annual	4/11/2019	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/22/2018	Annual	8/22/2019	1450
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	1430
SPEAG	DAE4					1530
	DV1L4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	1/25/2019	Annual	1/25/2020	3589
SPEAG	EX3DV4	SAR Probe	8/23/2018	Annual	8/23/2019	7308
SPEAG	EX3DV4	SAR Probe	4/18/2018	Annual	4/18/2019	7357
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7405
			1, 20/2010	Anniudi	1,20/2013	/**10
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417

Note:

- CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter 1. were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- Each equipment was used solely within its calibration period. 2.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 75 of 79	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset			
© 201	9 PCTEST Engineering Laboratory, Inc.		·		REV 21.3 M	

02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

MEASUREMENT UNCERTAINTIES 15

								Ι.
a	C	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		с _і	c _i	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	8
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	x
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	x
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	x
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	x
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	x
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	N	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	x
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	x
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	x
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	x
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Combined Standard Uncertainty (k=1)		RSS	1	I	I	11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		De	
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 76 of 79	
204	0 DOTECT Engineering Leberatem (Inc.					

REV 21.3 M 02/15/2019 © 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager				
	Document S/N:	Test Dates:	DUT Type:		Page 77 of 79				
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Ū				
© 2019 PCTEST Engineering Laboratory, Inc. RE									

REV 21.3 M 02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for [6] RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:		Dama 70 of 70			
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 78 of 79			
© 2019 PCTEST Engineering Laboratory, Inc. R								

REV 21.3 M 02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, el including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have ar mational copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

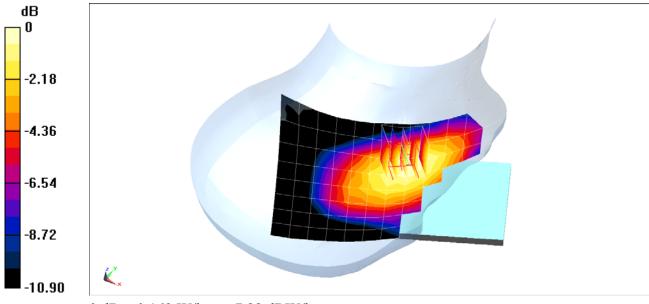
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: ZNFQ720CS		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da
	1M1903280046-01-R1.ZNF	04/01/19 - 05/01/19	Portable Handset		Page 79 of 79
201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M 02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, ncluding photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

APPENDIX A: SAR TEST DATA

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, _GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.891$ S/m; $\varepsilon_r = 39.825$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 04-04-2019; Ambient Temp: 22.7°C; Tissue Temp: 23.4°C

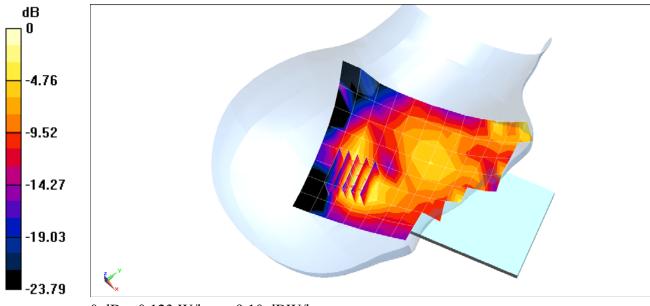
Probe: EX3DV4 - SN7357; ConvF(10.11, 10.11, 10.11) @ 836.6 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2018 Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 2 Tx slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.80 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.178 W/kg SAR(1 g) = 0.137 W/kg

0 dB = 0.163 W/kg = -7.88 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.432$ S/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 04-08-2019; Ambient Temp: 22.3°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7357; ConvF(8.47, 8.47, 8.47) @ 1880 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2018 Phantom: Left For Head SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: GPRS 1900, Right Head, Tilt, Mid.ch, 2 Tx slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.017 V/m; Power Drift = -0.20 dB Peak SAR (extrapolated) = 0.154 W/kg SAR(1 g) = 0.082 W/kg

0 dB = 0.123 W/kg = -9.10 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.891$ S/m; $\varepsilon_r = 39.825$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 04-04-2019; Ambient Temp: 22.7°C; Tissue Temp: 23.4°C

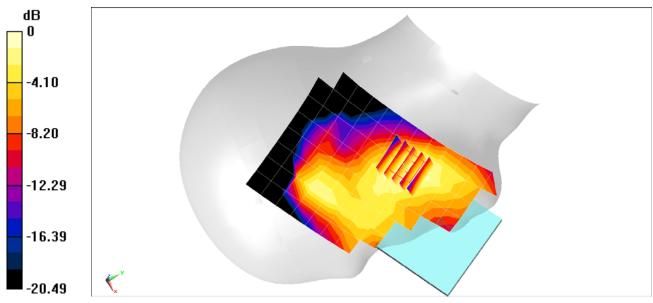
Probe: EX3DV4 - SN7357; ConvF(10.11, 10.11, 10.11) @ 836.6 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2018 Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 850, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.818 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.110 W/kg SAR(1 g) = 0.065 W/kg

0 dB = 0.0917 W/kg = -10.38 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.339$ S/m; $\epsilon_r = 38.69$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 04-10-2019; Ambient Temp: 23.0°C; Tissue Temp: 22.7°C

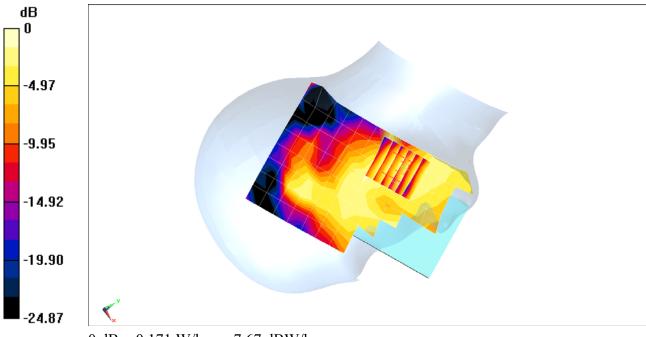
Probe: EX3DV4 - SN7308; ConvF(8.66, 8.66, 8.66) @ 1732.4 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1750, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.38 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.208 W/kg SAR(1 g) = 0.137 W/kg

0 dB = 0.177 W/kg = -7.52 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head Medium parameters used:} \\ f = 1880 \mbox{MHz; } \sigma = 1.432 \mbox{ S/m; } \epsilon_r = 40; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Right Section} \end{array}$

Test Date: 04-08-2019; Ambient Temp: 22.3°C; Tissue Temp: 21.5°C

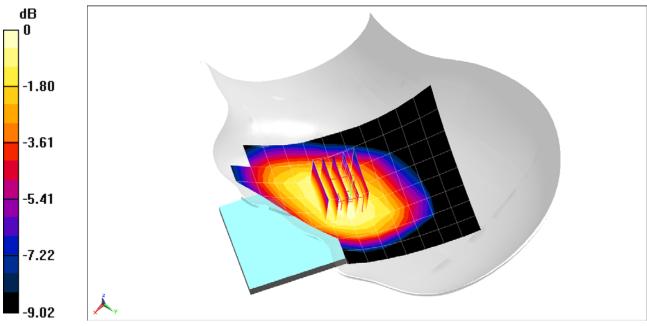
Probe: EX3DV4 - SN7357; ConvF(8.47, 8.47, 8.47) @ 1880 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2018 Phantom: Left For Head SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1900, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.630 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.199 W/kg SAR(1 g) = 0.124 W/kg

0 dB = 0.171 W/kg = -7.67 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03109


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.876$ S/m; $\epsilon_r = 41.795$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 04-08-2019; Ambient Temp: 23.3°C; Tissue Temp: 21.9°C

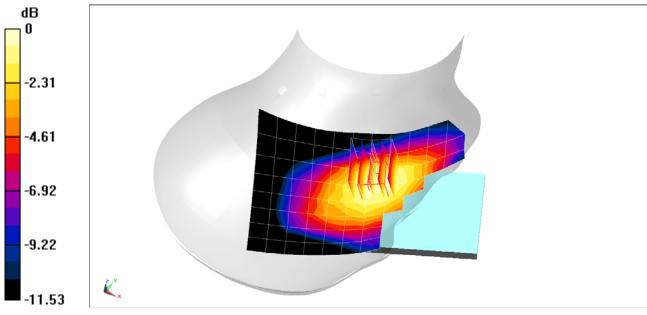
Probe: EX3DV4 - SN3589; ConvF(8.67, 8.67, 8.67) @ 707.5 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 12, Left Head, Cheek, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.91 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.209 W/kg SAR(1 g) = 0.176 W/kg

0 dB = 0.197 W/kg = -7.06 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03109


Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1 Medium: 750 HEAD Medium parameters used (interpolated): f = 793 MHz; $\sigma = 0.906$ S/m; $\epsilon_r = 41.525$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 04-08-2019; Ambient Temp: 23.3°C; Tissue Temp: 21.9°C

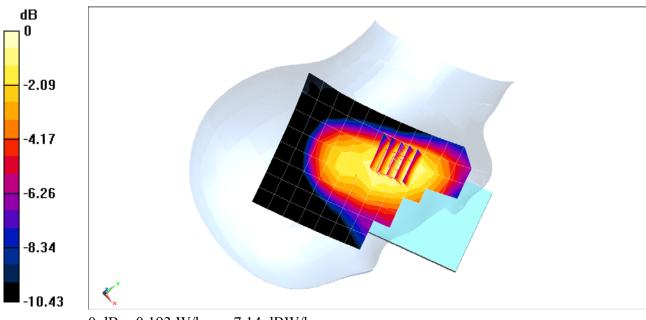
Probe: EX3DV4 - SN3589; ConvF(8.67, 8.67, 8.67) @ 793 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 14, Right Head, Cheek, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.38 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.273 W/kg SAR(1 g) = 0.218 W/kg

0 dB = 0.252 W/kg = -5.99 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03109


Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.917$ S/m; $\varepsilon_r = 42.432$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 04-01-2019; Ambient Temp: 22.4°C; Tissue Temp: 21.3°C

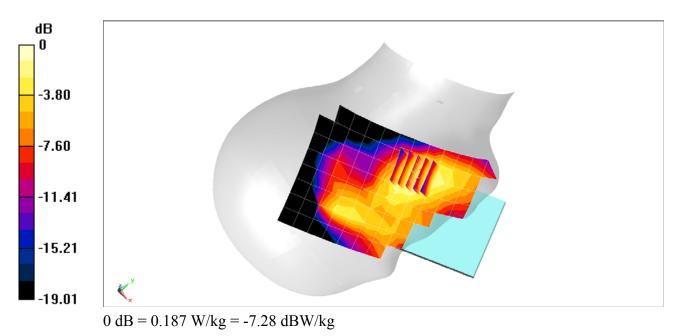
Probe: EX3DV4 - SN7357; ConvF(10.11, 10.11, 10.11) @ 836.5 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2018 Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.06 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.213 W/kg SAR(1 g) = 0.162 W/kg

0 dB = 0.193 W/kg = -7.14 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03109


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): f = 1745 MHz; $\sigma = 1.347$ S/m; $\epsilon_r = 38.669$; $\rho = 1000$ kg/m³ Phantom section: Right Section

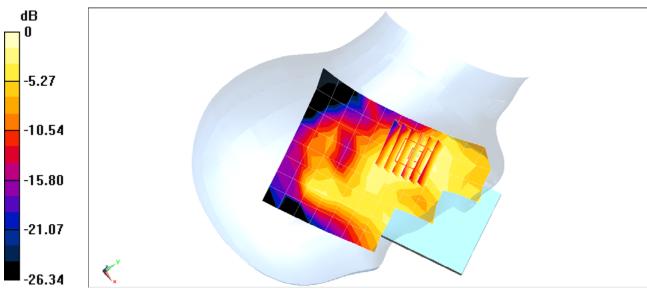
Test Date: 04-10-2019; Ambient Temp: 23.0°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7308; ConvF(8.66, 8.66, 8.66) @ 1745 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 66 (AWS), Right Head, Cheek, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.323 V/m; Power Drift = 0.21 dB Peak SAR (extrapolated) = 0.223 W/kg SAR(1 g) = 0.144 W/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03109


 $\begin{array}{l} \mbox{Communication System: UID 0, _LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head Medium parameters used (interpolated):} \\ f = 1900 \mbox{ MHz; } \sigma = 1.446 \mbox{ S/m; } \epsilon_r = 41.042; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

Test Date: 04-10-2019; Ambient Temp: 23.7°C; Tissue Temp: 22.1°C

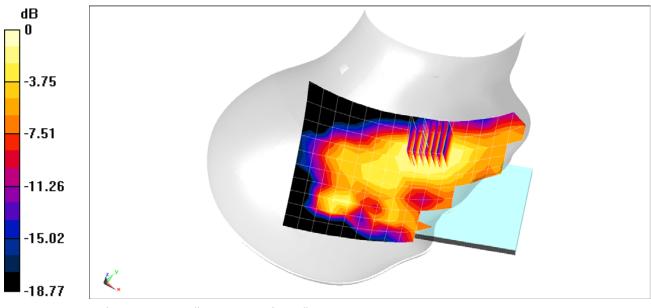
Probe: EX3DV4 - SN7357; ConvF(8.47, 8.47, 8.47) @ 1900 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2018 Phantom: Left For Head SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 2 (PCS), Right Head, Cheek, High.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.499 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.203 W/kg SAR(1 g) = 0.129 W/kg

0 dB = 0.176 W/kg = -7.54 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03109


Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2310 MHz; $\sigma = 1.699$ S/m; $\epsilon_r = 38.042$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 04-03-2019; Ambient Temp: 24.0°C; Tissue Temp: 21.6°C

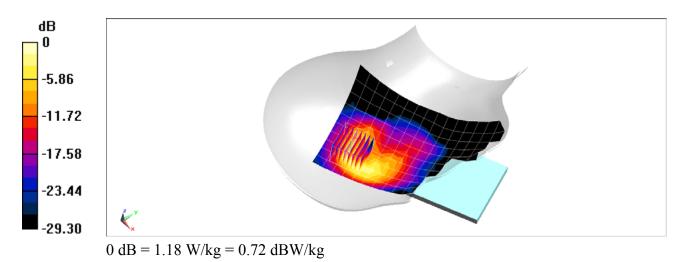
Probe: EX3DV4 - SN3589; ConvF(6.77, 6.77, 6.77) @ 2310 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 30, Right Head, Cheek, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.339 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.143 W/kg SAR(1 g) = 0.077 W/kg

0 dB = 0.114 W/kg = -9.43 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03117


Communication System: UID 0, _IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 HEAD Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.805$ S/m; $\epsilon_r = 37.531$; $\rho = 1000$ kg/m³ Phantom section: Right Section

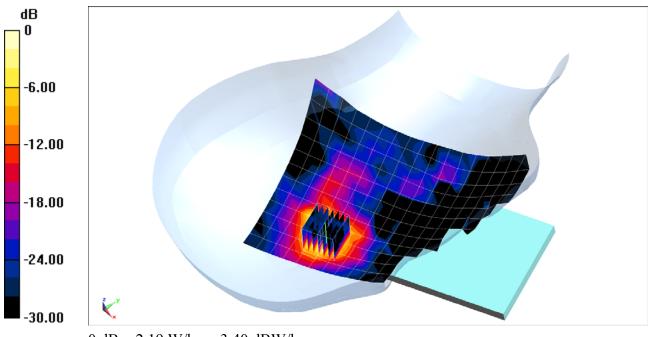
Test Date: 04-09-2019; Ambient Temp: 23.5°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3589; ConvF(6.46, 6.46, 6.46) @ 2437 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 6, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.520 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 0.659 W/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03117


Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: 5GHz Head; Medium parameters used: f = 5785 MHz; $\sigma = 5.212$ S/m; $\epsilon_r = 34.665$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 04-08-2019; Ambient Temp: 20.9°C; Tissue Temp: 20.5°C

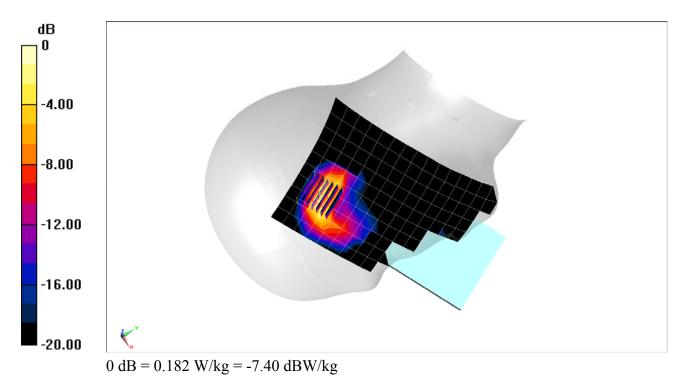
Probe: EX3DV4 - SN7409; ConvF(4.82, 4.82, 4.82) @ 5785 MHz; Calibrated: 6/25/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: IEEE 802.11a, U-NII-3, 20 MHz Bandwidth, Right Head, Cheek, Ch 157, 6 Mbps

Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 2.939 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 3.98 W/kg SAR(1 g) = 0.755 W/kg

0 dB = 2.19 W/kg = 3.40 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03117


Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.294 Medium: 2450 Head Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.808$ S/m; $\epsilon_r = 37.522$; $\rho = 1000$ kg/m³ Phantom section: Right Section

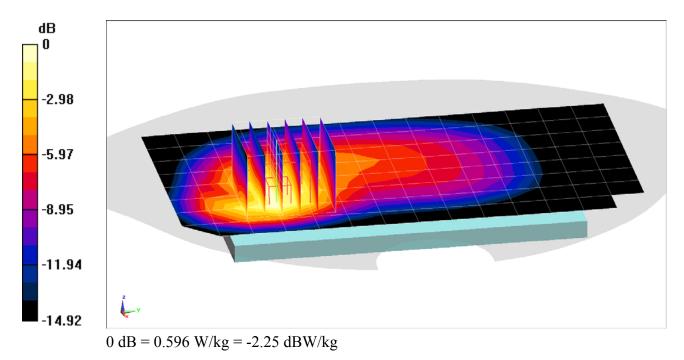
Test Date: 04-09-2019; Ambient Temp: 23.5°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3589; ConvF(6.46, 6.46, 6.46) @ 2441 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: Bluetooth, Right Head, Tilt, Ch 39, 1 Mbps

Area Scan (11x19x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.980 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.247 W/kg SAR(1 g) = 0.100 W/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.989 \text{ S/m}$; $\varepsilon_r = 54.471$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

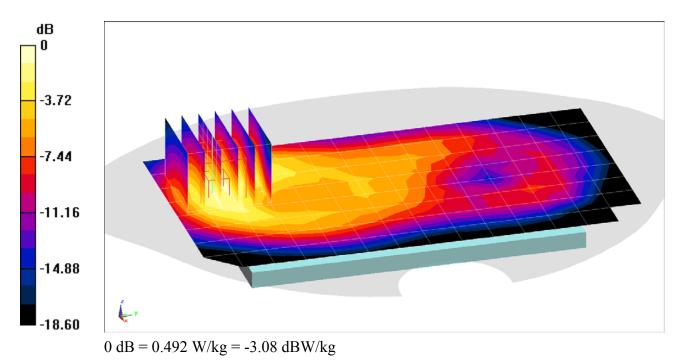
Test Date: 04-16-2019; Ambient Temp: 24.2°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 836.6 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.15 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.715 W/kg SAR(1 g) = 0.406 W/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.546$ S/m; $\epsilon_r = 52.196$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

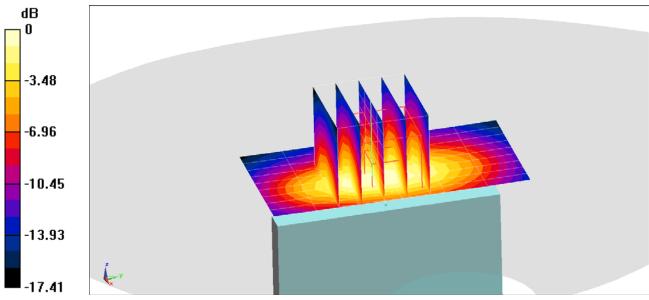
Test Date: 04-03-2019; Ambient Temp: 22.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1880 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front 30 degrees; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.15 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.587 W/kg SAR(1 g) = 0.346 W/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.546$ S/m; $\epsilon_r = 52.196$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-03-2019; Ambient Temp: 22.2°C; Tissue Temp: 22.5°C

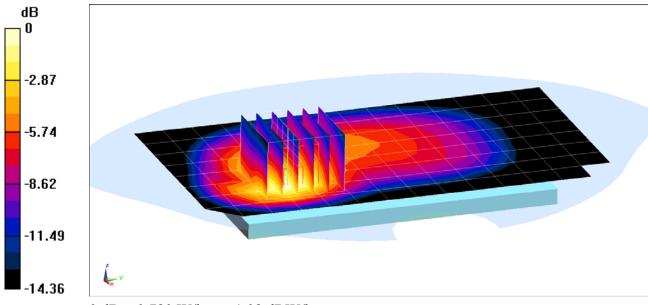
Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1880 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: GPRS 1900, Body SAR, Bottom Edge, Mid.ch, 2 Tx Slots

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.31 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.56 W/kg SAR(1 g) = 0.897 W/kg

0 dB = 1.33 W/kg = 1.24 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \sigma = 0.982 \text{ S/m}; \epsilon_r = 54.219; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-05-2019; Ambient Temp: 22.0°C; Tissue Temp: 21.8°C

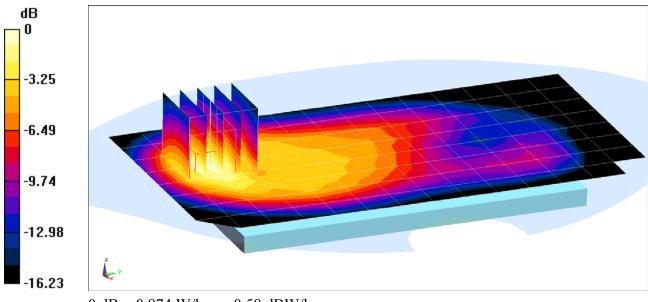
Probe: EX3DV4 - SN7357; ConvF(10.17, 10.17, 10.17) @ 836.6 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2018 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 850, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.31 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.927 W/kg SAR(1 g) = 0.543 W/kg

0 dB = 0.780 W/kg = -1.08 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS , Frequency: 1752.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1752.6 \mbox{ MHz; } \sigma = 1.542 \mbox{ S/m; } \epsilon_r = 51.031; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 04-05-2019; Ambient Temp: 22.3°C; Tissue Temp: 19.7°C

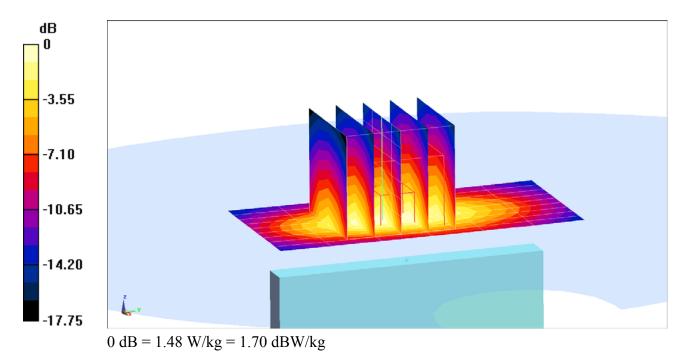
Probe: EX3DV4 - SN7488; ConvF(8.68, 8.68, 8.68) @ 1752.6 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1750, Body SAR, Back side, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.72 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.642 W/kg

0 dB = 0.874 W/kg = -0.58 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, _UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.542$ S/m; $\varepsilon_r = 51.031$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

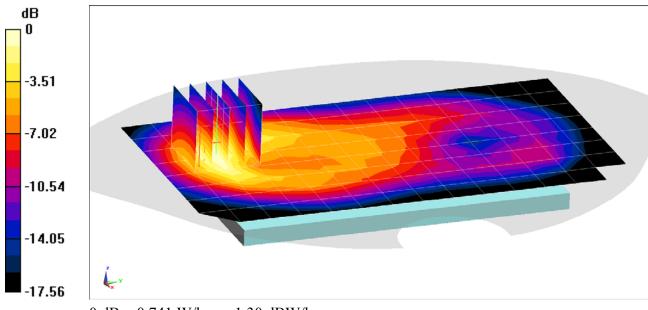
Test Date: 04-05-2019; Ambient Temp: 22.3°C; Tissue Temp: 19.7°C

Probe: EX3DV4 - SN7488; ConvF(8.68, 8.68, 8.68) @ 1752.6 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1750, Body SAR, Bottom Edge, High.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.57 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.76 W/kg SAR(1 g) = 0.988 W/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.553$ S/m; $\epsilon_r = 52.55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-25-2019; Ambient Temp: 23.4°C; Tissue Temp: 22.7°C

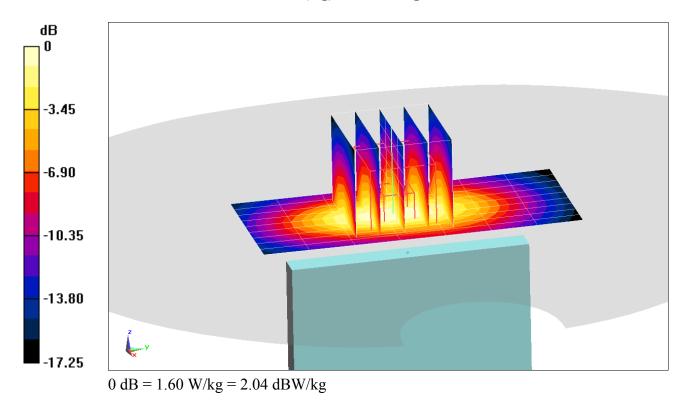
Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1880 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.89 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.882 W/kg SAR(1 g) = 0.510 W/kg

0 dB = 0.741 W/kg = -1.30 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.553$ S/m; $\epsilon_r = 52.55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

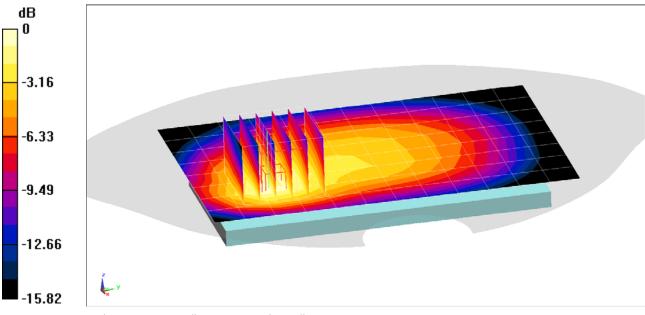
Test Date: 04-25-2019; Ambient Temp: 23.4°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1880 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1900, Body SAR, Bottom Edge, Mid.ch

Area Scan (10x8x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.79 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.87 W/kg SAR(1 g) = 1.07 W/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03109


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750MHz Body Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.942$ S/m; $\varepsilon_r = 53.963$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-03-2019; Ambient Temp: 21.7°C; Tissue Temp: 22.3°C

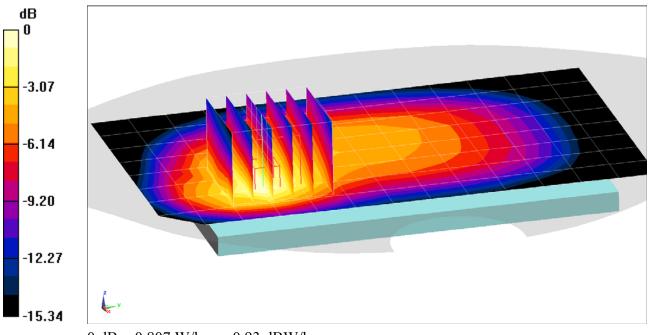
Probe: EX3DV4 - SN7308; ConvF(10.38, 10.38, 10.38) @ 707.5 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.36 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.743 W/kg SAR(1 g) = 0.450 W/kg

0 dB = 0.635 W/kg = -1.97 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03109


Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1 Medium: 750MHz Body Medium parameters used (interpolated): f = 793 MHz; $\sigma = 0.974$ S/m; $\epsilon_r = 53.757$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-03-2019; Ambient Temp: 21.7°C; Tissue Temp: 22.3°C

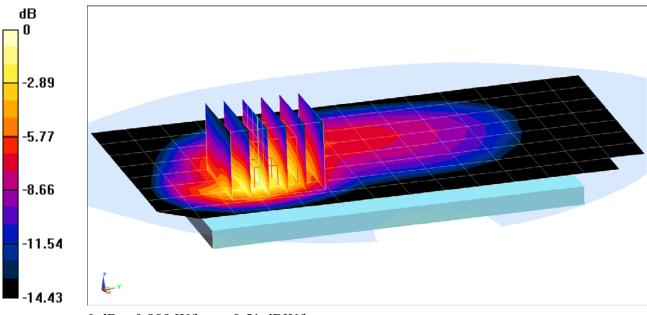
Probe: EX3DV4 - SN7308; ConvF(10.38, 10.38, 10.38) @ 793 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 14, Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.67 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.958 W/kg SAR(1 g) = 0.557 W/kg

0 dB = 0.807 W/kg = -0.93 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03083


Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.982$ S/m; $\epsilon_r = 54.22$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-05-2019; Ambient Temp: 22.0°C; Tissue Temp: 21.8°C

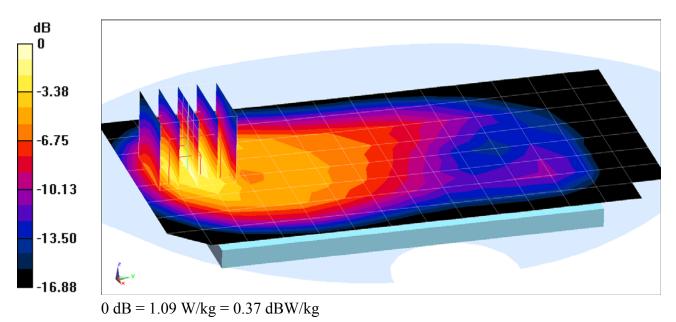
Probe: EX3DV4 - SN7357; ConvF(10.17, 10.17, 10.17) @ 836.5 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2018 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.84 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 1.05 W/kg SAR(1 g) = 0.605 W/kg

0 dB = 0.889 W/kg = -0.51 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03091


Communication System: UID 0, LTE Band 66 (AWS), Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): f = 1770 MHz; $\sigma = 1.505$ S/m; $\epsilon_r = 51.02$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

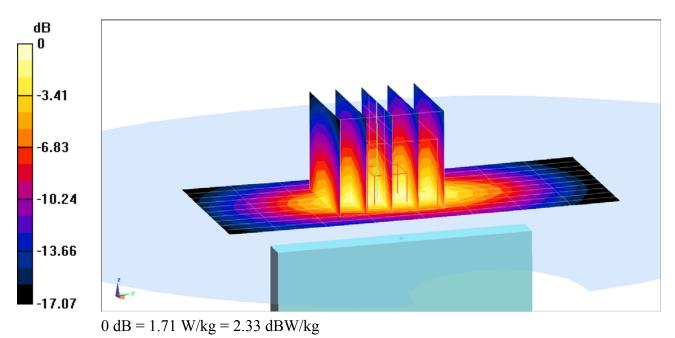
Test Date: 04-08-2019; Ambient Temp: 20.4°C; Tissue Temp: 19.8°C

Probe: EX3DV4 - SN7488; ConvF(8.68, 8.68, 8.68) @ 1770 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 66 (AWS), Body SAR, Back side, High.ch 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.35 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.26 W/kg SAR(1 g) = 0.729 W/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03091


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 66 (AWS), Frequency: 1720 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1720 \mbox{ MHz; } \sigma = 1.449 \mbox{ S/m; } \epsilon_r = 51.222; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

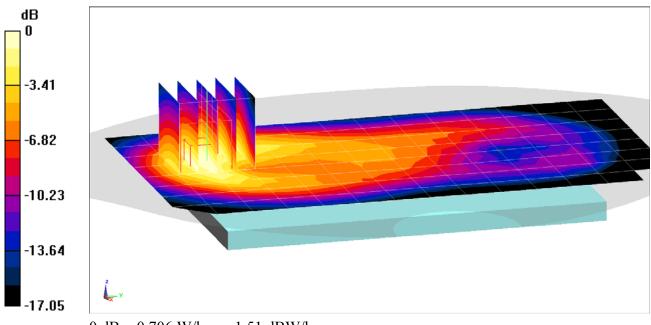
Test Date: 04-08-2019; Ambient Temp: 20.4°C; Tissue Temp: 19.8°C

Probe: EX3DV4 - SN7488; ConvF(8.68, 8.68, 8.68) @ 1720 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 66 (AWS), Body SAR, Bottom Edge, Low.ch 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.66 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 2.03 W/kg SAR(1 g) = 1.15 W/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03091


Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.569$ S/m; $\epsilon_r = 52.137$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-03-2019; Ambient Temp: 22.2°C; Tissue Temp: 22.5°C

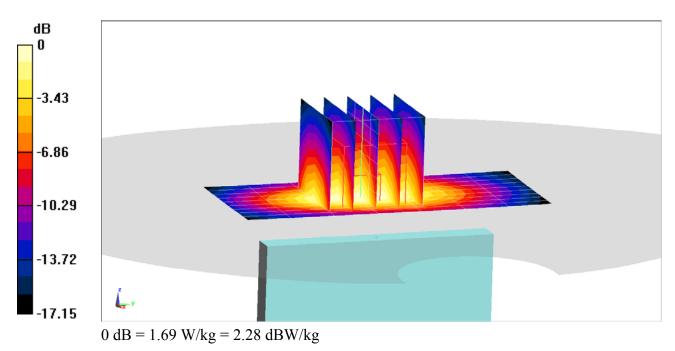
Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1900 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 2 (PCS), Body SAR, Back side, High.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.00 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.965 W/kg SAR(1 g) = 0.559 W/kg

0 dB = 0.706 W/kg = -1.51 dBW/kg

DUT: ZNFQ720CS; Type: Portable Handset; Serial: 03091


Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1860 MHz; $\sigma = 1.536$ S/m; $\epsilon_r = 52.498$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-01-2019; Ambient Temp: 23.2°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1860 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 2 (PCS), Body SAR, Bottom Edge, Low.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (10x8x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.13 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.99 W/kg SAR(1 g) = 1.14 W/kg

