FCC RF Test Report

APPLICANT : Wistron Corporation EQUIPMENT : Notebook Computer

BRAND NAME : Lenovo MODEL NAME : TP00076C

FCC ID : PU5-TP00076CUC

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION: (DSS) Spread Spectrum Transmitter

Equipment: Sierra Wireless EM7455 and Intel 8265NGW tested inside of Lenovo Notebook Computer

This is a partial report which is included the conducted emission and radiated emission test items. The product was received on Nov. 03, 2016 and testing was completed on Nov. 26, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 1 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01
Report Template No.: BU5-FR15CBT Version 1.1

1190

TABLE OF CONTENTS

RE	REVISION HISTORY				
SU	MMA	RY OF TEST RESULT	4		
1	GEN	GENERAL DESCRIPTION			
	1.1 1.2 1.3 1.4	Applicant	5 5		
	1.5 1.6 1.7	Modification of EUT Testing Location Applicable Standards	6		
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8		
	2.12.22.32.42.5	Descriptions of Test Mode Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup	8 9		
3	TES	T RESULT	11		
	3.1 3.2 3.3	Radiated Band Edges and Spurious Emission Measurement	17		
4	LIST	OF MEASURING EQUIPMENT	22		
5	UNC	CERTAINTY OF EVALUATION	23		
ΑP	PEND	DIX A. RADIATED SPURIOUS EMISSION DIX B. RADIATED SPURIOUS EMISSION PLOTS DIX C. SETUP PHOTOGRAPHS			

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 2 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR6N0303-01A	Rev. 01	Initial issue of report	Dec. 19, 2016

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 3 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
		Radiated Band Edges			Under limit
3.1	15.247(d)	and Radiated Spurious	15.209(a) & 15.247(d)	Pass	12.08 dB at
		Emission			197.130 MHz
		AC Conducted			Under limit
3.2	15.207		15.207(a)	Pass	17.07 dB at
		Emission			0.170 MHz
3.3	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 4 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

1 General Description

1.1 Applicant

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.2 Manufacturer

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Notebook Computer			
Brand Name	Lenovo			
Model Name	TP00076C			
FCC ID	PU5-TP00076CUC			
	Brand Name: Sierra			
Integrated WWAN Module	Model Name: EM7455			
	FCC ID: N7NEM7455			
	Brand Name: Intel			
Integrated WLAN Module	Model Name: 8265NGW			
	FCC ID: PD98265NG			
	WLAN 11a/b/g/n HT20/HT40			
EUT supports Radios application	WLAN 11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			
EUT Stage	Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 5 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
	Bluetooth BR (1Mbps) : GFSK		
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK		
	Bluetooth EDR (3Mbps) : 8-DPSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.
rest Site Location	TEL: +886-3-327-3456
	FAX: +886-3-328-4978
Took Cito No	Sporton Site No.
Test Site No.	CO01-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,
Test Site Location	Taoyuan City, Taiwan (R.O.C.)
rest site Location	TEL: +886-3-327-0868
	FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
rest Site No.	03CH10-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 6 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 7 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels, and different data rates were conducted to determine the final configuration (X plane as worst plane) from all possible combinations, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

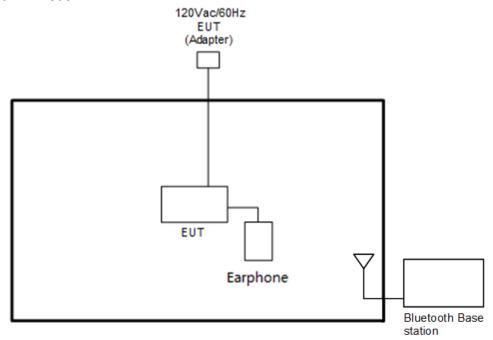
2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

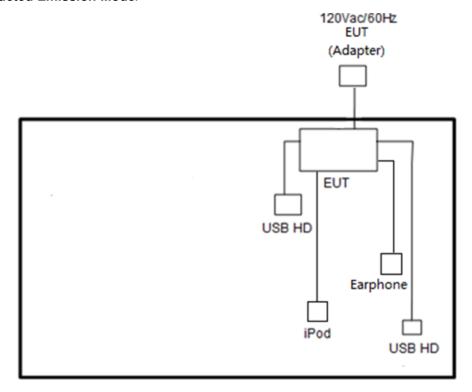
	Summary table of Test Cases					
	Bluetooth BR 1Mbps GFSK					
Radiated	Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz					
AC Conducted Emission Mode 1: Bluetooth Link + TF + TC Mode 2: WLAN Link + TF + TC						

Remark:

- 1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and the conducted spurious emissions and conducted band edge measurement for each data rate are no worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.
- 2. The worst case of conducted emission is mode 1; only the test data of it was reported.
- 3. All the radiated test cases were performance with Antenna 3.
- 4. TF stands for Test Function, and consists of MPEG4 and Camera.
- TC stands for Test Configuration, and consists of Earphone, USB (HD and iPod), Adapter, SD Card, and DP Cable.


SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 8 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01


Report No.: FR6N0303-01A

2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 9 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01
Report Template No.: BU5-FR15CBT Version 1.1

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	iPod	Apple	A1285	DoC	Shielded, 1.0m	N/A
3.	Earphone	lenovo	TS300-01MS21-8S	FCC DoC	Unshielded,1.2m	N/A
4.	HD USB	lenovo	F310S	FCC DoC	Shielded, 0.5m	N/A
5.	HD USB	SONY	HD-E1	FCC DoC	Shielded, 0.5m	N/A
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the RF utility, "DRTU" was installed in EUT which was programmed in order to make the EUT get into the engineering modes to contact with Bluetooth base station for continuous transmitting and receiving signals.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 10 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

3 Test Result

3.1 Radiated Band Edges and Spurious Emission Measurement

3.1.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 11 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

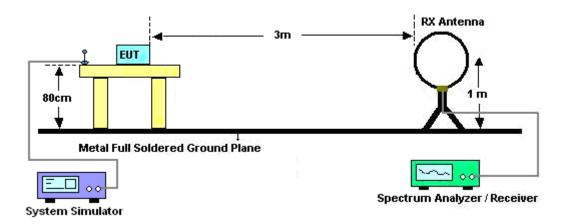
3.1.3 Test Procedures

- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 1. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 2. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds

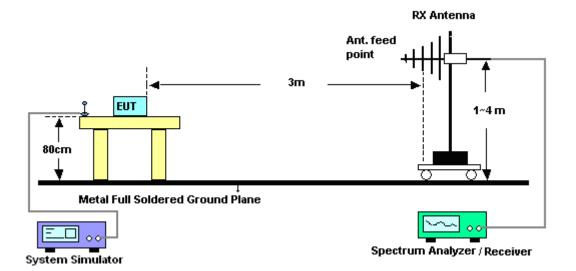
On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)


5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

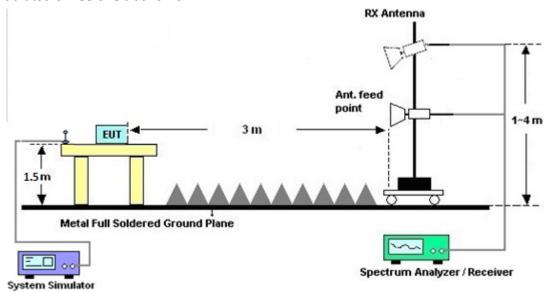
Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.


Report No.: FR6N0303-01A

3.1.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

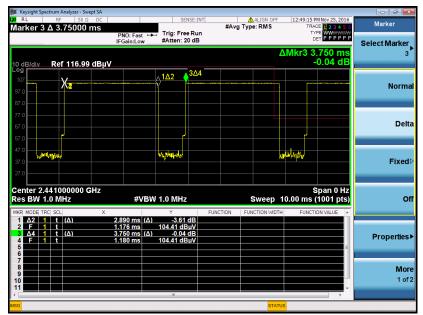


TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 13 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

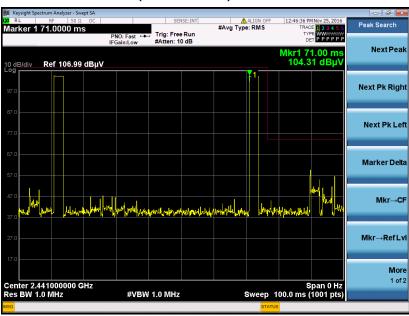
Report No.: FR6N0303-01A

For radiated emissions above 1GHz

3.1.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)


The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 14 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01


Report No.: FR6N0303-01A

3.1.6 Duty cycle correction factor for average measurement

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.89 / 100 = 5.78 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 15 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

 $2.89 \text{ ms } \times 20 \text{ channels} = 57.8 \text{ ms}$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.78 \text{ ms}/100\text{ms}) = -24.76 \text{ dB}$

3.1.7 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.1.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A and B.

Page Number : 16 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

3.2 AC Conducted Emission Measurement

3.2.1 Limit of AC Conducted Emission

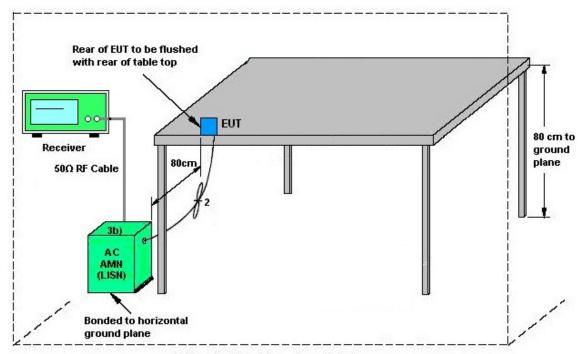
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Fraguency of amission (MHz)	Conducted limit (dBμV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.2.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 17 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

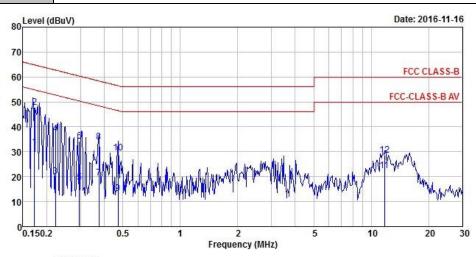
3.2.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network


TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 18 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

3.2.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	22~25 ℃
Test Engineer :	James Chiu	Relative Humidity :	50~54%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Eupotion Type I	Plustooth Link , TE , TC		

Function Type: |Bluetooth Link + TF + TC

Site : CO01-HY

Condition: FCC CLASS-B LISN 2001/009-106-A LINE EUT : NB (Convertible) (Sierra EM7455) FCC

Model : ThinkPad X1 Yoga 2nd(Raven 2

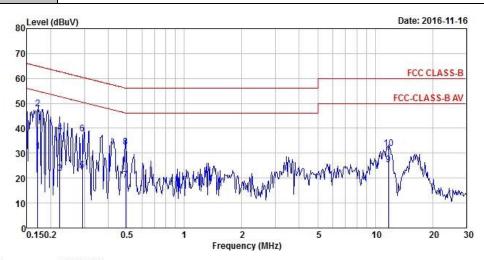
Power : 120V/60Hz Memo : Mode 1-L

Memo : BT Link + TF + TC

Project : 6N0303-01

	Freq	Level	Limit	Limit	Level	Factor	Loss	Remark
£	MHz	dBuV	dB	dBuV	dBuV	dB	dB	3
1	0.17	31.89	-22.96	54.85	31.63	0.16	0.10	Average
2 MAX	0.17	47.78	-17.07	64.85	47.52	0.16	0.10	QP
3	0.22	20.01	-32.74	52.75	19.77	0.14	0.10	Average
4	0.22	37.14	-25.61	62.75	36.90	0.14	0.10	QP
5	0.30	17.68	-32.65	50.33	17.43	0.15	0.10	Average
6	0.30	34.17	-26.16	60.33	33.92	0.15	0.10	QP
7	0.38	19.46	-28.93	48.39	19.19	0.17	0.10	Average
7 8 9	0.38	34.06	-24.33	58.39	33.79	0.17	0.10	QP
9	0.47	13.23	-33.26	46.49	12.96	0.17	0.10	Average
10	0.47	29.46	-27.03	56.49	29.19	0.17	0.10	QP
11	11.74	22.44	-27.56	50.00	21.90	0.44	0.10	Average
12	11.74	28.52	-31.48	60.00	27.98	0.44	0.10	QP

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 19 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01


Report No.: FR6N0303-01A

Report No.: FR6N0303-01A

Test Mode:	Mode 1	Temperature :	22~25 ℃
Test Engineer :	James Chiu	Relative Humidity :	50~54%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral

Function Type: Bluetooth Link + TF + TC

: CO01-HY

Condition: FCC CLASS-B LISN 2001/009-106-A NEUTRAL : NB (Convertible) (Sierra EM7455) FCC

: ThinkPad X1 Yoga 2nd(Raven 2 Model

Power : 120V/60Hz Memo

: Mode 1-N : BT Link + TF + TC Memo

Project : 6N0303-01

		0ver	Limit	Read	LISN	Cable	
Freq	Level	Limit	Line	Level	Factor	Loss	Remark
MHz	dBuV	dB	dBuV	dBuV	dB	dB	3
0.17	30.71	-24.20	54.91	30.53	0.08	0.10	Average
0.17	47.70	-17.21	64.91	47.52	0.08	0.10	QP
0.22	21.85	-30.85	52.70	21.62	0.13	0.10	Average
0.22	37.96	-24.74	62.70	37.73	0.13	0.10	QP
0.29	22.99	-27.46	50.45	22.75	0.14	0.10	Average
0.29	37.71	-22.74	60.45	37.47	0.14	0.10	QP
0.49	19.30	-26.80	46.10	19.05	0.15	0.10	Average
0.49	32.39	-23.71	56.10	32.14	0.15	0.10	QP
11.75	25.51	-24.49	50.00	25.01	0.40	0.10	Average
11.75	31.76	-28.24	60.00	31.26	0.40	0.10	QP
	MHz 0.17 0.17 0.22 0.22 0.29 0.29 0.49 0.49 11.75	MHz dBuV 0.17 30.71 0.17 47.70 0.22 21.85 0.22 37.96 0.29 22.99 0.29 37.71 0.49 19.30 0.49 32.39 11.75 25.51	MHz dBuV dB 0.17 30.71 -24.20 0.17 47.70 -17.21 0.22 21.85 -30.85 0.22 37.96 -24.74 0.29 22.99 -27.46 0.29 37.71 -22.74 0.49 19.30 -26.80 0.49 32.39 -23.71 11.75 25.51 -24.49	MHz dBuV dB dBuV 0.17 30.71 -24.20 54.91 0.17 47.70 -17.21 64.91 0.22 21.85 -30.85 52.70 0.22 37.96 -24.74 62.70 0.29 22.99 -27.46 50.45 0.29 37.71 -22.74 60.45 0.49 19.30 -26.80 46.10 0.49 32.39 -23.71 56.10 11.75 25.51 -24.49 50.00	MHz dBuV dB dBuV dBuV 0.17 30.71 -24.20 54.91 30.53 0.17 47.70 -17.21 64.91 47.52 0.22 21.85 -30.85 52.70 21.62 0.22 37.96 -24.74 62.70 37.73 0.29 22.99 -27.46 50.45 22.75 0.29 37.71 -22.74 60.45 37.47 0.49 19.30 -26.80 46.10 19.05 0.49 32.39 -23.71 56.10 32.14 11.75 25.51 -24.49 50.00 25.01	MHz dBuV dB dBuV dBuV dB dBuV dBuV dB dBuV dBuV dB dBuV dBuV dB dB </td <td>MHz dBuV dB dBuV dBuV dB dB</td>	MHz dBuV dB dBuV dBuV dB dB

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 20 of 23 Report Issued Date: Dec. 19, 2016 Report Version : Rev. 01

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 21 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Nov. 16, 2016	N/A	Conduction (CO01-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Nov. 16, 2016	Aug. 29, 2017	Conduction (CO01-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Nov. 16, 2016	Dec. 01, 2016	Conduction (CO01-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Nov. 25, 2016 ~ Nov. 26, 2016	Sep. 01, 2017	Radiation (03CH10-HY)
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Oct. 26, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Oct. 25, 2017	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35413&02	30MHz~1GHz	Jan. 13, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Jan. 12, 2017	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1325	1GHz ~ 18GHz	Sep. 30, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Sep. 29, 2017	Radiation (03CH10-HY)
Preamplifier	Keysight	83017A	MY53270078	1GHz~26.5GHz	Oct. 26, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Oct. 25, 2017	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz ~ 44GHz	Oct. 17, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Oct. 16, 2017	Radiation (03CH10-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Nov. 25, 2016 ~ Nov. 26, 2016	N/A	Radiation (03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0~360 Degree	N/A	Nov. 25, 2016 ~ Nov. 26, 2016	N/A	Radiation (03CH10-HY)
Preamplifier	MITEQ	TTA0204	1872107	2GHz~40GHz	Feb. 15, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Feb. 14, 2017	Radiation (03CH10-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz ~ 40GHz	Jun. 14, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Jun. 13, 2017	Radiation (03CH10-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA91705 84	18GHz- 40GHz	Nov. 08, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Nov. 07, 2017	Radiation (03CH10-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290053	20Hz to 26.5GHz	Jan. 20, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Jan. 19, 2017	Radiation (03CH10-HY)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 22 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.2

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	F.C.
of 95% (U = 2Uc(y))	5.6

<u>Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.9
of 95% (U = 2Uc(y))	5.9

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	5.2

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 23 of 23
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01A

Appendix A. Radiated Spurious Emission

Took Fundance .	Tsung Lee, Stan Hsieh, and Kyle Chuang	Temperature :	21~23°C
Test Engineer :		Relative Humidity :	45~49%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2322.18	47.99	-26.01	74	48.91	27.05	5.27	33.24	113	212	Р	Н
		2322.18	23.23	-30.77	54	-	-	-	-	-	-	Α	Н
	*	2402	102.7	-	-	103.29	27.23	5.39	33.21	113	212	Р	Н
	*	2402	77.94	-	-	-	-	-	-	-	-	Α	Н
ВТ													Н
CH00 2402MHz													Н
		2322.18	49.13	-24.87	74	50.05	27.05	5.27	33.24	351	156	Р	V
2402111112		2322.18	24.37	-29.63	54	-	-	-	-	-	-	Α	٧
	*	2402	103.69	-	-	104.28	27.23	5.39	33.21	351	156	Р	V
	*	2402	78.93	-	-	-	-	-	-	-	-	Α	V
													٧
													٧
		2361.1	48.8	-25.2	74	49.56	27.14	5.33	33.23	121	210	Р	Н
		2361.1	24.04	-29.96	54	-	-	-	-	-	-	Α	Н
	*	2441	103.68	-	-	104.07	27.37	5.42	33.18	121	210	Р	Н
	*	2441	78.92	-	-	-	-	-	-	-	-	Α	Н
ВТ		2496.57	40.92	-33.08	74	41.12	27.5	5.46	33.16	121	210	Р	Н
CH 39		2496.57	16.16	-37.84	54	-	-	-	-	-	-	Α	Н
2441MHz		2361.1	50.37	-23.63	74	51.13	27.14	5.33	33.23	344	152	Р	٧
277 I IVII IZ		2361.1	25.61	-28.39	54	-	-	-	-	-	-	Α	٧
	*	2441	104.09	-	-	104.48	27.37	5.42	33.18	344	152	Р	٧
	*	2441	79.33	-	-	-	-	-	-	-	-	Α	٧
		2489.57	41.4	-32.6	74	41.61	27.5	5.46	33.17	344	152	Р	٧
		2489.57	16.64	-37.36	54	-	-	-	-	-	-	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

SPORTON LAB. FCC RF Test Report

	*	2480	103.22	-	-	103.49	27.46	5.44	33.17	111	210	Р	Н
	*	2480	78.46	-	-	-	-	-	-	-	-	Α	Н
		2490.04	57.57	-16.43	74	57.78	27.5	5.46	33.17	111	210	Р	Н
		2490.04	32.81	-21.19	54	-	-	-	-	-	-	Α	Н
D.T.													Н
BT CH 78 2480MHz													Н
	*	2480	104.3	-	-	104.57	27.46	5.44	33.17	290	156	Р	V
2400WII 12	*	2480	79.54	-	-	-	-	-	-	-	-	Α	٧
		2490.04	58.91	-15.09	74	59.12	27.5	5.46	33.17	290	156	Р	٧
		2490.04	34.15	-19.85	54	-	-	-	-	-	-	Α	٧
													٧
													V
Remark	1. No	o other spurious	s found.										
		I results are PA		Peak and	Average lir	nit line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V
		4804	35.07	-38.93	74	47.25	31.42	7.58	51.18	100	0	Р	Н
		4804	10.31	-43.69	54	-	-	-	-	1	-	Α	Н
													Н
BT													Н
CH 00		4804	34.49	-39.51	74	46.67	31.42	7.58	51.18	100	0	Р	٧
2402MHz		4804	9.73	-44.27	54	-	-	-	-	1	-	Α	٧
													٧
													٧
		4882	35.49	-38.51	74	47.26	31.56	7.82	51.15	100	0	Р	Н
		4882	10.73	-43.27	54	-	-	-	-	-	-	Α	Н
		7323	44.94	-29.06	74	50.01	36.22	9.51	50.8	100	0	Р	Н
BT		7323	20.18	-33.82	54	-	-	-	-	-	-	Α	Н
CH 39 2441MHz		4882	35.89	-38.11	74	47.66	31.56	7.82	51.15	100	0	Р	٧
244 I WI TIZ		4882	11.13	-42.87	54	-	-	-	-	-	-	Α	٧
		7323	44.74	-29.26	74	49.81	36.22	9.51	50.8	100	0	Р	٧
		7323	19.98	-34.02	54	-	-	-	-	-	-	Α	٧
		4960	35.24	-38.76	74	46.7	31.73	7.93	51.12	100	0	Р	Н
		4960	10.48	-43.52	54	-	-	-	-	-	-	Α	Н
D.T.		7440	45.98	-28.02	74	50.68	36.49	9.61	50.8	100	0	Р	Н
BT		7440	21.22	-32.78	54	-	-	-	-	-	-	Α	Н
CH 78 2480MHz		4960	35.04	-38.96	74	46.5	31.73	7.93	51.12	100	0	Р	٧
∠+ovivii iZ		4960	10.28	-43.72	54	-	-	-	-	-	-	Α	٧
		7440	43.98	-30.02	74	48.68	36.49	9.61	50.8	100	0	Р	٧
		7440	19.22	-34.78	54	-	-	-	-	-	-	Α	٧

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : A3 of A6

Emission below 1GHz

2.4GHz BT (LF)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		48.9	24.34	-15.66	40	40.12	16.03	0.93	32.74			Р	Н
		197.13	31.42	-12.08	43.5	46.81	15.88	1.48	32.75	100	0	Р	Н
		269.22	32.37	-13.63	46	43.93	19.4	1.76	32.72			Р	Н
		342	33.04	-12.96	46	42.86	20.97	1.94	32.73			Р	Н
		402.2	31.89	-14.11	46	40.07	22.45	2.13	32.76			Р	Н
		867	30.57	-15.43	46	31.2	28.7	3.16	32.49			Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BT LF		48.9	27.19	-12.81	40	42.97	16.03	0.93	32.74	100	0	Р	٧
LF		196.32	25.28	-18.22	43.5	40.71	15.84	1.48	32.75			Р	٧
		270.84	25.12	-20.88	46	36.69	19.39	1.76	32.72			Р	٧
		381.9	30.24	-15.76	46	38.88	21.98	2.13	32.75			Р	٧
		855.8	29.88	-16.12	46	30.58	28.7	3.16	32.56			Р	٧
		955.2	30.99	-15.01	46	29.4	30	3.29	31.7			Р	٧
													٧
													٧
													٧
													٧
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : A4 of A6

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions						
	shall not exceed the level of the fundamental frequency.						
!	Test result is over limit line.						
P/A	Peak or Average						
H/V	Horizontal or Vertical						

TEL: 886-3-327-3456 FAX: 886-3-328-4978

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

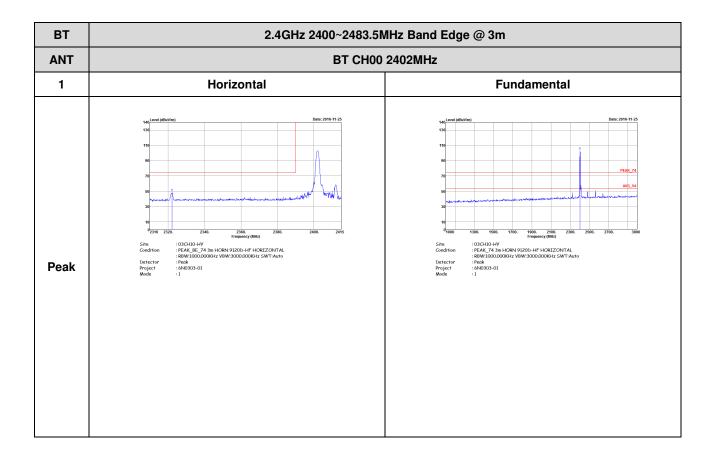
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

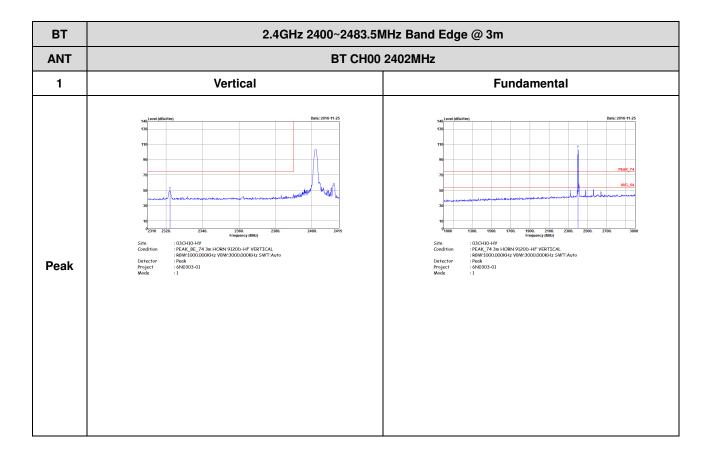
- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC.


TEL: 886-3-327-3456 FAX: 886-3-328-4978

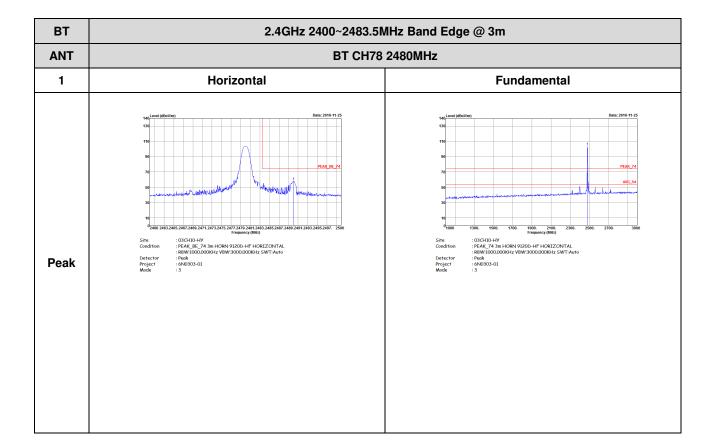
Appendix B. Radiated Spurious Emission Plots


Toot Engineer	Tsung Lee, Stan Hsieh, and Kyle Chuang	Temperature :	21~23°C	
Test Engineer :		Relative Humidity :	45~49%	

2.4GHz 2400~2483.5MHz BT (Band Edge @ 3m)

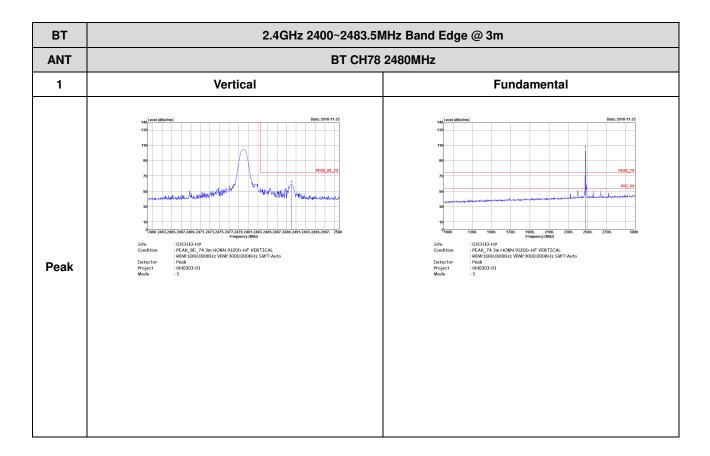
TEL: 886-3-327-3456 FAX: 886-3-328-4978

TEL: 886-3-327-3456 FAX: 886-3-328-4978

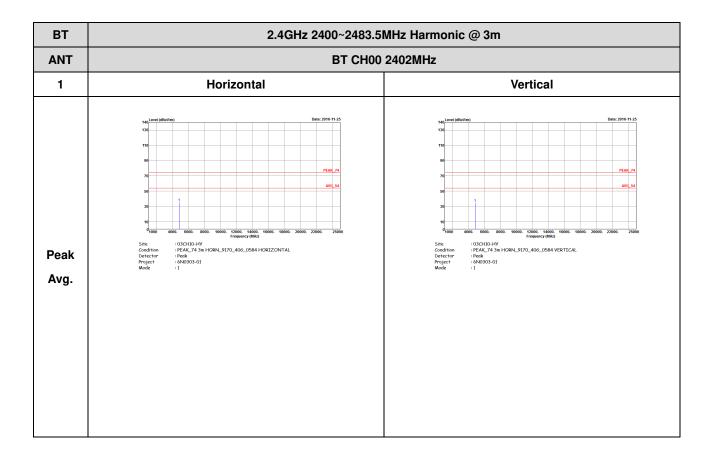

вт 2.4GHz 2400~2483.5MHz Band Edge @ 3m **ANT** BT CH39 2441MHz 1 Horizontal **Fundamental** : 03CH10-HY : PEAK_74 3m HORN 9120D-HF HORIZONTAL : RBW:1000,000KHz VBW:3000,000KHz SWT:Auto : Peak : 6N0303-01 : 2 : 03CH10-HY : PEAK_BE_74 3m HORN 9120D-HF HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak Peak Left blank

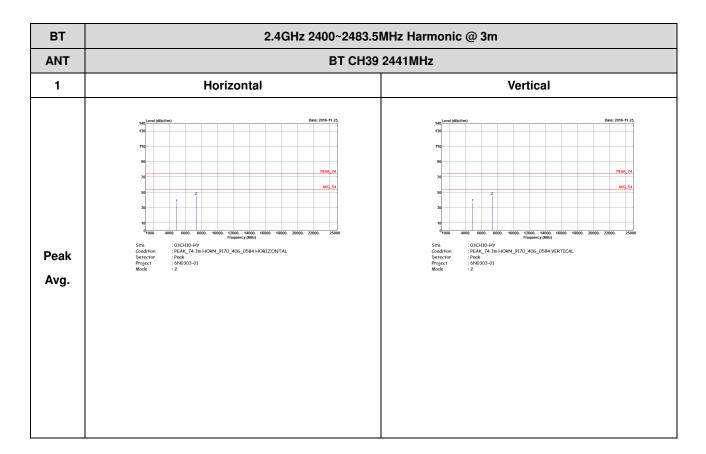
TEL: 886-3-327-3456 FAX: 886-3-328-4978

вт 2.4GHz 2400~2483.5MHz Band Edge @ 3m **ANT** BT CH39 2441MHz 1 Vertical **Fundamental** : 03CH10-HY : PEAK_74 3m HORN 9120D-HF VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : Peak : 6N0303-01 : 2 : 03CH10-HY : PEAK_BE_74 3m HORN 9120D-HF VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak : 03CH10-HY : PEAK_BE_74 3m HORN 9120D-HF VERTICAL : RBW-1000.000KHz VBW-3000.000KHz 5WT:Auto : Peak : 0N0303-01 : 2 Peak Left blank

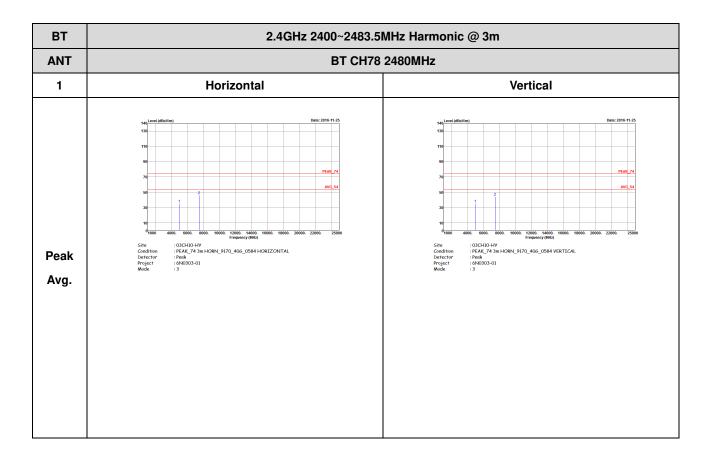

TEL: 886-3-327-3456 FAX: 886-3-328-4978

TEL: 886-3-327-3456 FAX: 886-3-328-4978

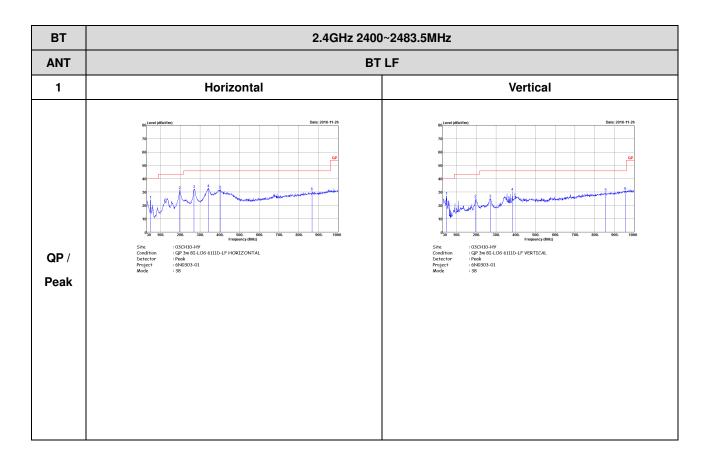

TEL: 886-3-327-3456 FAX: 886-3-328-4978


Report No.: FR6N0303-01A

2.4GHz 2400~2483.5MHz


BT (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978


TEL: 886-3-327-3456 FAX: 886-3-328-4978

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz 2.4GHz BT (LF)

TEL: 886-3-327-3456 FAX: 886-3-328-4978