

TEST REPORT

FCC ID: 2AM6L-M1NTKH

Product: MDVR

Model No.: M1N-TKH0401

Additional Model No.: N/A

Trade Mark: N/A

Report No.: TCT210423E043

Issued Date: May 26, 2021

Issued for:

Streamax Technology Co., Ltd. 21-23/F, Building B1, Zhiyuan, No. 1001, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055 China

Shenzhen Tongce Testing Lab

Issued By:

TCT Testing Industrial Park, Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	Test Certification	3
2.	Test Result Summary	
3.	EUT Description	5
4.	General Information	7
	4.1. Test environment and mode	
	4.2. Description of Support Units	8
5.	Facilities and Accreditations	9
	5.1. Facilities	_
	5.2. Location	9
	5.3. Measurement Uncertainty	9
6.	Test Results and Measurement Data	
	6.1. Antenna requirement	10
	6.2. Conducted Emission	11
	6.3. Maximum Conducted Output Power	
	6.4. 26dB Bandwidth and 99% Occupied Bandwidth	14
	6.5. Power Spectral Density	16
	6.6. Band edge	17
	6.7. Unwanted Emission	
	6.8. Frequency Stability Measurement	33
А р	pendix A: Test Result of Conducted Test	
Аp	pendix B: Photographs of Test Setup	
А р	pendix C: Photographs of EUT	

1. Test Certification

Report No.: TCT210423E043

Product:	MDVR			
Model No.:	M1N-TKH0401			
Additional Model No.:	N/A			
Trade Mark:	N/A			
Applicant:	Streamax Technology Co., Ltd.			
Address:	21-23/F, Building B1, Zhiyuan, No. 1001, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055 China			
Manufacturer:	er: Streamax Technology Co., Ltd.			
Address: 21-23/F, Building B1, Zhiyuan, No. 1001, Xueyuan Avenue, Na District, Shenzhen, Guangdong, 518055 China				
Date of Test:	Apr. 26, 2021 – May 25, 2021			
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart E Section 15.407: 2016 KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General U-NII Test Procedures New Rules v02r01			

The above equipment has been tested by Shenzhen Tongce Testing Lab and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Brews Xu

Date: May 25, 2021

Brews Xu

Reviewed By:

Date:

May 26, 2021

Approved By:

Date:

May 26, 2021

2. Test Result Summary

1001		
Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	N/A
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(a)	PASS
Radiated Emission	§15.407(a)	PASS
Frequency Stability	§15.407(g)	PASS

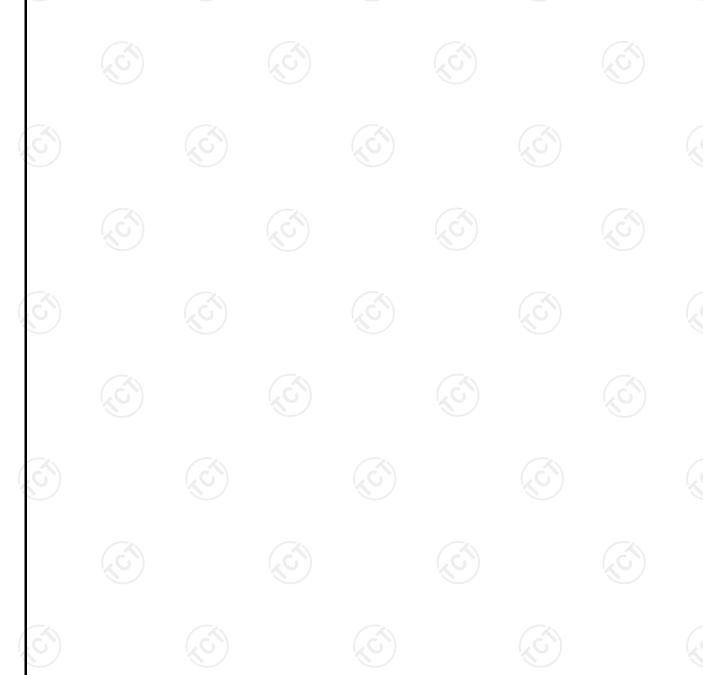
Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product:	MDVB		
Product:	MDVR		
Model No.:	M1N-TKH0401		
Additional Model No.:	N/A		
Trade Mark:	N/A		
Operation Frequency:	Band 3: 5725 MHz - 5850 MHz		
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz		
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)		
Modulation Type	256QAM, 64QAM, 16QAM, BPSK, QPSK		
Antenna Type:	External Antenna		
Antenna Gain:	4.87dBi		
Power Supply:	DC 12V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.



Test Frequency each of channel Band 3

20MHz		40MHz		80MHz	
Channel	Frequency	Channel Frequency (Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				(0)

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see helow:

Page 6 of 76

4. General Information

4.1. Test environment and mode

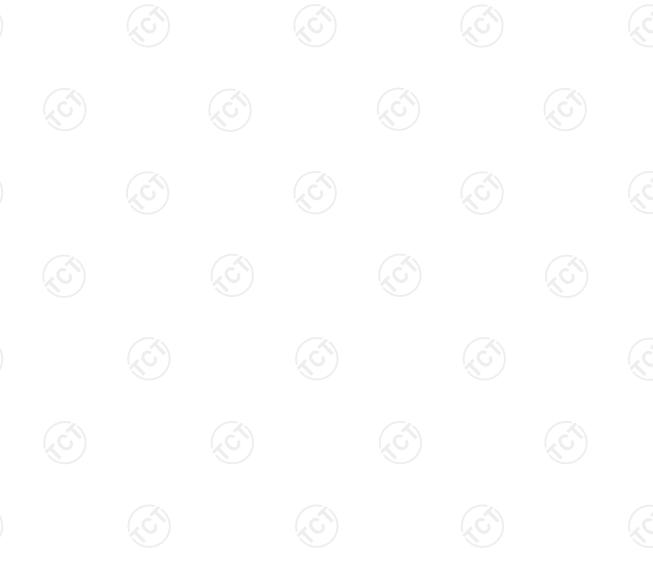
Operating Environment:					
Temperature:	25.0 °C				
Humidity:	56 % RH				
Atmospheric Pressure:	1010 mbar				
Test Mode:					
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 100%)				

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

was worst case.					
Mode	Data rate				
802.11a	6 Mbps				
802.11n(HT20)	6.5 Mbps				
802.11n(HT40)	13.5 Mbps				
802.11ac(VHT20)	6.5 Mbps				
802.11ac(VHT40)	13.5 Mbps				
802.11ac(VHT80)	29.3 Mbps				
Final Test Mode:					
Operation mode:	Keep the EUT in continuous transmitting with modulation				


4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1	1	I

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 8 of 76

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 645098
 Shenzhen Tongce Testing Lab

Designation Number: CN1205

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

CAB identifier: CN0031

The 3m Semi-anechoic chamber of SHENZHEN TONGCE TESTING LAB has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: TCT Testing Industrial Park, Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an

District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The WIFI antenna is external antenna which is unique, and the best case gain of the antenna is 4.87dBi.

6.2. Conducted Emission

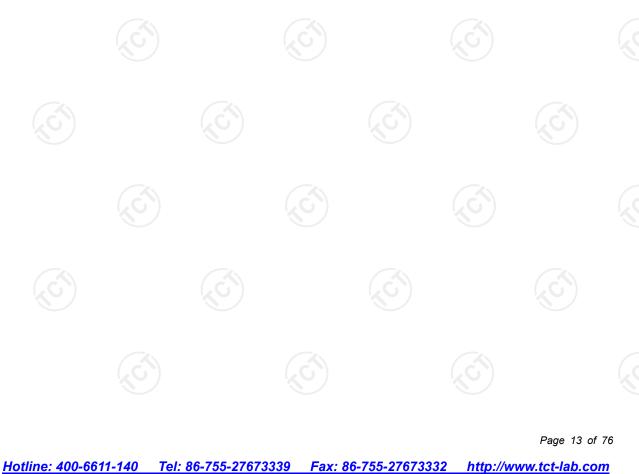
6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto	
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	BuV) Average 56 to 46* 46 50	
Test Setup:	Reference Plane 40cm 80cm Filter AC power E.U.T AC power EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Mode:	Tx Mode			
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test Result:	N/A			

6.3. Maximum Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)& Part 2 J Section 2.1046			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E			
Limit:	Frequency Band (MHz) 5745 - 5825	Limit 30dBm(1W)		
Test Setup:	Power meter EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 			
Test Result:	PASS			
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power			


Page 12 of 76

6.3.2. Test Instruments

		. /	· / A	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
Power Meter	Agilent	E4418B	GB43312526	Sep. 21, 2021
Power Sensor	Agilent	E9301A	MY41497725	Sep. 21, 2021
RF Cable (9KHz-40GHz)	ТСТ	RE-high-02	N/A	Sep. 02, 2021
Antenna Connector	тст	RFC-03	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4. 6dB Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C			
Limit:	>500kHz			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 			
Test Result:	PASS			

6.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 14 of 76

6.5. 26dB Bandwidth and 99% Occupied Bandwidth

6.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D			
Limit:	No restriction limits			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. Measure and record the results in the test report. 			
Test Result:	PASS			

6.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
RF Cable (9KHz-26.5GHz)	тст	RE-high-02	N/A	Sep. 02, 2021
Antenna Connector	тст	RFC-03	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 15 of 76

6.6. Power Spectral Density

6.6.1. Test Specification

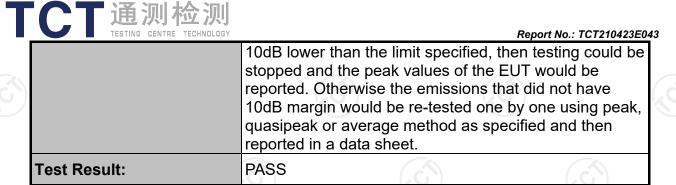
Test Requirement:	FCC Part15 E Section 15.407 (a)			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F			
Limit:	≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 525 MHz should not exceed 10dBm/MHz			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 			
Test Result:	PASS			

6.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
RF Cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 02, 2021
Antenna Connector	TCT	RFC-03	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 16 of 76



6.7. Band edge

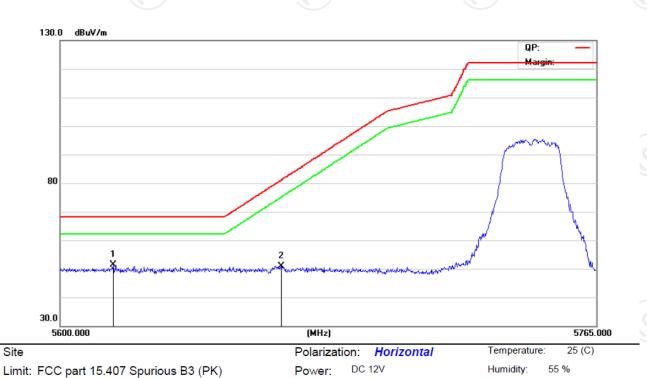
6.7.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407				
Test Method:	ANSI C63.10 20	013			
	(MHz) (dBm/MHz) (MHz) (dBr				
	(MHz)	(dBm/MHz)	(MHz)	Limit (dBm/MHz)	
	< 5650	-27	5850~5855	27~15.6	
Limit:	5650~5700 5700~5720	-27~10 10~15.6	5855~5875 5875~5925	15.6~10 10~-27	
Lilling.	5720~5725	15.6~27	> 5925	-27	
	E[dBµV/m] = EIR In restricted band:	P[dBm] + 95.2	@3m		
	Detec		Limit@		
	Peal		74dBµ		
	AVG	j	54dBµ	V/m	
Test Setup:	Ground Reference Plane Test Receiver Analysis Controller				
Test Mode:	Transmitting mo	ode with modu	ılation		
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was				

Page 18 of 76

6.7.2. Test Instruments

	Radiated En	nission Test Sit	e (966)		
Name of Equipment	Manufacturer Model		Serial Number	Calibration Due	
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021	
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021	
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021	
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021	
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022	
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 02, 2021	
Line-4	тст	RE-high-04	N/A	Sep. 02, 2021	
Line-8	тст	RE-01	N/A	Jul. 27, 2021	
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

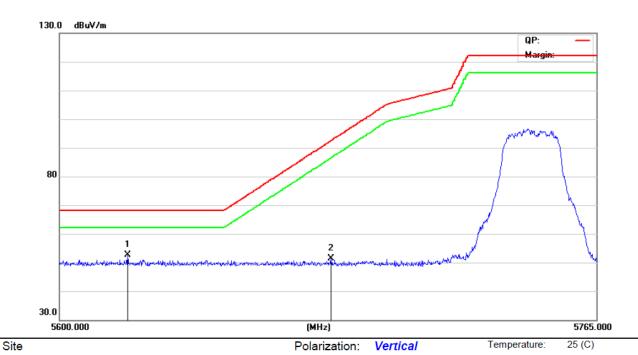

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 19 of 76

6.7.3. Test Data

AC-5745

	Over	Limit	Measure- ment	Correct Factor	Reading Level	Freq.	Mk.	No.
Detector	dB	dBuV/m	dBuV/m	dB	dBuV	MHz		
peak	-16.92	68.20	51.28	-3.69	54.97	616.122	*	1
peak	-30.12	81.08	50.96	-3.64	54.60	667.400	,	2

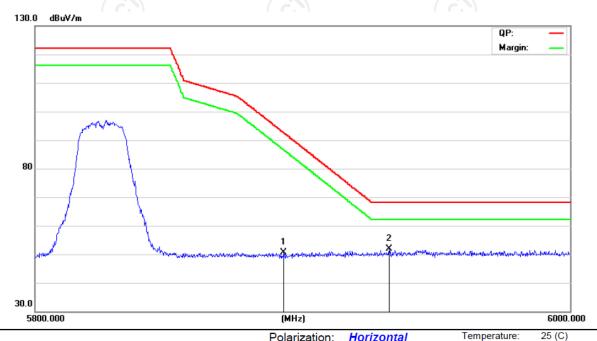


Limit: FCC part 15.407 Spurious B3 (PK)

Report No.: TCT210423E043

Humidity:

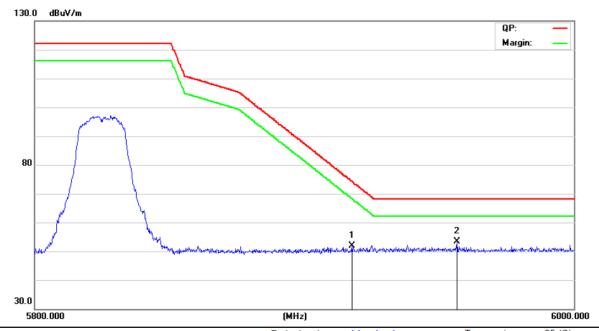
55 %


	Over		Measure- ment		Reading Level	Freq.	Mk.	No.
Detector	dB	dBuV/m	dBuV/m	dB	dBuV	MHz		
peak	-15.68	68.20	52.52	-3.69	56.21	620.690	*	1
peak	-41.20	92.54	51.34	-3.62	54.96	682.891		2

Power:

DC 12V

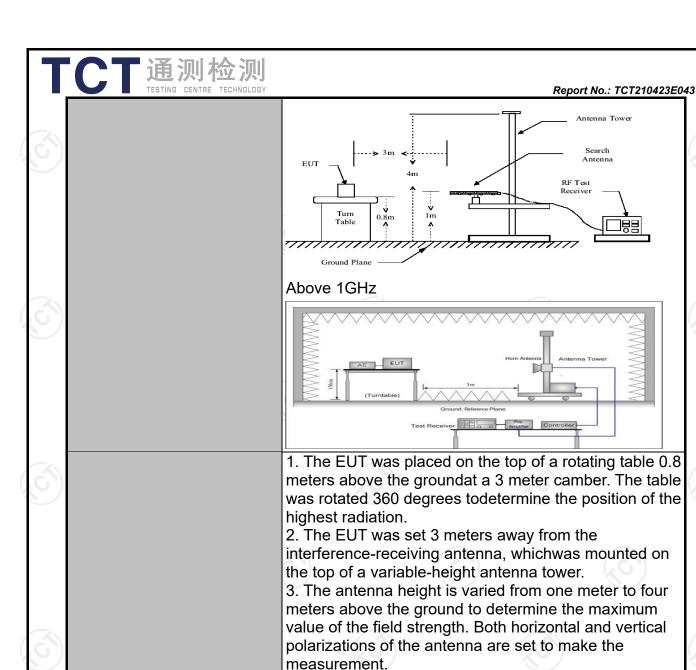
AC-5825



Site Polarization: Horizontal Temperature: 25 (Computer Section Property Pr

-	No.	Mk	. Freq.			Measure- ment	Limit	Over		_
_			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		5892.157	54.26	-3.54	50.72	92.50	-41.78	peak	
5	2	*	5931.640	55.34	-3.46	51.88	68.20	-16.32	peak	

Site	Polarization: Vertical	Temperature: 25 (C)
Limit: FCC part 15.407 Spurious B3 (PK)	Power: DC 12V	Humidity: 55 %


_	No.	Mk	. Freq.	Reading Correct Measu Level Factor men			Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		5916.778	55.27	-3.49	51.78	74.28	-22.50	peak
_	2	*	5956.022	56.72	-3.40	53.32	68.20	-14.88	peak

6.8. Unwanted Emission

6.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 S	Section 15.	407 & 1	5.209 & 15.205						
Test Method:	KDB 789033	D02 v02	r01								
Frequency Range:	9kHz to 40G	9kHz to 40GHz 3 m Horizontal & Vertical Transmitting mode with modulation Frequency Detector RBW VBW Remark 9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Value 150kHz- Quasi-peak 9kHz 30kHz Quasi-peak Value 30MHz 30MHz Quasi-peak 120KHz 300KHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as									
Measurement Distance:	KDB 789033 D02 v02r01 9kHz to 40GHz 3 m Horizontal & Vertical Transmitting mode with modulation Frequency Detector RBW VBW Remark 9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Value 150kHz- Quasi-peak 9kHz 30kHz Quasi-peak Value 30MHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table, Frequency Field Strength Measurement Distance (meters) 0.009-0.490 2400/F(KHz) 300 0.490-1.705 24000/F(KHz) 30 1.705-30 30 30 30-88 100 3 88-216 150 3 216-960 200 3 Above 960 500 3 Frequency Limit (dBuV/m @3m) Detector 74.0 Peak										
Antenna Polarization:	Horizontal &	Vertical									
Operation mode:	Transmitting	mode wit	h modulat	ion	Remark Quasi-peak Value Quasi-peak Value Remark Quasi-peak Value Remark Remark Quasi-peak Value Remark Remark Remark Quasi-peak Value Remark R						
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz	Quasi-peal Quasi-peal Quasi-peal	200Hz k 9kHz k 120KHz	1kHz 30kHz 300KHz	Quasi-peak Value Quasi-peak Value Quasi-peak Value						
	per FCC Par general field below table,	t15.205 s I strength	hall compl limits se Field Strengtl (microvolts/m	y with the truck of the truck o	Measurement Distance (meters)						
Limit:	0.490-1.705 1.705-30 30-88 88-216 216-960	3)	24000/F(KHz 30 100 150 200		30 30 3 3 3						
		Į.	74.0	m @3m)	Peak						
Test setup:	For radiated 0.8m 30MHz to 10	Turn table] Im	Pre-	Computer Amplifier Receiver						

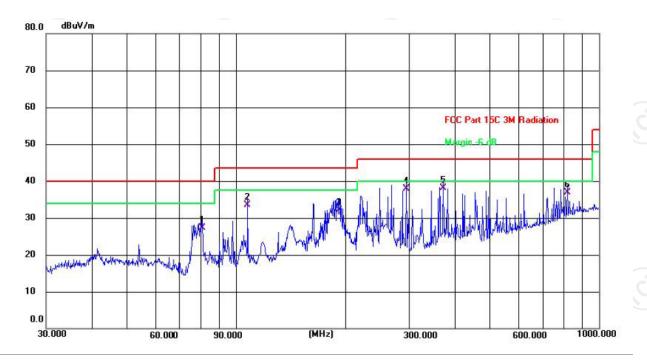
Test Procedure:

- 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified andthen reported in a data sheet.

Test results:

PASS

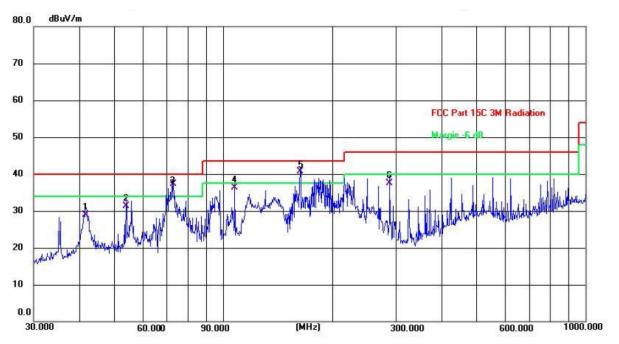
6.8.2. Test Instruments


	Radiated Em	ission Test Site	966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 04, 2022
Antenna Mast	Keleto	RE-AM	N/A	N/A
Line-4	TCT	RE-high-04	N/A	Sep. 02, 2021
Line-8	тст	RE-01	N/A	Jul. 27, 2021
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

6.8.3. Test Data

Please refer to following diagram for individual Below 1GHz

Horizontal:



Site Polarization: Horizontal Temperature: 25(C)
Limit: FCC Part 15C 3M Radiation Power: DC 12V Humidity: 55 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	80.9274	17.99	9.31	27.30	40.00	-12.70	QP	Р	
2	107.8876	22.54	11.00	33.54	43.50	-9.96	QP	Р	
3	192.4182	21.40	10.67	32.07	43.50	-11.43	QP	Р	
4	294.1136	24.04	13.87	37.91	46.00	-8.09	QP	Р	
5 *	372.0045	21.81	16.28	38.09	46.00	-7.91	QP	Р	
6	818.8337	11.48	25.33	36.81	46.00	-9.19	QP	Р	

Vertical:

Temperature: 25(C) Site Polarization: Vertical

Limi	t: FCC Part 150	3M Radia	ation		Power: DC 12V				Humidity: 55 %
No	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	41.7129	14.97	13.97	28.94	40.00	-11.06	QP	Р	
2	53.8817	17.81	13.52	31.33	40.00	-8.67	QP	Р	
3	73.1025	26.36	10.55	36.91	40.00	-3.09	QP	Р	
4	107.8876	25.28	11.00	36.28	43.50	-7.22	QP	Р	
5	163.1817	27.11	13.08	40.19	43.50	-3.31	QP	Р	
6	287.9904	23.53	14.01	37.54	46.00	-8.46	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11nac(VHT80), and the worst case Mode (Lowest channel and 802.11a) was submitted only.
- 3.Measurement (dBµV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss -Pre-amplifier.

Modulation Type: Band 3												
11a(HT20) CH149: 5745MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
11490	Н	39.81		8.09	47.90		74	54	-6.10			
17235	Н	37.56		9.67	47.23		68.2		-6.77			
(Н				(<i>(c</i>)				
1			(//		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
11490	V	41.35		8.09	49.44		74	54	-4.56			
17235	V	38.20		9.67	47.87		68.2		-6.13			
	V											

1	11a(HT20) CH157: 5785MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	ΑV reading (dBμV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11570	Ŧ	40.03		8.10	48.13		74	54	-5.87				
17355	H	37.69	[- C]	9.65	47.34	·C+	68.2	(2 0)	-6.66				
	H												
11570	٧	40.54		8.10	48.64		74	54	-5.36				
17355	V	37.63		9.65	47.28		68.2		-6.72				
	V			(, (-		(, (

	11a(HT20) CH165: 5825MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11650	C) H	40.27	70,	8.12	48.39		74	54	-5.61				
17475	H	38.54		9.62	48.16		68.2		-5.84				
	Н												
11650	V	40.57		8.12	48.69		74	54	-5.31				
17475	V	37.93		9.62	47.55		68.2		-6.45				
/	V				/								

	11n(HT20) CH149: 5745MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11490	T	41.01		8.09	49.10	I	74	54	-4.90				
17235	Η	37.73		9.67	47.40		68.2		-6.60				
	Ι	I					1						
11490	V	40.68		8.09	48.77		74	54	-5.23				
17235	V	38.41		9.67	48.08		68.2		-5.92				
	V												

		11n(HT20) CH157: 5785MHz												
	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	ΑV reading (dBμV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
	11570	Η	41.29		8.10	49.39		74	54	-4.61				
	17355	Η	37.84		9.65	47.49		68.2		-6.51				
		H												
	11570	V	40.09	-	8.10	48.19	7-	74	54	-5.81				
	17355	V	36.31		9.65	45.96		68.2		-8.04				
ſ		V												

	11n(HT20) CH165: 5825MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11650	I	40.41		8.12	48.53		74	54	-5.47				
17475	Ţ	37.63	(A)	9.62	47.25	X	68.2	- 	-6.75				
()	H		[- C])	($C \rightarrow$		(2 0)					
× 1					×								
11650	٧	41.36		8.12	49.48		74	54	-4.52				
17475	V	37.91		9.62	47.53		68.2		-6.47				
Z	V						-		/				

	11n(HT40) CH151: 5755MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dΒμV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11510	Н	42.49		8.09	50.58		74	54	-3.42				
17265	H	39.10	F0	9.67	48.77	9 -4	68.2	750	-5.23				
	H												
11510	V	41.69		8.09	49.78		74	54	-4.22				
17265	V	38.35		9.67	48.02		68.2		-5.98				
()	V			/2(`` (` ر				(,(

			11n	(HT40) CH	159: 5795N	1Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11590	Н	41.42		8.10	49.52	7	74	54	-4.48
17385	Н	38.75		9.65	48.40		68.2		-5.60
	Н								
					-,				
11590	V	41.38		8.10	49.48		74	54	-4.52
17385	V	37.52		9.65	47.17		68.2		-6.83
1	V)		

			11ac	(VHT20) CI	H149: 5745	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBμV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11490	Η	41.68		8.09	49.77		74	54	-4.23
17235	Η	38.90		9.67	48.57		68.2		-5.43
	H					-			
11490	V	40.83	*	8.09	48.92	7-	74	54	-5.08
17235	V	38.19		9.67	47.86	I	68.2		-6.14
	٧								

			11ac	(VHT20) CI	H157: 5785	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	ΑV reading (dBμV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Η	40.09		8.10	48.19		74	54	-5.81
17355	H	38.17	- 	9.65	47.82		68.2	- 	-6.18
()	H		(- C)		((C)		4.0	
_									
11570	>	38.68		8.10	46.78		74	54	-7.22
17355	V	36.25		9.65	45.90		68.2		-8.10
	V				Z		/		

			11ac	(VHT20) CI	H165: 5825	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	ding Av reading Factor Peak AV		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
11650	Н	40.82	-	8.12	48.94		74	54	-5.06
17475	H	38.17	Ϋ́O ,	9.62	47.79	(0-4	68.2	だの	-6.21
	H								
11650	V	41.10		8.12	49.22		74	54	-4.78
17475	V	36.37		9.62	45.99		68.2		-8.01
)	V			(20	· (` C				(2)

			11ac	(VHT40) CI	H151: 5755	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	(dBµV/m) (dBµV/m)		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11510	Н	40.48	-4	8.09	48.57	7	74	54	-5.43
17265	H	37.75		9.67	47.42		68.2		-6.58
	Н								
11510	V	42.16		8.09	50.25		74	54	-3.75
17265	V	39.09		9.67	48.76		68.2		-5.24
	V								

	11ac(VHT40) CH159: 5795MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBμV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
11590	Η	40.97		8.10	49.07		74	54	-4.93		
17385	Η	36.86		9.65	46.51		68.2		-7.49		
	T		,								
11590	V	41.39	-	8.10	49.49	7-	74	54	-4.51		
17385	V	39.12		9.65	48.77	-	68.2		-5.23		
	٧										

			11ac	(VHT80) CI	H155: 5775	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBμV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11550	Η	40.88		8.09	48.97		74	54	-5.03
17325	Ŧ	36.71	- 	9.66	46.37		68.2	-7	-7.63
()	CH		[- 6]		()	40		[0]	
_					*				
11550	V	42.04		8.09	50.13		74	54	-3.87
17325	V	38.35		9.66	48.01		68.2		-5.99
Z	V				Z		 /-		

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6.9. Frequency Stability Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.

Test plots as follows:

Test mode:	802.11ac(VHT20)	Freque	ency(MHz):	5745
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta	Result
remperature (C)	voitage(vDC)	Frequer	icy(MHz)	Frequency(H	z) Result
45		5745	.0015	1500	PASS
35		5745	745.0010 1000		PASS
25	12V	5744	.9963	-3700	PASS
15	IZV	5744	.9952	-4800	PASS
5		5745	.0034	3400	PASS
0		5745	.0048	4800	PASS
	10.8	5744	.9961	-3900	PASS
20	12	5744	.9955	-4500	PASS
	13.2	5745	.0023	2300	PASS

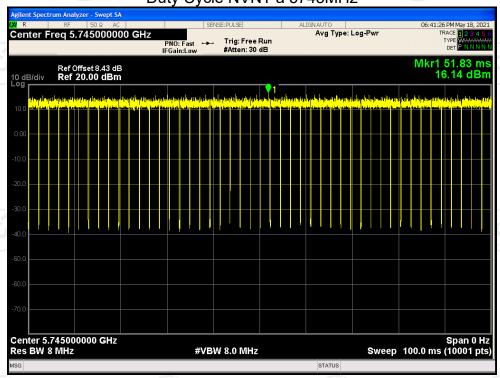
Test mode:	802.11ac(\	/HT20) Fre	que	ncy(MHz):	5785	
Temperature (°C)	Voltage(VDC)	Measureme	nt	Delta	Result	
remperature (C)	voltage(vDC)	Frequency(MI	Hz)	Frequency(H	lz)	
45		5784.9968 -32		-3200	PASS	
35		5785.0034		3400	PASS	
25	12V	5785.0021		2100	PASS	
15	IZV	5784.9955		-4500	PASS	
5		5785.0023		2300	PASS	
0		5784.9972	1	-2800	PASS	
	10.8	5785.0050		5000	PASS	
20	12	5784.9984		-1600	PASS	
	13.2	5784.9976		-2400	PASS	

Test mode:	802.11ac(\	/HT20)	Freque	ency(MHz):		5825	
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta	-	Result	
remperature (0)	voitage(vDO)	Frequen	icy(MHz)	Frequency(Hz)		result	
45	YO,	5824	.9819	-18100		PASS	
35		5825	.0082	8200		PASS	
25	12V	5824	5824.9957 -4300			PASS	
15	127	5824	.9981	-1900		PASS	
5	(C)	5825	.0014	1400	S')	PASS	
0		5825	.0045	4500		PASS	
	10.8	5825	.0048	4800		PASS	
20	12	5824	.9982	-1800		PASS	
(.c)	13.2	5825	.0023	2300		PASS	

Test mode:		802.11ac(V	'HT40)	Freque	ency(MHz)	:	5755	
Tomporature (°C)	\/o	Itage(VDC)	Measu	rement	Delt	a	Result	
Temperature (°C)	VO	ilage(VDC)	Frequency(MHz)		Frequency(Hz)		Result	
45			5754.	.9981	-190	0	PASS	
35	12V		5755.	.0123	12300		PASS	
25			5754.	.9942	-580	0	PASS	
15		120	5755.	.0090	900	0	PASS	
5			5754.	.9954	-460	0	PASS	
0			5755.	.0077	770	0	PASS	
		10.8	5754.	.9963	-370	0	PASS	
20	NO.	12	5754.	.9971	-290	0	PASS	K
	13.2		5755.	.0066	660	0	PASS	

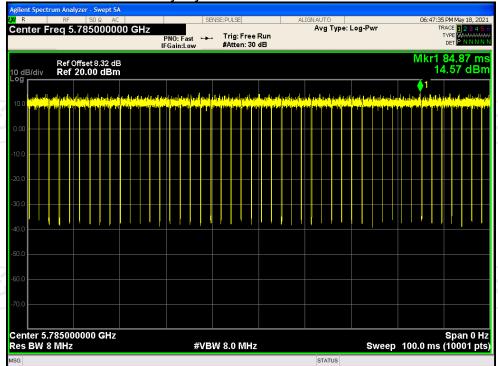
Test mode: 802.11a		302.11ac(V	(VHT40) Freque		ency(MHz):			5795	
Temperature (°C)	Voltage(VDC)		Measurement		Delta			Result	
remperature (C)			Frequency(MHz)		Frequency(Hz)		z)		
45	12V		5794.9808 -19200		9200		PASS		
35			5794.9857		-14300			PASS	
25			5795.	.0041	4	1100		PASS	
15			5795.	.0036	3	3600		PASS	
5			5794.	.9849	-1	5100		PASS	
0			5795.	.0062	6	5200		PASS	
(.c)	1	8.0	5795.	.0053	5	5300		PASS	
20		12	5794.	.9985	_	1500		PASS	
	1	3.2	5795.	.0081	8	3100		PASS	

Test mode:	802.11ac(\	802.11ac(VHT80)		Frequency(MHz):		5775	
Temperature (°C)	Voltage(VDC)	Measurement		Delta Frequency(Hz)		Result	
	voltage(vDC)	Frequency(MHz)					
45		5774.9887		-11300		PASS	
35		5774.9943 -5700			PASS		
25	12V	5774.9960		-4000		PASS	
15	IZV	5774.9938		-6200		PASS	
5		5775.	0017	1700		PASS	
0		5774.9992		-800		PASS	
	10.8	5775.0024		2400		PASS	
20	12	5774.9569		-43100		PASS	
	13.2	5774.9895		-10500		PASS	

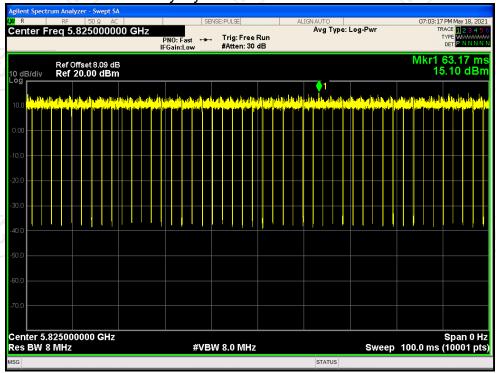


Appendix A: Test Result of Conducted Test

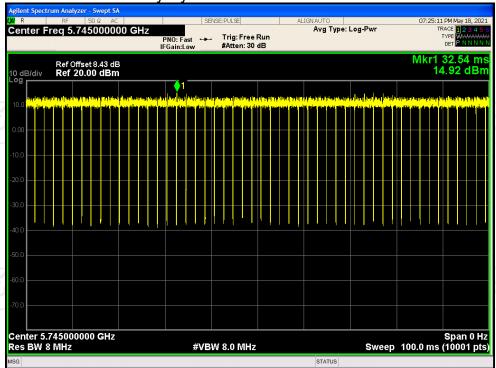
Duty Cycle


Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5745	99.45	0
NVNT	а	5785	99.45	0
NVNT	а	5825	99.45	0
NVNT	ac20	5745	99.45	0
NVNT	ac20	5785	99.45	0
NVNT	ac20	5825	99.45	0
NVNT	ac40	5755	98.70	0
NVNT	ac40	5795	98.70	0
NVNT	ac80	5775	98.01	0
NVNT	n20	5745	99.45	0
NVNT	n20	5785	99.45	0
NVNT	n20	5825	99.45	0
NVNT	n40	5755	98.70	0
NVNT	n40	5795	98.70	0

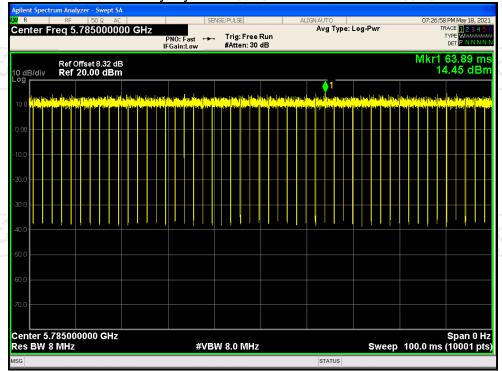
Duty Cycle NVNT a 5745MHz



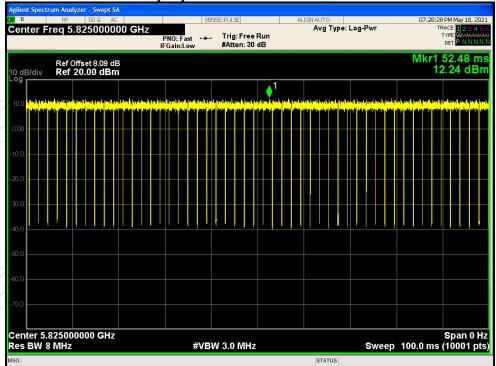
Duty Cycle NVNT a 5785MHz

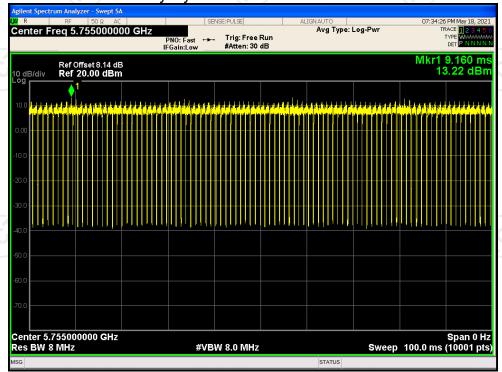


Duty Cycle NVNT a 5825MHz

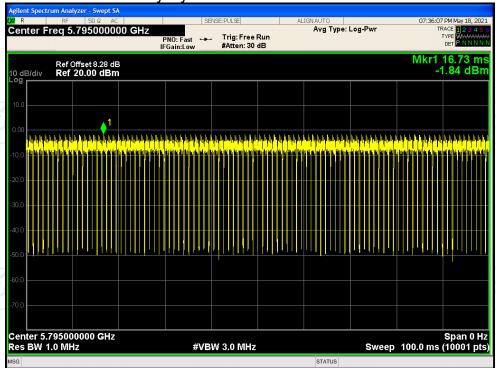


Duty Cycle NVNT ac20 5745MHz

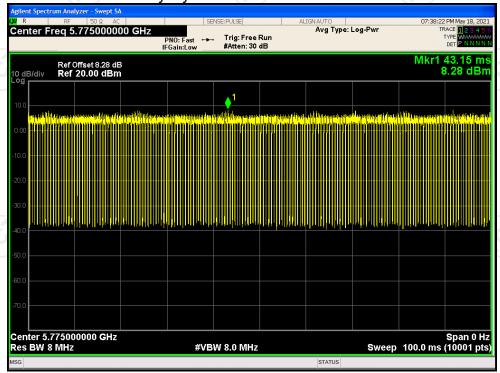




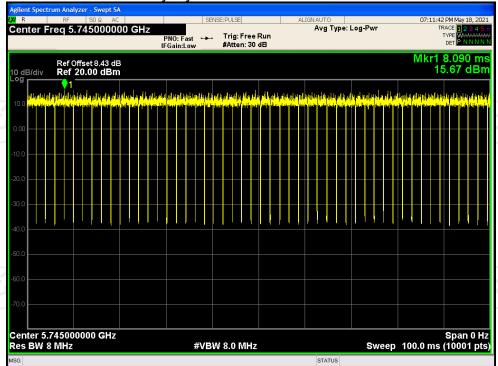
Duty Cycle NVNT ac20 5825MHz



Duty Cycle NVNT ac40 5755MHz

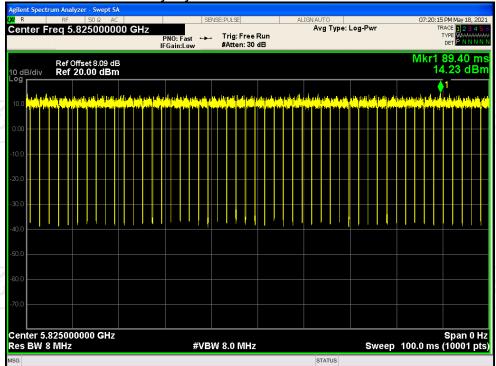


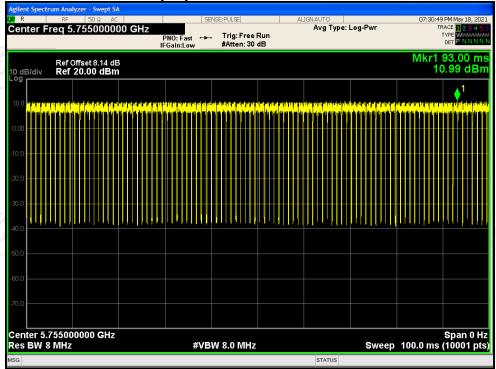
Duty Cycle NVNT ac40 5795MHz



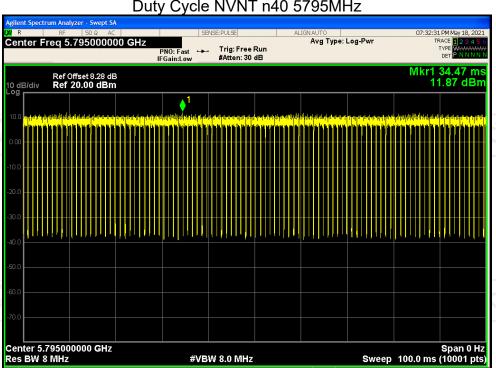
Duty Cycle NVNT ac80 5775MHz

Duty Cycle NVNT n20 5745MHz


Duty Cycle NVNT n20 5785MHz



Duty Cycle NVNT n20 5825MHz



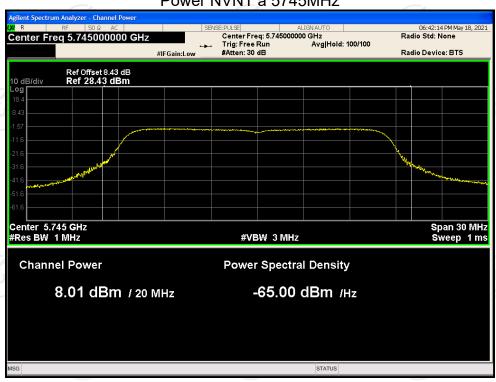
Duty Cycle NVNT n40 5755MHz

Duty Cycle NVNT n40 5795MHz

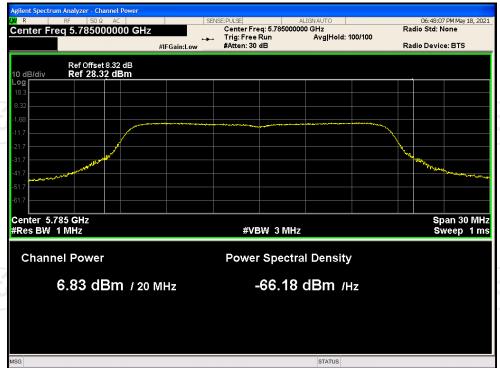
#VBW 8.0 MHz

STATUS

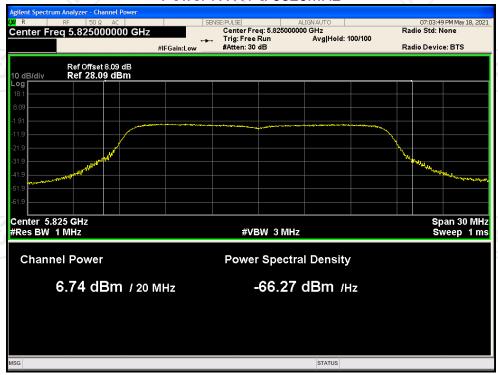
Report No.: TCT210423E043

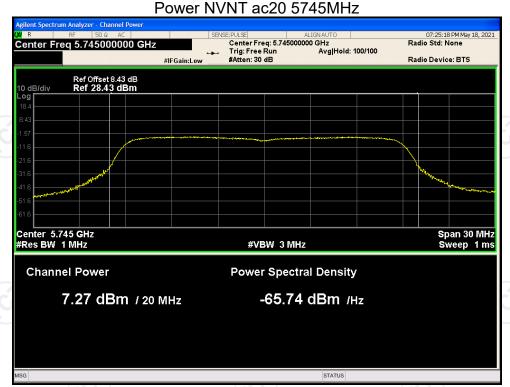


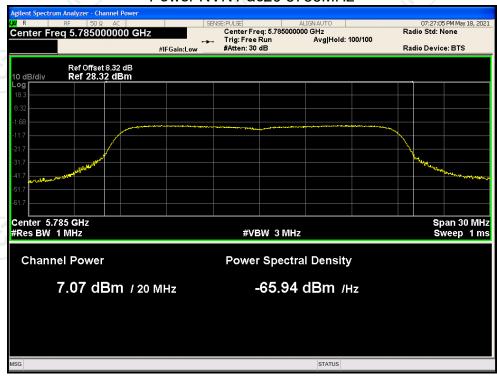
Maximum Conducted Output Power

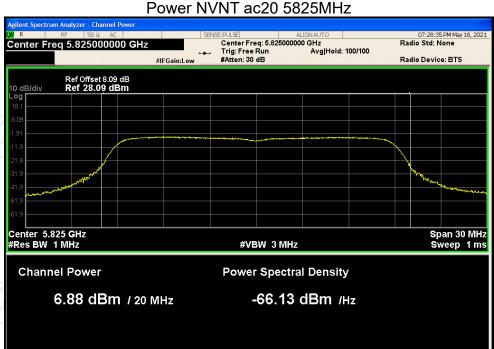

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
TNVN	а	5745	8.01	30	Pass
NVNT	а	5785	6.83	30	Pass
TNVN	а	5825	6.74	30	Pass
TNVN	ac20	5745	7.28	30	Pass
NVNT	ac20	5785	7.07	30	Pass
TNVN	ac20	5825	6.88	30	Pass
TNVN	ac40	5755	7.31	30	Pass
NVNT	ac40	5795	7.26	30	Pass
TNVN	ac80	5775	7.34	30	Pass
NVNT	n20	5745	7.39	30	Pass
NVNT	n20	5785	7.05	30	Pass
TNVN	n20	5825	6.74	30	Pass
NVNT	n40	5755	7.27	30	Pass
TNVN	n40	5795	7.28	30	Pass

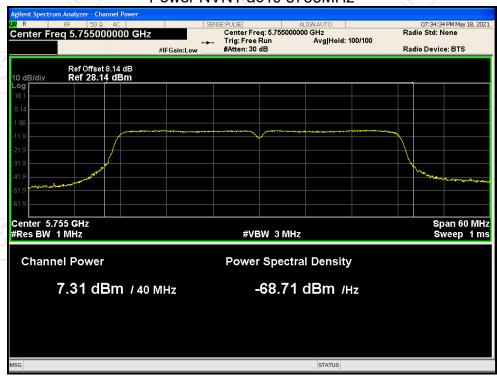
Power NVNT a 5745MHz

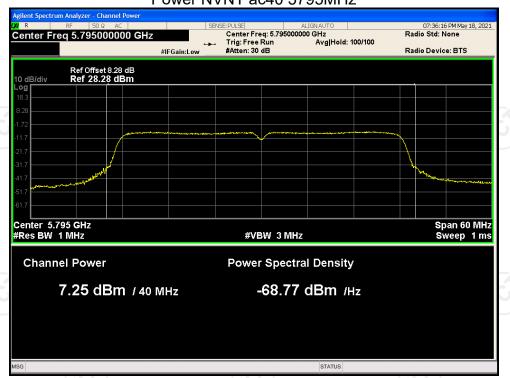


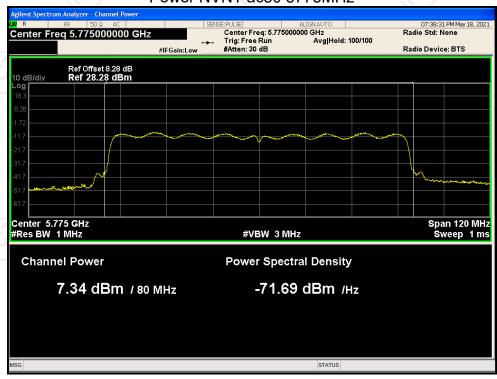

Power NVNT a 5785MHz


Power NVNT a 5825MHz

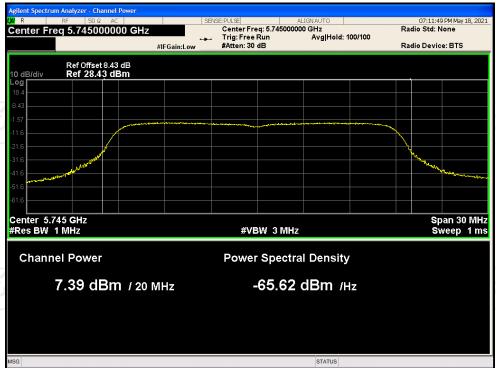



Power NVNT ac20 5785MHz

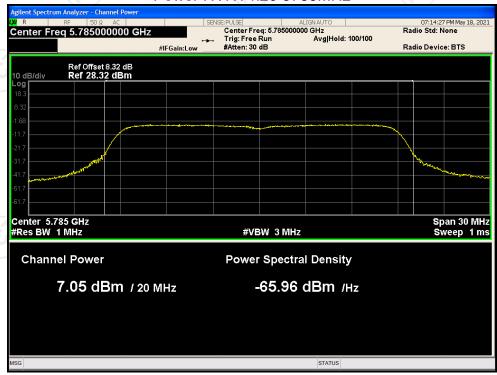

Power NVNT ac40 5755MHz


Report No.: TCT210423E043

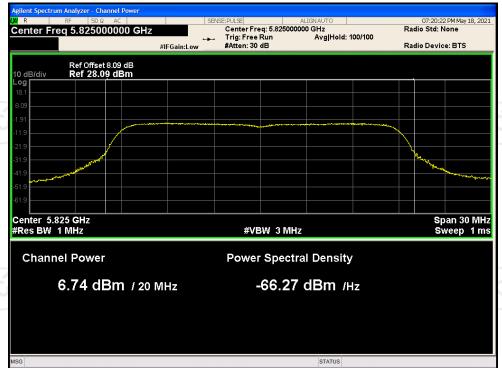
Report No.: TCT210423E043 Power NVNT ac40 5795MHz



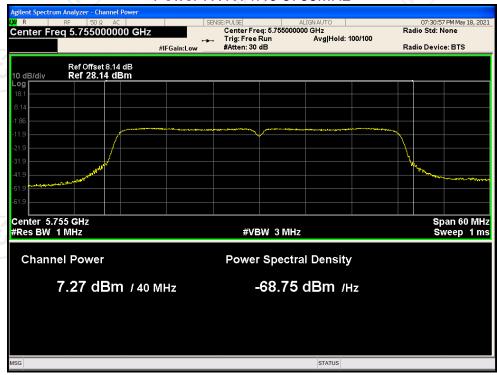
Power NVNT ac80 5775MHz



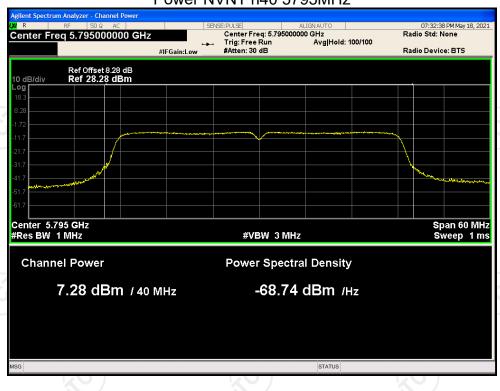
Power NVNT n20 5745MHz



Power NVNT n20 5785MHz

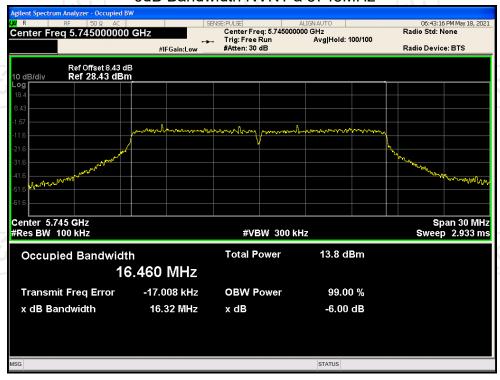


Power NVNT n20 5825MHz


Power NVNT n40 5755MHz

Power NVNT n40 5795MHz

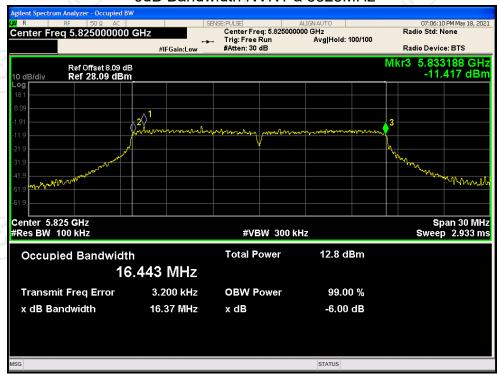
Report No.: TCT210423E043



-6dB Bandwidth


Condition	Mode	Frequency	-6 dB Bandwidth	Limit -6 dB Bandwidth	Verdict	
		(MHz)	(MHz)	(MHz)	veruici	
NVNT	а	5745	16.318	0.5	Pass	
NVNT	а	5785	16.374	0.5	Pass	
NVNT	а	5825	16.370	0.5	Pass	
NVNT	ac20	5745	17.303	0.5	Pass	
NVNT	ac20	5785	17.582	0.5	Pass	
NVNT	ac20	5825	16.906	0.5	Pass	
NVNT	ac40	5755	35.678	0.5	Pass	
NVNT	ac40	5795	35.357	0.5	Pass	
NVNT	ac80	5775	75.129	0.5	Pass	
NVNT	n20	5745	17.546	0.5	Pass	
NVNT	n20	5785	17.545	0.5	Pass	
NVNT	n20	5825	17.314	0.5	Pass	
NVNT	n40	5755	35.612	0.5	Pass	
NVNT	n40	5795	35.515	0.5	Pass	

-6dB Bandwidth NVNT a 5745MHz



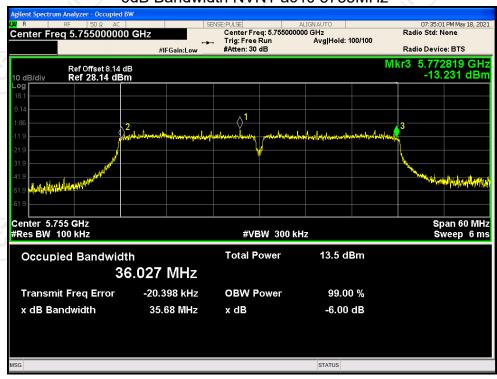
-6dB Bandwidth NVNT a 5785MHz

-6dB Bandwidth NVNT a 5825MHz

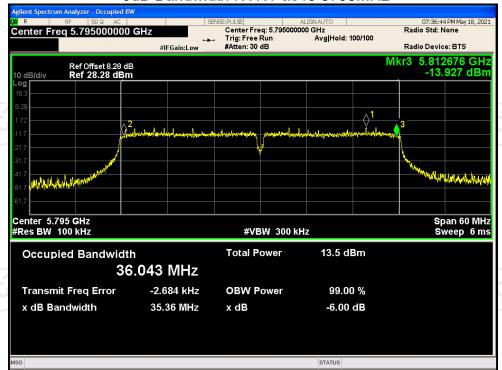
-6dB Bandwidth NVNT ac20 5745MHz



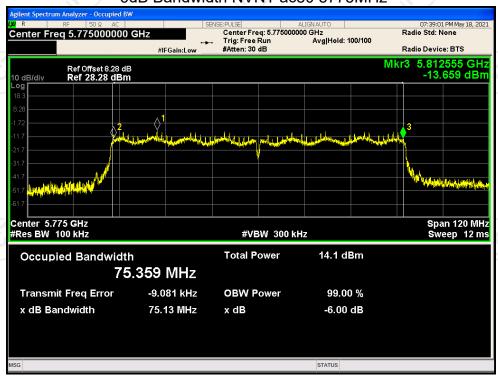
-6dB Bandwidth NVNT ac20 5785MHz



-6dB Bandwidth NVNT ac20 5825MHz

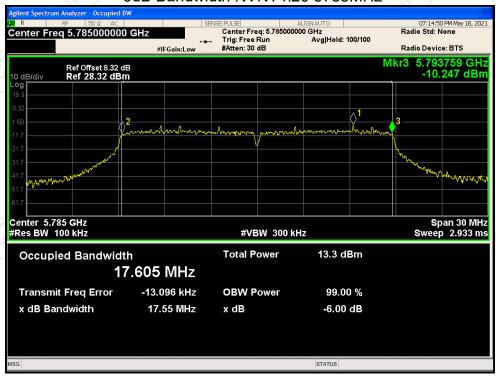


-6dB Bandwidth NVNT ac40 5755MHz



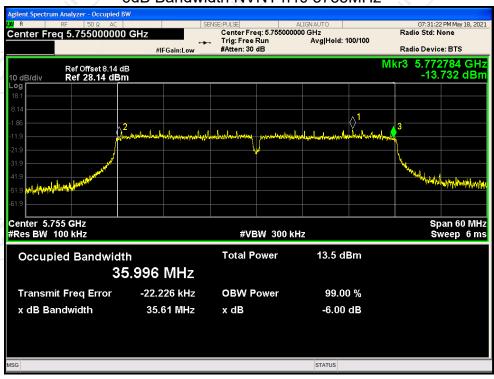
-6dB Bandwidth NVNT ac40 5795MHz

-6dB Bandwidth NVNT ac80 5775MHz

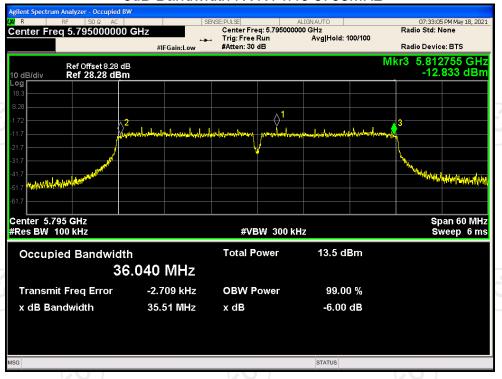


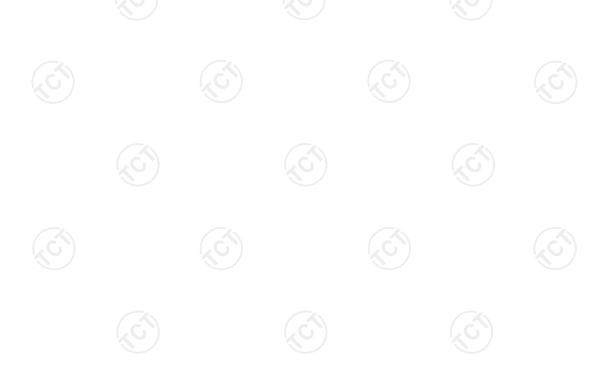
-6dB Bandwidth NVNT n20 5745MHz

-6dB Bandwidth NVNT n20 5785MHz

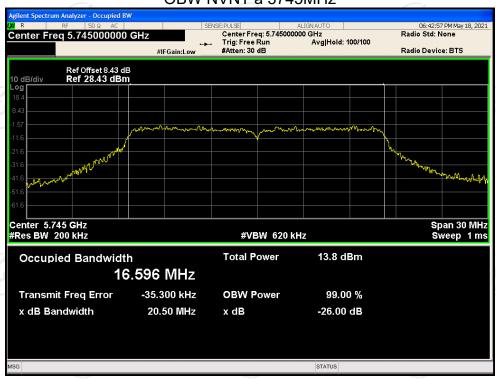


-6dB Bandwidth NVNT n20 5825MHz

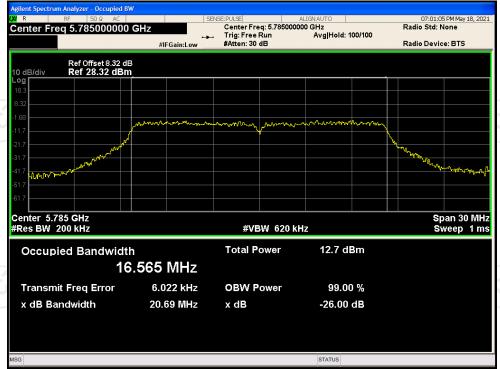



-6dB Bandwidth NVNT n40 5755MHz

-6dB Bandwidth NVNT n40 5795MHz



Occupied Channel Bandwidth

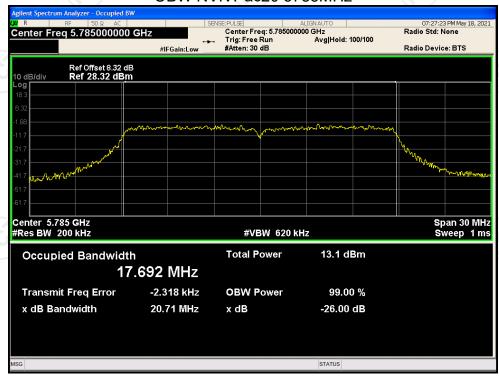

Condition	Mode	Frequency (MHz)	99% OBW (MHz)
NVNT	а	5745	16.59639328
NVNT	а	5785	16.56457483
NVNT	а	5825	16.54424038
NVNT	ac20	5745	17.67124358
NVNT	ac20	5785	17.69161143
NVNT	ac20	5825	17.65199682
NVNT	ac40	5755	36.18346391
NVNT	ac40	5795	36.13356367
NVNT	ac80	5775	75.47052946
NVNT	n20	5745	17.649752
NVNT	n20	5785	17.65708909
NVNT	n20	5825	17.63062519
NVNT	n40	5755	36.18242164
NVNT	n40	5795	36.24532404

OBW NVNT a 5745MHz

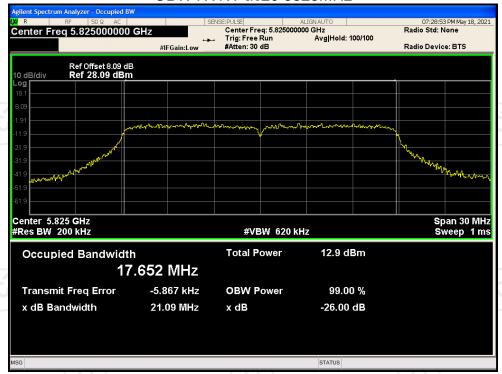
OBW NVNT a 5785MHz



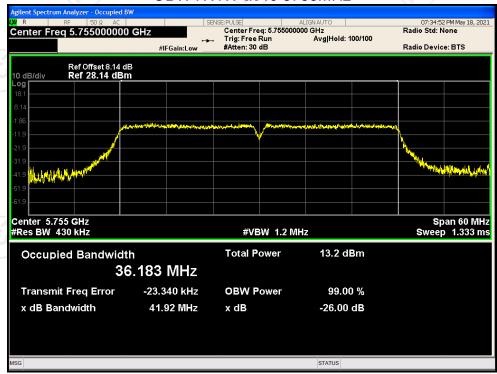
OBW NVNT a 5825MHz



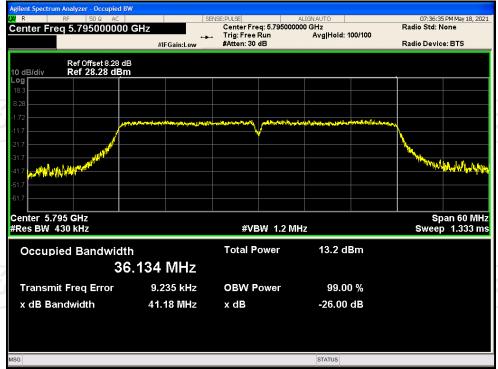
Report No.: TCT210423E043 OBW NVNT ac20 5745MHz



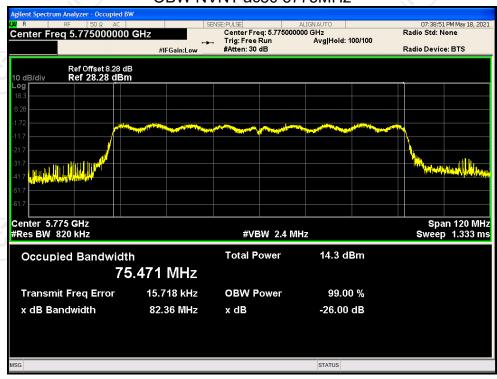
OBW NVNT ac20 5785MHz



OBW NVNT ac20 5825MHz



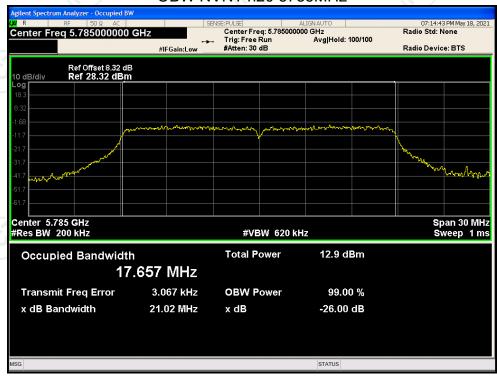
OBW NVNT ac40 5755MHz



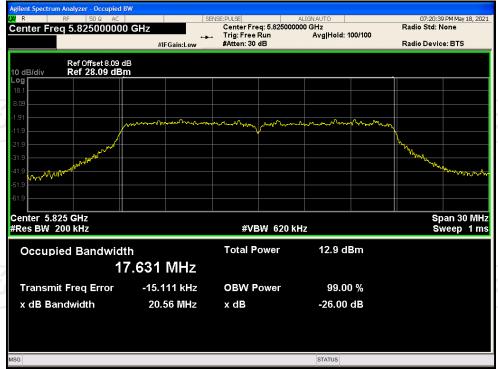
OBW NVNT ac40 5795MHz



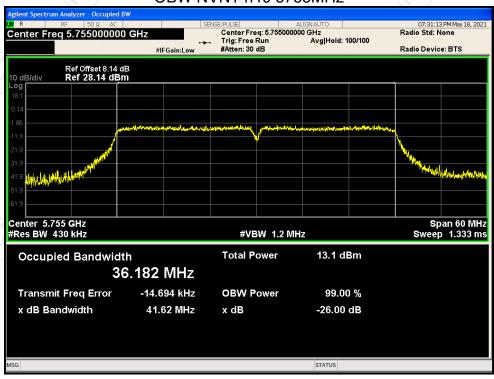
OBW NVNT ac80 5775MHz



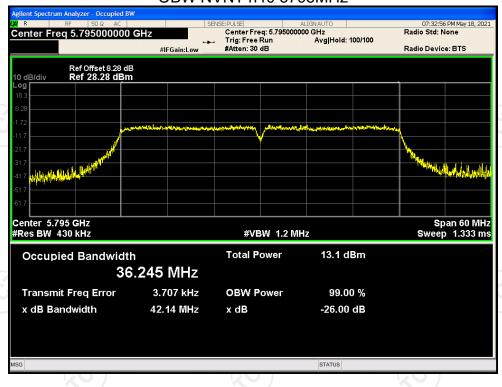
OBW NVNT n20 5745MHz



OBW NVNT n20 5785MHz



OBW NVNT n20 5825MHz


OBW NVNT n40 5755MHz

OBW NVNT n40 5795MHz

Report No.: TCT210423E043



Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	а	5745	-6.366	30	Pass
NVNT	а	5785	-7.333	30	Pass
NVNT	а	5825	-7.327	30	Pass
NVNT	ac20	5745	-7.088	30	Pass
NVNT	ac20	5785	-7.309	30	Pass
NVNT	ac20	5825	-7.380	30	Pass
NVNT	ac40	5755	-9.390	30	Pass
NVNT	ac40	5795	-9.602	30	Pass
NVNT	ac80	5775	-11.315	30	Pass
NVNT	n20	5745	-6.979	30	Pass
NVNT	n20	5785	-7.252	30	Pass
NVNT	n20	5825	-7.519	30	Pass
NVNT	n40	5755	-9.404	30	Pass
NVNT	n40	5795	-9.124	30	Pass

PSD NVNT a 5745MHz

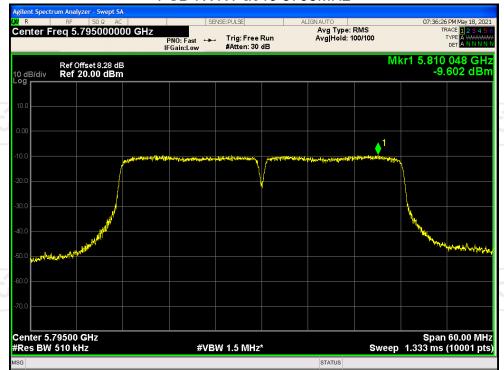
PSD NVNT a 5785MHz

PSD NVNT a 5825MHz

Report No.: TCT210423E043
PSD NVNT ac20 5745MHz

PSD NVNT ac20 5785MHz

PSD NVNT ac20 5825MHz



PSD NVNT ac40 5755MHz

PSD NVNT ac40 5795MHz

PSD NVNT ac80 5775MHz

PSD NVNT n20 5745MHz

PSD NVNT n20 5785MHz

PSD NVNT n20 5825MHz

PSD NVNT n40 5755MHz

PSD NVNT n40 5795MHz

Appendix B: Photographs of Test Setup

Refer to the test report No. TCT210423E030

Appendix C: Photographs of EUT

Refer to the test report No. TCT210423E030

*****END OF REPORT****

