FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... GTSR18110029-WLAN01

FCC ID.....: 2ABV4SVC680

Compiled by

(position+printed name+signature)..: File administrators Jimmy Wang

Supervised by

(position+printed name+signature)..: Test Engineer Aaron Tan

Approved by

(position+printed name+signature)..: Manager Jason Hu

Representative Laboratory Name.: Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Address...... Garden, No.98, Pingxin North Road, Shangmugu Community,

Pinghu Street, Longgang District, Shenzhen, Guangdong, China

Applicant's name...... Southern Telecom Inc.

Test specification:

Standard FCC Part 15.247

TRF Originator...... Shenzhen Global Test Service Co.,Ltd.

Master TRF...... Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description HD WI-FI Doorbell

Trade Mark /

Manufacturer Southern Telecom Inc.

Model/Type reference...... SVC680

Listed Models /

Difference /

Modulation Type IEEE 802.11b/802.11g/802.11n

Operation Frequency...... From 2412 - 2462MHz

Rating DC 3.7V from Battery or AC 16V-32V

Result.....: PASS

TEST REPORT

Test Report No. :	GTSR18110029-WLAN01	Oct. 26, 2018
rest Keport No	G131(10110029-WLAN01	Date of issue

Equipment under Test : HD WI-FI Doorbell

Model /Type : **SVC680**

Listed Models : /

Applicant : Southern Telecom Inc.

Address : 5601 1st Ave, 2nd Floor Brooklyn New York United States

Manufacturer : Southern Telecom Inc.

Address : 5601 1st Ave, 2nd Floor Brooklyn New York United States

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

TEST STANDARDS	<u>4</u>
SUMMARY	<u> 5</u>
General Remarks	5
	5
• • • • • • • • • • • • • • • • • • •	5
	5
	5
	6
	6
	6
Modifications	6
TEST ENVIDONMENT	7
IESI ENVIRONMENI	<u></u>
Address of the test laboratory	7
Test Facility	7
Environmental conditions	7
•	8
	8
Equipments Used during the Test	9
TEST CONDITIONS AND RESULTS	10
AO Barras One brote I Englishing	40
	10
	13 20
·	23
	26
	20 29
	31
	44
Antonia Requirement	44
TEST SETUP PHOTOS OF THE EUT	45
EXTERNAL AND INTERNAL PHOTOS OF THE EUT	47
	General Remarks Product Description Equipment Under Test Short description of the Equipment under Test (EUT) EUT operation mode Block Diagram of Test Setup Special Accessories Related Submittal(s) / Grant (s) Modifications TEST ENVIRONMENT Address of the test laboratory Test Facility Environmental conditions Test Description Statement of the measurement uncertainty Equipments Used during the Test TEST CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Conducted Band Edge Compliance of RF Emission Spurious RF Conducted Emission Antenna Requirement

Report No.: GTSR18110029-WLAN01 Page 4 of 55

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

<u>KDB558074 D01 V05</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Report No.: GTSR18110029-WLAN01 Page 5 of 55

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Oct. 19, 2018
Testing commenced on	:	Oct. 19, 2018
Testing concluded on	:	Oct. 26, 2018

2.2. Product Description

Name of EUT	HD WI-FI Doorbell
Trade Mark:	1
Model Number	SVC680
Listed Models	1
Power Supply	DC 3.7V from Battery or AC 16V-32V
WLAN	Supported 802.11b/802.11g/802.11n
Modulation Type	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Operation frequency	IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz IEEE 802.11n HT40:2422-2452MHz
Antenna Type	internal antenna
Antenna gain	2.00dBi

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 3.7V

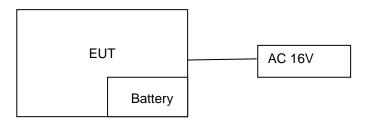
2.4. Short description of the Equipment under Test (EUT)

This is a HD WI-FI Doorbell

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The application provider specific test software (Realtek MPtool) to control sample in continuous TX and RX (Duty Cycle >98%)


for testing meet KDB558074 test requirement.

Report No.: GTSR18110029-WLAN01

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

2.6. Block Diagram of Test Setup

2.7. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
TOSHIBA	Tablet PC	Satellite S40Dt-A	D26T	DOC

2.8. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **2ABV4SVC680** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTSR18110029-WLAN01 Page 7 of 55

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2018.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

Report No.: GTSR18110029-WLAN01 Page 8 of 55

3.4. Test Description

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode(High Channel).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode(High Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case datarates used during the testing are as follows:

802.11b Mode: 1 Mbps, DSSS. 802.11g Mode: 6 Mbps, OFDM. 802.11n Mode HT20: MCS0, OFDM. 02.11n Mode HT40: MCS0, OFDM.

3.5. Statement of the measurement uncertainty

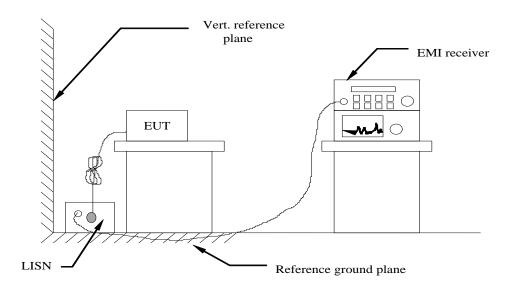
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Range	Measurement Uncertainty	Notes
30~1000MHz	4.10 dB	(1)
1~18GHz	4.32 dB	(1)
18-40GHz	5.54 dB	(1)
0.15~30MHz	3.12 dB	(1)
	30~1000MHz 1~18GHz 18-40GHz	RangeUncertainty30~1000MHz4.10 dB1~18GHz4.32 dB18-40GHz5.54 dB

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test


Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2018/09/20	2019/09/19
LISN	R&S	ESH2-Z5	893606/008	2018/09/20	2019/09/19
Bilog Antenna	Schwarzbeck	VULB9163	976	2018/09/20	2019/09/19
EMI Test Receiver	R&S	ESCI7	101102	2018/09/20	2019/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2018/09/20	2019/09/19
Spectrum Analyzer	R&S	FSP40	100019	2018/09/20	2019/09/19
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2018/09/20	2019/09/19
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2018/09/20	2019/09/19
Broadband Horn Antenna	SCHWARZBEC K	BBHA 9170	971	2018/09/20	2019/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2018/09/20	2019/09/19
Amplifier	EMCI	EMC051845B	980355	2018/09/20	2019/09/19
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2018/09/20	2019/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2018/09/20	2019/09/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2018/09/20	2019/09/19
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2018/09/20	2019/09/19
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2018/09/20	2019/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2018/09/20	2019/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2018/09/20	2019/09/19
EMI Test Software	R&S	ES-K1	V1.7.1	2018/09/20	2019/09/19
EMI Test Software	JS Tonscend	JS32-RE	2.0.1.5	2018/09/20	2019/09/19

Note: The Cal.Interval was one year.

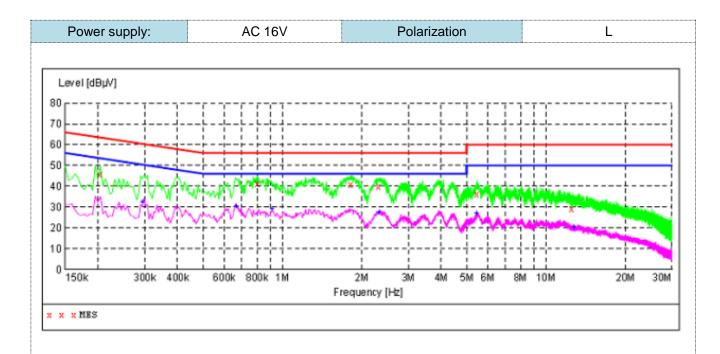
4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 5V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

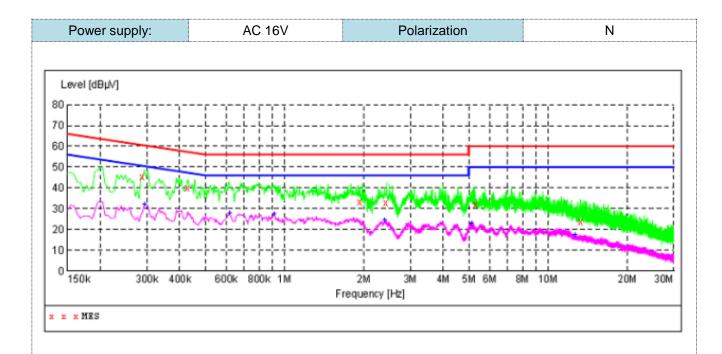

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguenov rango (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

TEST RESULTS

Remark: We measured Conducted Emission at 802.11b/802.11g/802.11n HT20/802.11n HT40 mode in AC 16V and AC 32V, recorded worst case..



MEASUREMENT RESULT:

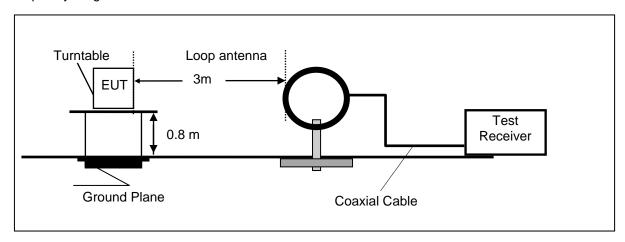
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.204000 0.802500 1.810500 2.319000 5.469000	45.70 41.10 40.90 39.90 36.30	10.0 9.7 9.5 9.5 9.3	63 56 56	17.7 14.9 15.1 16.1	QP QP QP	L1 L1 L1	GND GND GND GND
12.565500	29.10	8.5	60 60	23.7 30.9	QP QP	L1 L1	GND GND

MEASUREMENT RESULT:

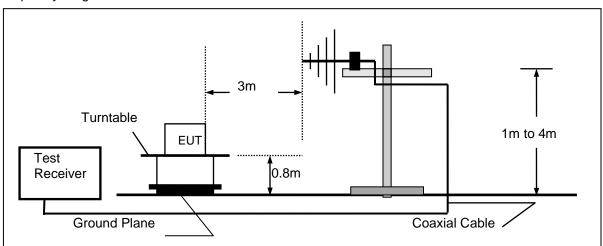
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.294000	32.40	9.9	50	18.0	ΑV	L1	GND
0.667500	30.40	9.7	46	15.6	AV	L1	GND
0.910500	29.10	9.6	46	16.9	AV	L1	GND
2.332500	27.60	9.5	46	18.4	AV	L1	GND
5.464500	26.90	9.3	50	23.1	AV	L1	GND
12.777000	20.10	8.5	50	29.9	AV	L1	GND

MEASUREMENT RESULT:

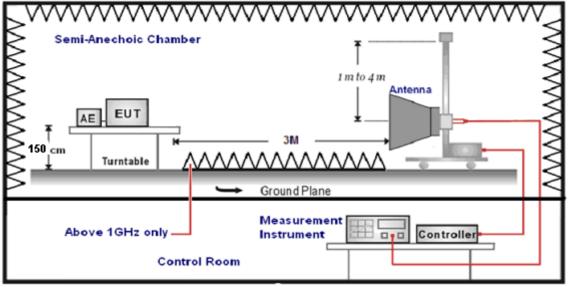
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.289500	45.30	9.9	61	15.2	QP	и	GND
0.429000	40.10	9.8	57	17.2	QP	N	GND
1.932000	33.30	9.5	56	22.7	QP	N	GND
2.418000	33.00	9.5	56	23.0	QP	И	GND
5.293500	32.20	9.3	60	27.8	QP	N	GND
13.272000	23.60	8.4	60	36.4	OP	N	GND


MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.294000	32.10	9.9	50	18.3	AV	N	GND
0.618000	27.80	9.7	46	18.2	AV	N	GND
0.910500	27.60	9.6	46	18.4	AV	И	GND
2.395500	24.40	9.5	46	21.6	AV	N	GND
5.140500	22.80	9.3	50	27.2	AV	N	GND
12.642000	17.50	8.5	50	32.5	VA	N	GND


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1047 40047	Sweep time=Auto	Peak
1GHz-40GHz	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

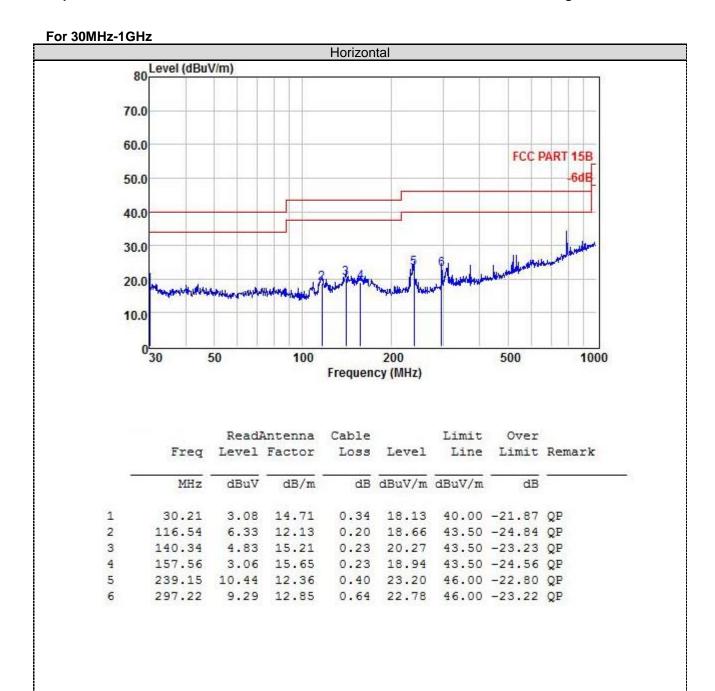
The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

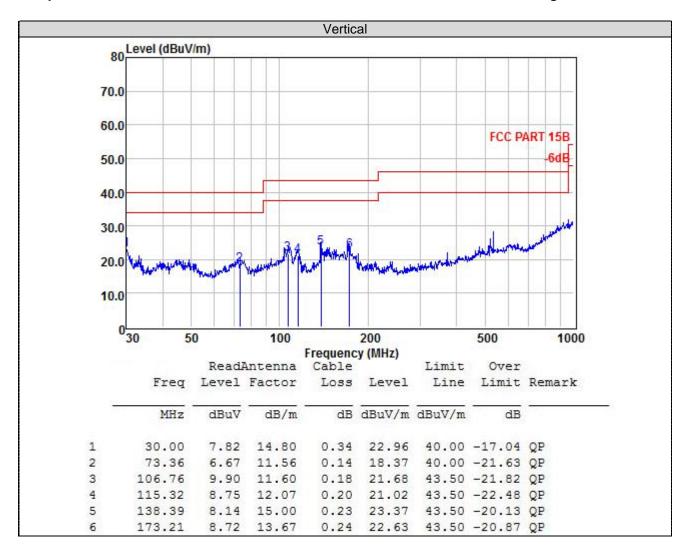
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Report No.: GTSR18110029-WLAN01 Page 15 of 55

TEST RESULTS

For 9 KHz-30MHz


Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F


Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

- 1. Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b mode (High Channel).
- 2. Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor
- 3. Margin value = Emission level-Limits

Report No.: GTSR18110029-WLAN01 Page 18 of 55

For 1GHz to 25GHz

802.11b(Worst Case)

Polar (H/V)	Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
				802.11b	-2412MHz	1			
V	4824	33.54	30.28	7.01	26.63	44.22	74	-29.78	Pk
Н	4824	32.69	30.28	7.01	26.63	43.32	74	-30.68	PK
V	7236	28.04	36.59	8.91	24.98	48.51	74	-25.49	Pk
Н	7236	25.48	36.59	8.91	24.98	46.04	74	-27.96	PK
				802.11b	-2437MHz				
V	4874	34.12	30.36	7.62	26.63	45.45	74	-28.55	Pk
Н	4874	33.21	30.36	7.62	26.63	44.51	74	-29.49	PK
V	7311	26.59	36.61	8.84	24.98	47.09	74	-26.91	Pk
Н	7311	26.41	36.61	8.84	24.98	46.81	74	-27.19	PK
				802.11k	-2462MHz				
V	4924	35.47	30.43	7.94	26.63	47.27	74	-26.73	Pk
Н	4924	33.18	30.43	7.94	26.63	44.94	74	-29.06	PK
V	7386	25.42	36.78	8.45	24.98	45.62	74	-28.38	Pk
Н	7386	25.18	36.78	8.45	24.98	45.48	74	-28.52	PK

- 1). Measuring frequencies from 9 KHz 10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9k~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40.

Report No.: GTSR18110029-WLAN01 Page 19 of 55

Results of Band Edges Test (Radiated)-Worst case on IEEE 802.11n40

Polarity:					HORIZONTAL				
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
2390.00	69.053	PK	74	-4.947	37.663	26.50	4.89	0.00	31.39
2390.00	48.776	AV	54	-5.224	17.386	26.50	4.89	0.00	31.39
2483.50	69.373	PK	74	-4.627	36.743	27.40	5.23	0.00	32.63
2483.50	50.265	AV	54	-3.735	17.635	27.40	5.23	0.00	32.63

Polarity:					VERTICAL				
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
2390.00	67.526	PK	74	-6.474	36.136	26.50	4.89	0.00	31.39
2390.00	52.020	AV	54	-1.980	20.630	26.50	4.89	0.00	31.39
2483.50	66.242	PK	74	-7.758	33.612	27.40	5.23	0.00	32.63
2483.50	52.693	AV	54	-1.307	20.063	27.40	5.23	0.00	32.63

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

Report No.: GTSR18110029-WLAN01 Page 20 of 55

4.3. Maximum Peak Output Power

TEST CONFIGURATION

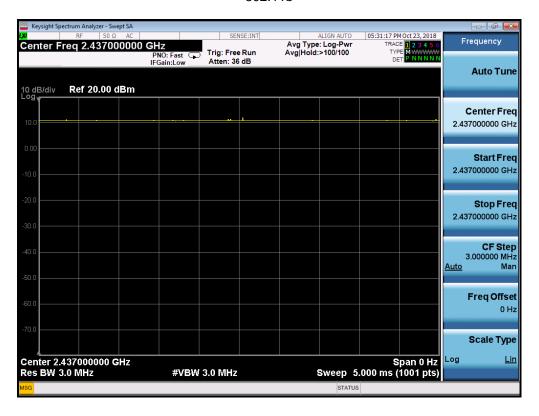
TEST PROCEDURE

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2. and Average conducted output power, 9.2.3.1.

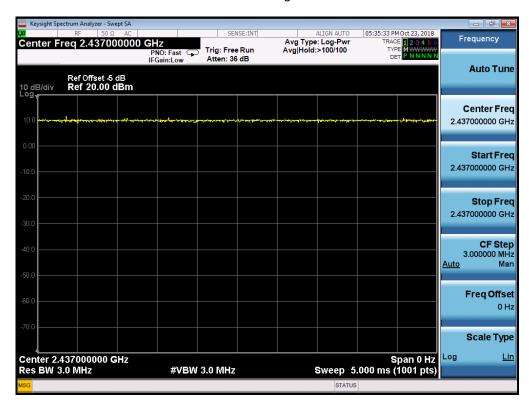
The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

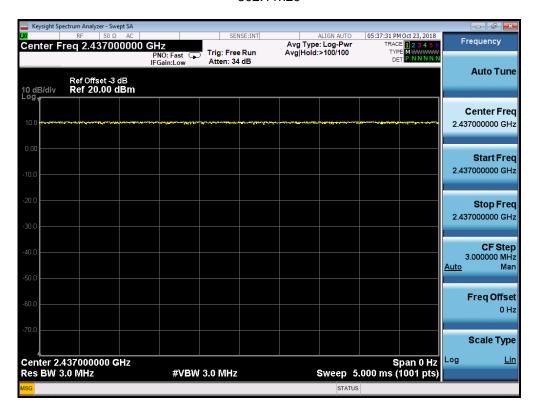
<u>LIMIT</u>

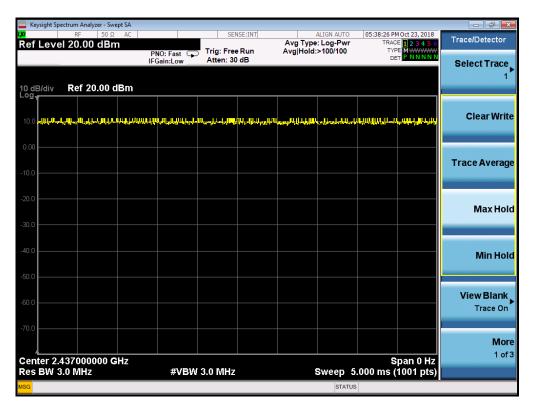

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

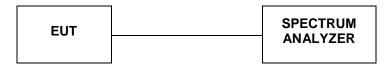

Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	9.595		
802.11b	06	10.023	30.00	Pass
	11	10.024		
	01	8.542		
802.11g	06	8.597	30.00	Pass
	11	8.785		
	01	9.035		
802.11n(HT20)	06	8.597	30.00	Pass
	11	8.113		
	03	8.998		
802.11n(HT40)	06	9.600	30.00	Pass
	09	9.930		

- 1) Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;


802.11b


802.11g

802.11n20


802.11n40

Report No.: GTSR18110029-WLAN01 Page 23 of 55

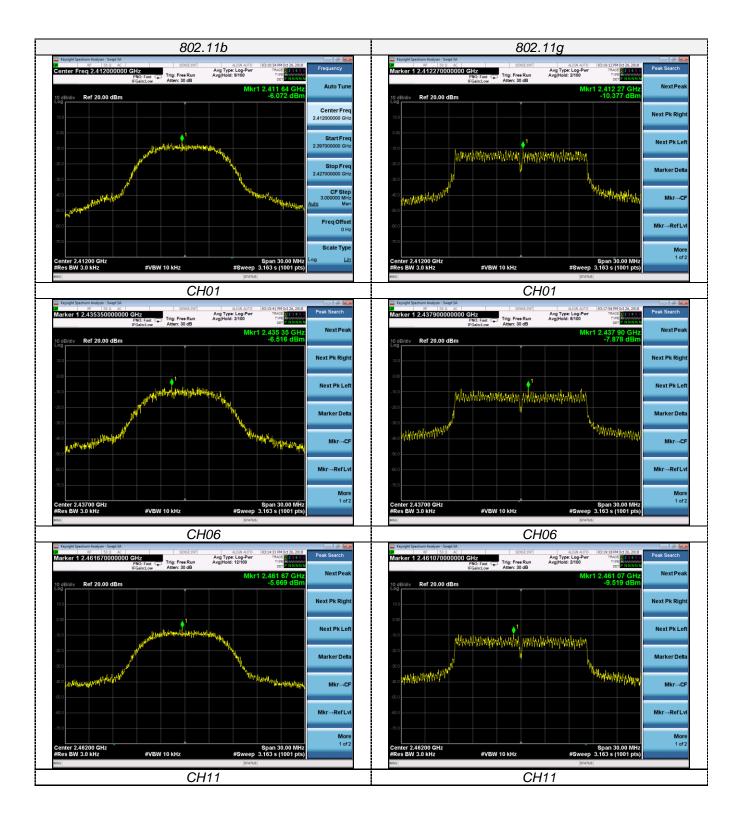
4.4. Power Spectral Density

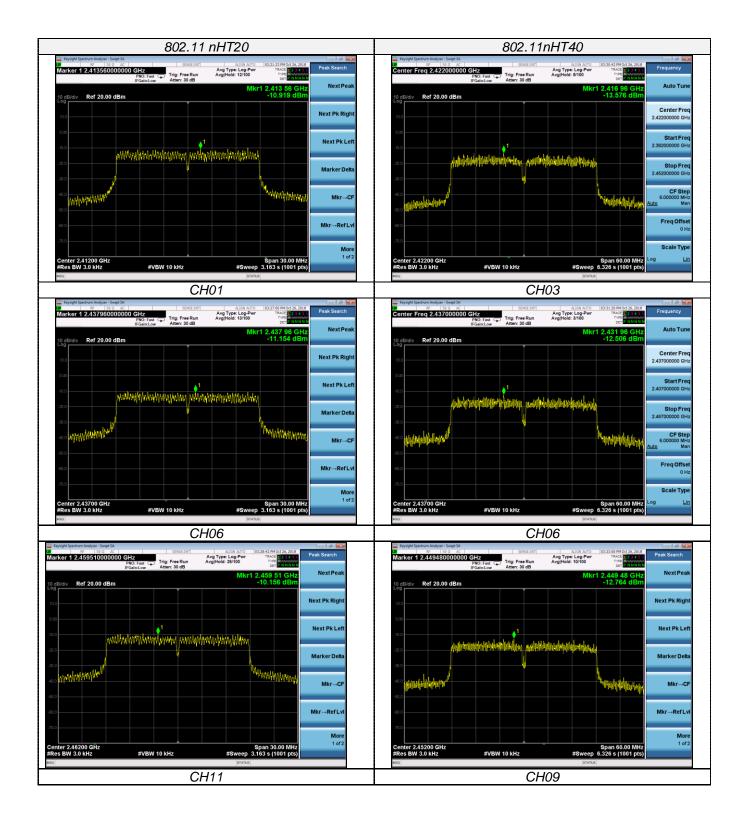
TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 Method PKPSD (peak PSD) This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW ≥ 3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = \max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


LIMIT


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3K Hz)	Result
	01	-6.072		
802.11b	06	-6.516	8.00	Pass
	11	-5.669		
802.11g	01	-10.377		Pass
	06	-7.878	8.00	
	11	-9.519		
	01	-10.919		
802.11n(HT20)	06	-11.154	8.00	Pass
	11	-10.156		
802.11n(HT40)	03	-13.576		
	06	-12.506	8.00	Pass
	09	-12.764		

- 1). Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;
- 13.5Mbps at IEEE 802.11n HT40;
- 4.) Please refer to following plots;

Report No.: GTSR18110029-WLAN01 Page 26 of 55

4.5. 6dB Bandwidth

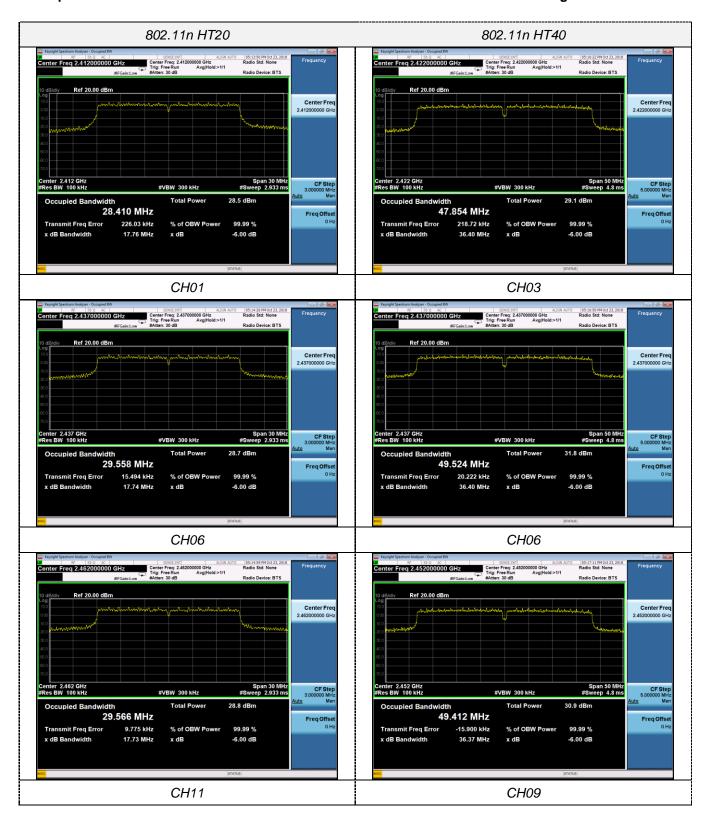
TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

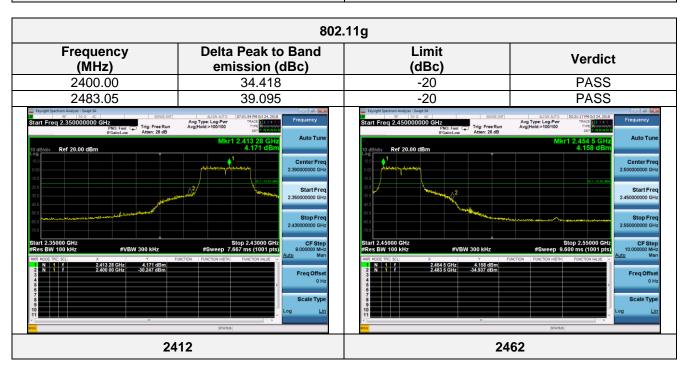
LIMIT

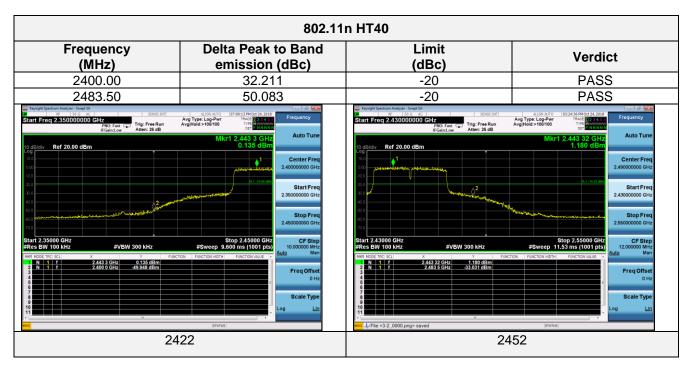

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	9.620		
802.11b	06	10.04	≥500	Pass
	11	10.05		
802.11g	01	16.52		
	06	16.51	≥500 Pa	Pass
	11	16.48		
802.11nHT20	01	17.76		Pass
	06	17.74	≥500	
	11	17.73		
802.11nHT40	03	36.40		
	06	36.40	≥500	Pass
	09	36.37		

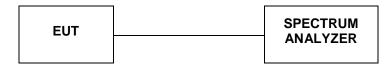
- 1). Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;




Report No.: GTSR18110029-WLAN01

4.6. Conducted Band Edge Compliance of RF Emission

802.11b				
Frequency (MHz)	Delta Peak to Band emission (dBc)	Limit (dBc)	Verdict	
2400.00	47.295	-20	PASS	
2483.50	54.556	-20	PASS	
2 N 1 f 2412 56 GHz 5.173 GBm 3 1 f 2400 90 GHz 42.122 dBm 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Ang Type Log-Pour Anglyseld-100101 core and the second of	Start Freq 2.45000000 GHz Start Freq 2.45000000 GHz Start Freq 2.45000000 GHz Start Freq 2.45000000 GHz Start Freq 2.450000000 GHz Start 2.45000 GHz	Freq Offset OHz Scale Type Log Lin	


802.11n HT20				
Frequency (MHz)	Delta Peak to Band emission (dBc)	Limit (dBc)	Verdict	
2400.00	35.837	-20	PASS	
2483.50	38.456	-20	PASS	
Street Bert Street Bert	Ang Type Log Pay Ang Type Log Pay Mkr I 2.413 23 GHz 3.335 GBm Center Freq 2.390000000 GHz Start Freq 2.390000000 GHz Start Freq 2.49000000 GHz Start Freq 2.49000000 GHz Start Freq 2.49000000 GHz Fisweep 7.567 ms (1001 pts) Man Freq Offset 0 Hz Scale Type Log Lin	Start Froq 2.450000000 GHz Start Froq 2.450000000 GHz Figure Fant O albidiv Ref 20.00 dBm Start 2.45000 GHz Figure Fant Figure Fant Atten: 26 dB Start 2.45000 GHz Figure Fant Figure Fant Atten: 26 dB Start 2.45000 GHz Figure Fant Start 2.4	Aug 1/19	

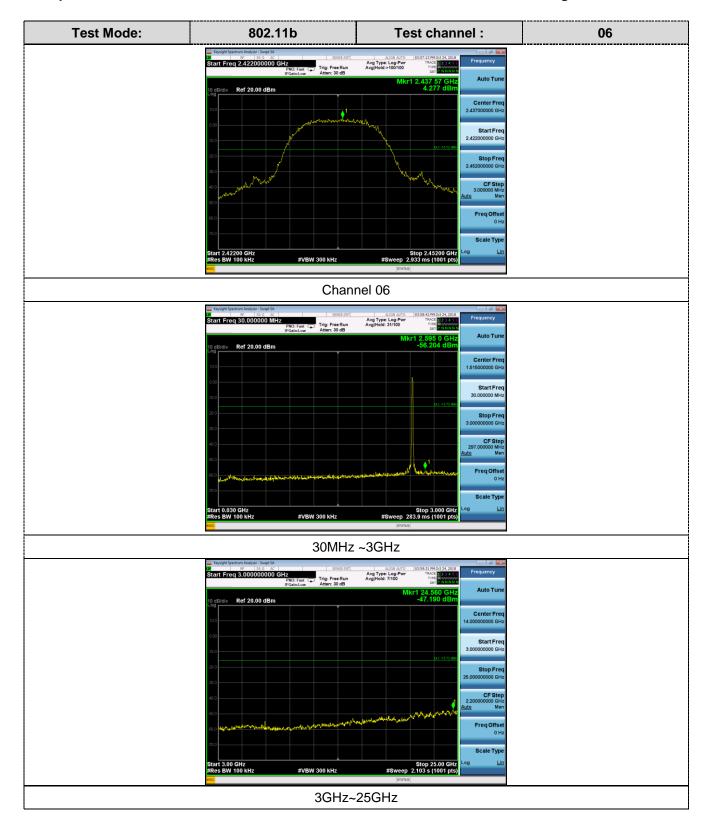
Report No.: GTSR18110029-WLAN01 Page 31 of 55

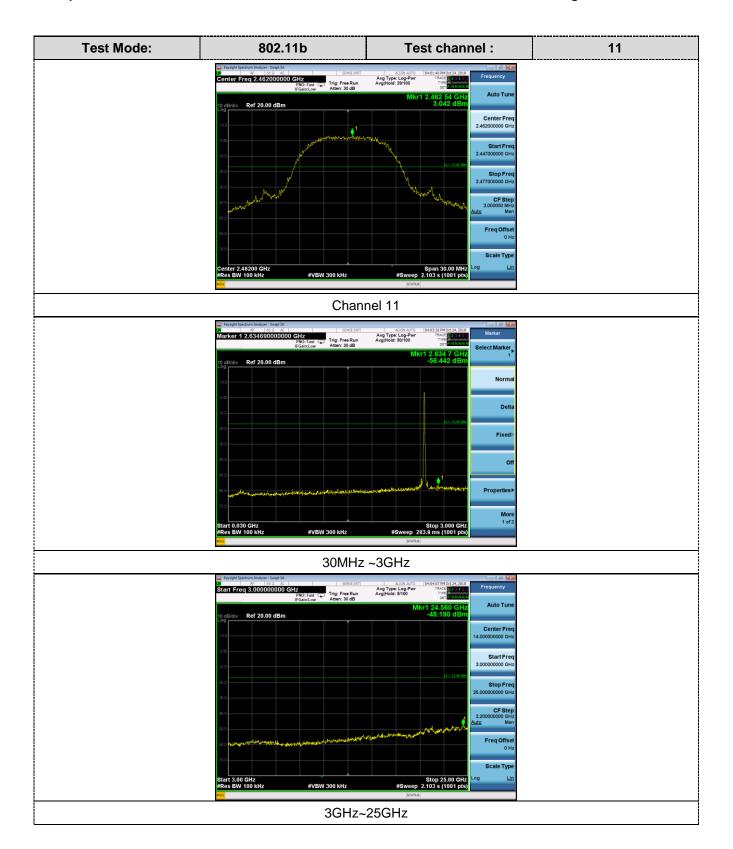
4.7. Spurious RF Conducted Emission

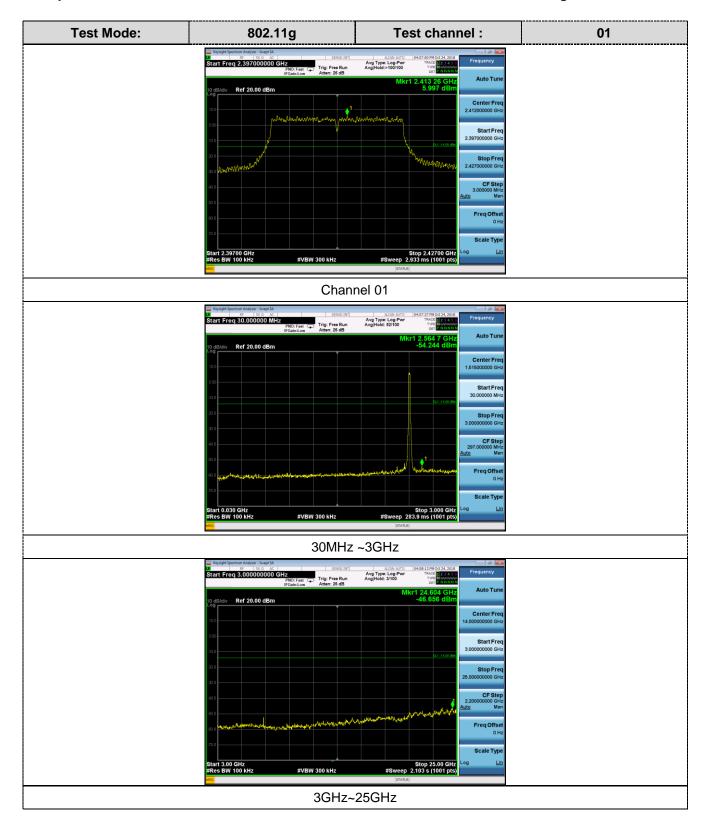
TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013, For 9KHz-150kHz, Set RBW=1kHz and VBW= 3KHz;For 150KHz-10MHz, Set RBW=10kHz and VBW= 30KHz:For 10MHz-25GHz, Set RBW=100kHz and VBW= 300KHz in order to measure the peak field strength, and mwasure frequeny range from 9KHz to 25GHz.


<u>LIMIT</u>


- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.
- 3.For below 30MHz,For 9KHz-150kHz,150K-10MHz,We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz,RBW 1KHz, The Limit= the highest emission level-20-10log(100/1)= the highest emission level-40.


TEST RESULTS

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.and record the worst data in the report.

